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Abstract: The need for a practical method for routine determination of body fat has progressed from
body mass index (BMI) to bioelectrical impedance analysis (BIA) and smartphone two-dimensional
imaging. We determined agreement in fat mass (FM) estimated with 50 kHz BIA and smartphone
single lateral standing digital image (SLSDI) compared to dual X-ray absorptiometry (DXA) in
188 healthy adults (69 females and 119 males). BIA underestimated (p < 0.0001) FM, whereas SLSDI
FM estimates were not different from DXA values. Based on limited observations that BIA overesti-
mated fat-free mass (FFM) in obese adults, we tested the hypothesis that expansion of the extracellular
water (ECW), expressed as ECW to intracellular water (ECW/ICW), results in underestimation of
BIA-dependent FM. Using a general criterion of BMI > 25 kg/m2, 54 male rugby players, compared
to 40 male non-rugby players, had greater (p < 0.001) BMI and FFM but less (p < 0.001) FM and
ECW/ICW. BIA underestimated (p < 0.001) FM in the non-rugby men, but SLSDI and DXA FM
estimates were not different in both groups. This finding is consistent with the expansion of ECW in
individuals with excess body fat due to increased adipose tissue mass and its water content. Unlike
SLSDI, 50 kHz BIA predictions of FM are affected by an increased ECW/ICW associated with greater
adipose tissue. These findings demonstrate the validity, practicality, and convenience of smartphone
SLSDI to estimate FM, seemingly not influenced by variable hydration states, for healthcare providers
in clinical and field settings.

Keywords: DXA; BIA; digital imaging; fat mass; extracellular water

1. Introduction

Obesity is a multifactorial chronic disease that increases the risk of long-term morbidity,
reduces life span, and increases health care costs. More than 650 million people worldwide
were identified as obese in 2016, representing a three-fold increase since 1975 [1]. Four million
deaths in 2015 were attributed to obesity, and two-thirds were ascribed to cardiovascular
disease [2]. The global economic burden of obesity is expected to be 1.2 trillion USD in 2025 [3].
Thus, the availability of reliable and practical methods to identify individuals with excess
body fat is a public health need.

Clinicians and health professionals use ranges of body weight relative to height and
body mass index (BMI; Wt/Ht2) to stratify adiposity-related health risks in a population. The
convenience of BMI in clinical and research settings is offset by its unreliability in estimating
body fat and predicting the risk of obesity-related diseases for an individual [3–10]. Because
BMI is an insensitive indicator of body composition, it poorly predicts the adiposity of individ-
uals with increased fat-free mass (FFM) [11,12]. Other methods to estimate body composition
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improve the specificity and precision of estimation of fat and lean body components but are
limited by technical complexity, exposure to ionizing radiation, invasiveness, lack of mobility,
and cost that prevent their widespread use for routine assessment of body composition [13,14].
Recent reports describe the limitations of BMI and emphasize the need for practical and valid
methods to identify overweight and obesity and thus improve the care of patients with excess
body fat [15–17].

Two methods are amenable to meet this need. Bioelectrical impedance analysis (BIA)
relies on the conduction of a safe, administered alternating current to estimate total body water
(TBW) [18]. Most BIA methods use 50 kHz phase-sensitive devices and rely on the assumption
of constant hydration to estimate FFM and calculate body fat. Alternatively, smartphone
two-dimensional standing digital image analysis (2DI) coupled with computational machine
learning has recently been used to estimate total body adiposity [19–22]. Studies reported
differences in body fat estimates using smartphone 2DI and BIA compared to DXA but have
not provided explanations for the observations [20,21]. Whereas BIA is a valid method to
assess TBW [18], and excess body fat increases ECW [23], reliance on the assumption of
constant hydration of the FFM may overestimate FFM and, thus, underestimate body fat in
adults who are overweight or obese [24,25]. We hypothesize that fluid imbalance is a factor
explaining differences in fat estimation with BIA compared to 2DI.

The aim of the present study was to determine the agreement of smartphone single
lateral standing digital image (SLSDI) and 50 kHz BIA relative to fat mass (FM) from dual
X-ray absorptiometry (DXA) in healthy adults and to determine whether fluid imbalance
contributes to any observed differences in FM estimates.

2. Materials and Methods
2.1. Participants

We recruited healthy adult Caucasian women and men aged 19 to 64 y using adver-
tisements and word of mouth to participate in this observational study, as all of them are
registered patients undertaking nutrition counseling conducted at the Eubion Medical Cen-
ter and Tor Vergata University in Rome, Italy. Body composition assessments are routinely
conducted with counseling. Prospective participants underwent clinical examinations and
completed a health questionnaire to establish the absence of an unhealthy condition before
participation. Exclusion criteria include metal implants, current treatment for metastatic
disease, diabetes, diuretic therapy, or limb loss. This study was strictly observational;
therefore, according to the Eubion Center by-law, it does not require review or approval
from the ethical committee of the Human Study. Each participant accepted the standard
Eubion Center informed consent before participating in any testing.

2.2. Body Composition Assessment

Volunteers, wearing form-fitting clothing without jewelry, came to the laboratory after
consuming a light meal and emptying their bladders. Standing height and body weight
were determined using standard medical equipment (SECA Stadiometer and SECA 762 scale;
Hamburg, Germany).

Body composition estimation included BIA, SLSDI, and DXA administered in random
order. Volunteers underwent whole-body BIA testing using a 50 kHz phase-sensitive
impedance analyzer that introduced a sinusoidal, constant current (250 µA RMS) (BIVA,
EFG 3 Monitor; Akern, Florence, Italy) using a tetrapolar surface electrode placement
with paired current-injecting and voltage drop-measuring electrodes (BIAtrodes; Akern,
Florence, Italy) separated a minimum of 5 cm and placed on the right wrist and ankle. Vol-
unteers rested supine on a bed without contact with metal for 10 min. This BIA instrument
provided direct measurements of resistance (R), reactance (Xc), and phase angle (PhA).
The technical accuracy and precision of the BIA instrument were determined following
the manufacturer’s recommendations using a supplied calibration circuit referenced as
383 ohm resistance and 45 ohm reactance. We measured the accuracy by comparison of
measurements of the calibration circuit with reference values and repeatability as the coeffi-
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cient of determination and concordance correlation coefficient of duplicate measurements
of this circuit to be <2% and 0.98 (p < 0.001), respectively.

Body composition was estimated by using the following BI prediction models.
Kyle et al. [26] (BIA1):

FFM = 4.104 + 0.518 Ht2/R + 0.231 Wt + 0.130 Xc + 4.229 Sex * [1 for men and 0 for women]

Sun et al. [27] (BIA2):

Males: FFM = −9.88 + 0.65 Ht2/R + 0.26 Wt + 0.02 R

Females: FFM = −11.03 + 0.70 Ht2/R + 0.07 Wt + 0.02 R

Units are FFM (kg), height (Ht)2/R (cm2/Ω), weight (Wt, kg), and Xc (Ω).

A single SLSDI of each volunteer was obtained using the Fit.Your.Outfit (Pixelcando
SL-Spain) smartphone APP implemented with a Cloud-based artificial intelligence (AI).
An SLSDI of each volunteer was obtained without regard to background or illumination
and transformed into an anonymous silhouette [22]. The individual stood upright with the
head positioned in the horizontal plane, arms fully extended alongside the body, with feet
and legs touching and aligned sagittal to the camera to provide a lateral profile of the body
(Figure 1). The smartphone cameras, iOS—iPhone SE or iPhone 11—with CCD resolution
greater than 50 megapixels, were either pre-positioned on a stable tripod or held by a
second individual who directed the handheld smartphone camera with the lens pointed
at the middle of the standing height of each study participant. The Custom Pixelcando
version AI 2.3.0 automatically scaled all the digital pictures to a single homogeneous
resolution of 5 megapixels and removed any background from the subject silhouette. The
distance from the camera to the individual was 1.8 to 2.1 m, which was confirmed by the
automatic feedback system of the smartphone APP. The operator downloaded and installed
the Fit.Your.Outfit APP, available in iOS and Android from the APP stores, which ensures
the high technical quality of digital images for analysis to estimate body composition
using proprietary software. The adequacy of the technical quality of the photograph is
controlled, and artifacts are prevented by using built-in sensors of modern smart devices
and native libraries to detect specific anatomic nodal points to identify parallaxes and
improper distance from an individual to a camera and to recognize incorrect arm extension
and position, improper alignment of legs and feet, and non-horizontal head position. The
quality control protocol provides visual warning instructions to the operator to ensure the
acquisition of high-quality digital images for analysis.

Precision, determined as coefficients of determination and concordance coefficients
for repeated profiles of SLSDI images and FM estimates, were 0.996 and 0.997 (p < 0.0001),
respectively, with no difference (<0.1 kg) between repeated images.

Reference whole-body composition was determined using DXA, a GE Lunar iDXAn-
core sn 200278, using software version 14.10.022 (Madison, WI, USA). All participants were
positioned supine and scanned within the dimensions of the DXA table. Precision estimates
were 1.3% for FM and 0.5% for FFM.

Fluid distribution was evaluated using BIA measurements and bioelectrical impedance
vector analysis (BIVA) [28]. This method uses tetrapolar BIA and a 50 kHz phase-sensitive
impedance device and provides whole-body, direct serial measurements of R, Xc, and phase
angle (PhA).
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Figure 1. Example of SLDDI photo and silhouette.

2.3. Statistical Methods

Statistical analyses were performed using SYSTAT version 13 (Systat Corporation; San
Jose, CA, USA) and version 19.0.3 (MedCalc Software Bv, Ostend, Belgium). Descriptive
data are expressed as mean ± SD. Statistical significance was set at p < 0.05.

Estimates of FM from the smartphone SLSDI and each BIA prediction model were
compared with the reference DXA values. Measurement agreement was evaluated with
concordance correlation coefficient (CCC) [29] and standard error of the estimate (SEE)
between DXA and each method. Reference and estimates of body fat values in each sex
group were compared separately with a paired t-test. Bland–Altman plot [30,31] was used
to determine bias and limits of agreement (LOA) for the SLSDI and BIA methods compared
to DXA determinations.

Effects of fluid distribution were evaluated in a sub-group of males with BMI greater
than 25 kg/m2, the population indicator for overweight and obesity, to contrast the effects
of differences in adipose tissue with an unpaired t-test. Differences between group vector
distributions were determined using Hotelling’s T2 test.

3. Results

Table 1 describes the physical characteristics of the participants and shows the wide
ranges of BMI and FM in the groups.

The FM values were similar for SLSDI-estimated and DXA-determined FM for females
(24.1 ± 11.3 and 24.3 ± 11.6 kg) and males (18.8 ± 7.2 and 18.8 ± 7.6 kg) with no significant
difference between methods (Table 2). All 50 kHz BIA equations underestimated (p < 0.0001)
FM (1.1 ± 2.4 and 3.2 ± 2.4 kg) in females. Two BIA equations overestimated (p < 0.0001) FM
(1.4 ± 3.9 and 2.9 ± 3.7 kg) in males. The LOA are the range of the differences in FM values
determined between DXA, the reference method, and each evaluated method, between which
95% of the differences are expected to fall [30,31]. The LOA for SLSDI were generally smaller
than for the BIA prediction equations.
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Table 1. Physical characteristics of the study participants. Values are mean ± SD (min-max).

Females Males Rugby and Non-Rugby Males

BMI > 25 kg/m2

Total Total Rugby Non-Rugby

N 69 119 54 40

Age, y 37 ± 13 28 ± 9 26 ± 3 36 ± 15
(19–65) (19–68) (20–34) (19–68)

Height, cm 162.7 ± 6.3 182.5 ± 8.7 186.2 ± 7.2 179.7 ± 9.2
(150.0–178.0) (160.0–202.0) (173.0–202.0) (163.0–198.0)

Weight, kg 67.8 ± 14.5 93.2 ± 13.3 104.8 ± 11.4 91.4 ± 12.2
(41.8–103.6) (61.1–125.6) (79.4–123.0) (69.5–124.6)

BMI, kg/m2 25.6 ± 5.4 27.6 ± 4.0 30.4 ± 3.3 28.7 ± 3.0
(16.1–37.2) (19.5–37.0) (25.2–36.6) (25.1–37.1)

DXA Fat, kg 24.3 ± 11.6 18.8 ± 7.7 19.3 ± 6.5 23.3 ± 6.9
(6.4–52.3) (5.6–35.2) (9.0–35.2) (10.3–35.1)

DXA Fat, % 34.2 ± 10.2 19.8 ± 6.7 18.2 ± 4.7 25.4 ± 6.2
(12.1–50.5) (8.3–36.8) (9.8–28.9) (11.4–36.8)

DXA FFM, kg 43.5 ± 5.6 74.4 ± 12.7 84.7 ± 6.6 68.1 ± 10.1
(31.0–55.8) (47.4–103.2) (68.9–103.2) (50.6–97.2)

N: sample size; BMI: body mass index; DXA: dual X-ray absorptiometry; and FFM: fat-free mass.

Table 2. Levels of agreement for body fat estimates using smartphone single lateral standing digital
image and 50 kHz bioelectrical impedance analysis compared to dual X-ray absorptiometry. Values
are mean ± SD.

Males
N = 119

Females
N = 69

DXA Fat mass, kg 18.8 ± 7.6 24.3 ± 11.6

SLSDI

Fat mass, kg 18.8 ± 7.2 24.1 ± 11.3
Bias, kg −0.1 ± 2.9 0.2 ± 3.0
p 0.97 0.29
SEE, kg 2.9 3.0
CCC 0.93 0.96
MAE, kg 2.3 ± 1.7 2.4 ± 1.6
MAPE, % 14.8 ± 13.3 13.8 ± 14.3
LOA 95% CI, kg 5.6–(−5.6) 6.0–(−5.5)

BIA1

Fat mass, kg 20.3 ± 8.2 23.2 ± 10.6
Bias, kg −1.4 ± 3.9 1.1 ± 2.4
p 0.0001 0.0001
SEE, kg 3.7 2.3
CCC 0.86 0.98
MAE, kg 3.3 ± 2.5 2.2 ± 1.4
MAPE, % 20.8 ± 18.3 9.9 ± 6.2
LOA 95% CI, kg 6.2–(−9.1) 5.8–(−3.6)

BIA2

Fat mass, kg 21.1 ± 7.3 21.1 ± 10.9
Bias, kg 2.3 ± 3.7 3.2 ± 2.4
p 0.0001 0.0001
SEE, kg 3.6 2.3
CCC 0.84 0.94
MAE, kg 3.6 ± 2.4 3.4 ± 2.1
MAPE, % 21.3 ± 15.8 16.0 ± 13.9
LOA 95% CI, kg 9.5–(−4.9) 7.8–(−1.5)

DXA = dual X-ray absorptiometry; SLSDI = single lateral standing digital image [22]; BIA1 = Kyle et al. [26];
BIA2 = Sun et al. [27]; Bias = DXA–method; p = probability value; SEE = standard error of estimate; CCC = concor-
dance correlation coefficient; MAE = mean absolute error; MAPE = mean absolute percent error; LOA = limits of
agreement (DXA–method); and CI = confidence interval.
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For females, BIA, compared to SLSDI, had a similar mean absolute error (MAE; 2.2
to 3.4 vs. 2.4 kg) and greater MAE in males (3.3 to 3.6 vs. 2.3 kg). Mean absolute percent
error (MAPE) was less with SLSDI than BIA for males (14.8 vs. 20.8 to 21.3%) and similar
in females (13.8 vs. 9.9 to 16%).

Figure 2 reveals differences between SLSDI and BIA FM estimates compared to DXA.
According to McBride [29], SLSDI shows substantial concordance (0.966) in females and
moderate concordance in males (0.925) relative to DXA fat mass. Among females, BIA1
showed substantial concordance (0.972), while BIA2 showed moderate concordance (0.940)
with DXA. In contrast, all male samples showed poor CCC (<0.90) between the BIA
prediction models and DXA.
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The SLSDI predictions of FM for females and males were distributed equivalent with
the line of identity with the slopes (0.995 for females and 0.986 for males) the same as 1,
and the intercepts (0.3740 for females and 0.2570 for males kg) not different from 0. The
SEE values were 2.9759 and 2.8700 kg for females and males, respectively. In contrast, the
intercepts for the BIA2 (2.299 kg; p < 0.0001) prediction models in females and BIA1 and
BIA2 (2.160 and 3.502 kg; p < 0.0001) in males were different from 0. The slopes for these
lines were variable from 1.041 to 1.077 in females and from 0.822 to 0.927 for males, but not
different from 1. The SEE in females (2.3400 kg) was less than the SEE in males (3.6306 kg)
(Figure 2).

Figure 3 shows the Bland–Altman plots of SLSDI and BIA compared to DXA. On average,
smartphone SLSDI had similar FM values as DXA FM in females and males (0.2 and 0 kg).
Compared to DXA, the BIA predictions of FM had a significant bias (DXA–method) in females
(1.1 to 3.2 kg; p < 0.0001) and males (1.4 and 2.3 kg; p < 0.0001) with one BIA equation
overestimating FM (−1.4 kg; p < 0.0001). The LOA for SLSDI were smaller compared to the
BIA FM estimates. The slopes of the lines relating the differences between DXA and individual
methods were not different from 0 for SLSDI in the females and males but were different
(p < 0.0001) than 0 for one BIA equation in the females and the males.

We tested the hypothesis that excess fat affected fluid balance in men with BMI
>25 kg/m2 by comparing elite male rugby players with men who were non-rugby players
(Table 3). Compared to non-rugby men, male rugby players had greater BMI (30.0 ± 3.3 vs.
28.7 ± 3.0 kg/m2; p < 0.05) and FFM (84.7 ± 6.6 vs. 68.1 ± 10.1 kg; p < 0.0001) with less FM
(19.3 ± 6.6 vs. 23.3 ± 6.8 kg; p < 0.01) and %fat (18.2 ± 4.7 vs. 25.4 ± 6.2%; p < 0.0001).

Table 3. Levels of agreement for body fat estimates using smartphone single lateral standing digital
image and 50 kHz bioelectrical impedance analysis compared to dual X-ray absorptiometry of men
with body mass index greater than 25 kg/m2. Values are mean ± SD.

Rugby
N = 54

Non-Rugby
N = 40

DXA Fat mass, kg 19.3 ± 6.6 23.3 ± 6.8

SLSDI

Fat mass, kg 19.7 ± 5.7 22.7 ± 7.1
Bias, kg −0.4 ± 2.7 0.6 ± 3.2
p 0.33 0.22
SEE, kg 2.6 3.1
CCC 0.92 0.89
MAE, kg 2.1 ± 1.7 2.6 ± 1.8
MAPE, % 13.0 ± 14.2 12.8 ± 10.5
LOA 95% CI, kg 4.9–(−5.6) 6.8–(−5.6)

BIA1

Fat mass, kg 23.4 ± 6.8 22.8 ± 6.5
Bias, kg −4.0 ± 3.3 0.5 ± 3.4
p 0.0001 0.36
SEE, kg 3.1 3.4
CCC 0.78 0.87
MAE, kg 4.3 ± 2.9 2.6 ± 2.2
MAPE, % 25.8 ± 21.2 12.5 ± 12.4
LOA 95% CI, kg 2.4–(−10.4) 7.2–(−6.2)

BIA2

Fat mass, kg 18.5 ± 6.2 19.7 ± 5.9
Bias, kg 0.9 ± 3.6 3.7 ± 3.5
p 0.08 0.0001
SEE, kg 3.5 3.5
CCC 0.85 0.73
MAE, kg 3.0 ± 2.1 4.4 ± 2.5
MAPE, % 16.8 ± 13.1 19.1 ± 11.0
LOA 95% CI, kg 7.9–(−6.2) 10.5–(−3.1)

DXA = dual X-ray absorptiometry; SLSDI = single lateral standing digital image [22]; BIA1 = Kyle et al. [26];
BIA2 = Sun et al. [27]; Bias = DXA method; p=probability value in comparison with DXA; SEE = standard error of
estimate; CCC = concordance correlation coefficient; MAE = mean absolute error; MAPE = mean absolute percent
error; LOA = limits of agreement; and CI = confidence interval.
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Figure 3. Bland–Altman plots of fat mass estimated with smartphone single lateral standing digital
image (SLSDI) and 50 kHz bioelectrical impedance equations (BIA) compared to reference dual X-ray
absorptiometry (DXA) in males and females (X = mean DXA and mean method; Y = DXA–method).

Estimates of FM using SLSDI were not different from DXA-determined FM in the
rugby and non-rugby men (Table 3). Compared to DXA, one BIA equation overestimated
FM (−4.0 ± 3.3 kg; p < 0.0001) in rugby players, and one BIA model underestimated FM
(3.7 ± 3.5; p < 0.0001) in non-rugby males. Concordance was moderate between SLSDI and
DXA FM and poor for all BIA equations. For both groups, BIA, compared to SLSDI, had a
greater MAE (3.0 to 4.3 vs. 2.1 kg and 2.6 to 4.4 vs. 2.6 kg, respectively) and MAPE (15 to
25.8 vs. 13% and 12.5 to 20.6 vs. 12.8%, respectively).

Compared to DXA FM values, the SLSDI FM estimates were distributed with slopes
not different from 1 and intercepts not different from 0, whereas BIA predictions differed
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significantly from the line of identity (Figure 4). CCC values also were greater for SLSDI
compared to BIA.
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Figure 4. Linear regression plots of fat mass (FM) estimated with smartphone single lateral standing
digital image (SLSDI) and bioelectrical impedance equations (BIA) compared to reference dual X-ray
absorptiometry (DXA) in rugby and non-rugby men.

Bland–Altman analysis revealed significant bias between the DXA and the 50 kHz BIA
estimates of FM with greater variability of data with BIA equations compared to SLSDI
(Figure 5 and Table 3). No bias was detected with SLSDI in either group of men (−0.4; 0.6).
Fat mass was significantly overestimated (−4.0 ± 3.3 kg) with one BIA equation in rugby
players. One BIA equation significantly underestimated FM (0.9 ± 3.6 kg) in the rugby
males and FM in the non-rugby players (3.7 ± 3.5 kg). The slopes of the lines relating the
differences between DXA and individual methods were not different from 0 for SLSDI in
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both groups but were different (p < 0.0001) from 0 for the BIA equations in all-male groups.
The LOA were greater for all BIA equations compared to SLSDI.
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Figure 5. Bland–Altman plots of fat mass estimated with smartphone single lateral standing digital
image (SLSDI) and 50 kHz bioelectrical impedance equations (BIA) compared to reference dual
X-ray absorptiometry (DXA) in rugby and non-rugby men (X = mean DXA and mean method;
Y = DXA–method).

Figure 6 shows the significant group differences (p < 0.0001) between the 95% confi-
dence ellipses of men with BMI >25 kg/m2. The rugby players had a shorter impedance
vector displaced to the left (Z/H = 199.0 ± 7.6 ohm/m), indicating greater conductive mass
and structure than the non-rugby males (Z/H = 239.0 ± 31.5 ohm/m). The larger PhA of
the rugby players (9.6◦ ± 0.96◦) designates less relative ECW or ECW/ICW, compared to
the non-athletic men (8.6◦ ± 0.82◦), associated with the lesser FM.
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4. Discussion

Awareness of the limitations of BMI coupled with interest by clinicians and public health
researchers for point-of-contact methods to estimate body adiposity is increasing [15–17].
Methods with promise need to demonstrate agreement with an accepted reference method.
The present study determined the agreement of FM estimated with SLSDI and 50 kHz BIA
compared to DXA in healthy adults. Our emphasis was accuracy (differences between DXA
and candidate methods or bias) and related measures. The findings demonstrate a high
level of accuracy between SLSDI and DXA FM measurements in contrast to a significant
underestimation of FM with 50 kHz BIA. On average, bias or the difference between estimated
and reference FM values was less with SLSDI (0.1 to 0.2 kg) compared to BIA (1.1 to 3.6 kg).
The concordance of FM measurements with DXA was greater for SLSDI than BIA, and the
distribution of SLSDI and DXA FM values was similar to the line of identity but significantly
different for the BIA FM estimates. Also, the MAE and MAPE of FM estimates, as derived
from reference DXA determinations of FM, were less with SLSDI than BIA. Analyses of the
differences between DXA and BIA values identified proportional bias (increasing errors with
larger FM values) with BIA equations but not SLSDI-estimated FM.

These findings are generally consistent with other studies comparing 2DI and 50 kHz
BIA with reference DXA determinations of body fat [20,21]. Although these studies reported
significant differences in body fat between BIA and DXA, they did not identify any factor
responsible for the observed differences in FM. We provide the first evidence that fluid
imbalance contributes to the errors of BIA in estimating body fat.

A few reports speculated that increased body fat could adversely impact the validity of
50 kHz BIA predictions of FFM [24,25,32–34]. The investigators proposed that an expansion
of ECW would contribute to an overestimation of FFM but provided no evidence. We
evaluated this hypothesis in a subgroup of men with BMI >25 kg/m2 with different body
composition profiles. Male rugby players, compared to non-rugby playing men, had
decreased R/H (specific resistivity [35]) (R/H; 197.0 ± 17.2 vs. 237.2 ± 31.0 ohm/m;
p < 0.0001) and increased FFM (84.7 vs. 68.1 kg; p < 0.001) with decreased FM (19.3 vs.
23.3 kg; p < 0.001) and an increase in PhA. The decreased specific resistivity, or increased
conductivity, reflects greater TBW and FFM in rugby players. The decreased PhA among
the non-rugby men indicates altered fluid distribution in association with the increased
body fat and reduced ICW due to less FFM. Increased body fat is associated with an
expanded adipose tissue volume that is directly related to an expanded ECW, absolute and
relative, previously reported among adults classified as obese using BMI criteria [23,34].
Chemical analyses demonstrated the appreciable average water content of adipose tissue
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as 15% [36], which contributes to its conductivity but to a lesser degree than muscle. Thus,
inter-individual differences in body fat contribute to the variability of ECW in adults.

Raw BIA measurements provide additional support for the finding of increased ECW.
The significantly decreased PhA values in the non-rugby men indicate an expansion of
ECW based on tracer dilution determinations of fluid volumes and demonstrate an inverse
relationship between PhA and ECW/ICW [32]. Also, a decreased PhA has been associated
with an expansion of ECW in novice runners with an increased risk of acute kidney injury
after a marathon [37]. The findings of imbalanced fluid distribution, ECW/ICW, contribute
to the concerns regarding the assumption of constant hydration inherent in the application
of BIA to estimate FFM and predict body fat [38–40].

The altered fluid balance, characterized by ECW/ICW, significantly affected some
50 kHz BIA predictions of FM. Regardless of fluid status, SLSDI and DXA FM estimates
were not different. However, one BIA equation significantly overestimated FM in the rugby
group with lower ECW/ICW but significantly underestimated FM in the non-rugby group
with increased ECW/ICW. Concordance values among DXA FM values were greater with
SLSDI compared to BIA with data distributions of DXA and SLSDI FM similar to the line
of identity but significantly different from the BIA FM estimates.

The independent variables in the 50 kHz BIA prediction models offer potential sources
of error in the prediction of FFM. The common predictors of Ht2/R and R are significantly
related to TBW. Thus, a disproportionate increase in ECW in individuals with excess
body fat increases TBW and decreases R, which, assuming constant hydration of FFM,
can overestimate FFM and thus underestimate FM. The BIA models also include body
weight, which is highly correlated with body fat and can vary depending on environmental,
dietary, and physical activity conditions and hence affect hydration. Additionally, the
application of 50 kHz BIA prediction equations in groups in whom the original model was
not developed can lead to errors. It is well established that body geometry (e.g., limb length,
cross-sectional area, and volume) and fluid content (total and distribution) directly affect
resistivity and contribute to inter-individual differences in whole body and regional BIA
measurements [38,41]. Additionally, regional BIA measurements using different electrode
placements, such as foot-to-foot and hand-to-hand, yield discordant estimates of body
composition compared to whole-body measurements [42]. These factors contribute to the
errors in BIA predictions of body fat using various BIA methods and models and DXA in
the present study and other reports [20,21].

Our finding of a high level of agreement between SLSDI and DXA fat measures is
consistent with two previous studies that used smartphone 2DI with machine learning
and proprietary prediction models to determine body fat in adults [20,21]. Although these
studies utilized standing body positions for 2DI, they differed in body positions in relation
to the smartphone camera. Nana et al. [20] used front and side positions with 24 replicate
digital images for analysis, and Majmudar et al. [21] employed front and back poses. In
contrast, the present study utilized a single lateral pose to obtain body contour silhouettes
for analysis. The use of multiple body positions and repetitive digital images resulted in
greater variability in body fat estimates (±1.5 %fat) compared to 0 in the present study.

This study has some limitations. The interpretation of the expansion of ECW relies on
qualitative assessments using 50 kHz BIA. Future studies should incorporate tracer dilution
determinations of ECW and TBW and obtain threshold values at which altered fluid dis-
tribution affects errors in estimating body fat using BIA. Additionally, investigators should
determine the effect of graded body fat levels on errors relative to criteria reference methods,
particularly in adults with sarcopenic obesity. Evaluation of the model of Chamney et al. [43]
using bioelectrical impedance spectroscopy, which proposes to discriminate normally hy-
drated FFM and AT from excess ECW, may reduce the errors in estimating FM associated with
expanded ECW in individuals with variable levels of FM. Findings in non-dialysis patients
with chronic kidney disease demonstrated poor agreement between this model and DXA,
with an overestimation of FFM and an underestimation of FM [44]. Thus, further research to
determine the accuracy of these different BIA methods is needed.
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5. Conclusions

Smartphone SLSDI provides highly comparable DXA estimates of FM of adults with
a wide range of body fat. The agreement of SLSDI in the estimation of FM compared to
DXA, coupled with the convenience, practicality, and cost-efficiency, facilitate an innovative
method to assess body composition to enable routine assessment of body fat for healthcare
personnel in many environments and for biomedical researchers outside the laboratory.
Importantly, the SLSDI method does not require specialized equipment, only generally
available smartphones. It surmounts the limitations of BMI as an index of body fat [15–17]
and provides a novel method to estimate abdominal FM [22]. Moreover, SLSDI image-
based FM estimates provide overall better performances than impedance-based methods
because they are seemingly not influenced by variable hydration states.
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