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Abstract

Super Resolution (SR) techniques are powerful digital manipulation tools that have sig-
nificantly impacted various industries due to their ability to enhance the resolution of lower
quality images and videos. Yet, the real-world adaptation of SR models poses numerous chal-
lenges, which blind SR models aim to overcome by emulating complex real-world degrada-
tions. In this thesis, we investigate these SR techniques, with a particular focus on comparing
the performance of blind models to their non-blind counterparts under various conditions.
Despite recent progress, the proliferation of SR techniques raises concerns about their po-
tential misuse. These methods can easily manipulate real digital content and create misrep-
resentations, which highlights the need for robust SR detection mechanisms. In our study,
we analyze the limitations of current SR detection techniques and propose a new detection
system that exhibits higher performance in discerning real and upscaled videos. Moreover,
we conduct several experiments to gain insights into the strengths and weaknesses of the
detection models, providing a better understanding of their behavior and limitations. Par-
ticularly, we target 4K videos, which are rapidly becoming the standard resolution in various
fields such as streaming services, gaming, and content creation. As part of our research, we
have created and utilized a unique dataset in 4K resolution, specifically designed to facilitate
the investigation of SR techniques and their detection.
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1
Introduction

Digital content manipulation techniques, such as deepfakes, automatic colorization, or
generative models, have garnered substantial attention in recent years. They have notably
improved in quality and found numerous practical applications across diverse industries.
Among these techniques is SR, which essentially aims to increase the resolution of lower
quality images or videos and enhance the fine details that are missing in the Low-Resolution
(LR) source. Image enhancing applications are successfully applied in medical imaging [4]
[118] [19], security camera image footage [2] [71], remote sensing tasks [123] [30], gaming [75],
and the entertainment industry [98] [86].

Manipulation techniques can be categorized into fully-synthesized and partial manipula-
tion, according to the extent of modifications made to the original data. Full-synthetic tech-
niques involve the generation of entirely synthetic visual content, which have significantly
gained popularity due to the advances in Generative Adversarial Network (GAN) [107] and
Latent Diffusion Model (LDM) [22]. Conversely, partial manipulation techniques involve
altering specific regions of existing images or videos. The most notable examples in this
area are deepfakes [6], which manipulate visual content in existing images, videos, or audio.
Super-Resolution (SR) methods can fall into either of these categories, depending on the
upscaling process.
Super-resolution finds its ultimate and most relevant application in real-life scenarios, where

the input data could have numerous sources. The premise of SR lies in enhancing the quality
and resolution of visuals - a valuable resource when the sources are as diverse as images
captured by a variety of phone devices or surveillance cameras. In this context, SR can be
utilized to enhance the visual experience, as well as to reduce the cost of data storage and
transfer. This can be achieved by storing the content at low-resolution and then upscaling
it to high-resolution on each display device. For their use in such general-purpose applica-
tions, SR models should be able to achieve good performance on a wide range of real-world
degradations, such as motion blur, noise, artifacts produced by mobile phones, etc.
Training a supervised SR model requires of paired -HR (High-Resolution) samples that

belong to the same image. The goal of the model is then to learn how to create the glshr
version given only the input. To obtain these -HR pairs, most contributions downscale a
set of the original glshr images synthetically (i.e. using a specific algorithm like bicubic
interpolation). However, this introduces a bias, as it does not fully replicate the complex and
varied degradation processes that occur in real-world low-resolution image acquisition. As
a consequence, models trained under these conditions may exhibit limitations when dealing
with real-world images due to the discrepancy between synthetic and real-world degradations.
The operation to obtain images is a key factor that heavily impacts the ability of the model

to perform in real-world scenarios. If the same predefined downsampling operation is applied
to generate all training samples, the model will specialize in that specific downscaling process.

1



2 Introduction

As an alternative, a more robust approach would be to train the model with a more complex
downsampling (or degradation) method. This way, the model could potentially adapt to
various types of inputs, enhancing its performance in diverse scenarios.
Given that premise, real, also known as blind SR models propose a more complex approach

towards generating the training image pairs by emulating real-world degradations. The field
of blind-SR has drawn considerable attention in recent years, resulting in extensive research
and significant advancements. As a result, the majority of today’s models employ a more
sophisticated method to obtain image pairs that are closer to real images. Alternatively,
there are blind models which utilize unique Real datasets that already include original glshr
and glslr images, that is, images where both the glshr and glslr versions are directly obtained
by a recording device. This is possible by setting up a special camera setup that allows to
capture different resolution images of the same content. Using two cameras or applying zoom
represent two instances of this methodology.
Modern SR models, particularly those focused on Video Super-Resolution (VSR), generally

require high computational resources. This requirement is further amplified by the increasing
tendency towards high-resolution 4K content. According to the Visual Networking Index by
Cisco [21], it is estimated that, by 2023, two-thirds of the installed flat-panel TV sets will be
UHD. Video devices, in particular, can have a multiplier effect on traffic. A high-definition
television with Internet capabilities, streaming approximately two to three hours of content
daily, would generate the same amount of Internet traffic as an average household does in
the present day. As a result, many on-demand and streaming platforms have turned to
SR techniques to upscale their content to 4K. SR algorithms have allowed content that was
originally in a smaller resolution to meet the viewer’s expectations for detail and clarity,
considering the limitations of SR networks.

This tendency has led to a surge of interest in the field of SR detection and also created
a new set of challenges that threaten the authenticity of visual media, especially after the
recent and socially impactful development of generative models. LDMs for image and video,
image-to-image, text-to-image, and advanced SR methods based on Deep Learning (DL)
are an example of the recent IA innovation in the digital content field. Digital forgeries,
ranging from elementary manipulations like object cloning or removal to complex alterations
involving deepfakes and SR pose substantial issues across different sectors, including digital
forensics, cybersecurity, the legal system, media veracity, and privacy. Therefore, developing
effective and reliable forgery detection mechanisms has become paramount. The urgency
of this research line is clearly motivated by the widespread availability of these techniques
through popular applications like Adobe’s Photoshop1, Deepfacelab 2, and TopazLab3.
In a historical context, forgery detection methods have primarily targeted common manip-

ulations such as copy-move(copying parts of an image and then pasting them into the same
image), splicing (portions of an image come from another image), and deletion. However,
with the rapid development of Artificial Intelligence (AI), the amount of digital forgery tech-
niques has expanded. One of those manipulations is SR, which presents significant benefits,
such as preserving and restoring old footage or enhancing the quality of video in resource-
limited contexts like medicine, but can also be misused. Ethical concerns include the use

1https://www.adobe.com/creativecloud/photography/discover/photo-manipulation.html
2https://github.com/iperov/DeepFaceLab
3https://www.topazlabs.com/

https://www.adobe.com/creativecloud/photography/discover/photo-manipulation.html
https://github.com/iperov/DeepFaceLab
https://www.topazlabs.com/
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of synthetic glshr images for decision-making in sensitive domains like radiology or law en-
forcement. Legal concerns include the incoming AI Act [81], which enforces the disclosure of
synthetic images.
In conclusion, SR methods alter the original digital content and can potentially distort

the truth by misrepresenting it, highlighting the need for robust SR detection mechanisms.
Moving forward, this thesis aims to explore several research challenges in SR. First, to validate
the applicability and impact of SR models, it investigates the effect of the downsampling
method on the output of non-blind and blind SR methods. Secondly, it explores the current
landscape for high-resolution upscaled content detection and proposes an extension over the
existing methods to evaluate the discriminability of artificial glshr videos.





2
Related work

The following section is dedicated to providing an overview of indispensable concepts found
in the literature about SR, that help understand the problem at hand and give the necessary
context for the rest of the thesis. The content of the section is inspired by recent surveys
about various SR or SR-related topics [49] [41] [7] [18] [101] [122] [96] [51].
In order to present a more comprehensive view of the various topics or areas of SR addressed

in this thesis, we have constructed a summary graph (see Figure 2.1). Our objective is not to
display a complete breakdown of every field within SR but to include a high-level overview
that describes the content discussed throughout the document.
Super-resolution is a fundamental field in the low-level vision area that aims to recover

a High-Resolution (HR) image or video from its Low-Resolution (LR) counterpart. This
process generates an glshr output with increased resolution and improved visual quality by
enhancing the structure and finer details present in a glslr input. SR can be considered an
image or video manipulation technique since it essentially involves modifying the original
data. Interpolation methods can introduce new pixels and alter existing ones, while deep
neural networks generate the glshr output from a deep representation of the input image
through hierarchically structured layers.
There are two main categories of Image Super-Resolution (ISR) techniques, Single-Image

Super-Resolution (SISR) and Multi-Image Super-Resolution (MISR). The former methods
focus on upscaling a single glslr image, while the latter combines information from multiple
glslr images, a process that has naturally evolved into video super-resolution (VSR). VSR
methods exploit information from neighbor frames to reconstruct the target frame, thereby
utilizing extra information that is not present in SISR. For ISR, SISR is by far the most
popular method, due to its higher efficiency and the difficulty to obtain multiple images for
the same target. However, both of them have their own unique challenges, such as the single
reference limitation in SISR and motion estimation, motion compensation, and handling
temporal consistency in VSR. In this context, understanding the process behind SISR is key
to developing and exploring VSR models, as videos can be understood as sequences of frames
that can be processed individually or as a group.

2.1. Problem Formulation
SR is an ill-posed problem, as there exist multiple possible glshr images that could correspond
to a given original glslr image. During the process of scaling an image, some details are lost
and cannot be recovered. For example, if a glslr image contains a human face with poor
detail, it might not be clear whether the person was frowning or smiling. When trying to
upscale that image, either option could be plausible, leading to non-uniqueness in solutions.
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2.2. Degradation Process in Super-resolution 7

Thus, the upscaling process is not the retrieval of an exact image, but rather an example of
one of the many plausible images from the high-resolution and ”realistic” domain.
Building and training a SR model usually involves a supervised learning approach, where

a dataset containing pairs of high-resolution (HR) and low-resolution (LR) images is needed.
These pairs serve as ground truth and input images to the network respectively, as depicted
in Figure 2.2. Original glshr images have a corresponding glslr version at a predefined scale
(e.g. x2, x4), which are used as input glslr images. The SR model will then upscale the glslr
input images to their original size and update the network’s parameters to minimize a loss
function. The loss function measures the discrepancy between the output generated by the
network and the original glshr image. A common loss function used for SR is Mean Squared
Error (MSE), which compares the sum of pixel-wise Euclidean distance between image pairs
to obtain a final score. The MSE is defined as:

MSE =
1

N

N∑
i=1

(IHR(i)− ISR(i))
2 (2.1)

Where IHR(i) refers to the pixel intensity at the i-th position in the original high-resolution
image and ISR(i) is the corresponding pixel intensity in the super-resolved image. Finally, N
is the total number of pixels in the image.

Original HR dataset
Upscaled HR

LR dataset

SR Model
Downsample

Evaluate

Update model

Batch

Figure 2.2: Supervised training scheme for SISR

2.2. Degradation Process in Super-resolution

The process of generating glslr images from glshr ones involves a series of modifications known
as the degradation method. The degradation of the glshr image could include blurring or
adding noise before the downsampling operation. It can be expressed as y = f(x; s) where
y is the resulting glshr image, x is the input glslr image, and f is the degradation function
with a scale factor s.

Most existing methods assume a pre-defined degradation process (e.g., bicubic downsam-
pling [36]) from an glshr image to an glslr one. In bicubic downsampling or interpolation, a
cubic function is applied to a grid of pixels in the original image to calculate the pixel values
in the downscaled image, resulting in a smooth glslr representation of the original. Assuming
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a specific traditional downsampling method to generate the glslr images is convenient and
easy to calculate, but can hardly hold true for real-world images with complex degradation
types. In the literature, the domain where degradations are assumed is referred to as non-
blind SR, where the degradation model is known and accurately characterized, so the SR
problem turns into the modeling of a function that reverses that known process to recover
the glshr image.

2.2.1. Non-blind SR
The most simple function in non-blind SR assumes f to be bicubic downsampling or inter-
polation, although various other interpolation methods exist to fulfill the same task:

y = x ↓bics , (2.2)

or a more complex approach defined by:

y = (x⊗ kg) ↓s, (2.3)

Where ⊗ indicates a fixed convolutional operation with a Gaussian blur with kernel kg.
Constructing a large LR-HR pair dataset to train a SR model is challenging, so researchers
often opt to use simple degradation patterns to create said datasets, both in image and video
SR [11] [33].
However, there is a substantial problem with non-blind degradations. A SR model that

is trained with a fixed degradation will only be able to handle inputs with the same charac-
teristics and will struggle to produce satisfactory results for other glslr images with different
degradations. [49]

Figure 2.3: Domain interpretation of differences between non-blind and blind SR. Source: ’Blind
Image Super-Resolution: A Survey and Beyond’[49]

As illustrated in Figure 2.3, a pre-defined degradation function confines the domain of glslr
training samples to a reduced space. Using a model trained on that downsampled space on
an arbitrary glslr input from the real world causes the non-blind model to generate unrealistic
images. This mismatch produces a domain gap between the actual SR output and the desired
output, which should ideally be closer to the glshr natural image domain and contributes to
the suboptimal quality of the super-resolved outputs.
The limitations of non-blind models are worrisome given the diversity of imaging devices.

Smartphones, DSLR (digital single-lens reflex) cameras, and surveillance devices greatly dif-
fer in the characteristics of taken images, producing a high range of quality content. Most
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video content today comes from smartphone cameras, that process image and video through
a digital signal processor on the chip, involving several steps, such as pixel correction, white
balance correction, denoising, and sharpening, which introduce unknown and complex degra-
dations to the content. Another relevant factor is the transmission of digital content through
the internet, where it can be subject to several compression types. As an illustration, a low
quality-image downloaded from the internet may have undergone a complex and mixed set of
degradations. The original image could have been taken with any mobile device a long time
ago, introducing blur, sensor noise, and compression artifacts. Furthermore, post-processing
activities such as sharpening and resizing create additional artifacts, which are amplified by
the digital transmission of the image.

2.2.2. Blind SR

To address the domain gap in non-blind SR and to model such a complicated deterioration
sequence, blind SR degradation proposes an approach based on unknown degradations. This
way, the model learns the degradation process in addition to learning how to reconstruct
the glshr image, making it more suitable for real-world SR scenarios, as training glslr images
are more faithful to the real world. The degradation model is designed to simulate complex
degradations caused in real images, as a consequence of various factors such as sensor noise,
compression artifacts, motion blur, aliasing...
Blind SR methods can be divided into classical and practical modeling, and often revolve

around the application of three common operations: blur, noise, and downsampling:

2.2.2.1. Classical Models

Classical degradation, widely adopted in explicit modeling, refers to approaches that incor-
porate a predefined mathematical model to generate a glslr image from the glshr one. On
the contrary, implicit models utilize data distribution learning to simulate real degradations,
generally employing adversarial deep learning architectures to learn the degradation models.
Two great examples are CinCGAN [119] and DASR [111]. Noticeably, these blind SR meth-
ods do not generalize well to out-of-distribution images, as they are limited to degradations
within the training dataset.
The classical degradation model is based on an extension of the non-blind proposal, con-

sisting of a more complex degradation defined by:

y = ((x⊗ k) ↓s +n)JPEGq
(2.4)

Where the blur kernel k and the added noise n will have unknown parameters to generate
the glslr images used to train the SR model. Some models also apply a JPEG compression
operation with an unknown quality factor q. Other families of methods [125] [132] make
use of external datasets to approximate the kernel and noise values, or leverage the internal
statistics within a single image to model the degradation process [89].
Classical models based on an explicit combination of degradations are more versatile than

non-blind methods and generalize better to different imaging conditions. Nonetheless, they
are still not able to properly simulate complex real-world degradations.
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2.2.2.2. Practical Models

Contrastingly, and as a step forward towards handling more realistic degradations, practical
models simulate a complex combination of various degradation factors observed in real-world
imaging. There has been a substantial increase in the utilization of practical models over
recent years, leading to state-of-the-art results in the blind SR domain. An example of a
widely used practical model is BSRGAN (Blind Super-Resolution Generative Adversarial
Network) [126].
BSRGAN

BSRGAN was presented as the first applicable model for general blind SR, employing a
practical degradation model to train deep blind SISR methods for real applications. The
common classical blind SR models tackle blur, noise, and downsampling in a sequential
manner. These operations provide a simple way of obtaining degraded glslr images. Applying
these transformations with random parameters adds more diversity in terms of degradations,
increasing the robustness of the model and its adaptability to more types of degradations.
BSRGAN proposed a cascade framework to better emulate real degradations, by increasing

the degradation space of the three key factors and adopting a random shuffle strategy. Instead
of using the commonly-used blur/downsampling/noise-addition pipeline, randomly shuffled
degradations are performed to synthesize glslr images. The degradation space is increased
through the use of random parameters, which allow the generation of more diverse content.
The random shuffle strategy eliminates the fixed sequence in the typical degradation process,
introducing more variation and unpredictability in image synthesis.
Each degradation type is characterized by random parameters. Particularly, the blur op-

eration can use two convolutions types from both the glshr space and glslr space (before and
after downsampling the ground truth glshr image). All blur kernel settings are randomly
sampled from a set list of options to maximize the degradation space.
To generate the glslr image from the glshr version, a downsampling operation is uniformly

sampled from nearest-neighbor, bicubic or bilinear interpolation, and lastly, a down-up com-
bination. It first downsamples an image with a scale factor sa and then upscales it with scale
factor a sampled from [1/2,s].

Concerning noise, BSRGAN considers JPEG compression noise and camera sensor noise,
on top of the common Gaussian noise. In essence, the random sequence of degradations with
different parameters allows BSRGAN to produce multiple glslr versions from the same glshr
image.

Following the described configuration, BSRGAN can be employed to train deep blind SR
networks using a set of paired LR-HR images, by producing unlimited degraded and aligned
glslr samples, bypassing the data limitation that is prominent in blind SR. Nonetheless, it
can produce glslr images with degradations that very rarely happen in the real world [126].
Regardless, BSRGAN proved to be an effective way of training existing networks in a blind
SR setting, by producing the necessary training data. At the time of its publication, this
model was the first work to adopt a new hand-designed degradation model for general blind
image SR, and it has been successfully adopted in state-of-the-art blind SR models [44].
Real-ESRGAN
The second example of a popular practical model is an extension of the ESRGAN [104]

network, to restore real-world images by covering a broad range of real-world glslr images.
In Real-ESRGAN [105], the classical degradation model (blur/downsampling/noise/compres-
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sion) referred to as ”first-order” is enhanced to a ”high-order” degradation model for real-
world scenarios. A second-order degradation process is proposed for simplicity and effec-
tiveness, meaning that the classical degradation model is applied twice. Notably, the two
passes use different hyper-parameters, and the downsampling operation is designed to keep
the image resolution at a reasonable range.
Similar to BSRGAN, the blur operation is performed by isotropic and anisotropic Gaussian

filters, with random kernel parameters. Two types of noise functions are employed, additive
Gaussian noise, with varying intensity, and Poisson noise, in order to account for the sensor
noise caused by the variation in the number of photons sensed at a given exposure level. The
downsampling operation is randomly chosen between bicubic interpolation, bilinear interpo-
lation, and area resize operation shown in the publication. Lastly, images go through a JPEG
compression with a random quality factor.
Gated degradation system More recent degradation models have been introduced, such as
the one referenced in [129], which highlights the inability of BSRGAN and Real-ESRGAN to
deal with easy degradation cases while they achieve great results in complex situations. [129]
proposes a unified degradation model by introducing a gate mechanism to randomly select the
base degradation types to be included in the degradation process, covering important corner
cases that are prevalent in the real world. The presented model is suitable for non-blind
SR, classical blind SR, and practical blind SR by introducing a gate controller to generate
various combinations of base degradation types, that are the same as in BSRGAN and Real-
ESRGAN (Gaussian blur, additive Gaussian noise, JPEG compression, and interpolation
based downsampling operations).
There is an additional fundamental approach for obtaining training pairs for blind SR.

The concept involves using a special camera setup that allows the production of original
glshr and glslr images or videos. There exist various image and video datasets with paired
glslr and glshr images or frames, captured directly with no downsampling involved, which
allow training real SR networks with original degradations. Existing real datasets, techniques
and limitations are discussed in chapter 4.

In conclusion, the process to generate the LR-HR pairs to train a SR is a key that deter-
mines the performance of SR models in the real world and their ability to generalize. To
illustrate this point and provide a general overview of the differences between non-blind and
blind SR methods, Figure 5.2 shows an example scenario where the same images have been
upscaled with different techniques.
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Original Bicubic BasicVSR Real-BasicVSR

Figure 2.4: Demonstration images for traditional (bicubic) blind (Real-BasicVSR) and non-blind
(BasicVSR) methods. Zoom in for better view

As can be observed in Figure 2.4 there is a significant difference between displayed SR
methods. Especially, the modern VSR models are able to successfully enhance the details,
generating results that can be more visually appealing than original images. Different train-
ing degradation types can lead to variations in performance, even under the same SR method.
Understanding how degradations may affect the performance of SR techniques makes it nec-
essary to investigate the various architectural strategies in SR.
In the following section, we will examine a variety SR techniques that can be roughly

categorized into distinct categories depending on their design. Thus, we move from the
impact of downsampling methods in SR to reviewing the types of upscaling techniques.

2.3. Categories of SR methods
SR methods can be broadly classified into interpolation-based methods and learning-based
methods, depending on their approach to enhancing image quality. Exploring the categories
of SR methods underscore the variety of existing strategies,

2.3.1. Traditional methods

To reconstruct the upscaled image, interpolation-based methods estimate the value of new
pixels by considering the value of existing neighboring pixels, thus utilizing the spatial infor-
mation and local context within the images. These methods are fast to compute and have
been successfully used over recent years to provide satisfactory results in a variety of appli-
cations, such as zooming in digital photography and computer graphics. However, they are
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limited by their inability to reconstruct high-frequency details, such as fine textures and sharp
edges. In addition, traditional interpolation techniques struggle to deal with more complex
degradations such as blur, noise, or compression artifacts. As a result, machine learning and
deep learning-based techniques have emerged, evolved, and gained popularity, outperforming
traditional methods. Some popular interpolation methods are nearest-neighbor interpolation,
bilinear interpolation, bicubic interpolation, and Lanczos interpolation.

2.3.2. Deep-learning-based Methods
Deep learning (DL) based methods employ deep neural networks to learn intricate features
for the upscaling process, allowing networks to produce a high-resolution image that con-
tains more detail and accuracy. Over time, DL-based methods have managed to outperform
the classical interpolation methods, offering substantial improvements in the quality of the
upscaled images.

2.3.2.1. CNN-based

More recent DL approaches used Convolutional Neural Network (CNN)s, such as SRCNN
[27], a pioneering DL SISR method that uses a three-layer CNN to learn the mapping between
glslr and glshr images. The initial layers are designed as feature extractors, which convert
the initial image data into an internal representation that comprises meaningful informa-
tion. Then that representation is transformed into a higher dimension feature vector, which
is processed by the final convolutional layer to obtain the resulting glshr image. SRCNN
demonstrated considerable improvements over traditional methods and cleared the path for
future more sophisticated techniques. The training data consists of small patch pairs that
represent glslr and glshr images, generated by applying bicubic interpolation on the original
glshr images.
A deeper CNN-based network was presented in [37], based on the popular VGG-net [90],

typically consisting of 20 convolutional layers. This architecture allows the model to learn
more complex image representations, resulting in a better SR performance at a higher com-
putational cost. The training process is similar to SRCNN, the low-resolution images (not
patches) are first downscaled and then upscaled with an interpolation method, to create the
LR-HR pair dataset. During training, VDSR learns to predict the residual image, that is
the difference between the ground truth glshr image and the generated artificial image. The
residual is added to the upscaled low-resolution input to produce the final output, and the
network is optimized based on the distance between the output and the ground truth glshr
image. More modern examples that are based on residual learning are EDSR [47] and CARN
[5], which adds a recursive component.

2.3.2.2. GAN-based

Generally, described methods seek to reconstruct the glshr images by maximizing the MSE
value, a reconstruction accuracy metric that does not ensure improvement in visual qual-
ity. As an attempt to produce more perceptually accurate results, Generative Adversarial
Networks (GANs) gained popularity and showed great capability in the SR task. Perceptual
accuracy refers to how closely the upscaled image resembles the original high-resolution image
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from a human observer’s point of view. The general GAN architecture consists of generator
and discriminator networks, which compete against each other to produce more realistic and
visually appealing images, compared to previous CNN models.

Considered one the most influential works in GANs for SR, SRGAN was presented in
[39]. The success of SRGAN is attributed to the effective combination of the generator-
discriminator architecture plus the incorporation of the perceptual loss function, which helped
produce more photo-realistic glshr images compared with the common MSE loss function that
produced overly smooth details. In the architecture, both the generator and the discrimi-
nator are deep convolutional networks. The generator is responsible for producing the glshr
images from glslr inputs. The discriminator acts as a binary classifier, determining whether
a given image is an artificial product of the generator or a ground truth glshr image. During
the training phase, SRGAN utilizes a combination of two loss functions, Content Loss and
Adversarial Loss. Content loss is obtained by measuring the difference between the generated
image and the ground truth image, to ensure that the generated images are similar to the
ground truth. The content loss consists of two parts, the pixel-wise error, that is, the MSE
between both images and the perceptual loss. Perceptual loss is calculated by measuring
the similarity between the feature maps extracted from a pre-trained neural network. It en-
courages the network to create images that possess similar structures and high-level features,
resulting in more visually appealing results.

The adversarial loss, on the other hand, measures the ability of the generator to produce
images that can deceive the discriminator. It encourages the generator to create more natural
and realistic images that resemble the ground truth. GAN-based SR networks have evolved
and been used in different training settings, like CinCGAN [119] that introduces the cycle
consistency loss to learn the implicit data distribution in an unsupervised manner, Real-
ESRGAN [105] (based on ESRGAN [104], which supposed a great advance for blind SR.

2.3.2.3. Transformer-based

Much like the advancement sparked by GANs in SR tasks, the integration of Transformer
architectures in computer vision has similarly opened new paths in this field. The recent
success of the Transformer [97] in NLP tasks has inspired researchers to extend its capabili-
ties to the domain of computer vision. Transformers, by their nature, are capable of learning
global contextual relationships within data, which have shown to be particularly effective in
a variety of computer vision tasks, including SR. Earlier implementations such as [17] demon-
strated the ability of transformers to deal with low-level-vision task, but SwinIR [44] soon
became the reference for SR transformer architectures. In SwinIR, the deep feature extraction
module is composed of several residual Swin Transformer [55] blocks. It is widely used for
different vision tasks besides SR, like image denoising (including grayscale and color image
denoising), and JPEG compression artifact reduction. The version trained with BSRGAN
degradations achieves state-of-the-art results in x2 and x4 camera shots according to the MSU
Video Upscalers Benchmark [99]. The most prominent application of transformers for video
is RVRT [45], which improves the performance and computational cost of its predecessor [46]
by applying a recurrent video restoration transformer architecture. RVRT processes local
neighboring frames in parallel within a globally recurrent framework, it aggregates features
from different video clips and aligns them to reconstruct the output.
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2.3.2.4. Recurrent Models for VSR

Recurrent mechanisms are especially interesting for VSR [85], as they allow propagating fea-
tures from neighboring frames before performing the upscaling operation. The added tempo-
ral dimension introduces new challenges, mainly Propagation, Alignment, Aggregation, and
Upscaling. They are considered and studied in [11], to create BasicVSR, a simple framework
baseline for VSR. BasicVSR opts for a bidirectional propagation and a simple flow-based
alignment at feature level. For aggregation and upsampling, it relies on popular methods
such as feature concatenation and pixelshuffle [88].

BasicVSR was further improved in BasicVSR++ [12], obtaining state-of-the-art results for
video, and also later adapted to a blind SR setting, in [13]. Real-BasicVSR implements an
image pre-cleaning stage, indispensable to reduce noises and artifacts prior to propagation.
Their objective is to “clean” the input sequence so that the degradations in the inputs have
a weaker effect on the subsequent VSR network. Trained with Real-ESRGAN degradations
achieves state-of-the-art results in VSR [99].

2.3.2.5. Diffusion Models

Rounding the examination of SR architectures, it is necessary to introduce the role of LDMs
in SR. Diffusion models introduced a novel perspective into generational AI, causing a fun-
damental shift in the field by enabling the production of remarkably high-quality and cus-
tomizable synthetic data. Overall, LDMs work by adding noise to the existing training data
and then reversing the process. Over time, the model learns to eliminate the added noise,
enabling the creation of high-quality synthetic images from random noise. LDMs for SR are
still in the early stages, but there have been significant advancements and applications. Most
notably, [84], [28] adapted denoising diffusion to SR, through a model that exhibits strong
performance in comparison with other SISR methods.

2.4. Image/Video Quality Assessment
Due to the increasing use of SR techniques, evaluating the quality of the resulting upscaled
images has become increasingly important. Evaluation techniques allow the comparison
and identification of best-performing methods and provide insights into the strengths and
shortcomings of different SR methods. Finally, developing more robust quality assessment
methods assures the results and comparisons are reliable and trustworthy, a challenging task
for artificial intelligence in computer vision.
Image or video quality is a term that represents the visual qualities of images and focuses on

how observers perceive them. Image or video quality assessment incorporates techniques to
quantify and analyze the factors affecting the visual experience of observers and includes two
branches, subjective and objective evaluation. Subjective methods rely on human judgment
to determine the quality of reconstructed images, by rating each image based on the visual
perception. The most used subjective method Mean Opinion Score (MOS) is obtained by
asking a group of human observers to manually rate the quality of a set of images on a
predefined scale, e.g., from 1 (poor) to 5 (excellent). This method is considered to be the
most reliable but requires human involvement, which translates into increased time and effort,
making it unfeasible for instances where there are tens of thousands of images.
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Objective measures use mathematical models to provide a numerical representation of the
image quality, a more practical approach that relies on the implementation of such algorithms
and keeps humans out of the loop. Objective metrics are designed to fit the human evalua-
tion of the input, which will ultimately be the recipients of the image transmission system.
Objective evaluation methods are more widely used in quality assessment, often combined
with subjective methods, to save human and material resources.

Objective Image Quality Assessment (IQA) methods can be classified into three categories:
Full Reference, Reduced Reference, and No Reference IQA.

2.4.1. Full-Reference IQA

Full Reference IQA (FR IQA) makes use of the original and distorted images to obtain
a quality score based on the difference between the two. This process is only possible in
settings where the LQ-HQ image pairs are available, which is often the case, because LQ
images are obtained by downscaling the HQ ones. However, it limits its applicability in
real-world scenarios where reference images are not accessible.

The most popular FR metrics in SR are Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM).

2.4.1.1. PSNR

PSNR considers the pixel-wise changes between the reference and upscaled image by mea-
suring the MSE, or the average square difference between pixel values at the same location.
Considering a ground truth image Iy ∈ RH×W and the reconstructed image ISR ∈ RH×W ,
PSNR is defined as:

PSNR = 10 · log10
(
MAX2

MSE

)
(2.5)

Where MAX is the maximum possible pixel value in the image. PSNR is measured in
decibels (dB), where a higher value indicated higher quality. While a higher PSNR typically
suggests superior image reconstruction quality, it primarily accounts for per-pixel MSE, caus-
ing it to fall short in recognizing perceptual discrepancies. Despite having several limitations,
PSNR is the most popular metric in SR, mainly caused by its low computational cost and
convenience for optimization purposes.

2.4.1.2. SSIM

SSIM is a perception-based method that considers the luminance, contrast, and structure fea-
tures to measure the similarity between two images. Unlike PSNR, which computes absolute
errors at the pixel level, SSIM proposes that there are significant interdependencies among
spatially adjacent pixels. These dependencies hold crucial information concerning perceptual
structures. As such, SSIM can be articulated as a weighted combination of three comparative
metrics [41]:
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SSIM (ISR, Iy) =
(
l (ISR, iy)

α · c (ISR, Iy)β · s (ISR, Iy)γ
)

=

(
2µISR

µIy + c1
) (

2σISRIy + c2
)(

µ2
ISR

+ µ2
Iy

+ c1

)(
σ2
ISR

+ σ2
Iy

+ c2

) (2.6)

Where l, c, and s denote the luminance, contrast, and structure between ISR and Iy, respec-
tively. µISR

, µIy , σ
2
ISR

, σ2
Iy

and σISRIy correspond to the are the average (µ)/ variance
(
σ2

)
/ covariance(σ)

of their respective elements. SSIM ranges from −1 to 1, with 1 representing perfect simi-
larity. Additionally, there exist several variants of SSIM, for instance, Multi-Scale SSIM
(MS-SSIM)[109], which compares image structures at multiple scales, making it more versa-
tile for images of different sizes and resolutions.
There exist other learning-based quality assessment methods, that instead of directly com-

paring the images as three-channel (RGB) matrixes, employ feature extraction and integra-
tion techniques.

2.4.1.3. LPIPS

Learned Perceptual Image Patch Similarity (LPIPS) [127] is another perceptual IQA metric
that has gained attention in recent years and aims to provide a more accurate represen-
tation of human perception by leveraging deep features extracted from CNNs, which have
been trained on large scale classification tasks. The metric computes the distance between
feature representation of the reference and original images, assuming that they capture the
perceptually meaningful information.
Consider an image X and its distorted version Y . The LPIPS score S between them can

be calculated using:

S(X,Y ) =
n∑

i=1

d(F i(X), F i(Y )) (2.7)

Where F i refers to the feature maps at layer i of the pre-trained network (for example,
VGG or AlexNet), d is a distance function (usually cosine distance or L2 distance), and n is
the total number of layers considered in the network.
The distance function d for the L2 distance can be represented as:

d(F i(X), F i(Y )) =

√∑
j

(F i
j (X)− F i

j (Y ))2 (2.8)

where j iterates over the elements in the feature maps.

2.4.2. No-Reference IQA
No Reference IQA, also known as blind IQA (BIQA) methods are evaluated by different per-
formance metrics, that are defined by the similarity between the results of the models and the
subjective scoring by the human eye. Among existing BIQA metrics Natural Image Quality
Evaluator (NIQE) [69]and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)
[68] are the most used ones.
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2.4.2.1. NIQE

NIQE requires no prior knowledge about expected distortions as training image pairs, unlike
FR metrics. This method uses a Natural Scene Statistics (NSS) model to extract a collection
of localized, quality-aware features from images, which are then adapted to fit a Multivariate
Gaussian (MVG) model. The final image quality is based on the distance between its MVG
model and the MVG model derived from a natural image.

2.4.2.2. BRISQUE

BRISQUE analyzes the spatial nature scene statistics, focusing on locally normalized lumi-
nance coefficients. The main difference with NIQE is that it requires training on human-rated
images, but it is usually reported to outperform NIQE in terms of correlation with human
quality assessments. BRISQUE first computes the local Mean Substracted Contrast Nor-
malized (MSCN) coefficients and their pairwise products. Then, a variety of statistics are
calculated from the coefficients, including means, standard deviations, and higher-order mo-
ments, forming a feature vector that represents the spatial NNS of the image. The quality
of the image is predicted by a Support Vector Machine (SVM) model, trained on a set of
features from human-rated images.

2.4.3. Video Quality Assessment
Same as IQA, Video Quality Assessment (VQA) seeks to build models for evaluating the
quality of videos, often applied in streaming and compression algorithm research industries.
Similarly, it can be divided into FR, RR, and NR VQA. Although FR research has matured
and several models are widely used, recent focus has shifted towards creating better NR met-
rics that can evaluate the quality of distorted videos in real-world scenarios, where references
are not available. In this context, it is essential to highlight that SR detection and quality
assessment techniques share some similarities and limitations. The tasks of classification and
regression are different, but the underlying problem, data, and common architectures are
notably analogous. SR and QA are heavily affected by any form of degradations on the input
data, as both attempt to provide a method that can generalize outside the training dataset.
For both the process of QA and detecting artificially upscaled content, deep neural networks
are often employed for feature extraction. Equally, these two fields encounter shared chal-
lenges when dealing with high-resolution videos and added temporal dimension, primarily
due to the associated computational complexity.

2.4.4. Limitations of current QA methods
Image and video quality assessment metrics play a pivotal role in diverse computer vision
disciplines. Offering a quantitative measure of the ’perceived quality’ is a relevant concept
that remains subjective, but provides processing algorithms with a metric that can be used
for optimization and evaluation. However, the existing and most widely used QA metrics
have known limitations that prevent them from accurately capturing the nuances of human
perception. As a result, the field of QA is expanding, to find metrics that can better represent
human perception. PSNR and SSIM specifically, have been recently criticized for not being
applicable for SR benchmarks [83], [82], despite being the most popular metrics for estimating
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the quality of SR, according to a post made by the Video processing, compression and quality
research group 1. The publication [110] effectively demonstrates a limitation of the MSE,
the base of PSNR. In the study, different forms of distortions are applied to the original
image, resulting in different quality levels among the resulting images. Despite these visually
apparent disparities in quality, the MSE values for each distorted image are the same. This
claim is backed by further research [108] [38] [29], where popular IQA metrics such as PSNR
and SSIM have been proven to display low correlation with subjective scores.
No-Reference metrics face similar problems, namely, the struggle to accurately emulate

human perception. More complex NR metrics like BRISQUE, NIQE, and PIQA are trained
on specific distortion types, so they may not adapt to unseen distortions or real-world images
that are more diverse. Moreover, there are a number of additional limitations with regard
to more specific aspects in the literature. [117], for instance, claims that most of the current
NR-VQA methods are still aimed at low-resolution videos, and they do not perform well
when applied to UHD videos. To solve the limitations of existing NR-VQA methods, which
primarily use CNNs on image patches, researchers have proposed an architecture based on
a combination of SR and deep reinforcement learning. Further, [40] focus on the effects
of compression on NR-IQA solutions, and highlight some underlying assumptions of other
methods, such as the Gaussian assumption in NIQE. This serves as an example of the current
research in QA methods, illustrating the variety of possible strategies towards video quality
evaluation.

2.5. Synthetic Content Detection

The rapid advancements in AI and in Deep Learning in particular, have led to significant
progress in the field of synthetic content generation. When Generative Adversarial Networks
started gaining popularity, we experienced considerable growth in the quality of synthetic
images. Since then, image generation and modification techniques such as inpainting, style-
transfer, and SR have seen remarkable advancements, achieving an ability to generate in-
credibly realistic content. The latest synthetic content generation algorithms can outperform
GANs [26] [78], and pose a challenge for humans to distinguish real from fake or modified
content. This has led to the development of various detection techniques, which have been
mainly focused on Deepfakes, due to their severe social and political implications.
Developing detection methods may seem like a straightforward task, where a classifier is

trained on real and synthetic images. However, there are several unique limitations that
must be overcome. The dataset will most likely be tied to the model’s performance, affecting
its generalization ability [130], [102]. Content type, degradations, and fake image generation
models suppose a challenge in capturing the full range of potential manipulations. Further-
more, image generation or modification algorithms are in constant development, causing the
features learned by these models to become ineffective and outdated for new techniques.
Earlier image generation methods were mostly built upon CNNs, which are the backbone of

GAN-based networks. Even if results could be convincing, [103] found that CNN-generated
images were notably easy to detect, by cause of particular CNN fingerprints with a great
ability of generalization. Several CNN-based image generation methods were considered, in-

1https://videoprocessing.ai/metrics/ways-of-cheating-on-popular-objective-metrics.html

https://videoprocessing.ai/metrics/ways-of-cheating-on-popular-objective-metrics.html
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cluding GAN-based methods and one SR method. In [103], a classifier model is trained on
one specific model, to resemble real-world detection problems. Moreover, they highlight the
critical importance of data augmentation for generalization, as well as using diverse training
images. By using 224 pixel crops and augmentations based on blur and JPEG compres-
sion, they achieve close to perfect Average Accuracy (AP) on unseen content generated by
GANs, which belong to the same generative model family. Curiously, except for SR and
Deepfake detection, which achieve 93.6 and 98.2 AP respectively without augmentations, the
implementation augmentation helps performance in all other cases. The reason behind this
phenomenon is that in SR models, only high-frequency components can differentiate between
real and fake images, hence, applying blur or other similar degradations at training reduces
performance [103].

The generalization ability described in [103] was further explored in [76], who tested the
model on a different family of generative models such as LDM (Latent Diffusion Model). The
classification accuracy drops to near chance, a fact that is supported by a study of the internal
feature representations, which are able to distinguish content that has been generated by any
GAN from other types of content, either real or fake. This is supported by a comparison of
the frequency spectra visualizations between images generated by GANs and LDMs. There is
a common discernible artifact pattern in GANs that does not exist for LDMs or real images,
suggesting that the classifier’s decision is based on the recognition of said artifacts. As a
universal fake image detector, [76] choose a variant of the vision transformer, ViT-L/14,
trained for the task of image-language alignment, CLIP. The feature representations from
the network are then used to decide if a given image is real or not. Results show a highly
better generalization performance in detecting real/fake images. Interestingly, this does not
hold true for the only studied SR method, SAN [23], where the method based on Linear
Probing achieves 79.02 AP score and 57.50 classification accuracy.
Moving to SR detection, is a relatively unexplored topic, especially for 4K content. The

main problem of existing detection techniques is that they do not adapt to new SR proposals,
showing deterioration in performance. This is a well-known topic in the field of synthetic
content detection and poses the main challenge in SR detection.

2.6. Review of existing super-resolution detection methods
Artificial upscaling techniques have existed for several years, and have significantly evolved
from earlier signal processing-based approaches. Prior works mainly focus on the detection
of simpler interpolation algorithms, such as bicubic interpolation, bilinear interpolation, and
nearest-neighbor interpolation. More recent research explores the detection of upscaled con-
tent generated by neural networks. However, it is an area that is still in development, and
publications that tackle 4K images or videos are limited.

2.6.1. Super-Resolution Detection Model (SRDM)

[67] presents an approach to detect compressed and uncompressed upscaled videos, by in-
corporating a supervised and contrastive learning architecture. The classifier is trained with
small crops taken from numerous upscaled videos (obtained by applying six SR architec-
tures). It is evaluated on portions from the REDS and Vimeo-90 datasets, which consist of
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720p videos (1280 x 720). In addition, it was tested on the MSU Video SR[58] (not available)
and RealSR [9] benchmarks, achieving competent accuracy, detecting 30 out of 32 upscaling
methods.
The architecture is based on a contrastive framework that takes three inputs: an anchor,

a real image from the dataset; the negative case, that is, the same image but upscaled with a
SR technique; the positive case, another original image from the dataset. To take advantage
of the video format, two consequent frames are concatenated and used as input. From the
input images, a ResNet-50 feature encoder and a projection head, a typical component in
contrastive networks, composed of an MLP with three hidden layers are used to generate a
feature representation for one of each image. Then, a composed contrastive loss is used, by
combining cross-entropy with the result of the classification head, a regularization loss and,
a contrastive loss.
In this system, a video is considered fake if at least 5% of all frames are detected as fake.

Authors report a 100% accuracy for real videos in the MSU Video SR Benchmark 2, but a
lower accuracy for upscaled videos. Using the RealSR benchmark, results are considerably
better than previous methods, surpassing 95% accuracy for all upscaled methods.
The adoption of contrastive networks is not new in SR [106], but their adaptation to high-

resolution data would require major modifications to account for the impractical computation
and memory consumption. The authors of the described architecture do not mention how
the evaluation process is carried out, considering that the model is trained with 224 x 224
patches and tested with higher resolution videos or images.
While deep learning methods have gained relevance due to their potency in handling com-

plex tasks, detection methods based on frequency analysis have always been a popular ap-
proach for digital content scenarios. Frequency analysis, based on the field of signal pro-
cessing, provides a computationally faster alternative and complementary approach to deep
learning in SR. It exploits the fundamental nature of images as signals with different fre-
quencies, making it an effective tool for discerning alterations in images and videos that have
undergone SR.

2.6.2. DCT-based Detection

[116] propose a native resolution detection method for 4K-UHD videos, based on extracting
features from the Discrete Cosine Transform (DCT) frequency domain. Authors support
that for many upscaling methods, a sharp decline will be detected at the edge between high-
resolution and low-frequency areas. To study the video frequency components, the DCT
coefficients are summed along rows or columns, producing the accumulative log spectra of the
frames. Then, the aggregated accumulative log spectra for a video is obtained by averaging
the spectra of each frame. To detect sharp declines, a median filter is applied and subtracted
from the original log spectra, to detect outliers, videos that are possibly upscaled. [116] sets
an arbitrary threshold of −8, obtained by their experiments, to conclude if a video has been
upscaled or not.
The method is evaluated on 10 videos from the MCML 4K UHD video quality dataset and

considers four traditional interpolation methods and three DL-based SR methods. Reported

2https://videoprocessing.ai/

https://videoprocessing.ai/


22 Related work

accuracy is perfect except for the RBPN method, which achieves an 80% True negative rate
and a 100% True positive rate.

The main problem with SR detection on 4K videos is the resolution itself. Processing multi-
ple frames consisting of more than eight million pixels at once is computationally impractical
at best and unfeasible at worst, so various methods adopt a patch-based approach to the
problem. Each image or frame is divided into small patches that are processed individually,
and results are aggregated to obtain a final prediction.

2.6.3. Frequency domain + Natural Scene Statistics
Utilizing a patch-based approach combined with frequency features [132] proposed a no-
reference image quality assessment metric to distinguish real and fake 4K contents. Natural
scene statistics (NSS) and features from the frequency domain are extracted and processed
by a support vector regressor (SVR), which aggregates them to obtain the quality score of
the input image. The model is trained with a private database that true and pseudo 4K
content, composed of 21 sequences from public 4K databases and 36 video sequences from
channel of China Central Television (CCTV). To establish the pseudo or fake 4K content, 4K
images are first downscaled to 1080p and combined with additional 1080p content from the
Internet and from the video database of CCTV. Then, all 1080p images are upscaled by 14
different interpolation methods, including traditional and deep learning-based SR algorithms
as well as video editing software. It bears noting that only SISR methods are considered in
this analysis, and most of them are outdated. The final dataset includes 2,802 pseudo 4K,
in which 1962 images are interpolated from 1080p and 840 images are upsampled from 720p,
and it is not available for the general public as of May 2023.

2.6.4. Blind Texture-Aware UHD Content Recognition and Assessment
(BTURA)

Drawing upon the research by [132], [57] was later published, a blind texture-aware UHD
content recognition and assessment (BTURA) metric, a dual system that aims to recognize
real and fake 4K images and measure their quality at the same time. The proposed model
consists of three parts: a textured patch selection module, a quality-aware feature extraction
module, and a quality evaluation module. The patch selection module picks three represen-
tative patches with the highest texture complexity, measured by the Grey-level Cooccurrence
Matrix (GLCM) algorithm. Then, the feature extraction module, a pre-trained ResNet-18, is
used to extract and aggregate features from all intermediate layers. This allows the system to
capture high-frequency detail from the first layers and keep the more complex representations
from the deeper stages. Extracted quality-aware features are concatenated and processed by
the Quality Evaluation Module. A classification sub-network (MLP) and a quality predic-
tion sub-network (MLP) are trained to predict a class label and a quality score respectively.
Finally, a multi-task loss is applied to optimize the network. The same idea of a CNN-based
feature extractor is common in other Video Quality Assessment methods, such as [92], [94]
[128], good examples of how related SR detection and QA tasks are in terms o methodology
and algorithmic design. This method is validated on four datasets: 4K IQA database estab-
lished in [132], BVI-SR video quality database, MCML 4K UHD, and Waterloo IVC 4K video
quality database. All databases are divided into training and test sets, that are evaluated
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independently. Reported results show an almost perfect (0.999% accuracy) score on 4K IQA
and a 0.94% accuracy on BVI-SR. This type of multi-task learning is only possible because
the training dataset contains collected quality scores for each sample, additional information
that is expensive to get, and uncommon in large 4K video datasets. About this publication,
neither the model nor the dataset are available.

2.6.5. Two-Stage Authentic Resolution Assessment (TSARA)
In a similar approach, [87] develop a two-stage system that classifies a video frame to have
real or fake 4K resolution. The first stage classifies local patches using a CNN, and the
second stage aggregates local assessments into a global image-level decision using logistical
regression. According to the publication, the model is trained on a dataset consisting of
”Fake” and ”True” 4K images obtained by extracting frames from videos recorded at UHD
resolution, which was released together with the model at 3. They obtain the Fake images
by upscaling the images extracted from 1080p video and a wide variety of native resolution
images of 102 classes of flowers [74]. Moreover, only three traditional upscaling methods are
tested, bicubic, faster-bilinear, and Lanczos.

3https://github.com/rr8shah/TSARA

https://github.com/rr8shah/TSARA




3
Hypothesis and objectives

This section introduces and expands on the two central hypotheses and objectives that
drive this thesis. It explores the complex relationship between degradation processes in SR
methodologies, including blind and non-blind models, and their impact on the performance
and generalization of these approaches. Further, it studies the limitations that currently exist
in the detection of artificially upscaled content (specifically 4K videos), and offers a proposal
over existing methods.

3.1. Hypothesis 1

The degradation process in SR techniques is critical in determining their performance and
generalization ability. Blind models play a crucial role as they have the capacity to adapt to
unknown degradations and produce more visually appealing results. Given the fact that the
application of SR in the real world is performed over digital content with a great diversity of
artifacts and degradations, blind models become the most interesting research line. Existing
datasets and non-blind methods rely on a limited set of predefined degradations, therefore SR
models trained with such data fail to fully represent the variety of real-world degradations,
leading to reduced performance in such cases [49] [126].

We aim to explore the key differences between non-blind and blind models in their applica-
tion to processing real and synthetic degradations. Our intention is to demonstrate that blind
SR models exhibit a higher level of robustness against different degradations, while non-blind
methods tend to learn features directly related to the training degradations. We believe that
deep feature representations can uncover distinct semantics in video SR networks, which re-
late to image degradation rather than image content. We aim to substantiate these findings
by conducting a quantitative performance analysis, derived from both original and synthetic
glslr input data, and by comparing traditional, non-blind and blind models. Furthermore,
we plan to utilize a degradation generalization metric based on the deep feature components
to strengthen our conclusion.
All this analysis is facilitated by the glshr video dataset that we have manually collected

in this thesis. It contains original and synthetic video pairs that serve as a comprehensive
set for studying a broad range of degradation types in real scenarios. We want to take the
opportunity to analyze the key differences between original and synthetic content in the same
resolution.
This novel approach offers the unique advantage of enabling the generation of 4K and

1080p original video pairs, and serves as a benchmark for our study.
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3.2. Hypothesis 2
Current existing detection methods often fall short of accurately identifying upscaled 4K
content. This thesis proposes an improvement over existing proposals by extending an existing
architecture and training it on more diverse upscaled content.

We intend to design, train, and evaluate a system that can accurately distinguish SR meth-
ods present within the training dataset. We are interested in understanding and explaining
what the detection model is learning, and propose to analyze the feature representation of
the model. By implementing different training strategies and architectures, we aim to opti-
mize the detection model’s performance. Our goal is to ensure it can consistently recognize
a variety of upscaled content, focusing on methods that are outside of the training dataset.
The internal feature analysis can shed light on the similarities between different SR types

(blind, non-blind) and architectures. The visualization of feature representations from various
upscaling methods could provide a visual mechanism for understanding the model’s behavior.
It could explain which methods are treated similarly or help elucidate the underlying reasons
for any erroneous predictions made by the model.
We will build the training dataset upon the public BVI-DVC, which offers a broad range

of content. Our intention is to extend the available SR data resources by generating new
upscaled videos from BVI-DVC, by employing one traditional upscaling method, and three
DL modern video SR models. We believe that acquiring 200 original videos and 800 4K
upscaled videos can facilitate the task of current and future SR research. We believe it is a
suitable data source to train and evaluate the SR detection model studied in this thesis.
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Data

As in any other computer vision task, the quality and diversity of the datasets, including
image and video datasets, are integral to the success of SR, especially as we transition to-
wards high-definition formats such as 4K. Most existing SR methods require LR-HR image
pairs for training and evaluation, regardless of whether they are individual images or frames
from a video. Due to the difficulty of obtaining real paired data, popular training datasets
are synthetic, that is, glslr images are generated by downscaling their glshr counterparts.
There are several paired real-world datasets, but there is a lack of accepted guidelines within
academia for training and evaluation of higher-resolution (4K) content. This section will
will serve as a guideline detailing the specific datasets that will be employed throughout the
thesis. In addition, it will detail the various datasets utilized in SR tasks: common training
video sources, available 4K video datasets for more general research purposes and, finally,
Real Datasets used in blind SR. In

4.1. Public Datasets
The most popular glshr datasets for non-blind networks are also used in blind SR. DIV2K [3],
Vimeo90K [114], REDS [72] and Flickr2K[48] are commonly used for training, while BDS100
[65], Urban1000 [31], Vid4 [50], and Set5 and Set14 [121] are used for testing. These datasets
have resolution of 1280 × 720 or lower, to they are not suitable for the study of 4K content.
Regarding 4K video datasets, Table 4.1 provides a more comprehensive overview of data

sources and specifications. It is notable that the majority of video sources do not offer a
large quantity of videos. The purposes of datasets in Table 4.1 varies, from high-frame ratio
studies to compression and codec performance assessment.
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Name No. of videos
BVI-DVC [59] 200
BVI HFR [61] [62] 22
LIVE HDR Video Quality Assessment Database 31
4KMedia 1 165
Netflix ”Chimera” video sequence [73] 52
UVG Dataset [66] 16
SJTU Medialab [91] 15
MCML 4K UHD video quality database [20] 10
DAREFUL Browse Free Stock Clips Footage [24] 99
A Collection of 100 4K Video Sequences [34] [35] 100
Xiph.org Video Test Media (derf’s collection)2 18
CableLabs 3 9
AVT-VQDB-UHD-1 video quality database [79] 16
BVI-SR Database [124] 24
LIVE YouTube High Frame Rate (LIVE-YT-HFR) Database [64] [63] 5
Waterloo IVC 4K Video Quality Database [42] 20

Table 4.1: List of available 4K datasets and number of videos

4.1.1. Real Datasets

The second approach to obtain LR-HR image pairs is to capture them directly, which often
requires more complex acquisition techniques and digital devices. They offer a strong ad-
vantage over synthetic datasets, as captured glslr videos contain authentic degradations. In
other words, no downsampling process is involved, since the recorded noise, motion blur and
compression artifacts are inherent to real-world imaging processes.

Available datasets are generated using diverse methodologies, recording formats and reso-
lutions. Let us start with static image datasets, where one of the most common approach is
to achieve the LR/HR pairing through camera zoom. DRealSR [77] uses five DSLR cameras
to cover indoor and outdoor scenes. glslr and glshr image pairs are collected by zooming the
cameras and cropping the images. For each scaling factor, a SIFT (Scale-Invariant Feature
Transform) [56] methods is used to crop an glslr image to match the content of its glshr
counterpart. The final dataset contains approximately 800 images for different scales, each
cropped to corresponding sizes suitable for each scale (from 192x192 to 380x380).
Utilizing same zoom-based approach as [77], SR-RAW [131] contains raw sensor data and

ground-truth high-resolution images taken with a zoom lens at various zoom levels. It en-
compasses 500 sequences in indoor and outdoor scenes.
The main problem with collecting LR-HR pairs though optical zooming is the impractica-

bility of data acquisition. Recording samples with the exact same motion and pixel alignment
is quite difficult in practice, so additional processing techniques are often required. This limits
the variety and volume of videos that can be recorded and published using this approach.
A similar approach is followed in CameraSR[14] and RealSR [8, 9], where a DSLR camera

with different focal lengths is used to capture the image pairs. CameraSR proposes an
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additional method based on mounting a phone on a translation stage for data acquisition.
Images taken from a closer distance are regarded as the glshr ground truth, while those
captured from a long distance constitute the glslr versions. Smartphones cannot match the
flexibility in focal lengths provided by DSLR cameras, but they are capable of recording at 4K
resolution and capture degradations that are inherent to their specific hardware and software
configurations (e.g. sensor noise, lens distortions, and compression artifacts).
As in [77], the dataset generation process is costly, due to the spatial misalignment, intensity

variation, and colour mismatching caused by employing different focal lengths.
Leaving static image datasets behind and moving to video datasets, the most relevant

ones are RealVSR [115], and Real-RawVSR [120]. RealVSR [115] builds a collection of
500 sequence pairs captured using the multi-camera system of a modern mobile device. To
eliminate the alignment artifacts around the boundary, they are aligned and cropped at the
center region of size 1024x512.
Taking a different approach, Real-RawVSR [120] builds a two-camera system with a beam-

splitter to make sure that there is no parallax between the two cameras.While the approach
seems sound, its hardly scalable which shows in the limited size of the dataset. They perform
alignment on the capture content to generate 150 video pairs of about 50 frames each. The
maximum resolution of the dataset is 1440x640, for 2x scale.
The limitations of the datasets reviewed above are discussed in the work [16] identifies

two main limitations in current SR datasets. The first one is that the perceptual quality
of glshr images is not high enough, which limits the performance of SR models. Models
trained on original glshr images can yield blurry details and irregular patterns, caused by
the low quality of ground-truth glshr images. The second limitation is the lack of human
involvement in ground truth generation. As such, ground-truth images of poor quality may
be inaccurately considered as high quality, due to the absence of human review and quality
control. As a consequence, SR models trained suboptimal ground truths tend to produce
over-smoothed results [16].

To deal with those limitations, they propose a human guided strategy towards ground-
truth image generation. First, several image enhancement models are used to improve the
perceptual quality of HR, while keeping the resolution. Then, human subjects annotate the
high quality regions and label the regions with unpleasant artifact as negative examples. That
information is finally used to create a dataset with multiple positive and negative samples,
that can be used to train Real-ISR models.

While this approach seems promising, it also introduces several challenges. One potential
issue is the human bias during the annotation process. The perceptual quality can signifi-
cantly differ between individuals, leading to inconsistencies in annotations. Another relevant
challenge lies in the scalability. Manual annotations of image quality require a consistent set-
ting for evaluation (e.g. same illumination and display device). It requires extensive human
involvement, which is time consuming and may not be feasible for large datasets.

In conclusion, Real video datasets today cover a wide array of methodologies, but there
are still distinct limitations to be addressed. Primarily, the complexity involved in data
acquisition, related with maintaining identical pixel and motion alignment. Artifacts and
inconsistencies introduced by zooming or employing different focal lengths requires additional
processing steps, which is technically challenging and resource intensive. To mitigate those
limitations, researchers tend to manually crop the glshr images into lower resolution patches,
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which are used to train blind SR models.
In this thesis, we propose a new Real dataset in 4K resolution, which will be used in

the following chapters as a tool to study non-blind and blind SR. Our dataset will also be
employed to create the testing data for the SR detection proposal.

4.2. Overview of Datasets Under Study
We are interested in the study of SR at 4K to address the current trend of digital media
towards higher resolution. Common SR datasets as REDS4, and existing Real datasets do
not meet such requirements, so we decide to build our own to compliment the public 4K
videos that we will study.
There are mainly two data sources employed for the development of this thesis.

4.2.1. BVI-DVC-SR
The first one is based on BVI-DVC [59], published to train CNN-based video compression
systems. It contains 800 video sequences at various spatial resolutions from 270p to 2160p.
Among the 800 sequences, 200 correspond to original 4K videos from different sources, and the
remaining 600 correspond to the same videos in lower resolutions (artificially downscaled).
As we perform x2 upscaling, we take all original 4K videos and their corresponding glslr
(1080p) counterparts.
We extend the base database by upscaling the 200 1080p videos with different methods

to create the BVI-DVC-SR dataset. The selected upscaling methods include one traditional
technique and three DL-based video SR models:

• Bicubic interpolation (traditional): We use the implementation from OpenCV to down-
scale 4K videos to half their original size.

• BasicVSR (non-blind): The official implementation at MMediting [70] (replaced by
MMagic as in 26/05/2023) is used to perform the upscaling. We use the pre-trained
model on REDS dataset, with the recurrent framework on a maximum of six frames.

• RealBasicVSR (blind): Similarly, the pre-trained model on REDS is used with the same
configuration.

• RVRT (non-blind): The official RVRT Pytorch implementation4 is adopted, with de-
fault parameters except for the number of frames. We consider 10 consecutive frames
instead of testing the videos as a whole.

Therefore, we build a 1,000 4K video dataset out of which 200 videos are original, and 800
artificially upscaled. Figure 4.1

4https://github.com/JingyunLiang/RVRT

https://github.com/JingyunLiang/RVRT
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Original Bicubic BasicVSR RealBasicVSR RVRT SwinIR Real

Figure 4.1: Frame extracted from a BVI-DVC-SR dataset. Shows the comparison between studied
SR methods. Zoom in for a better view

4.3. Proposed Real Video Super-Resolution Dataset: BSC4K
In an effort to expand the current data on 4K SR, we present a dataset with paired video se-
quences at 1080p and 4K resolution recorded simultaneously. The dataset provides a valuable
tool for analyzing the degradation nuances in the SR process by utilizing a unique camera
setup to record the videos.
The motivation of the dataset is to overcome the challenges introduced by artificially

downscaling glshr content to obtain the glslr counterparts. Generating original and synthetic
glslr pairs allow us to study the domain gap that exists in non-blind SR methods and compare
them to blind SR methods. Furthermore, the generated 4K videos will serve as a testing
dataset for the SR detection proposal.

The first version of the dataset contains 33 4K and 33 1080p videos, cut to 64 frames each,
recorded indoor and outdoor with a single DSLR camera. We restrict the SR problem to
x2 scale, as the camera records at 4K and 1080p. The main advantages of our dataset are
that the acquisition process is straightforward, while the post-processing primarily entails
the separation of videos into individual frames.
While our methodology includes glslr and glshr recorded originally in that resolution, we

add synthetically up and downsampled videos for evaluation purposes. Figure 4.2 shows an
illustration of the data acquisition and naming conventions:
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Original 4K

Original 1080p

Synthetic 1080p (downscaled)

Synthetic 4K (upscaled)

Bicubic interpolation

Upscaling method

Figure 4.2: Data acquisition and processing diagram. We build pairs of LR-LR and HR-HR videos
from real and synthetic content.

In following sections, we will reference glslr and glshr content with different names, de-
pending on their origin. The camera records original videos at 4K and 1080p. Videos at each
resolution are modified to obtain a pair of the opposite resolution. This way, we obtain ”orig-
inal” glshr - ”synthetic” (or upscaled) glshr and original glslr - ”synthetic” (or downscaled)
glslr video pairs (as showed in Figure 4.2.
In such manner, we generate several versions of glslr and glshr content. For LR, we con-

sider original and degraded videos. The degraded versions include bicubically downsampling,
BSRGAN degradations, and blur. The first two are obtained from the glshr videos and the
latter by applying blur to the glslr samples. The glshr videos include the original and upscaled
versions. For a better understanding of the dataset’s structure see Figure 4.3
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1920 x 1080

3840 x 2160

Original
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Bicubic

BasicVSR
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3840 x 2160

3840 x 2160

Figure 4.3: Illustration of the available data sorted by resolution. Arrow indicate where the data
originates from. For instance, the 3840 × 2160 bicubic data comes from upsampling the
original 1920 × 1080 videos

Following the same upscaling methodologies described in subsection 4.2.1, we increase the
resolution of all videos by four upscaling techniques. Moreover, we also employ additional
upscaling methods for testing purposes throughout the experiments in the thesis, most no-
tably:

• SwinIR: Official implementation5 for both the Classical and Real variants. The network
weights are different but the transformer-based backbone is kept the same.

• Real-ESRGAN: We use the pre-trained model and default parameters from the official
repository 6.

• Nearest-neighbor interpolation: The implementation from OpenCV is used.

4.3.1. Data Aquisition and Post-processing
This dataset has been generated by taking videos with a Panasonic Lumix DC-S5 in MOV
containers with a H.264 codec at a resolution of 5.9k pixels. The sensor of the S5 camera
is a full-frame 35.6x23.8mm CMOS sensor. The signal captured by the sensor, before being
converted into H.264, was passed through to an HDMI interface towards a Blackmagic Video
Assist 5’’ 3G, recording in a MOV container with a ProRes HQ codec at a resolution of 1080p.
The lens used has been a Panasonic Lumix S 20-60mm zoom lens at varying settings of focal
length, ISO (the two native ISOs: 640 and 4000), shutter speed (from 30 to 80), aperture
(from 3.5 to 22) and white balance (from 3200 to 5600k).

5https://github.com/jingyunliang/swinir
6https://github.com/xinntao/Real-ESRGAN

https://github.com/jingyunliang/swinir
https://github.com/xinntao/Real-ESRGAN
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According to the AVC-Intra documentation 7, it , AVC-Intra 100 records the full 1920x1080
raster, representative of master-quality recording
After generating the .MOV files, we employ FFMPEG [95] to split the videos into frames

in .png format. Due to a small difference between timecodes of 4K and 1080p videos, we
methodically align the frames pairs of each video. This alignment procedure does not alter
the content of the images. Instead, it ensures that the frame numbers from both videos align
with the same timestamp and are consistent across both resolutions.

4.3.2. Content Description
Understanding the inherent characteristics of video sequences is fundamental for multiple
aspects in the field of video processing and quality evaluation. These characteristics can
provide an accurate and quantitative representation of a video’s content, which is important
when dealing and comparing different video data sources.

Following the method proposed by Winkler [112], we characterise the video sequences by
using three descriptors: Spatial Information (SI), Temporal Information (TI) and Colourful-
ness (CF), and show the results in Figure 4.4. We adopt the SI and TI indicators defined in
ITU-T Rec. P.910 (11/21) [80] and implemented in [100]. Spatial Information is an estimator
of the amount of edge energy in the video sequence, and can be used to quantify the spatial
complexity of a scene. First, each video frame is filtered with the Sobel filter. Then, the
standard deviation of the pixels is calculated for each frame within the video sequence, re-
sulting in a time series of spatial information. The highest value in the time series represents
the spatial information content of the frame sequence:

SI = max
time

σspace[Sobel(Fn)] (4.1)

TI predicts the magnitude of motion based on the difference between the pixel values at
the same location but at successive times or frames. The motion difference feature Mn(i, j)
as a function of time is defined as:

Mn(i, j) = Fn(i, j)− Fn−1(i, j)

Where Fn(i, j) is the pixel at the i-th row, j-th column and nth frame. TI is computed as
the maximum over time ( maxtime )) of the SD over space (σspace):

TI = max
time

{σspace [Mn(i, j)]}

Finally, CF quantifies the variety and the intensity of colours within a scene. Using rg =
R−G and yb = 0.5(R+G)−B as a simple opponent colour space, it is defined as [62]

CF =
√
σ2
rg + σ2

by + 0.3
√

µ2
rg + µ2

by (4.2)

The following figure shows the coverage of the three metrics for all videos in the dataset.
This can serve as a reference for future iterations or other datasets, and can help evaluate
the relation between spatial and temporal information with performance.

7https://resources.avid.com/SupportFiles/attach/FAQ_AVC-Intra.pdf

https://resources.avid.com/SupportFiles/attach/FAQ_AVC-Intra.pdf
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(a) Spatial Information (TI) vs Temporal Infor-
mation (TI)

(b) Spatial Information (SI) vs Colourfullness
(CF)

Figure 4.4: Illustration of the coverage of three video descriptors: Spatial Information (SI), Temporal
Information (TI), and Colourfulness (CF). Each point in the scatter plot represents a
single video in the dataset, mapped based on its SI, TI and CF values. A broad coverage
across these metrics indicates a diverse set of videos in terms of visual complexity and
colorimetry. The greater the spread of points, the more varied and representative the
dataset, making it better suited for robust video processing and quality evaluation tasks.

This analysis serves as a foundation for future research, and can be used to compare exist-
ing databases, although the main purpose of our videos is to provide paired high-resolution
sequences for SR research. Calculated metrics alone cannot ensure that methods trained or
benchmarked with this dataset will adequate to real-world applications, so to draw mean-
ingful conclusions it is crucial to analyze the problem at hand and the content of the videos
independently.

Next, we show the value distribution for the individual low-level descriptors:
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Figure 4.5: Distribution of the three low-level descriptors.

Presented figures and calculations establish a standard procedure for future versions and
comparative datasets. The plots indicate that the dataset appears to be diverse in terms of
content and motion components, without any unusual anomalies. The ultimate goal is to
refine and increase the dataset and keep studying the unique properties that are present in
the videos by comparing them to other data sources.
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Figure 4.6: Example frames from the dataset.

The dataset is expected to be expanded to include more diverse content and environmental
settings. Nevertheless, we try to cover several relevant categories in this first iteration, Even
if the environmental and climactic aspects of the dataset are more similar. We include various
types of motion speeds, zoom-out and zoom-in, blur and a variety of content types, as shown
in Table 4.2.

Category People Vegetation Text Vehicles Animals Buildings Textures Close-up Blurry Focus change Zoom
No. of videos 4 20 1 5 1 10 5 4 1 2 5

Table 4.2: Coverage of different content texture categories for BSC4K

We include scenes with minimal and high movement, as well as sequences involving panning
shots and sequences that incorporate handheld camera movement.

4.3.3. Dataset licensing and GDPR Compilance

We intend to make the dataset open-access to promote accessible scientific research. The
open license will allow researchers to download, use and modify the data freely as long as it
is cited correctly.
In the process of recording and saving the data, we have taken care to respect each person’s
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privacy. We have followed the guidelines in the General Data Protection Regulation (GDPR)
to ensure that our practices correspond to their standards.

4.3.4. Limitations
The proposed dataset is created to study the effect of artificial degradation on blind and non-
blind SR networks. It overcomes some limitations on current real datasets, like the costly
alignment processes or the complex camera setups. However, our recording methodology
is tied to certain restraining factors. Most notably, all videos are recorded with the same
camera, which significantly reduces the range of available degradations, an important fact
if the purpose of the data is to train a SR model. Furthermore, all videos are produced by
the Image Signal Procesor (ISP) from raw data through multiple operations, which are non-
invertible and tend to degrade the information content of the original raw videos. For that
reason, other datasets [52] [131] propose to directly exploit camera sensor data, a recognized
method in several areas of low-level vision [15] [32] [113]. Super resolution with raw videos
is fairly unexplored domain, mainly due to the technical challenges associated with handling
raw data and computational costs involved in processing such data.
On the other hand, the reduced number of videos and the similar recording settings present

a limitation of the dataset to represent real-world diverse scenarios. The homogeneity of
lightning conditions and environmental factors may hinder the applicability of the dataset
and cause overfitting on some scenarios. Lastly, another limitation of our dataset is the slight
difference in colour between glslr and glshr video, a common factor in many real SR datasets.
In our case, the 1080p videos display a brighter color that the 4K versions. We keep the
original videos in this dataset version, but a color matching step and its influence will be
studied in the future.
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In SR methodologies, LR-HR pairs are an essential component for model training and
evaluation. Therefore, the manner in which the training pairs are generated, that is, the
downsampling operation that is applied to the original glshr image to obtain the glslr variant,
can greatly influence the performance of the SR model. Biases or artifacts introduced during
the downscaling process can reduce a model’s ability to generalize to real-world situations,
as the model becomes specialized to a specific type of downscaling that does not correspond
to real degradations.
LR-HR image pairs are often generated through these types of predefined degradations,

such as bicubic interpolation, deteriorating the model’s performance for inputs that are out-
side of that training distribution. Blind or ”Real” models attempt to create a more complex
degradation process that can emulate degradations in the real world.
The aim of this section is to conduct an exploration of the impact of different degradations

on the performance of non-blind and blind SR models. We will consider the custom dataset
BVI-DVC-SR and our BSC4K dataset to compare the quantitative metrics, the internal deep
feature representations, and their frequency domain components. To do this, we will treat
video frames as separate images that can be studied individually.

5.1. Quantitative performance comparison

We evaluate the effectiveness of various upscaling methods by measuring Full-Reference (FR)
and No-Reference (NR) metrics across two separate datasets. Firstly, we use a subset com-
prising 50 videos from BVI-DVI, where the glslr videos have been obtained by applying a
Lanczos filter to their glshr counterparts. In the second instance, we compute the perfor-
mance on our dataset, where upscaled videos are obtained from real glslr inputs. To assess
the performance, we employ three FR metrics - SSIM, PSNR, and LIPIS and two NR metrics
- NIQE and BRISQUE.
PSNR and SSIM are often computed after taking the luminance (Y) component in the

YCbCr color space and cropping the border [27] [44] [104]. Following the literature, we
convert each RGB image into YCbCr, select the luminance channel, and crop 8 pixels from
the border (implementation from the BasicSR repository 1. To calculate LPIPS, we adapt
the implementation in 2 (version 0.1), and use the default AlexNet variant. Similarly, we
employ the adaptation of NIQE from BasicSR 3, which obtains very similar results as the

1https://github.com/XPixelGroup/BasicSR
2https://github.com/richzhang/PerceptualSimilarity
3https://github.com/XPixelGroup/BasicSR
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original Matlab code. Lastly, we calculate the BRISQUE using the Python package with the
same name4

In terms of SR models, we test one traditional method (bicubic interpolation) along three
DL-based networks, two non-blind (BasicVSR and RVRT) and one blind (Real-BasicVSR)
approach.

5.1.1. BVI-DVC-SR dataset
We average the results for each method and display them in Table 5.1

Method PSNR↑ SSIM↑ LPIPS↓ NIQE↓ BRISQUE↓
RVRT 47.76 ± 4.93 0.992 ± 0.01 0.024 ± 0.02 5.94 ± 1.26 49.23 ± 9.13
BasicVSR 47.52 ± 4.96 0.992 ± 0.01 0.03 ± 0.02 5.91 ± 1.32 48.88 ± 9.47
Bicubic 47.24 ± 4.64 0.991 ± 0.01 0.04 ± 0.03 6.68 ± 1.06 54.62 ± 8.76
RealBasicVSR 30.49 ± 3.82 0.89 ± 0.05 0.33 ± 0.12 4.14 ± 1.20 25.00 ± 14.04

Table 5.1: Quantitative metrics for BVI-DVC-SR dataset

Table 5.1 shows the average values of each upscaling method, along with the standard
deviation. The first noticeable observation is related to the high PSNR and SSIM values
overall. In contrast, the second remarkable fact is the low performance of Real-BasicVSR
according in all FR metrics.
According to FR metrics, RVRT generates better quality results that are more similar to

the original image, although the difference among non-blind methods (Bicubic, BasicVSR,
RVRT) is quite small. It has the highest PSNR value, which suggests its effectiveness to
retain information from the original image. The SSIM value indicates that the structural
changes between the original and upscaled image are minimal, and the small LPIPS metric
signifies that perceptual differences are also low. BasicVSR displays very similar performance
in regards to FR metrics, as well as bicubic interpolation, despite the latter obtaining a lower
perceptual similarity (and worst among all methods). Lastly, FR metrics for the non-blind
method (Real-BasicVSR) are notably lower in comparison, mainly due to the tendency of
non-blind methods to smooth the texture of resulting images.
Interestingly, NR metrics contradict the quality assessment made by FR metrics, indicating

that videos generated by Real-BasicVSR are more visually pleasing. Once again, this occurs
because the surfaces and textures from the videos are more smooth in contrast with other
non-blind methods, and NR metrics that do not have access to the original reference content.
In particular, BRISQUE, which has a higher correlation with human judgment, indicates a
significantly higher quality in comparison. In addition, NR metrics are the highest for bicubic
upsampling, indicating that it may provide the least natural-looking or lower-quality images.

Images with higher resolution contain a greater amount of pixels compared with lower
resolution images. Consequently, even after the reconstruction process, they can still retain a
significant amount of detail from the original image. This results in higher PSNR and SSIM
values, although it does not necessarily mean that glshr images will obtain higher FR scores.
Moreover, higher resolution images have higher pixel density, which means that even if some

4https://github.com/rehanguha/brisque

https://github.com/rehanguha/brisque
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information is lost during the upscaling process, the high pixel density could help mitigate
the visual impact of such distortions.
For a better visual understanding, Figure 5.1 shows some examples of frames generated by

non-blind and blind networks, along with their PSNR and SSIM scores.

Original BasicVSR Real-BasicVSR

PSNR / SSIM / LPIPS 43.70 / 0.97 / 0.06 29.49 / 0.85 / 0.57

PSNR / SSIM / LPIPS 52.02 / 0.99 / 0.01 24.26 / 0.77 / 0.58

PSNR / SSIM / LPIPS 43.34 / 0.99 / 0.03 26.17 / 0.72 / 0.60

Figure 5.1: Original and upscaled frames extracteed from BVI-DVC dataset. We show the dif-
ference in visual quality and FR metrics for two models: BasicVSR (non-blind) and
Real-BasicVSR (blind)

Ultimately, the perception of an image’s quality is subjective, but Figure 5.1 helps to per-
ceive the unique differences between both SR model generations. In general, Real-BasicVSR
produces more sharp images, that may be more visually appalling for some people. However,
FR metrics give the understanding that those images generated by the blind network have
much less quality, which illustrates the possible limitations of PSNR, SSIM, and LPIPS to
effectively evaluate images.

5.1.2. BSC4K (original LR)

Next, we compute the same metrics for all videos in our dataset. Having pairs of original
and synthetic degradations for the same videos and resolutions poses an advantage in this
scenario. The discrepancies in quantitative quality scores will not be caused by the video
content but by the degradation type. As with any other computer vision model, SR networks
may perform better in certain scenarios like indoors, spaces with people, nature, or vehicles,
so our method ensures that the metrics are not skewed towards particular types of content.
Looking at Table 5.2, we notice a lower average value for all FR metrics, which is consistent

for RVRT, BasicVSR, and Bicubic. Interestingly, the PSNR, SSIM, and LPIPS value for
Real-BasicVSR is very similar in this dataset and in BVI-DVC.
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Method PSNR↑ SSIM↑ LPIPS↓ NIQE↓ BRISQUE↓
RVRT 33.14 ± 2.66 0.96 ± 0.03 0.07 ± 0.04 5.76 ± 2.17 45.77 ± 10.07
BasicVSR 33.46 ± 2.82 0.96 ± 0.03 0.06 ± 0.03 5.93 ± 2.46 46.43 ± 11.21
Bicubic 33.11 ± 2.82 0.96 ± 0.03 0.11 ± 0.05 6.33 ± 1.65 52.26 ± 8.40
RealBasicVSR 29.74 ± 3.07 0.86 ± 0.06 0.29 ± 0.08 4.27 ± 2.07 13.11 ± 10.95

Table 5.2: Performance metrics for our dataset. The upscaled results come from the original glslr
videos captured by the camera

The first takeaway from this fact is that non-blind methods could suffer an important drop
in performance according to FR metrics because the input images do not follow the same
distribution as the predefined degradation process. This could be a result of degradations
specific to the image content, camera, or signal processing method.

The second takeaway is that Real-BasicVSR, which performs similarly across datasets,
shows the robustness of its approach in handling diverse and complex degradation processes.
This demonstrates a significant advantage over conventional, non-blind methods that often
struggle to maintain performance consistency across different input distributions.

When examining NR metrics, we detect the same pattern and comparable values, where
images generated by Real-BasicVSR are ranked the highest, while those produced by bicubic
interpolation rank the lowest. Once more, BRISQUE indicates that Real-BasicVSR generates
images that are substantially more aesthetically pleasing.

5.1.3. BSC4K (synthetic LR)
Lastly, we replicate the preceding step, but instead of employing the original images, we
downscale the 4K versions to glslr (1080p) by applying bicubic interpolation. This allows us
to obtain pairs of original-synthetic glslr images, and compare the performance depending
on the input glslr degradation (original vs. bicubically downsampled). This time, the input
glslr images are inside the training distribution data of non-blind methods (See Table 5.3 for
the results).

Method PSNR↑ SSIM↑ LPIPS↓ NIQE↓ BRISQUE↓
RVRT 40.84 ± 6.44 0.92 ± 0.04 0.14 ± 0.08 4.02 ± 1.81 29.28 ± 12.61
BasicVSR 40.66 ± 7.82 0.95 ± 0.05 0.13 ± 0.09 4.25 ± 1.75 31.04 ± 12.48
Bicubic 24.20 ± 3.61 0.76 ± 0.12 0.34 ± 0.12 5.91 ± 1.55 49.49 ± 7.91
Real-BasicVSR 33.54 ± 4.10 0.90 ± 0.05 0.28 ± 0.08 3.60 ± 0.81 10.69 ± 7.45

Table 5.3: Performance metrics for BSC4K. The upscaled results come from the synthetic glslr videos
downscaled from the original glshr videos with bicubic interpolation

Reviewing Table 5.3, we observe a considerable improvement according to PSNR, NIQE
and BRISQUE for BasicVSR and RVRT. It confirms that these non-blind methods can better
approximate ground truth and generate more visually appealing results (according to PSNR,
the metric that is used to optimize the models) when the input images follow the same
degradation process as the one used in the training phase.
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The bicubic method shows a decline in performance metrics, particularly PSNR and SSIM,
but a small improvement over the previous test according to NR metrics. Even in the presence
of a familiar degradation, it fails to provide satisfactory results, which puts it at the bottom
in terms of quantitative metrics.
Overall, Real-BasicVSR also sees an improvement, substantiating the method’s robustness

and its ability to generate visually attractive results. It is important to note that part of
the difference in terms of PSNR and SSIM might be a consequence of the color difference
between original glshr and glslr videos. In this last experiment, the glslr videos that are
upscaled come from the original 4K variants (after bicubic interpolation downscaling). The
FR metrics use the same original 4K frames as reference to make the score computations,
thus the color components are the same. The original 1080p videos have a slightly brighter
color, which is kept after the upscaling process. Nevertheless, the NR metrics indicate that
even in those conditions, and without reference images, all methods produce better results.

5.1.4. Visual Effect of LR Degradations

Finally, we display the visual disparities depending on the input degradation. Serving as
demonstrative models, we consider two SISR networks with the same backbone, SwinIR
classical (non-blind), trained with assumed degradations, and SwinIR Real (blind), trained
with BSRGAN degradations. To make this possible, We use two versions of each image at
the same resolution as input, taken from our BSC4K dataset. Then the sample at 4K is
downscaled by bicubic interpolation to obtain a 1080p pair that is comparable to the real
sample (More details about the data acquisition process in chapter 4).

Figure 5.2: SwinIR output comparison. The classical and real SwinIR variants have been trained
with simple and complex degradations respectively. The input bicubic image is a down-
scaled version of the 4k image. The scene has been recorded at 4k and 1080p simultane-
ously, so there is an original image in 4k and in 1080p. Zoom in for a better view

Figure 5.2 shows two 100× 100 crops extracted from a glslr image in the dataset. We ob-
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serve a tendency of the blind method to produce smoother results and a subtle but noticeable
difference between each input type. While the blind method generates similar outputs re-
gardless of the input type, there is a significant difference between the quality of images from
the non-blind method. The non-blind network trained on inputs under an assumed degrada-
tion achieves superior quality when the input image belongs to the subspace of downsampled
images. This helps to prove the point that using complex degradations in the training phase
helps with generalization.

5.2. Deep features analysis
Deep features, which constitute the internal representations of a model learned during the
training process, are critical to the reconstruction of high-resolution (HR) images. These
deep features serve as pivotal factors in the realm of computer vision, facilitating a more
comprehensive understanding of the model’s outcomes and allowing explainability methods
to give humans some guidance. Prior research on ISR [53] indicated that SR networks appear
to discern the specific degradation types inherent in their training data. It further suggests
that differences in data distribution might deactivate this discernment ability. In their ex-
ploration, the authors focus on what they reference as deep degradation representations or
DDR. To achieve those representations, deep features are extracted from a SRCNN, and their
dimensionality is reduced using Principal Component Analysis (PCA). The reduced feature
maps are subsequently clustered through t-Distributed Stochastic Neighbor Embedding (t-
SNE) [60]. A deeper study is conducted about the differences between shallow and deep
layers in CNNs and GANs, which shows that different networks will learn different semantic
representations.
Dimensionality reduction techniques are widely used in machine learning, but they come

with their own set of advantages and disadvantages. In fact, the authors suggest t-SNE as a
choice for CNN features, but do not claim it is the better option.
In our study, we adopt the same methodology to corroborate that modern VSR networks

follow the same pattern. Additionally, we attempt to demonstrate the difference at fea-
ture level between synthetic degradations and original degradations present in our proposed
dataset. Finally, we use the deep features to measure the generalization ability of analyzed
SR networks by comparing their distributions, an idea proposed in [54].

5.2.1. Clustering VSR deep features by degradation

To investigate the effect of degradations in a video SR setting, we select two SR networks,
BasicVSR and SwinIR, which are a recurrent network for VSR and a transformer-based
model for ISR respectively. We consider two variants for each network, one trained on glslr
inputs downscaled by bicubic interpolation and another one trained on ”real” glslr inputs.
Particularly, we first compare the deep features from BasicVSR and RealBasicVSR, which
adopt the same backbone, but the latter implements a pre-cleaning module for blind SR. In
the case of SWinIR, we compare the classical version, trained with bicubic interpolation with
Real SwinIR, trained with BSRGAN degradations.
To obtain the deep features, we exploit the nature of SR networks by directly extracting

features from the intermediate and deepest layer before the upscaling operation. Generally,
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for an input of size W × H (width and height) and scaling factor s, the network will first
increase the number of features maps, moving from an RGB input of 3 × W × H to a
representation of size 64×W ×H. This larger representation is then used to scale the image,
by reducing the number of feature maps and increasing the resolution, until reaching the final
result of 3× w · s× h · s.

Intuitively, using high-resolution images of size 4096x2160 will heavily increase the number
of features. Following the previous example, each image from the deepest layer would contain
4096 · 2160 · 64 ≃ 566M features, a remarkably high number that further complicates the
analysis process. To overcome this challenge, we create a lower resolution video dataset based
on our glslr (1080p) videos. We select six points for each video, equally spaced, and crop
patches of size 240 × 240 centered on each one. This method allows us to obtain more than
100 low-resolution videos, that we process by different degradations. In such a manner, we
collect the original videos that were natively recorded at a resolution of 1080p, along with
synthetic versions of those same clips. We study the following synthetic degradations: bicubic
interpolation, from the 4K counterpart, blur, and BSRGAN degradations (see Figure 5.3).
Original 1080p videos are used to generate the latter degradations.

Original Bicubic BSRGAN Blur

Figure 5.3: Cropped patch examples for each studied degradation (Zoom-in for a better view)

Instead of following the methodology in [53], we apply a mean pooling layer to condense
the spatial information into a single value per channel, producing a feature vector of length
64 for each image. By computing the mean for each filter, we deal with an inevitable loss of
information. However, we are more interested in the activation values of the neurons and can
ignore their spacial information or localization. Furthermore, we avoid having to use PCA or
other techniques on higher dimensional data. We reduce dimensionality to two dimensions
with UMAP, so data points can be visualized in a 2D plane. Finally, we calculate the mean
among all frames to get a single representation of each video.

To better illustrate and measure the discrimination ability, we adopt the Calinski-Harabaz
Index (CHI) [10], a ratio of the mean between-cluster dispersion to the mean within-cluster
dispersion. A high CHI score indicates that the clusters are well separated, and the data
points within a cluster are close to each other. Given K number of clusters and N total
number of data points, CHI score is formulated by:
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CHI =
B(K)

W (K)
∗ (N −K)

(K − 1)
(5.1)

Where B(K) corresponds to the between-cluster dispersion, considering nk the number of
points in cluster k, ck centroid (mean) of cluster k and c grand centroid (mean of all data
points):

B(K) =

K∑
k=1

nk∥ck − c∥2 (5.2)

Lastly, W (K), or within-cluster dispersion, is the sum of squared distances of all data
points to their respective cluster center:

W (K) =
K∑
k=1

∑
x∈Ck

∥x− ck∥2 (5.3)

Where Ck is the set of points in cluster k, x is a data point in k, and ck is the centroid of
k.
The CHI score serves as an efficient way of complementing the visual results by assessing

the quality of the cluster algorithm.
Results in Figure 5.4 and Figure 5.5 show that the studied complex video and image SR

networks are good descriptors of degradation information. In these comparisons, the frame
content of the studied videos is exactly the same for all degradations.

Figure 5.4: Deep feature representation differences between original and synthetic videos obtained
by bicubic interpolation (Left: BasicVSR, Right: Real-BasicVSR)
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Figure 5.5: Deep feature representation differences between original and synthetic videos obtained
by all degradation types (Left: BasicVSR, Right: Real-BasicVSR)

As shown in Figure 5.4, there exists a feature discriminability between original and bicubic
samples in the case of BasicVSR, while RealBasicVSR does not distinguish between degra-
dation types as clearly. BasicVSR is trained with glslr inputs that have been obtained by
bicubic interpolation, so it recognizes images that follow the same distribution and images
that do not. All frames of training videos suffer from the same degradations, so in the pro-
cess of feature propagation among the temporal dimension, those assumptions are preserved.
RealBasicVSR’s image pre-cleaning module is crucial to remove degradations prior to prop-
agation and suppressing artifacts in the outputs. As a consequence, deep features do not
capture the information about degradations, as shown in Figure 5.5.
In theory, a model with a good generalization ability should be resilient to any type of input

degradation. Looking at the feature representations, Real-BasicVSR shows more adaptability
in its generalization capacity, as it shows less ”semantic” discriminability. A lower CHI score
denotes better generalization (Table B.1 shows CHI scores for each method pair and for all
of them together).
To offer an additional perspective and further explore the effect of degradations in SRs, we

perform the same process on two variants SwinIR: SWinrIR Classical, trained on DIV2K, and
SwinIR Real, trained with BSRGAN degradations. Features are extracted from the deepest
layer, also consisting of 64 filters, and then the same dimensionality reduction method is
applied.
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Figure 5.6: Deep feature representation differences between original and synthetic videos obtained
by bicubic interpolation (Left: SwinIR Classical, Right: SwinIR Real

Figure 5.7: Deep feature representation differences between original and synthetic videos obtained
by all degradation types (Left: SwinIR Classical, Right: SwinIR Real
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Both visual and quantitative results in Figure 5.6 and Figure 5.7 reveal a surprising out-
come, that is very different from the previous scenario. The classical model does not exhibit
signs of degradation discrimination, while the real model can just barely differentiate im-
ages obtained by applying BSRGAN degradation from the rest. To affirm this statement we
compare more degradation combinations in Figure 5.8:

(a) Feature representations of original and BSR-
GAN

(b) Feature representations of bicubic and BSR-
GAN

(c) Feature representations of blur and BSRGAN

Figure 5.8: Deep feature representation differences for SwinIR Classical

It appears that the non-blind model does not possess the ability to discriminate between
different forms of degradations, a theoretically strange behavior which would require more
extensive research to fully understand. The same combinations with BSRGAN are tested for
the Real version of the model in Figure 5.9
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(a) Feature representations of original and BSR-
GAN

(b) Feature representations of bicubic and BSR-
GAN

(c) Feature representations of blur and BSRGAN

Figure 5.9: Deep feature representation differences for SwinIR Real

The real version, contrarily, seems to be capable of identifying BSRGAN degradations, a
curious case considering that its design seeks better generalization by adapting to all kinds
of inputs.

There are various things to consider in this situation. First, the parameters employed for
BSRGAN are established by default settings. These may impose somewhat harsh conditions,
leading to the generation of visually unrealistic images. However, on the flip side, such a
rigorous approach can potentially enhance the model’s performance in realistic scenarios.
Secondly, the authors of SwinIR specify that the classical version has been trained on DIV2K
[3]. According to the supplementary data [43] the training portion of the dataset is composed
of images generated by the MATLAB bicubic kernel downsampling operation, which suggests
that the discrepancy may be caused by other external factors.
SwinIR is based on a visual transformer architecture, a design that inherently leverages the

principle of self-attention. The ability to establish relationships and dependencies between
various regions of the image might be a contributing reason towards the obtained result.
The reason behind selecting SwinIR to complement the deep feature analysis is that both

classical and real models share the same backbone, and the publicly available model can be
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used to directly extract the features. Even if SwinIR was not subjected to a quantitative
evaluation, it is a good fit for the problem since the classical version is trained on bicubic
data and the real version on BSRGAN data, two of the studied degradations. The unexpected
behavior highlights the complexity of the problem at hand and the intricate relation between
model architecture, training data, and model performance. Nevertheless, we believe the
obtained results can help to shed light on the underlying mechanisms behind non-blind and
blind model behavior and performance.

5.2.2. Evaluating the degradation generalization ability of VSR networks based
on their deep features

Achieving better generalization is the main objective of blind SR networks. Until now, we
have argued that models that learn similar feature representations for any input type exhibit
a higher adaptation ability to real degradations. How to measure this generalization ability
is complex yet very important, and there is no specific assessment to measure it. More-
over, the word ’generalization’ can be ambiguous in this context. A SR that achieves great
performance in any physical environment regardless of the lightning (indoor, outdoor, day,
night...), content (people, nature, buildings...) would be labeled with a good generalization
ability. However, this study does not consider the video or frame content, it focuses on
degradation generalization, or the ability of a model to adapt and be resilient to any kind of
input degradation.
As we have seen, IQA metrics are not ideal for this task, as they have several limitations,

but most importantly the quality score does not represent generalization ability. A model’s
generalization ability should characterize the consistency of the model’s processing effects
across different types of input data, rather than absolute performance values like IQA metrics.
As an attempt to provide a quantitative evaluation of the generalization ability of SR

networks, we base the evaluation protocol on the Generalization Assessment Index (GA Index)
described in [54]. It is a non-parametric metric that is based on the statistical characteristics
of internal features of the model, and it is applied to any test dataset.
The GA Index is computed using extracted feature values for each frame, which are trans-

formed into probability distributions to compute the Kullback-Leibler divergence (KLD). In
the publication, a generalized Gaussian distribution is used to model the feature sets, but we
will use the Kolmogorov-Smirnov metric instead to avoid estimating the GGD parameters
with our limited data.
Thus, given two feature sets that represent different degradations for the same model, XD1

and XD2 , the Kolmogorov-Smirnov metric is computed as follows:

KSXD1,XD2
= supx

∣∣∣FXD1
(x)− FXD2

(x)
∣∣∣ (5.4)

where FXD1
(x) and FXD2

(x) are the empirical cumulative distribution functions (ECDF)
of the feature sets XD1 and XD2, respectively. The supremum supx denotes the maximum
over all values of x.

Given a video sequence vk, where k is the video number, we partition it into non-overlapping
blocks of 8 frames. Each block is flattened to form a 1-D feature vector of 8∗64 = 512 features
XDi

j,k where j corresponds to the block within a video, k is the video number and Di denotes
the ith degradation type. Features are normalized to account for a possible difference in
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Method BasicVSR Real-BasicVSR SwinIR Classical SwinIR Real
Original 0.150 - 0.217 -
Bicubic - 0.072 - 0.227
Blur 0.352 0.133 0.286 0.190

BSRGAN 0.305 0.150 0.232 0.375
Mean 0.269 0.118 0.245 0.264

Table 5.4: KS scores for each SR method

magnitude between methods. A model with strong generalization performance is expected to
perceive the features extracted from degraded inputs as closely aligned as possible with the
features of the training data distribution [54]. Thus, BasicVSR is expected to generate the
best results in instances where the input has been subjected to bicubic interpolation, while
Real-BasicVSR is designed to adapt to real-world scenarios.
For that reason, we compare the features from bicubic inputs with the rest of the degra-

dations in the case of BasicVSR and we use original inputs as reference for RealBasicVSR.
Then, we calculate the KS metric for each pair of reference-degradation, per block and degra-
dation method. Table 5.4 shows average results by method, obtained by aggregating scores
from all blocks.

We repeat the same process for SwinIR and observe the differences. According to our KS
metric Real-BasicVSR achieves a better generalization ability, while the difference between
blind and non-blind SWinIR models is very small. This confirms our previous suggestions,
highlighting the resilience of RealBasicVSR and the abnormal behavior of SwinIR.

To get a better understanding of this idea, we plot the kernel density estimate (KDE) to
visualize the distribution of observations, where KDE represents the data using a continuous
probability density curve in two dimensions. In the same manner, we compare both network
variants with each other. Figure 5.10 shows two representative examples from the dataset.
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Figure 5.10: KDE plots of the features for example videos from the BSC4K dataset

5.3. Image frequency analysis
Image frequency analysis can be a fundamental tool in the study of images or videos, as it
allows the examination of the image data in the frequency domain. This technique is widely
used in digital forgery detection methods [130] [103], and it becomes particularly insightful
to analyze the image frequency when studying the degradations in blind super resolution and
detecting images that have been artificially upscaled. Various degradations, such as blurring,
aliasing, or noise interference, can impact the frequency components of an image and thus
alter its spectral characteristics. Understanding these transformations can provide valuable
insights into the degradation process and lead to more effective super resolution strategies.
An important advantage of frequency analysis is that is is computationally more efficient,

so it can be applied at a global level, considering the full resolution frame. However its appli-
cation in the study of degradations is unexplored. We plot the video spectra by calculating
the Discrete Cosine Transform (DCT) coefficients and following the procedure described in
subsection 6.2.1. DCT coefficients correspond to frequency descriptors of videos, that pro-
vide information about the changes in low and high frequency, with the objective of finding
significative similarities or differences between original and downscaled content. Figure 5.11
shows two representative examples of the obtained plots.
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Figure 5.11: Accumulative Log Spectra of native 4K and upscaled methods

As represented in the visual data, bicubic and original method display very similar fre-
quency characteristics, as their changes in high-frequency components are comparable. Given
the original 4K images already are already detail-rich, the application of bicubic downscaling
preserves those high-frequency details. Conversely, blurring the original image tends to result
in a lower curve, a reasonable output considering the blur operation. Lastly, there are some
noticeable sudden drops in the case of BSRGAN, predominantly caused by the more harsh
degradations made of noise and blur operations, generating a distinctive pattern evident in
the plot.

This data implies that the output generated by the internal processor of the DSLR camera
contains similar high-frequency components to those obtained by using bicubic interpolation
to downscale the 4K glshr video. Even so, the quantitative performance metrics still show
that the input glslr image degradations have an impact on the results. This is not to suggest
that training a SR model with either degradation is superior, but rather it attempts to better
understand the effect of input degradations. Published models trained on ”Real” datasets
claim to improve performance on real-world degradations, but it is complicated to make
assumptions about their generalization ability. Ultimately, while this data provides insights
into degradation impacts and SR model performance, it does not serve as conclusive evidence
and serves as a process that could be beneficial in further research.
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This section will be focused on high-resolution video content upscaling detection, a rel-
atively underexplored area in digital forgery detection. First, we will review our proposed
architecture, and then we will compare our results with other existing SR detection meth-
ods. In addition we present the results and observations from the conducted experiments to
complement the research process.

6.1. Proposed system architecture
To try to improve the current state-of-the-art, we propose a network inspired by Lu et al.’s
work [57] (BTURA). Our network’s architecture is based on the feature extractor proposed
in [57], which processes the small patches in the training dataset. It consists of a ResNet-18
(pre-trained on ImageNet [25]), where intermediate features are extracted from each block,
grouped by a Global Average Pooling operation, and concatenated, as seen in Figure 6.1. In
[57], a two-layer Multilayer Perceptron (MLP) takes the features from the feature extractor
and outputs a probability for each category. We add a Dropout layer in the MLP to avoid
overfitting and keep the softmax function to the output, which transforms the values into
probabilities for each class. We refer to this architecture of a feature extractor and MLP as
the baseline.
We name our architecture Synthetic Upscaling Detector with DCT features and Staircase

module or SUDDS.
We propose to incorporate additional modules into the baseline architecture to evaluate

their impact on performance and feature representations. The modules represent techniques
or modifications that we believe should improve the performance. Furthermore, they can be
optionally removed to keep the original baseline as it is.
Our goal in this context is generalization, as ideally, the model should be able to identify

fake content upscaled with a method that is not in the training data. Our reproduction of
the state-of-the-art methods (section 6.2) displayed in Table 6.1 show this task is far from
solved, seeing that tested models seem to excessively adapt to the training methods.

55
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Figure 6.1: Network architecture of SUDDS. Original feature extraction and patch selection module
from from Lu et al [57] and the DCT feature extraction and Staircase Structure are new
additions
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In our experiments, we attempt to improve performance by incorporating two new modules.
First, the staircase structure, proposed in [93], attempts to fully utilize the visual information
from low-level to high-level and learn the better feature representations for quality evaluation.
The assumption is that the bottom convolutional layers from the ResNet capture the low-level
information, such as edges and corners, while the more advanced layers capture the semantic
information. The staircase architecture hierarchically integrates low and high-level features
into a final feature map that is the input to the classifier.
The second module integrates a technique to combine local features from the patches and

global features from the videos. By using the same methodology described in subsection 6.2.1,
we save the Discrete Cosine Transforms (DCT) features for each video in the dataset. The
DCT essentially decomposes an image to its spatial frequency spectrum. At training time,
those features are concatenated with the local features from the feature extractor or staircase
architecture. This means that patches from the same image will contain the same global
DCT-based features, but different local features. Both modules are optional and evaluated
independently, allowing for a broader understanding of the learning process at hand.
Finally, the concatenated feature map is fed into a classifier, constituted by a two-layer

MLP (where the intermediate layer has a size of 256), which outputs a probability value
for each class. We study the setting of binary classification, where all synthetic upscaling
methods are grouped together, and multiclass classification, where each method is represented
by an individual label.

6.2. Implementation of baselines
We evaluate the DCT-based Detector, TSARA and SRDM on our datasets. TSARA and
SRDM are both publicly available. To provide additional perspective into the problem we
implement the model presented in [116] and adapt the BTURA system from [57] (created
from scratch), without the additional quality prediction.

6.2.1. Implementation of DCT-based Detecion

DCT is a widely used technique in image and video processing, especially in compression
applications. In fact, it plays a crucial role in the JPEG (Joint Photographic Experts Group)
compression algorithm, a lossy process that generally accomplishes perceptually great results.
DCT transforms a signal from the spatial domain into a representation in the frequency

domain. It expresses a sequence of data points as a combination of cosine waves, which oscil-
late at different frequencies. In the context of SR detection, it is used to extract features from
the frequency domain of the video frames to determine whether a video has been upscaled
or not. DCT coefficients are summed along rows or columns to calculate the accumulative
log spectra of a frame, to create a compact representation of the frequency content of each
frame. Upscaling methods tend to introduce specific patterns in the frequency content of
videos, so the followed methodology can analyze the features to detect the presence of those
patterns. In particular, a sharp decline in the frequency information is used to make the
final prediction. More specifically, the original paper highlights the presence of a decline at
a normalized frequency of 1/s, where s is the scaling factor. The reason behind this declin-
ing pattern is that upscaling methods can effectively increase the low-resolution component
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frequency, but often struggle to accurately enhance high-frequency details. As a result, the
frequency content of an upscaled image tends to drop off sharply at a certain point

The implementation for [116] follows the process described in the paper. The 2D-DCT
coefficients are obtained from the luminance component of video frames, so they are converted
from RGB to YUV420 format. For easier analysis, the logarithm of the DCT spectrum is
calculated, since most DCT coefficients are close to zero. Coefficients are then summed along
rows or columns to calculate the accumulative log spectra of a frame:

AccumLogSpecRow k[u] =
∑
v

log (|Y Fk[u, v]|+ bias )

AccumLogSpecCol k[v] =
∑
u

log (|Y Fk[u, v]|+ bias )

Where for N frames, luminance components of a video are Yk[i, j], k ∈ {0, . . . , N −1}, DCT
coefficients of luminance components are Y Fk[u, v], and bias is set to 10−4 to prevent taking
logarithm of zero. [116]. Then, the accumulative log spectra for a video is obtained by
averaging the spectra of each frame:

AveAccumLogSpecRow [u] =

∑N−1
k=0 AccumLogSpecRow k[u]

N

AveAccumLogSpecCol [u] =
∑N−1

k=0 AccumLogSpecCol k[v]
N

Next, a median filter is applied and used to calculate the difference between the spectra
before and after filtering. This process allows the detection of sharp declines. Finally, the
distribution of the log spectra difference is studied, where outlier values represent sharp
declines in averaged accumulative log spectra, and indicate that a video is possibly upscaled.
Finally, a video is considered fake if the ratio of the standard histogram is less than than an
arbitrary threshold, set to -8 in the paper.
First, we use this method to visualize the average spectras of real and fake 4K videos and

then evaluate it by calculating the accuracy on our data.
We put the method to the test with the BVI-DVC dataset, considering the real 4K videos

combined with their upscaled versions, by four different upscaling techniques: bicubic inter-
polation, BasicVSR, Real-BasicVSR, and RVRT.
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(a) (b)

(c) (d)

Figure 6.2: Several examples from calculated DCT average log spectras for videos in BVI-DVC-SR



60 SR Detection

Figure 6.2 shows four indicative examples of average log spectras. The first noticeable
factor is that videos upscaled with bicubic interpolation show a similar pattern, where a clear
sharp decline occurs at 1/2 of the frequency range. This phenomenon is consistent across all
200 videos, which displays a clear indication of the limiting effect of bicubic interpolation on
the frequency content of the upscaled videos. This effect appears to be independent of the
original video’s content, suggesting a fundamental characteristic of bicubic interpolation that
is used to detect fake videos. In regards to the DL-based methods, there is more irregularity.
We observe that BasicVSR and RVRT behave in similar ways, probably due to their recurrent
architecture and non-blind training setting. In some instances, there is no sign of a sharp
decline, as in Figure 6.2a and Figure 6.2b, but in Figure 6.2c and Figure 6.2d, it is very
clear. Lastly, we can see that RealBasicVSR shows a distinctive tendency to maintain a more
consistent spectral distribution throughout the entire frequency range. This may indicate
that blind-SR methods are more resistant to this particular detection method.

6.2.2. SRDM
To test SRDM, we use the provided pre-trained model based on ResNet. We follow the
provided criterion for fake-resolution video detection. Considering all frames, if quantile of
probabilities is bigger than 0.5 the video will be considered as fake-resolution video.

6.2.3. TSARA
We follow the same methodology to test TSARA. As it is a method for Image SR detection, we
test each frame individually and then average the predicted probabilities. The final prediction
corresponds to the closest value (0 or 1) from the average prediction among all video frames.
This makes the method more robust to noise and other intra-frame variations.

6.3. Preliminary Performance comparison
As a preliminary evaluation step, we test the methods with 50 videos from BVI-DVC-SR and
show the results in Table 6.1.

Method DCT SRDM SRDM-Patches TSARA
Bicubic 1.00 0.62 0.60 0.98
RVRT 0.72 0.46 0.42 0.44
BasicVSR 0.70 0.46 0.42 0.42
Real-BasicVSR 0.10 0.56 0.48 0.00
TOTAL REAL 0.30 0.72 0.70 0.68
TOTAL FAKE 0.63 0.52 0.48 0.46

Table 6.1: Consolidated performance metrics for all studied methods

The performance metrics displayed in Table 6.1 display considerable variation in accuracy
for DCT. As expected, the bicubic method achieves the highest accuracy, as it was detected
as fake 100% of the time. RVRT and BasicVSR present similar accuracy rates and reasonable
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results that show that there is still room for improvement in terms of VSR methods. On the
other hand, the detection of original videos and videos upscaled by Real-BasicVSR seem to
present a bigger challenge, as reflected by their low accuracy rates. The 0.3 accuracy for
original videos indicates that the current system cannot properly identify real samples that
have not been upscaled, as most of them were classified as fake. The misclassification could
be due to a misinterpretation of the inherent noise or natural variations in the original videos
as synthetic manipulations or distortions. Lastly, we observe a particularly low accuracy
of Real-BasicVSR over the other methods, displaying the difference between non-blind and
blind methods’ outputs. As seen in Figure 6.2, it can consistently create smooth curves that
fool the detection method, leading to a high rate of misclassification.
As an attempt to find a threshold that allows the model to achieve higher performance, we

plot the distributions of calculated threshold distribution for each method.

Figure 6.3: Ratio distribution per method. The vertical red line indicates the tested threshold (-8)
to distinguish real and fake videos

Observing the results in Figure 6.3, it is evident that setting a constant threshold value
will not yield optimal results. While this approach may be convenient and straightforward,
the data distribution in Figure 6.3 shows significant variations among modern VSR methods,
which cannot be accounted for by a constant threshold value. Therefore, we conclude that
the current implementation is not an effective way to directly detect real and fake videos,
although the extracted DCT features could be useful to train another classification model.
For SRDM, as results in Table 6.1 show, the model cannot distinguish real and fake videos.

Results are somewhat expected, as the model has been trained on 224 × 224 images, which
forces 4K videos to be downscaled to match the required input size.
To solve that problem, we attempt to crop each frame into smaller patches and use them

as input, but results prove to be similar.
In the case of TSARA, videos upscaled with bicubic interpolation seem easier to identify.

In fact, TSARA correctly classified 98% of bicubic videos but showed significantly lower ac-
curacy for RVRT and BasicVSR, both below 50%. This suggests that modern DL-based VSR
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methods introduce characteristics that make the task of identifying the upscaling significantly
more challenging for the current network, trained on other data. Finally, TSARA did not
correctly predict any of the videos upscaled with Real-BasicVSR.

6.4. Results
This section will cover the detailed findings derived from the conducted experiments. First,
we will describe the training data and evaluation methodology. Then, we will compare our
results with the existing detection methods. Finally, we will show the experimentation and
ablation process to get to the final detection system.

In our experiments, we use the ResNet-based feature extractor, we fix the optimizer AdamW
with a learning rate of 0.002 and the intermediate layer of the MLP to 256. All metrics during
the training phase are assessed at the level of individual patches. However, when it comes to
testing videos, the evaluation is conducted at video-level as a whole.

6.4.1. Training Data and Evaluation Methodology
6.4.1.1. Training Data

The dataset used to train and validate the networks is BVI-DVC-SR, which consists of 200
videos of 64 frames each, split into original 4K videos and their corresponding upscaled
counterparts, for a total of 1,000 videos. The 200 videos are divided into 175 videos for
training and 25 videos for validation.

Following, [57], the model is trained on smaller non-overlapping image patches of 240 ×
240, which serve as input for the feature extractor. For each 4K frame, there exist 144 non-
overlapping patches. Yet, using all 144 patches from all video frames would significantly
increase the dataset size, leading to longer training times and increased computational re-
quirements. Moreover, it could lead to overfitting, due to the redundancy in the data, as
consequent frames for a video are usually very similar. Lastly, including all patches would
mean processing a multitude of contentless pictures like skies or other plain background
textures.
To create the final training dataset, which we call BVI-DVC-SR-Patches we select 120

patches from the first frame of each video, thus avoiding temporal redundancy. We select
the patches to create the training set by employing the Grey-level Co-occurrence Matrix
(GLCM). GLCM quantifies the texture complexity of an image by evaluating the frequency
in which pairs of pixel brightness values occur in a given space. For each frame, we can
select the top k patches with the highest texture complexity, which will contain the high-
frequency components used to identify real and upscaled videos. This approach not only
cuts down the computational load but also ensures that the model’s attention is focused on
the most informative parts of each frame. This GLCM-based approach is also convenient for
testing purposes. Incoming sequences of frames can be reduced to a lower number of patches
that condense the most complex information, facilitating the evaluation process. Moreover,
modifying the number of selected patches can assist in adapting videos from a range of
resolutions. GLCM is defined in section A.1

As a last processing step. we remove all crops that contain a plain texture, as there exist
videos where a big portion of each frame contains a plain color with no variation.
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If the temporal dimension was necessary, we create a smaller subset (which is not used in
this thesis), BVI-DVC-SR-Video-Patches. It comprises eight equally spaced patches extracted
from the initial eight frames of each video. The total number of images for this version is
8 · 8 · 200 = 12, 800. A certain amount of visual redundancy is to be expected, due to the
similarity among frames of the same video. However, the temporal dimension is kept, as
there are sequences of 8 frames for each crop in a video.
Therefore, we create BVI-DVC-SR-Patches, which encompasses around 24,000 patches per

method. We consider the original patches, and the corresponding upscaled patches (obtained
by upscaling the glslr original images with bicubic, RVRT, BasicVSR, and Real-BasicVSR).

6.4.1.2. Evaluation Methodology

The ultimate purpose of this method is to discern real and fake videos. The network deals
with image crops, so an extra data pipeline is needed to process videos directly (videos are
equivalent to frame sequences) and match the model’s input size.
Evaluation videos are processed individually, where each frame is divided into k patches

selected by the GLCM method. Each frame is first classified by a majority voting mechanism
based on the k individual predictions. A patch is considered fake if it belongs to any of the
synthetic method classes in the training set (if it is not classified as original). Finally, if at
least half of frames are identified as fake, the video is considered unauthentic or upscaled.
We test our SUDDS with videos from BSC4K, upscaled with methods that are not in-

cluded in the training set. Specifically, we employ one traditional (nearest neighbor in-
terpolation), two transformer-based (SwinIR-Classical, SwinIR-Real), and one GAN-based
(Real-ESRGAN) method to evaluate the generalization ability.

6.4.1.3. Frequency Analysis for SR Detection

As a first step to understanding the data and the effect of upscaling methods, we contribute
to the study of frequency component visualization by showing our obtained frequency spec-
tra graphs for four upscaling methods: bicubic interpolation, BasicVSR, Real-BasicVSR, and
RVRT and also incorporate a GAN-based SR method, Real-ESRGAN. Following prior work
[103] [76], we perform a high-pass filtering by subtracting the real image from its median
blurred version. Then, we calculate the Fourier transform for a more informative visualiza-
tion, as in [103]. We first try capturing the frequency spectra for each frame in a video and
averaging the values. Then, we select a set of random images from each method and do the
same thing. After a careful look at the results, we do not find any common pattern in any
of the methods, even if there are some distinguishable shapes. Figure 6.4 shows examples of
the obtained visualizations.
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Original BasicVSR Real-BasicVSR

Real-ESRGAN SwinIR-Classical SwinIR-Real

Figure 6.4: Average spectra of each high-pass filtered image, for several blind and non-blind SR
methods.

This frequency analysis method was originally applied in the detection of CNN-generated
content, which is related by distinct from SR. Authors of [103] showed consistent patterns
of artifacts for GAN generated images, but it was later proved that content generated by
LDMs does not exhibit such characteristics. The high-pass filter seems to be ineffective at
describing any upscaling method, although other frequency analysis tools can be employed.

6.4.2. Comparison with Existing Detection Methods

In Table 6.2, we compare the existing detection methods with our own, on a varied list of
upscaling methods.

Model DCT TSARA SRDM-Patches SUDDS (ours)
Original 0 0.72 0.88 0.94
SwinIR-Real 0.4 0 0.2 0.9
SwinIR-Classical 1 0.3 0.65 1
Real-ESRGAN 0 0 0.68 0.94
Nearest Neighbor. 1 0.05 0.4 0.9
BasicVSR 1 0.44 0.4 0.9*
Real-BasicVSR 0.06 0 0.59 1*
RVRT 1 0.36 0.42 0.8*
Bicubic 1 1 0.85 1*

Table 6.2: Accuracy Metrics for all studied SR and detection methods. * denotes SR methods that
are in the training set

As we can see, our proposal outperforms the rest on unseen modern upscaling methods.
This test is performed on our BSC4K dataset considering approximately 30 of the total
videos.
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6.4.3. Performance Across Upscaling Methods
In this set of experiments we evaluate the model’s generalization ability training it with a
single upscaling method from the training set and testing it with the rest.
As Table 6.3 shows, the model has a strong tendency to overfit to the training upscaling

method, suggesting that it is adapting to the specific characteristics and patterns of the
training data. This supports the use of blind methods, and suggests the use of a large variety
of upscaling methods to increase model performance across domains.

Validation Method
Training Method Original Bicubic BasicVSR Real-BasicVSR RVRT
Bicubic 0.963 0.999 0.156 0.001 0.172
BasicVSR 0.981 0.751 0.982 0.015 0.977
RealBasicVSR 0.999 0.001 0.001 0.990 0.001
RVRT 0.940 0.754 0.981 0.014 0.980

Table 6.3: Accuracy scores of each training-validation pair. The network is trained on four individual
methods and evaluated with all of them. Each cell represents the performance score of the
network when trained with one specific training method and validated with the method
from the column.

Results in Table 6.3 indicate there is a clear similarity between the artifacts produced by
BasicVSR and RVRT, as a model trained on one is capable of detecting the other with high
accuracy. This may suggest that the two methods share similar characteristics and generate
the same patterns in the outscaled images. They already showed a similar behaviour in terms
of quantitative results in section 5.1, and both share a recurrent video architecture. Hence,
the result is consistent with the previous observations.
Generally, the model trained with one specific method can accurately identify original

videos, but it shows a propensity to misclassify fake videos from outside the training distri-
bution.
In the following experiments, we consider all four methods as part of the training dataset.

On one hand, we seek for a model that can effectively discern real and fake videos from any
upscaling method. On the other hand, we are interested in understanding what the model is
learning, that is, how differently it is processing all kinds of inputs.

6.4.4. Overall Performance
In this section we compare our best model with the baseline on the test data, in both binary
and multiclass training.
We consider two ways of approaching the classification problem. First, as a binary classifi-

cation task where one class corresponds to original videos and the other to upscaled videos,
regardless of their upscaling method. We compare both ideas in Table 6.4
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Train acc. Val. acc. Original Bicubic BasicVSR Real-BasicVSR RVRT
Binary 0.944 0.98 0.920 0.991 0.995 0.99 0.98
Multiclass 0.93 0.89 0.95 0.99 0.75 0.99 0.75

Table 6.4: Baseline architecture comparison for binary and multiclass training

At first glance, validation shows that training the network with only two classes achieves
better performance. To get a more informative view, we display the features extracted from
our dataset in Figure 6.5, only considering training methods.

Figure 6.5: Feature representations for the baseline architecture with multiclass (left) and binary
(right) training.

Both approaches yield comparable results in terms of feature visualizations. In binary
classification, all upscaling methods share the same label, but the network has learned to
distinguish them to some degree. Table 6.4 reinforces that BasicVSR and RVRT behave
similarly, and are closer to real images that the rest. The network trained with a multiabel
approach seems to add more nuance in the case of bicubic interpolation. However, the original
cluster is closer to BasicVSR and RVRT, which explains the lower accuracy, as it is easier to
distinguish them.
In an attempt to obtain more explainable results, we continue our experiments with the

multiclass approach, and incorporate the Staircase and DCT feature modules to explore the
networks behaviour. Table 6.5 shows the impact in accuracy of the different techniques.
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Staircase DCT Train Val. Original Bicubic BasicVSR Real-BasicVSR RVRT
No No 0.93 0.89 0.95 0.99 0.75 0.999 0.75
Yes No 0.93 0.88 0.92 0.99 0.68 0.99 0.8
Yes Yes 0.78 0.78 0.97 0.99 0.4 0.99 0.64

Table 6.5: Performance comparison with module combinations in multiclass classification.

Observing Table 6.5, we notice a low impact of the Staircase module. It slightly increases
accuracy for RVRT but drops performance for BasicVSR. The full (all three modules) network
achieves the lowest performance, but the most balanced in terms of training and accuracy
metrics.
To evaluate their generalization ability, we test them on our dataset with unseen upscaling

methods.

Staircase DCT Original SwinIR-C SwinIR-R NN Real-ESRGAN
No No 0.9 1 0.5 0.06 0.5
Yes No 0.63 1 0.7 0.1 0.79
Yes Yes 0.94 1 0.9 0.9 0.94

Table 6.6: Test performance metrics for multiclass classification. NN represent Nearest Neighbor

Figure 6.6: Feature representations for all training and testing data

Looking at Figure 6.6, we can see how the upscaling are grouped according to the detection
network. In general, it seems like BasicVSR and RVRT show similar features, a pattern that
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we discovered in earlier sections. Traditional methods (bicubic and nearest neighbor) seem to
be the most particular, as they form separated clusters evey time. In addition, it seems like
the distinction between original and synthetic content is not clear, and there are instances
where that difference is not perceptible at feature level. Finally, blind methods (SwinIR
Real, BasicVSR, Real-ESRGAN) seem to be grouped in the same space, suggesting that they
possess similar artifacts, which help the model identify them.

To complete our research, we repeat the same process for binary classification:

Staircase DCT Train Val. Original Bicubic BasicVSR Real-BasicVSR RVRT
No No 0.994 0.98 0.92 0.99 0.995 0.999 0.98
Yes No 0.996 0.98 0.91 0.99 0.998 1 0.99
Yes Yes 0.99 0.99 0.98 1 0.993 0.993 0.991

Table 6.7: Performance comparison with module combinations in binary classification.

Table 6.7 shows comparable results in all cases, with a minor improvement with DCT in
the original sample detection. To better investigate this behavior, we turn into the feature
visualization (see Figure 6.7) and test metrics (Table 6.8).

Staircase DCT Original SwinIR-C SwinIR-R NN Real-ESRGAN
No No 0.61 1 0.09 0.95 0.5
Yes No 0.62 1 0.1 0.94 0.5
Yes Yes 1 0.8 0.1 1 0.21

Table 6.8: Test performance metrics for binary classification

Looking at the test metrics, we can see that accuracy is very high for some methods but
low for others, which suggests that its generalization ability is poor.
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Figure 6.7: Feature visualization from binary classification and all tested models

Figure 6.7 displays the feature representations for the same components in a binary classi-
fication setting. The observed clusters form more distinct shapes compared with the ones in
multiclass. However, the SR methods are grouped together in a similar manner.

6.4.4.1. Ablation study

We perform an ablation study on two components: data augmentation and freezing/training
the feature extractor.
In order to achieve a more robust model and reduce overfiting, we turn to the practice of

data augmentation. Table 6.9 represents the impact of the selected data augmentation and
the effect of freezing the feature extractor’s layers during the training phase. The performance
metrics provided are for the training and validation sets.

Aug. Freeze Train Val. Original Bicubic BasicVSR Real-BasicVSR RVRT
Baseline No Yes 0.93 0.806 0.88 0.94 0.61 0.98 0.6
Baseline Yes No 0.64 0.62 0.5 0.86 0.4 0.97 0.32
Baseline Yes Yes 0.93 0.89 0.95 0.99 0.75 0.999 0.75

Table 6.9: Performance comparison with and without data augmentation

The data augmentation pipeline includes includes a set of modifications made with random
probabilities to increase the data variety, all from the Albumentations library [1]. First, we use
a Horizontal Flip transformation with a 0.35 probability. To modify the images but keep the
texture details we adjust the brightness condition with a 0.5 application rate. The brigthess
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is adjusted up or down by up to 20%. Finally, Coarse Dropout is applied to encourage the
network to find more patterns that identify fake images.

As Table 6.9 shows, the combination of data augmentation and retraining the feature
extractor yield the most positive rewards. Thus, we have fixed these parameters in the
previous experiments (subsection 6.4.4).

6.5. Advantages and Limitations
There are two main advantages of the proposed system. Firstly, it can be easily adapted
for image or video SR detection, as the DCT module is optional and the other modules are
based on image crops. Secondly, the individual crop predictions can be aggregated in diverse
ways, which allows the search for more suitable thresholds. The network outputs predictions
for individual patches, which can be first aggregated to predict the authenticity of a single
frame. Similarly, a video comprises numerous frames, each contributing towards the final
overall video-level prediction.
By investigating the network’s feature representations, we attempt to enhance the system’s

explainability. Observing the clusters that are formed during training can provide a helpful
insight into the underlying patterns and relationships learned by the model. Moreover, the
detection of anomalies or outliers could aid in the post-training analysis process.
Despite the advantages, there exist some limitations that need to be considered. One

limitation of the proposed method is its evaluation process. The lack of a standard dataset
for testing purposes makes it difficult to benchmark the performance and reliability of SR
detection methods. What is more, it is impossible to anticipate if and when new upscaling
methods will be proposed in this very active field, and if the developed method will be able
to detect those. That being said, it is easy to imagine how to adapt the proposed model to
new upscaling models released: Simply by adding samples of those to the model’s training
set.

The dataset needs to be expanded to include compression artifacts in its LR samples. For
doing so, it would be ideal to use a variety of compressors, encoders and any other video
codec popularly used in streaming services, smartphones or digital media companies.
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Discussion

Through the exploration of SR techniques, their effectiveness, and generalization ability,
this thesis offers valuable insight into non-blind and blind SR models. Our study of blind
models addresses their resilience against different degradations, in comparison with non-blind
models. We show that non-blind models can learn semantics about the training degradation
process, which makes them less suitable for real-world scenarios where the input degradations
are more diverse. To compare these techniques under equal conditions, we propose a dataset
created through a manual collection of high-resolution videos (4K and 1080p), providing a
unique benchmark for high-definition video SR.
This dataset allows us to calculate quantitative performance metrics and compare the

impact of different input types. We demonstrate the domain-gap that exists for non-blind
models, making them less robust in comparison to blind models. Our proposal includes
the analysis of deep features from SR networks to measure their degradation generalization
ability.
Further, we investigate the relatively under-studied area of 4K video SR detection, high-

lighting the need for more sophisticated and publicly available detection methods. We com-
pare the performance of existing methods and propose an improvement by extending a pre-
existing architecture. We train it on a more diverse range of upscaled content to analyze
the learning process of synthetic upscaling identification. We find that in practice, the task
of generalizing to unseen upscaling methods is not trivial, as the model tends to overfit to
training SR techniques. This explains the decrease in performance for existing methods on
more modern SR and VSR methods. We place emphasis on the training process, including
data and learning strategy.
In this respect, studying feature representations proved to be a helpful tool for understand-

ing the learning process and the decisions made by the prediction network. Results suggest
that a more simple CNN-based feature extraction module can learn to accurately discern
between upscaling methods that are in the training dataset. However, the generalization of
these results to other upscaling methods poses a bigger challenge, as it is common in any
sort of detection problem. We propose to add global features from the video level to create
a system that exhibits superior performance and improved generalization ability.

There are not many public datasets in 4K resolution, and fewer that contain content
specifically upscaled using a range of modern SR methods. This scenario constrains the
training and validation processes, potentially introducing complications as a consequence of
inferior quality data. This may introduce unwanted biases, negatively affecting performance.
Moreover, the comparison with existing or future methods also poses a challenge, as there
are no standardized SR detection benchmarks.
We hope that our research and datasets can help pave the way for further exploration in

this domain. We will continue exploring and expanding the ideas in this thesis in hopes of

71



72 Discussion

uncovering new insights and better understanding the complex world of SR.

7.1. Challenges and Future Directions
Despite the meaningful progress accomplished in this thesis, there are several challenges to be
addressed. The field of SR is an area of research that covers a wide amount of methodologies
and applications. There are several key distinctions, such as image-video, blind-non-blind,
HR-LR, and supervised-unsupervised models. In the future, we would like to expand the
current framework to consider more types of architectures and data sources. This would
consolidate our findings and provide a more insightful point of view on the studied areas.
In such a manner, including a set of quantitative metrics that better align with human

judgment would significantly enhance the evaluation process. It would encourage further
research to adopt more varied metrics and address the limitations of popular methods like
PSNR and SSIM.

In the thesis, we propose a new dataset used to evaluate the degradation generalization
ability and performance of blind models. While there are comparable datasets available, we
create a strategy that allows the recording of paired 4K and 1080p videos without further
post-processing techniques. Nonetheless, there are some aspects that should be addressed in
the future. First, a more in-depth study of the internal process of the device to capture the
video pairs would help clarify how they differ from other degradation methodologies, such
as bicubic interpolation. In connection with the previous point is the fact that our dataset
has been obtained with a single camera, which only captures degradations exclusive to the
device. It serves as a great tool for blind SR method analysis, but real-world images and
videos contain an extensive amount of degradation types. Moreover, a more complete version
of the dataset could be used to train or fine-tune a blind SR network, enhancing its capability
to handle real degradations. In this regard, a color correction mechanism could make the
HR-LR frame pairs more similar in terms of pixel value, as there is a difference caused by
the camera could that impact the training process of a network.
In future work, we plan to expand our dataset to include a more diverse set of glslr and

glshr samples. Our first goal is to incorporate a wider variety of downsampled content. While
our dataset currently contains original glslr videos and degraded glslr videos through bicu-
bic downsampling, blur, and BSRGAN, there is potential to include additional degradation
methodologies. For instance, we could downsample our glshr videos with Real-ESRGAN or
similar degradation models.
Moreover, we intend to include samples downscaled via third-party software. A possible

approach for this is uploading the videos to platforms like YouTube and downloading them
through browser plugins. This would make the dataset account for common compression
artifacts that are generated through internet transmission.
Lastly, our work has contributed to improving the detection of synthetic 4K content by

highlighting the main challenges when training a SR detection model. The rapidly advanc-
ing field of DL continues to develop better and more powerful models, rendering previous
detection models ineffective in these new instances. In our study, we try to cover a rea-
sonable range of SR network types. However, it is hard to extrapolate our conclusions to
the entire spectrum of existing and forthcoming models. On that account, increasing the
number of training and test models and datasets would provide a richer understanding of the
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differences between them when it comes to the detection task. Furthermore, the generation
of synthetic 4K videos is a quite demanding process computationally, due to the increased
resolution of the input compared with the testing data. This is amplified in the case of videos,
where several frames are usually processed concurrently. For that reason, we will investigate
more efficient SR models, which may yield worst quality results but provide the advantage
of computational efficiency.
In conclusion, this thesis has offered a comprehensive exploration of several SR techniques,

particularly in the domains of degradation effect in blind SR models, detection of upscaled
content, and model generalization. Our contributions have highlighted the current limitations
and also offered a methodology to better explain the behavior of SR models. However, the
advancements in media consumption requirements (higher resolution) and the landscape of
DL continue to introduce new challenges and considerations. Therefore, it is necessary to
expand on the current research, to achieve more accurate SR models, evaluation metrics,
and detection mechanisms. The insights and methods proposed in this thesis provide an
understanding of several areas of SR upon which future research can build and expand, to
further comprehend their capabilities in such a challenging field.
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List of acronyms
AI Artificial Intelligence.

BRISQUE Blind/Referenceless Image Spatial Quality Evaluator.

CNN Convolutional Neural Network.

DCT Discrete Cosine Transform.

DL Deep Learning.

DNN Deep Neural Network.

GAN Generative Adversarial Network.

GLCM Grey-level Cooccurrence Matrix.
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LPIPS Learned Perceptual Image Patch Similarity.
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ML Machine Learning.

MLP Multilayer Perceptron.
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NIQE Natural Image Quality Evaluator.

PCA Principal Component Analysis.

PSNR Peak Signal-to-Noise Ratio.

RNN Recurrent Neural Network.

SISR Single-Image Super-Resolution.

SR Super-Resolution.



SSIM Structural Similarity Index.

SVM Support Vector Machine.

t-SNE t-Distributed Stochastic Neighbor Embedding.

VSR Video Super-Resolution.





A
Anexo I

A.1. GLCM calculation

P (i, j|d, θ) =
N−1∑
x=0

N−1∑
y=0

{
1 if I(x, y) = i and I(x+∆x, y +∆y) = j
0 otherwise (A.1)

Where P (i, j) is the GLCM matrix and pi,j(d, θ) is the pixel at location (i, j), for a specific
displacement d and direction θ.
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