FAIR principles and health data, security and privacy

Jaime Delgado

Information Modelling and Processing Research Group Dept. Arquitectura de Computadors Universitat Politècnica de Catalunya (UPC)

jaime.delgado@upc.edu

Research Café 25th October 2023

Presenter's presentation

Jaime Delgado 40 years of research work 😳

Main current ...

- <u>topics</u>: Privacy & Security on images and health/genomic information
- <u>projects</u>: GenClinLab, MedSecurance (EU),
 Standardization (ISO: JPEG, MPEG, Health & Genomics Informatics, Personalized Digital Health; IEEE; HL7; …)
- <u>research positions</u>: EFMI (European Federation for Medical Informatics) SEC WG Chair; Editor/ Project lead JPEG Systems RefSW, Personalized Digital Health Framework, AhG Chair JPEG Systems

Contents

- FAIR principles
- FAIRification
- Security & Privacy
- Health data
- Conclusions

FAIR principles

- FAIR data
- Findable
- Accessible
- Interoperable
- Reusable

FAIR principles

Findable

- F1: (Meta)data are assigned a globally unique and persistent identifier
- F2: Data are described with rich metadata
- F3: Metadata clearly and explicitly include the identifier of the data they describe
- F4: (Meta)data are registered or indexed in a searchable resource

Accessible

- A1: Meta(data) are retrievable by each of their identifiers using a standardized communication protocol
 - A1.1: The protocol is **open**, free and universally implementable
 - A1.2: The protocol allows for an authentication and authorization, where necessary
- A2: Metadata should be accessible even when the data is no longer available

Interoperable

- I1: Metadata and data use a formal, accessible, shared, and broadly applicable language for knowledge representation
- I2: Metadata and data use vocabularies that follow the FAIR principles
- I3: Metadata and data include qualified references to other metadata and data

FAIR principles

Reusable

- R1: Metadata and data are richly described with a plurality of accurate and relevant **attributes**
 - R1.1: Metadata and data are released with a clear and accessible data usage license
 - R1.2: Metadata and data are associated with detailed provenance
 - R1.3: Metadata and data meet domain-relevant community standards

FAIR data

FAIRification initiatives

Guidelines to help in making the data FAIR

FAIRification workflow steps (FAIR4Health)

- 1) Raw data analysis
- 2) Data curation & validation
- 3) Data de-identification / anonymization
- 4) Semantic modeling
- 5) Make data linkable
- 6) License attribution
- 7) Data versioning
- 8) (Meta)data aggregation
- 9) Archiving

Contents

- FAIR principles
- FAIRification
- Security & Privacy
- Health data
- Conclusions

FAIRification workflow steps (SECURITY)

- 1) Raw data analysis
- 2) Data curation & validation
- 3) Data de-identification / anonymization
- 4) Semantic modeling
- 5) Make data linkable
- 6) License attribution
- 7) Data versioning
- 8) (Meta)data aggregation
- 9) Archiving

- We focus on *license attribution* step
- Framework for data owners to provide licensing
- Support proper reusability (FAIR)
- Request permission to use (may include authentication & authorization) (FAIR)
- Absence of explicit license may prevent to reuse data

License attribution – Problems & solutions

We need to solve:

- 1. How to express the licenses?
- 2. How to guarantee their provenance?
- 3. How to evaluate their authorization?
- 4. How to enforce what they are controlling?

Expression – proposed solution

- I. How to express licenses?
 - Formal language
 Interoperability (FAIR)
 - Rules formally expressed
 Clearly
 define access to information (FAIR)
- <u>Option</u>: eXtensible Access Control Markup Language (XACML)

Expression of licenses

XACML

(eXtensible Access Control Markup Language)

- Express privacy rules/policies (OASIS standard)
- Control

who, how and under which conditions access specific information (data or metadata)

 Mechanism to evaluate the rules (authorize), based on standardized *requests*

Provenance – proposed solution

• 2. How to protect provenance?

Digital signature
 XML signature (FAIR)
 but also (FAIR) and partially (FAIR)

Authorization – proposed solution

• 3. How to authorize?

- Using XACML Requests
 Access
 control & Interoperability (FAIR)
- Attributes: subject, object (data or metadata), action, time conditions, ...

Enforcement – proposed solution

- 4. How to enforce?
- Protect from unauthorized access (FAIR)

Contents

- FAIR principles
- FAIRification
- Security & Privacy
- Health data
- Conclusions

Application to health data

- Modular and distributed approach for the management of health information
 Health Information Protection And Management System (HIPAMS)
- Support of FAIR principles from a security and privacy point of view
- Focus on privacy rules to control the access to information

xIPAMS approach

- Architecture independent of the kind of content:
 - Different "xIPAMS" platforms possible:
 - MIPAMS (Multimedia)
 - GIPAMS (Genomic)
 - HIPAMS (Health)
 - Possible integration of genomic and other health information
- Apply this to different projects

xIPAMS Architecture

HIPAMS Architecture

- I. How to express licenses?
 - Formal language
 Interoperability (FAIR)
 - Rules formally expressed
 Clearly
 define access to information (FAIR)
- <u>Option</u>: eXtensible Access Control Markup Language (XACML)
- HIPAMS module
 Policy Service
 (privacy policies creation)

• 2. How to protect provenance?

- Digital signature
 XML signature (FAIR)
 but also (FAIR) and partially (FAIR)
- HIPAMS module
 Policy Service
 (privacy policies creation)

• 3. How to authorize?

- Using XACML Requests
 Access
 control & Interoperability (FAIR)
- Attributes: subject, object (data or metadata), action, time conditions, ...
- HIPAMS module
 Authorization Service
 (privacy policies authorization)

- 4. How to enforce?
- Protect from unauthorized access (FAIR)
- HIPAMS modules:
- Content to provide in *Health Content* Service
- Content encrypted with *Protection Service*

Globally:

• HIPAMS modules
 All the platform!

In addition:

- Standardized formats in *Health Content* Service

 Interoperability (FAIR)
- Keeping track of the actions with *Reporting Module*
- Search Service
 Findability! (FAIR)

HIPAMS Architecture

HIPAMS Architecture

Conclusions

- FAIR principles, basis for improving the use of existing data
- Data to be "FAIRified"
- Health data is a specific case. Access and distribution to be controlled, but open for research (privacy-aware)
- Security & Privacy mechanisms available

FAIR principles and health data, security and privacy

Jaime Delgado

Information Modelling and Processing Research Group Dept. Arquitectura de Computadors Universitat Politècnica de Catalunya (UPC)

jaime.delgado@upc.edu

Research Café 25th October 2023

