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Abstract
This project focuses on the design, implementation and evaluation of Radial
Basis Function Neural Networks (RBFNN), comparing the gaussian model with
a new version using the Ricker Wavelet activation function. The shape of this
wavelet has been observed in the signals of neurons from different parts of the
human brain, often producing a negative (inhibitory) signal known as lateral
inhibition. Two RBFNN models have been developed, incorporating Machine
Learning (ML) and statistical techniques such as L2 regularization and the sigest
algorithm for improved performance. Additional techniques, such as estimating
an oversized k parameter and using AIC backward selection, are implemented
to enhance efficiency.

In this study, the developed models are tested with datasets of different nature,
evaluating their performance with synthetic and realistic data and measuring
their results with problems of various levels of noise and difficulty. Furthermore,
a comparison of the models is also made in order to observe which RBFNN per-
forms better on certain conditions, as well as to analyze the difference in the
number of neurons and the estimated smoothing parameter.

The experimental evaluation confirms the effectiveness of the RBFNN models,
yielding accurate estimations and demonstrating their adaptability to problems
of varying difficulty. Comparative analysis reveals that the Ricker model tends
to exhibit superior performance in the presence of high levels of noise, while
both models perform similarly under low noise conditions. These results sug-
gest the potential influence of lateral inhibition, which could be explored further
in future studies.

Keywords: Radial Basis Function Neural Networks, Ricker Wavelet, regu-
larization, sigest algorithm, noise, lateral inhibition, performance evaluation.
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Resumen
Este proyecto se centra en el diseño, la implementación y la evaluación de Redes
Neuronales de Función de Base Radial (RBFNN), comparando el modelo gaus-
siano con una nueva versión que utiliza la función de activación Ricker. La forma
de esta función ha sido observada en las señales de neuronas de distintas partes
del cerebro humano, a menudo produciendo una señal negativa (inhibitoria)
conocida como inhibición lateral. Se han desarrollado dos modelos de RBFNN,
incorporando técnicas de Machine Learning (ML) y estad́ıstica como la regu-
larización L2 y el algoritmo sigest para mejorar su rendimiento. También se
implementan técnicas adicionales, como la estimación de un parámetro k so-
bredimensionado y la AIC backward selection, para mejorar la eficiencia.

En este estudio, los modelos desarrollados se prueban con conjuntos de datos de
diferente naturaleza, evaluando su rendimiento con datos sintéticos y realistas,
y midiendo sus resultados con problemas de varios niveles de ruido y dificultad.
Además, también se realiza una comparación de los modelos para observar qué
RBFNN funciona mejor en determinadas condiciones, aśı como para analizar la
diferencia en el número de neuronas y el parámetro de suavizado estimado.

La evaluación experimental confirma la eficacia de los modelos RBFNN, propor-
cionando estimaciones precisas y demostrando su adaptabilidad con problemas
de dificultad variable. El análisis comparativo revela que el modelo Ricker tiende
a exhibir un rendimiento superior en presencia de altos niveles de ruido, mien-
tras que ambos modelos tienen un rendimiento similar en condiciones de bajo
ruido. Estos resultados sugieren la potencial influencia de la inhibición lateral,
que podŕıa ser explorada en más profundidad en futuros estudios.

Palabras clave: Redes Neuronales de Función de Base Radial, Ricker Wavelet,
regularización, algoritmo sigest, ruido, inhibición lateral, evaluación del rendimiento.
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Resum
Aquest projecte es centra en el disseny, la implementació i l’avaluació de Xarxes
Neuronals de Funció de Base Radial (RBFNN), comparant el model gaussià amb
una nova versió que utilitza la funció d’activació Ricker. La forma d’aquesta
funció ha estat observada en les senyals de neurones de diverses parts del cervell
humà, sovint produint una senyal negativa (inhibitòria) coneguda com inhibició
lateral. S’han desenvolupat dos models de RBFNN, incorporant tècniques de
Machine Learning (ML) i estad́ıstica com la regularització L2 i l’algoritme sigest
per millorar el seu rendiment. També s’implementen tècniques addicionals, com
l’estimació d’un paràmetre k sobredimensionat i la AIC backward selection, per
millorar l’eficiència.

En aquest estudi, els models desenvolupats es posen a prova amb conjunts de
dades de diferent naturalesa, avaluant el seu rendiment amb dades sintètiques
i realistes, i mesurant els seus resultats amb problemes de diversos nivells de
soroll i dificultat. A més, també es realitza una comparació dels models per
observar quina RBFNN funciona millor en determinades condicions, aix́ı com
per analitzar la diferència en el nombre de neurones i el paràmetre de suavitzat
estimat.

L’avaluació experimental confirma l’eficàcia dels models RBFNN, proporcio-
nant estimacions precises i demostrant la seva adaptabilitat amb problemes de
dificultat variable. L’anàlisi comparatiu revela que el model Ricker tendeix a ex-
hibir un rendiment superior en presència d’alts nivells de soroll, mentre que tots
dos models tenen un rendiment similar en condicions de baix soroll. Aquests
resultats suggereixen la potencial influència de la inhibició lateral, que podria
ser explorada amb més profunditat en futurs estudis.

Paraules clau: Xarxes Neuronals de Funció de Base Radial, Ricker Wavelet,
regularització, algoritme sigest, soroll, inhibició lateral, avaluació del rendiment.
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1 Introduction

1.1 Motivation of this project

The nodes of an Artificial Neural Network model the output results using an
activation function [3]. Currently, several types of activation functions are used
for different problems and circumstances. The most commonly used nowadays
are the Ridge Activation Functions, which include the Rectified Linear Unit
(ReLU) [27] and the Sigmoid functions [29]. However, Radial Basis Function
Neural Networks (RBFNNs) make use of a different group of functions called
Radial Basis Functions (RBFs). These are real-valued functions whose output
is determined by the norm of the difference between the input and a given center
[10]. At the present time, the most employed RBF is the Gaussian, although
Multiquadric functions and other polyharmonic splines are often used as well
[8].

In contrast, biological neurons exhibit a more complex radial pattern of
activation [4] which makes them more flexible than the frequently used basis
functions. Therefore, this project aims to design and train RBFNNs using
this new observed radial pattern, exploring their potential in real data-science
problems and conducting a comparison of their performance with the traditional
models.

1.2 Objectives

As mentioned in the previous section, the main goal of this project is to design
and train RBFN Networks using more biologically plausible activation functions,
as well as developing a comparison study of their behavior in real data science
problems.

In order to accomplish this objective, the project has been divided into
different sub-objectives:

• Study the existing RBF Neural Networks and the different methods asso-
ciated with this topic, which will be used throughout the project.

• Research and select the different biologically plausible activation functions
that will be evaluated in this study.

• For each selected activation function, develop a high-performing and op-
timized Python implementation of a RBFNN based on state-of-the-art
concepts.
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• For each RBFNN model, analyze its behaviour with synthetic and real-
world data, measuring the model’s accuracy, its final number of hidden
neurons and execution time, and other metrics of great relevance (ex-
plained in Section 6.2).

• Extract meaningful conclusions from the comparison and metrics obtained
during the study. Specifically, determine the model that achieves superior
performance, identify the model that requires fewer neurons to achieve
comparable results, and explore other pertinent findings that contribute
to the understanding and evaluation of the RBFNN models under inves-
tigation.

1.3 Structure of the document

Content in this project is organized in different sections. The first section serves
as an introduction to the study, presenting the study’s motivation followed by
its main objectives and structure. In Section 2 Linear Models are introduced
along with their different selection criteria and regularization strategies. In Sec-
tion 3 an explanation about the main concepts of Radial Basis Function Neural
Networks is given. This section includes a detailed explanation about the Train-
ing Phase in RBFNNs. Section 4 presents the biological neuron’s phenomenon
which inspired this study and links previous studies about this biological be-
haviour. In Section 5 the designed RBFNN architecture which will be used in
this project is explained. Section 6 focuses on the conducted experiments, ex-
plaining the employed data and the selected metrics, and including the obtained
results. The project’s conclusions and further investigation proposals are given
in Section 7.
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2 Linear Models

A commonly used solution to approximate a function from a given set of noisy
input-output pairs is a Linear Model. A Linear Model is a linear combination
of a number of fixed parameterized basis functions (BF), where the coefficients
are known as weights in the neural networks community. This model has a wide
flexibility, and can be used to approximate many distinct functions by adjusting
the function weights differently.

2.1 Supervised Learning

One of the most common problems in statistics is to determine the shape of a
function using only some known input-output pairs without having any knowl-
edge of its form. In Machine Learning and Artificial Intelligence this problem
is known as Supervised Learning.

To learn the relationship between input features (also known as predictor
variables) and an output variable, the input-output pairs are divided into two
datasets which will be used to train the model and evaluate its ability to accu-
rately predict the output values for unseen data, respectively.

The training set, containing p input-output pairs can be represented by:

T = {(xi, ŷi)}pi=1

The predictor variables are represented by the vector xi, which contains all
input values of the function. The output values are shown as ŷi, and usually
contain some noise corruption, hence the correct output value (yi) is unknown.

2.1.1 Regression Problems

Regression problems can be mainly classified into three subgroups [19]: para-
metric, semi and nonparametric regression.

In parametric regression, the general form of the relationship between the
dependent variable and the independent variables is predefined before the learn-
ing starts. However, this relationship involves certain parameters whose precise
values are unknown and need to be estimated using the available training data.
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An example of parametric regression would be any Truncated Fourier series.
This problem would be parametric, because the specific form of the relationship
between the dependent variable (y) and the independent variable (x ) is known,
which is a simple equation of the form

f(x) =

k∑
i=1

ai cos(ixT ) + bi sin(ixT )

where scalars ai, bi ∈ Rk and T ∈ R are the unknown parameters needed to
be estimated. Once T is known or estimated, the function can be expressed as
follows by using feature extraction:

f(x) =
k∑

i=1

aizi + bivi

where zi = cos(ixT ) and vi = sin(ixT ).

Nonparametric regression differs from parametric regression in that it does not
rely on having much prior knowledge about the specific form of the true under-
lying function being estimated. To estimate the underlying distributions, the
Kernel Density Estimation (KDE) is used [6]:

p̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
where K is a smooth function named as the kernel function, h > 0 is the

bandwidth, which controls the amount of smoothing, and X is an identically
distributed random sample from an unknown distribution with density function
p.

Unlike parametric regression, where the number of parameters is typically
big and may have clear physical interpretations, nonparametric models often
use a low number of free parameters, and lack such direct relationships between
their weights and parameters and the specific problem being solved.

Semiparametric problems combine elements of both parametric and nonpara-
metric approaches, achieving a balance between model interpretability and cap-
turing the complexity of real-life data. This allows for a better representation
of the inherent variability and noise present in real-world scenarios. Neural
network models are an example of semiparametric models. These include the
RBFNNs, which are the topic of study in this project.
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2.2 Basis Functions

A Linear Model can be described as follows:

f(x) =

n∑
i=1

wihi(x)

The fixed functions hi(x) constitute the base of a Linear Model, and therefore
will limit the range of functions that can be obtained by giving different values
to the weights wi. For this reason, they are usually called basis functions. If
the basis functions are not fixed and can change during the learning stage of a
model, then this model is nonlinear.

There are several types of basis functions, which are used in a wide range
of fields and have different properties and applications. Some of the most used
are the following types:

• Polynomial Basis Functions: These basis functions are often used for
curve fitting and regression analysis [22]. The polynomial basis functions
of degree 1, 2 and 3 (x1, x2 and x3 respectively) are all examples of this
type.

• Fourier Basis Functions: Based on the Fourier series, these basis func-
tions are sinusoids with different frequencies and phases, and are especially
used in signal processing and image analysis [18].

• Wavelet Basis Functions: With applications in denoising and time-
frequency analysis, wavelet basis functions are localized in both time and
frequency domains [9]. The Ricker Wavelet, which will be explained in
more detail in Section 4.1.1, is an example of this type.

• Radial Basis Functions: Unlike the previous type, this type of functions
model the output in terms of a fixed center and a given point [10]. They
are used in RBFNNs, and will be explained in more depth in Section 3.1.

• Spline Basis Functions: Spline basis functions are piecewise-defined
polynomials that are smoothly joined together at certain points called
knots [14]. These functions are commonly used in interpolation and curve
fitting.

2.3 Model Selection Criteria

The model selection criteria discussed in this project are all prediction error
estimations, indicating how well the trained model is expected to perform on
future data. The optimal model is the one with the lowest estimated prediction
error. Cross-validation is one of the most commonly used strategy for measuring
prediction error, and there exist different statistical learning methods which
make use of it.

13



2.3.1 The Validation Set Approach

The validation set approach is a simple strategy for model selection. As illus-
trated in Figure 1, it consists in randomly dividing the input-output pairs into
two main subsets: the training and validation subsets. The model is first fitted
with the training subset, and is then used to make predictions for the validation
subset inputs. The error rate obtained with the validation subset, often mea-
sured using the Mean Squared Error (MSE), serves as an estimate of the test
error rate [14].

Figure 1: Schematic image of the validation set approach

2.3.2 Cross-validation

Cross-validation is a technique used in machine learning to assess the perfor-
mance and generalization ability of a model. As seen in Figure 2, it involves
partitioning the learning data into k multiple subsets named folds, with one
subset used as a validation set while the rest are used for training. In order to
predict the resulting MSE, the following formula is used:

Validation MSE =
1

k

k∑
i=1

MSEi

where MSEi corresponds to the Mean Squared Error of the i -th validation
subset.

Leave-one-out cross-validation is a special case of k -fold cross-validation
where the validation subset consists of only one sample, and the training subset
is created with the remaining n − 1 samples [3]. This process can be repeated
n times, calculating the MSEi for the input-output pair (xi, yi).

14



Figure 2: Schematic image of the 5 cross-validation, where cyan squares repre-
sent the training subsets, and orange squares represent the validation subsets

2.4 Regularization

One of the major problems in machine learning models is avoiding overfitting.
This phenomenon occurs when a machine learning model becomes excessively
complex and specific to the training set, to the point where it performs poorly on
unseen data. In other words, the model ”memorizes” the training data instead
of learning general patterns and fails to generalize well to new examples.

To avoid overfitting, multiple methods have been developed, including cross-
validation and regularization, amongst others. Unlike cross-validation, regular-
ization consists of any method used to prevent machine learning models from
minimize the error function as much as it could, in order to reduce its depen-
dency on the specific training set. Its primary objective is to strike a balance
between model complexity and generalization performance, thereby mitigating
the risks of overfitting or underfitting.

For this study, two classes of regularization methods will be used: weight
shrinkage and subset selection methods.

2.4.1 Weight Shrinkage

Weight shrinkage regularization works by introducing one or more penalty terms
to the cost function, which shrink or limit the size of the coefficients towards
zero. The main effect of this addition is a reduction in the model’s variance,
although depending on the type of shrinkage applied, it can lead to some coeffi-
cients being equal to zero. Therefore, some shrinkage methods can also be used
for subset selection (Section 2.4.3).
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LASSO Regularization

Least Absolute Shrinkage and Selection Operator (LASSO) is a regularization
strategy particularly useful when dealing with high-dimensional datasets, where
the number of predictors is large compared to the number of observations. This
method results in the following expression:

C =

M∑
i=1

ŷi − p∑
j=0

wjxij

+ λ

p∑
j=1

|wj |

where λ is the L1 penalty term.

Ridge Regression

Ridge regression is a method of regularization used to deal with multicollinear-
ity, which occurs when the predictor variables in a regression model are highly
correlated with each other. Unlike the last explained algorithm, this method
performs what is known as L2 regularization:

C =

M∑
i=1

ŷi − p∑
j=0

wjxij

+ λ

p∑
j=1

w2
j

Thus, the optimization function is penalized when the coefficients w take
large values.

As seen in the presented cost function, the ridge regression’s effect over the
cost function can be regulated by a lambda parameter λ > 0. The selected value
for the lambda parameter is of great importance, as it will directly influence the
model’s predictions. As stated in [24], A small value of lambda means the data
can be fit tightly without causing a large penalty, while a large value of lambda
means a tight fit has to be sacrificed if it requires large weights.

2.4.2 Dimension Reduction

Dimension reduction methods involve expressing all the model’s predictors (n)
in a m-dimensional space, being m < n. By calculating m linear combinations
of the variables, it is possible to fit a ML model having this m projections as its
predictors. This strategy can help reducing the dimensionality of an oversized
model, even removing redundant predictors.

2.4.3 Subset Selection

The subset selection methods are centered in identifying a subset of predictors
which are closely related with the model’s response. When this selection is done,
a new model is fitted with a reduced set of variables, keeping the selected subset
of related predictors. Reducing the quantity of used predictors can improve
significantly the model’s computational time.
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Forward Stepwise Selection

Forward stepwise selection is an efficient subset selection algorithm, and it is
widely used as a regularization method. It works by beginning with a model
which contains no predictors, and then it starts adding the best predictors to
the model, one at each iteration until every predictor has been added. The
forward stepwise selection algorithm can be expressed as follows:

Algorithm 1 Forward Stepwise Selection Algorithm [14]

1: let M0 be a model with no predictors
2: for k = 0, ..., p− 1 do
3: Select all p − k models which augment the predictors in Mk by one

additional predictor.
4: Adjust the p−k models with the training data and calculate each model’s
R2.

5: Choose the model having the smallest NMSE and let it be Mk+1.
6: end for
7: Select the best model among M0, ...,Mp as the final model.

It is important to note that the selected model at each iteration can be
chosen by using different techniques, including the cross-validated prediction
error, the Akaike’s Information Criterion (explained in detail in Section 5.3),
the Bayesian Information Criterion or the adjusted R2.

Backward Stepwise Selection

Backward stepwise selection is another efficient subset selection algorithm which,
unlike forward stepwise selection, works by starting with a model composed by
all the predictors, and then being reduced by substracting a predictor one at
each iteration. This process is repeated until the model has no predictors. Its
algorithm can be expressed as follows:

Algorithm 2 Backward Stepwise Selection Algorithm [14]

1: let Mp be a model with all the predictors
2: for k = p, p− 1, ..., 1 do
3: Select all k models which contain all the predictors in Mk except one.
4: Adjust the k models with the training data and calculate each model’s
R2.

5: Choose the model having the smallest NMSE and let it be Mk−1.
6: end for
7: Select the best model among M0, ...,Mp as the final model.
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3 Radial Basis Function Neural
Networks

This project focuses on the design, implementation and evaluation of Radial
Basis Function Neural Networks (RBFNNs), which are a type of Artificial Neu-
ral Networks that use radial basis functions as the activation function. They
are widely used to solve different types of problems, including function approx-
imation, classification, time series predictions and pattern recognition. RBFN
Networks are also known for their effectiveness and efficiency when approximat-
ing complex functions, as they normally use a relatively small number of hidden
units.

3.1 Radial Basis Functions

A Radial Basis Function (RBF) is a real-valued function that exhibits a mono-
tonically decreasing or increasing response as the distance from a central point
changes. RBFs often are defined as a function of the Euclidean distance between
the input point and the center point, although it is not the only used metric.

When being expressed as a linear combination, RBFs are typically used
for function approximation, and can be used as a kernel for Support Vector
Machines (SVM) [28] and RBFNNs. Different radial basis functions are used in
ML [26], but some of the most common are the following functions:

• Gaussian: The gaussian radial function is the most used RBF in ML,
and can be expressed by this function:

ϕi(x) = exp

[
−||x− ci||2

2σ2
i

]
where σi is a shape parameter, ϕi is the result of the i -th neuron, and ci
its centroid.

• Multiquadratic: The multiquadratic radial function is an alternative to
the gaussian function which is also used in ML [24]. Its function can be
expressed as follows:

ϕi(x) =
√
1 + (σi||x− ci||)2

There exist some variations of the multiquadratic function, which include
the inverse quadratic and the inverse multiquadratic functions.
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• Polyharmonic Splines: Polyharmonic splines are a type of radial func-
tions which have the characteristic of lacking a shape parameter, thereby
avoiding the computational time required for tuning this parameter. Its
general formula has the following form:

ϕi(x) =

{
||x− ci||k, k /∈ 2N,
||x− ci||2k ln ||x− ci||, k ∈ 2N,

These functions are also known as surface splines (or thin-plate splines
in the case of ϕi(x) = |x − ci||2k ln ||x − ci||), and often exhibit good
convergence rates in approximation.

3.2 Network Architecture

Following the traditional architecture first purposed by D. Broomhead and D.
Lowe in 1988 [5] (seen in Figure 3), the general architecture of RBFN Networks
consists of an input layer, a hidden layer and an output layer.

Figure 3: Radial Basis Function Neural Network Architecture

The input layer can be expressed as an input vector of dimension n, and
is passed on each neuron of the hidden layer. The neurons of the hidden layer
then compute a RBF (typically the Gaussian) as its activation function, using a
neuron centroid which has been computed from previous training data. When all
images of the RBFs have been calculated, all results are linearly combined with
the network’s weights to generate the RBFNN’s output, forming the network’s
output layer.
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3.3 Training Phase

Radial Basis Function Neural Networks generally feature multiple parameters.
The most common are the weights or coefficients for the hidden layer (w), the
neurons centroids ci, the shape parameter of the RBF σ (if it has one or more)
and the regularization parameter λ, if regularization is employed.

All these parameters are tuned during the training phase, when the hidden
layer is generated along with each neuron’s center and shape parameter. This
tuning process can be divided into two main steps, the first one being the hid-
den layer generation by estimating the neurons centroids and calculating the
shape parameters, followed by a second step in which the neuron weights are
calculated.

3.3.1 RBF Centroid Selection

The centroid selection is an important step when building a RBFNN, as it will
directly impact the model’s performance. The most usual methods in centroid
selection are clustering algorithms, which include the k -means algorithm among
others.

The k -means algorithm is a simple iterative strategy used to divide given
data into a predetermined number of clusters, denoted as k. This value is of
great importance, as it determines the number of centroids the model will use. If
there are too few centers, the network may struggle to generalize well, resulting
in underfitting. On the contrary, if there are too many centers, the network
may overfit by capturing irrelevant information from noisy data.

K -means minimizes the sum of distances from each sample data to the near-
est centroid. This equation can be expressed as follows:

S(x) =

k∑
i=1

∑
xj∈Si

||xj − ci||2

where S contains the different data subgroups (xj), and ci is the centroid
corresponding to the i -th of the k clusters.

This minimization is achieved by iterating between two steps until the first-
step assignments no longer change, indicating convergence has been achieved. In
the first step, the data is partitioned in different groups, assigning each sample
to its closest centroid. There are different strategies to select the first set of
centroids, which range from a random selection to more complex and better-
performing algorithms, such as k -means++. In the second step, all clusters
are recalculated, now being the mean of all samples assigned to each centroid.
When no samples have changed their centroid, the iterative process has ended
and the final centroid array is returned.
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3.3.2 RBF Shape Parameter

Another important variable in RBFNNs is the shape (or smoothing) parameter.
An excessive smoothing can lead to the loss of important details and nuances
in the estimated true probability density. If it is too small, there is a risk of
overfitting to the specific training set. It can be estimated separately for each
neuron, or one estimation can be used for all neurons, which is proven to have
universal approximation capability. There exist multiple alternative methods
to calculate the shape parameter, such as computing and using the standard
deviation of each cluster or using the average distances between each centroid
and its m nearest centroids.

3.3.3 Output Layer Regularization

For regression problems in a radial basis function neural network (RBFNN), the
output layer can be represented as a linear combination of the results from the
activation functions. To properly minimize the output error, the weights can be
calculated by using a linear pseudo-inverse solution. The equation to calculate
the new weights, is [24]:

ŵ = (HTH + Λ)−1HT ŷ

where ŷ is a vector with the labels of the training set, Λ is a diagonal matrix
with the regularization parameters (which can be null if no regularization is
applied), and H is the design matrix which contains all the RBF results and can
be expressed as [24]:

H =


h1(x1) h2(x1) ... hn(x1)
h1(x2) h2(x2) ... hn(x2)

...
...

. . .
...

h1(xp) h2(xp) ... hm(xp)


where each hi corresponds to a hidden layer neuron output.
However, for classification problems, linear outputs are less suitable because

they do not represent class probabilities. More appropriate alternatives derived
from Generalized Linear Models (GLM) can be used for this problem types.
The algorithm commonly used for training RBFNNs in classification problems
is called Iteratively Reweighted Least Squares (IRLS) [20]. Thanks to the use
of the Hessian matrix, which is negative semi-definite, it is ensured that only
one maximum exists.

Alternatively, gradient descent can also be used as a training algorithm for
RBFNNs in classification problems. The gradient descent algorithm finds a
minimum by computing the gradient of the objective function at each iteration
and adjusting the coefficients in order to get closer to a function’s minimum.
Although the two presented methods are equally valid to optimize the RBFNNs
weights, it is often preferable to use Generalized Linear Models, as gradient
descent generally require more computational time.
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4 Biological Neuron Inspiration

In Artificial Intelligence, as well as in a large group of different fields, the emu-
lation of biological systems has often proven to be a good source of inspiration.
Among the numerous aspects of biological systems, neurons stand as fundamen-
tal units of computation, showing remarkable adaptability, fault tolerance, and
parallel processing capabilities. Making use of the intrinsic power of biologi-
cal neurons has driven numerous advancements in machine learning and neural
network research.

In this project, the biological study is centered around an observed property
named as lateral inhibition (Section 4.1), which is produced in the cortical net-
works of the human brain. For the experimental study, this property is employed
to build alternative RBFNNs to explore its applications and limitations.

4.1 Lateral Inhibition

Lateral inhibition is a neuron behaviour observed in cortical networks located
in the cerebral cortex of the brain, which constitutes the outermost layer of the
brain. The cerebral cortex is a highly folded region consisting of neural tissue
that covers the cerebral hemispheres. It is responsible for many cognitive func-
tions, such as sensory perception, motor control, language processing, memory,
attention, and decision-making.

Neurons situated in the cortical networks exhibit an excitation state when
a stimuli is produced in their region (e.g. light falling in a particular region
of the visual field). This state is translated as an electrical signal generated in
response to the incoming stimuli. Along with this action, the excited networks
send an additional inhibitory signal to their neighbours, thereby producing a
lateral inhibition which augments the contrast between the stimulated and the
non-stimulated neurons. As an example of a biological usage, lateral inhibition
allows the perception of fine details and the extraction of important features
from the sensory input in the visual system [17].

Figure 4: Photoreceptor interactions to produce lateral inhibition (from [17])
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4.1.1 The Ricker Wavelet

It has been observed that lateral inhibition decays with the increasing distance
between neurons, resulting in a signal relationship which resembles a ”Mexican
hat” [33]. This mexican-hat shape (Figure 5) can be modeled by a wavelet
known as the Ricker Wavelet, which contains a shape parameter to control its
peak frequency [25] and can be expressed as follows:

ψ(t) =
2√

3σπ1/4

(
1−

(
t

σ

)2
)
e−

t2

2σ2

By estimating the shape parameter σ and expressing the wavelet time t as
the Euclidean distance from a given sample to a neuron’s center t = ||x− ci||,
the Ricker wavelet can be used as a radial basis function on a RBFN Network.

Figure 5: Ricker Wavelet function obtained with a shape parameter σ = 1
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4.2 Biological Context

In the past years, different studies have been conducted in order to find new
biologically plausible activation functions and develop an implementation for
real data science problems.

Gidon et al. [11] studied the dendrites in human layers two and three cortical
networks. Dendrites are a fundamental part of neurons that shape a neuron’s
electrical input and output. In this study it was discovered a class of calcium-
mediated dendritic action potentials (dCaAPs) with different waveforms and
effects on a neuron’s output. These new waveforms observed in neurons can be
used as radial basis functions for RBFN Networks.

Gardave S. Bhumbra [2] introduced a new alternative to the generally used
Rectified Linear Unit (ReLU) and Exponential Linear Unit (ELU) activation
functions, named Bionodal Root Unit (BRU). This alternative exhibit input-
output non-linearities substantially more biologically plausible since their be-
havior is based on known properties of neuronal cells. This study shows the
possibility of well-performing biologically plausible activation functions.

Based on the first recent study presented, Muthiah-Nakarajan et al. [21]
presented and studied four different oscillating activation functions inspired by
behaviors observed in biological neurons from layers two and three of the human
cortex, which allowed individual neurons to learn the XOR operation without
manual engineering. The goal of this project was to explore the possibilities
of the presented oscillating activation functions to solve classification problems
with fewer neurons and training time.

Kukjin Kang et al. [15] realized a study centered on the effects of the Mexican
hat waveforms found in the neuronal cortical circuitry which originate in local
groups of cells that form network models in frontal cortex, parietal cortex and
other neuronal circuits. This waveform (explained in Section 4.1.1) will be used
as an activation function in this study.
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5 Training of the RBF Neural
Network

To conduct the experimentation part of this study, a Radial Basis Function
Neural Network has been designed for the Python programming language. De-
spite the existence of several public modules, it has been decided to develop a
new implementation. The decision to build a self-implementation is motivated
by the limited flexibility offered by the existing modules in terms of designing
the architecture of a RBFNN. For instance, these modules may not allow the
selection of a centroid calculation strategy or lack regularization options, which
are essential requirements for this study.

The RBFNN model designed in this project maintains the RBFNN’s tra-
ditional architecture (Section 3.2), which consists of an input layer, a hidden
layer and an output layer. The hidden layer is generated by using the k -means
clustering algorithm, while the output layer is obtained by fitting a Generalized
Linear Model. Lastly, the GLM is regularized by using both backward selection
strategy and Ridge regression.

5.1 K-Means Clustering for Centroid Calculation

The developed model’s hidden layer is built by using the k -means algorithm
along with the k -means++ initial centroid strategy, thus obtaining the neurons
centers, which play an essential role in the design matrix calculation. As stated
in Section 3.3.1, k -means comes with a tunable parameter (k) which is of great
importance, as it will determine the number of neurons used by the model.

To avoid a computationally complex estimation for the k parameter, it has
been chosen to select an oversized value, which will generate a larger quantity
of neurons in relation to the number of samples. The exceeding amount of
neurons will produce overfitting, which will be treated by the execution of the
regularization techniques described in Section 5.3.
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5.2 Generalized Linear Model as the Output Layer

After the neuron centers have been estimated, the design matrix of the model
can be calculated by applying the corresponding radial basis function. In this
project, two distinct radial basis functions are covered: the Gaussian and Ricker.
Both of these functions have a shape parameter, denoted as σ, which needs to
be estimated. To determine an appropriate value for σ, the sigest algorithm
has been chosen due to its computational simplicity and fast performance time,
among other options.

The sigest algorithm is used to estimate the shape parameter of a Gaussian
RBF employed in Support Vector Machines. It is based on calculating the
0.1 and 0.9 quantiles of the squared Euclidean distances between data points.
As stated by the author of the algorithm’s R implementation [16], any value
between these two boundaries will produce good results. However, a public
sigest implementation for Python does not currently exist. Consequently, a
self implementation of the sigest algorithm has been developed based on the R
version, which works by performing the following steps:

Algorithm 3 Sigest Algorithm

1: Prepare the input data X by reshaping and scaling the array, if needed.
2: Randomly select two subsets of samples from X.
3: Extract the samples (x) from each subset and calculate their pairwise dis-

tances.
4: Compute the squared Euclidean distances between the samples and sum

them along to obtain a 1-dimensional array M .
5: Calculate the 0.1 and 0.9 quantiles of M to estimate the range of σ.

Once all neuron RBFs have been calculated and the design matrix has been
constructed, the design matrix can be fed into a Generalized Linear Model,
which will represent the model’s output layer. However, this is not the definitive
output layer, as the RBFNN may be still overfitted and needs the application
of regularization.

5.3 Subset Selection and Regularization

The last process needed to build a RBFNN model with the designed decisions
consists in applying regularization to the output layer. For the designed RBFNN
model, two regularization strategies are applied in order to suppress its overfit-
ting.

The first regularization algorithm applied to the model is a subset selec-
tion method known as backward stepwise selection (Explained in Section 2.4.3).
This algorithm reduces the model’s neurons iteratively, selecting the reduced
model which yield the best results by the chosen quality metric. This process
is repeated until a better-performing reduced model is no longer found.

Akaike’s Information Criterion (AIC) has been the selected metric to esti-
mate the model’s quality during the backward stepwise selection process.
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Firstly purposed by Akaike [1], AIC estimates the relative amount of in-
formation lost by the radial basis functions, and can be represented with the
following log-likelihood formula:

AIC = 2k − 2 · log(L)

where k is the number of free parameters and L is the maximum likelihood
of the model.

Ridge regression is also applied to the RBFNN as a second step of regulariza-
tion. As detailed in Section 2.4.1, this L2 regularization method adds a penalty
term to the cost function. The addition of the mentioned term influences the
weights estimation, specially affecting the large-valued coefficients.

To correctly select an adequate regularization parameter for each problem,
a wide group of candidates planned by the researcher will be evaluated. The
selected L2 candidates (λ) are:

λ =
[
10−3, 10−2,5, 10−2, 10−1,5, 10−1, 10−0,5, 100, 100,5, 101

]
Each of these candidates repeat 10 times the execution of 5 different 2-fold

cross-validation evaluations (10x5x2). The 5x2 cross-validation is performed in
order to obtain the model’s Normalized Mean Square Error (NMSE), as well
as the t statistic [7]. These two quality metrics are explained in Section 6.2.
All this process is executed 10 times for each parameter to compare different
k -means groupings and select the best. If this last selection wasn’t done, the
RBFNN’s error would greatly vary depending on the k -means grouping.

By making use of these two steps of regularization the model is ensured to
have a robust way to deal with overfitting and reduce the model’s complexity.

The process of training the designed RBFNN models with an estimated L2
regularization parameter can be summarized in in Algorithm 4.

Algorithm 4 RBF Neural Network Training

1: Build the Hidden Layer of the model

2: Estimate an overfitted k from the number of samples.
3: Perform the k -means algorithm with the estimated value of k.

4: Estimate the smoothing parameter

5: Calculate the smoothing parameter using the sigest algorithm.

6: Build the Output Layer of the model

7: Build the design matrix H by calculating the model’s RBF output for
each hidden neuron.

8: Fit a Generalized Linear Model with the design matrix H.
9: Perform AIC Backward Stepwise Selection to reduce the number of neu-

rons of the model and adjust the GLM.
10: Apply L2 Regularization with Ridge Regression to correct the remaining

overfitting.
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6 Experimental Work

In order to correctly study the performance of a biologically more plausible
RBFNN design, and compare its effectiveness with the commonly used gaussian
RBFNNs, different experiments have been conducted. The main goal of the
performed experiments is to gather descriptive metrics which help to identify
patterns of functioning for each RBFNN. These patterns can prove the correct
functioning of the developed model, as well as identify for which type of problems
it scores better predictions.

6.1 Employed Training Data

The performed studies have been divided into two main experiments. These
experiments differ from each other by the nature of the used data. The first ex-
periment has been performed using synthetic data, generated by the researcher,
while the second experiment has been performed with realistic data.

6.1.1 Synthetic Experiment

The synthetic experiment has been performed with the intention of evaluating
each RBFNN’s correctness, and to observe each network’s behaviour when the
difficulty of the problem changes through different factors.

The synthetic experiment’s data has been generated by obtaining the image
for multiple points (x ) in the R space using the following function:

f(x) =
sin(bx)

bx
+N (0, σ2)

which is commonly used in the ML field to test the efficiency of a model.
This function contains two parameters (b and σ2) which regulate the shape of
the function. The b parameter controls the ”frequency” of the sinc function.
Consequently, a larger value of b results in a more difficult function for the
RBFNN models.
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This effect can be seen in Figure 6:

Figure 6: Comparison of the sinc function using different values of b. b = 1 on
the left, and b = 3 on the right

The second parameter σ2 also affects the resulting function’s difficulty. It
is used to add noise following a normal (gaussian) distribution. Like the b
parameter, a larger value for σ2 results in a more difficult problem. Its effect
can be seen in Figure 7:

Figure 7: Comparison of the sinc function using different values of σ2. σ2 = 0
on the left, and σ2 = 0.4 on the right

A third parameter which also affects this experiment is the number of exam-
ples used to train the model. It is of great importance to study how good a model
can perform with a low number of training data. Unlike the two previously men-
tioned parameters, a greater number of training examples will generally improve
a model’s predictions.
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6.1.2 Realistic Experiment

When studying a RBFNN it is important to evaluate its performance with
realistic data distributions, which may contain noise and have a low number
of samples. For this study, a one-dimensional dataset from Statistics Online
Computational Resource (SOCR) has been used to test the models performance
with realistic data. It consists of 25.000 records of the heights (in inches) and
the weights (in pounds) of 18 years old children [30], and it is based on a Growth
Survey taken in Hong Kong’s Maternal and Child Health Centres in 1993. This
dataset is a good option to test the developed models, as it is a difficult real
scenario in which there may be people with a great value of height but a low
weight, and vice versa.

6.2 Metrics Selection and Measurement

There are multiple parameters related with the performance of the developed
RBFNNs which can be studied. For each parameter, it is important to select
a complete range of values in order to correctly test the designed models in
different conditions. If the value range of a parameter is not well defined, the
RBFNNs may only be tested in one specific condition.

6.2.1 Problem metrics

For the synthetic experiment, it has been chosen to employ the following value
distributions for the parameters which influence the problem’s difficulty:

Parameter Values

b
[1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0, 4.5, 5.0]

σ2
[0.00, 0.01, 0.02, 0.03,
0.04, 0.06, 0.07, 0.08, 0.09,
0.10]

Training Samples [100, 500, 1000]

Table 1: Range of values for the difficulty parameters in the synthetic experi-
ment

The selected values for b and σ2 cover a wide range of scenarios. Including
additional values would result in scenarios that closely resemble existing ones.
Increasing the b parameter beyond 5.0 would only marginally increase the error
rate, while higher values of σ2 would also lead to significant errors, considering
that σ2 = 0.1 already produces substantial error.
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In regard to the number of training samples, the three general cases are
already being tested. These are:

• Having a low or insufficient number of training samples, which often results
in an unexpected function shape because of the large variance.

• Having an enough number of training samples to predict correctly the
expected function shape

• Having more training samples than needed, which often results in overfit-
ting, when this case is not controlled.

6.2.2 Quality Metrics

Regarding the quality of a RBFNN model, two metrics have been obtained:
the Normalized Mean Square Error (NMSE), and the t statistic. The NMSE is
obtained from the Mean Square Error (MSE), which represents the mean square
difference (error) between the real and the predicted data, and can be expressed
with the following function:

MSE =
1

n

n∑
i=1

(
Ŷi − Yi

)2
Where Ŷi are the observed values, and Yi are the ones predicted by the

model. Thereby, the NMSE can be computed by normalizing the MSE with the
variance of the observed values (NMSE = MSE ÷ V AR(Y )). When a model
has a good prediction accuracy, the NMSE takes a low value, where 0 is the
best possible error. On the contrary, a large value for the NMSE means a poor
prediction accuracy, being 1 the worst possible error.
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The second quality metric obtained is the t statistic. It was devised by
Thomas G. Dietteritch in 1998 [7], and it is used to compare the quality of
different models. The t statistic is obtained by performing 5 replicated 2-fold
cross-validations, and can be calculated as follows:

t̄ =
p
(1)
1√

1
5

∑5
i=1 s

2
i

where p
(1)
1 is obtained by subtracting the testing data error to the training

data error of the first group of the first cross-validation replication

p
(1)
1 = p

(1)
A − p

(1)
B

and s2i is the estimated variance, obtained by the following formula:

s2i = (p
(1)
i − p̄i)

2 + (p
(2)
i − p̄i)

2

where p̂i = (p
(1)
i + p

(2)
i )/2.

6.2.3 Model Metrics

Different metrics of the RBFNN models have been studied and discussed in
this project to compare each model’s performance with problems of different
difficulty and nature. The selected metrics to study are the following:

• Number of neurons of the model: It is an important metric, as it de-
fines the RBFNN’s complexity and affects the computational time needed
to create the network.

• Number of reduced neurons: With this metric it is possible to study
the backward selection regularization process and determine if it works as
intended.

• Estimated smoothing parameter: The smoothing parameter greatly
affects a model’s predictions. From the range of values it takes, as how it
changes depending on the RBF used, it is an interesting factor to study.

• L2 Regularization parameter: The L2 regularization parameter se-
lected for each problem is an important metric to study in order to see if
the chosen range of values is wide enough, or if the models tend to always
select the same candidate.

• Computation time: Another interesting metric to measure is the com-
putation time, as it also provides information about the complexity of a
model.
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6.3 Result Analysis

In this section, the results of the presented experiments are shown and discussed.
In the next section, the results of this study are summarized, and a conclusion
is presented.

6.3.1 Synthetic Experiment

The first results which have been obtained correspond with the model’s met-
rics. The following tables contain each mean model metrics obtained with the
different values of b and σ2 for each number of samples:

# Samples Neurons
Reduced
Neurons

σ2 L2 NMSE
Time

(s)
100 8,41 3,59 0,91 100 0,3105 22
500 18,50 4,50 0,88 100 0,1077 94
1000 20,79 6,21 0,84 100 0.1059 124

Table 2: Mean Gaussian RBF model metrics obtained with the different values
of b and σ2 for each number of samples

# Samples Neurons
Reduced
Neurons

σ2 L2 NMSE
Time

(s)
100 8,44 3,56 0,91 100 0,3076 21
500 18,71 4,29 0,89 100 0,1079 94
1000 20,58 6,42 0,85 100 0.1052 190

Table 3: Mean Ricker RBF model metrics obtained with the different values of
b and σ2 for each number of samples

From this tables, it can be observed that the obtained metrics for the two
models are closely similar. The similarity in the number of neurons is normal
given that in the designed RBFNNs, the initial neurons number is dependant
from the number of training samples. As we train the two models with the
same samples, the difference in the number of neurons of the two trained models
has been produced by the regularization. Another noticeable metric is the L2
regularization parameter, which has resulted in a value of 100 for all cases.
Given this fact, a new selection of candidates of smaller magnitude near 100

could be explored in future studies to introduce more L2 variation.
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In order to prove the influence of the b and σ2 parameters in the synthetic
problem’s difficulty, the following graphic (Figure 8) has been generated with
the metrics obtained by training each model with 500 samples:

Figure 8: NMSE values obtained with the Ricker model for each b and σ2

combination

By observing the provided table, it is clearly seen how NMSE takes larger
values as the two mentioned parameters increase. The increase on the NMSE
given by the b parameter follows an exponential tendency, which is displaced
higher or lower depending on the noise in the samples.

Furthermore, a model comparison has been conducted with the intention
of finding different patterns of functioning and performance quality depending
on the problem’s difficulty. To carry out this comparison, the b parameter has
been fixed to its mean value (b = 3), and the t statistic (computed from the two
models) has been calculated and stored for each noise and number of samples.
To represent this matrix, a color has been given to each calculated test. If the
result is positive, the Gaussian RBF model performs better and is represented
by a green color. If the result is negative, the Ricker RBF model has a better
performance and is represented by a red color. If the test is not meaningful,
it is represented by a white color. The obtained representation can be seen in
Figure 9:
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Figure 9: 5x2 CV test for each σ2 and training sample size

Observing the patterns of this test matrix, it can be seen that the Ricker
RBFN generally performs better than the Gaussian RBF when larger values
of noise (from σ = 0, 05) are present in the training data. However, when the
problem has a small quantity of noise, no model seems to be clearly perform-
ing better than the other. These results support the idea of using any model
indistinctly for low values of noise in the training data.

6.3.2 Realistic Experiment

For the realistic experiment, each RBFNN has been fitted with 1.000 training
samples. Next, a prediction test has been conducted with 10.000 additional
values. The model metrics obtained are summarized in the following table:

RBFNN Type Neurons
Reduced
Neurons

L2 NMSE Time (s)

Gaussian 15 8 100 0,7678 108
Ricker 21 2 100 0,7661 115

Table 4: Model and quality metrics for each RBFNN with the realistic dataset

Even though the Ricker RBF model seems to perform better with the re-
alistic data, the obtained NMSE values suggest the developed models are not
performing well with the provided dataset. This idea can be confirmed by dis-
playing each model’s predictions compared with the real values. This can be
seen in Figure 10:
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Figure 10: Real values (x ) compared with the test predictions (y) of each model.
Gaussian on the left, and Ricker on the right

These graphics show the difference between the predicted and real values.
As stated before, the two models don’t seem to be performing adequately. To
better understand the cause of this problem, an additional graphic has been
generated, showing the data distribution of the realistic dataset:

Figure 11: Data distribution of the dataset, where each height (x ) is shown with
its corresponding weight (y)

By observing the dataset distribution, it can be seen that it has a large
inherent noise, which is correct by the nature of the data: a very tall person can
weight very little, as a person of short stature can weight a lot. Therefore, it is
possible that the large error obtained by the two RBFNN models is not due to
a bad parameter estimation, but for the amount of noise present in the dataset.
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By grouping all the weights obtained by the same height, it is possible to es-
timate the dataset’s noise by obtaining the mean variance of the formed groups:

Dataset Noise =
1

n

n∑
i=1

V AR(gi)

Where gi is the group containing all weights for a same height hi in the
dataset.

By applying this formula, a value of 104,58 is obtained with the realistic
dataset. By multiplying the variance of the real values of the testing set with
the obtained NMSE values, the MSE can be obtained and compared with the
dataset’s inherent noise:

MSEGaussian = NMSE · V AR(Y ) = 0, 7678 · 136, 9397 = 105, 14

MSERicker = NMSE · V AR(Y ) = 0, 7661 · 136, 9397 = 104, 90

By performing these calculations, it can be seen that the prediction error of
the RBFNN models is almost identic to the dataset’s inherent noise. Therefore,
the developed models achieve a performance near to the best possible with the
evaluated dataset.
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7 Conclusions

This project has been dedicated to the study and implementation of Radial
Basis Function Neural Networks, presenting and discussing the Ricker Wavelet,
which is a biologically plausible activation function. The two presented designs
utilize a complete set of ML and statistic methods to improve their performance,
which include L2 regularization to deal with overfitting (Explained in Section
2.4.1) and the sigest algorithm (Detailed in Section 3) to efficiently find the
shape parameter. Furthermore, additional techniques have been implemented
in the models to improve their efficiency. For example, estimating an oversized
k parameter for the k -means algorithm and then reducing the neuron number
with AIC backward selection (explained in Section 2.4.3), thus avoiding k cross-
validation.

Given the limited existing RBFNN libraries in the Python programming
language, the designed models have been developed to be internally configurable,
allowing the user to configure the model’s activation function, the regularization
process and the neuron estimation criteria, among other options. The developed
implementation has not been explained in this project due to the consideration of
its low relevance with the study. However, it will be published in the researcher’s
GitHub account.

When observing the results of the planned experiments, the correct func-
tioning of the designed RBFNN models has been proven through the obtained
estimates. Moreover, the validity of the synthetic experiment has also been
proven by the gathered NMSE, which increased as expected in relation to the
b and σ2 difficulty parameters. A correct performance with realistic data has
also been observed by both models.

Comparing the two models has shown interesting results, including an ob-
served superior performance by the Ricker model when a large noise value was
present in the data, while a similar performance has been observed with low
noise values. These results may happen due to the influence of lateral inhibi-
tion, which could be explored further in future studies.

The developed RBFNN models have also shown a good performance quality
with realistic data containing a large noise value. The obtained error for both
models have been almost equal to the dataset’s variance, which suggests that
they can adapt to problems of different difficulty.
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7.1 Future Work

While this project has mainly focused in the quality metrics obtained by each
model as well as some internal metrics like the number of neurons or the esti-
mated shape parameter, the internal configurations could be studied in more
depth. The neuron distribution along the fitted data could be studied, as lateral
inhibition probably displaces the Ricker model’s neurons further from each other
to avoid large signal inhibitions. For this study, various heatmaps and graphs
could be generated to visually represent the neuron distributions of different
models.

In this study, the smoothing parameter is estimated with the sigest algo-
rithm. However, this may not be the most correct way to calculate it. A study
could be performed to find better methods to estimate the smoothing parameter
for the Ricker Wavelet. Furthermore, calculating of a different parameter for
each neuron could also be studied in depth to compare its performance with
models which only perform one estimation.

Even though more biologically plausible functions were originally planned for
this project, which included the Ormsby and the Klauder wavelets, they were
discarded due to having multiple smoothing parameters. Having a big number of
smoothing parameters limits a model’s efficiency, as it is very difficult to estimate
or search the optimal values for each one. A study could be conducted with
the objective of exploring different radial basis functions which share biological
properties like lateral inhibition, or to find efficient estimation methods for the
mentioned wavelets.

The generated Dietterich matrix could also be a topic of study. There exist
different data mining algorithms like the Apriori algorithm which could help
identify different association rules. These association rules express relationships
between items in frequent itemsets such as knowing which model would perform
better given different values for the difficulty parameters.

In order to greatly improve the efficiency of the developed implementations,
different parallelism techniques could be applied with the intention of speeding
up the creation of the RBFNN models. This extension could be focused in the
k-means, and in the creation of the output of the second layer.
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8 Project Management

8.1 Methodology

In order to have effective management for the tasks of this project, the Kanban
methodology has been used. Kanban is a project management methodology
centered in having a good visualization of the different pending tasks, based on
the existing agile methodology. This working framework allows for good real-
time organization, task prioritization and identification of possible bottlenecks.
Each task is grouped in a category depending on its stage of completion, and
it can change dynamically during its development. In this project, tasks have
been grouped in four main categories:

• To do: The tasks in this category have been defined and are ready to
develop, but no work has been dedicated to the tasks yet.

• In progress: The tasks in this category have been started and are being
developed, but there is still work to be done.

• Reviewing: The tasks in this category have been completed, but further
testing and review is still necessary to validate the correct functionality of
the task.

• Completed: The tasks in this category have been developed and tested,
validating its correct functionality.

A web application named ClickUp has been used to properly manage the
defined tasks and correctly control its categories. This website makes use of
the Kanban methodology, and has a clean user interface with a good visibility
of all tasks grouped by categories. ClickUp also allows users to set and track
their objectives using the OKR (Objectives and Key Results) framework, write
descriptions for the different tasks and set a priority for each one of them. It
can be accessed from any browser or downloaded as a mobile or desktop app.
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8.2 Validation

During the development of the project, different validation processes have been
executed to ensure the correctness of the designed Radial Basis Function Net-
works.

The project’s development process has been supervised by the tutor. Peri-
odically meetings have been scheduled, where the objectives and tasks of the
project were be discussed. During the experimentation phase of this study, more
meetings were scheduled in order to closely supervise its development.

During the training process of the different RBFNs, the optimal parameters
for the Artificial Neural Networks have been obtained by the application of
model validation techniques, such as cross validation. This processes ensure a
good parameter selection for each model.

The training and evaluation of the developed RBFNs have been done mul-
tiple times, for each data science problem selected. This avoids false positives
that could pass their testing phase by working correctly in one specific case.

8.3 Project Planning

This project has an approximate duration of 485 hours, which are spread across
a span of 136 days. Its development started the 10th of February and ended June
27th. To ensure that the project had been completed on schedule, an average
of 3.5 hours have been dedicated each day. However, some deviations have
happened throughout the project due to exams and unforeseen circumstances.

8.3.1 Task Definition

The following is a comprehensive list of tasks which have been carried out during
the project. Each task includes a description of the work to be performed, its
estimated duration, and any dependencies it may have with other tasks. All
tasks and dependencies are summarized in Table X and visually displayed in
Figure X.

In order to have a better organization, all tasks are divided into four main
groups: project management, research, implementation and testing, analysis
and delivery.
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Project Management

Project management is an important group of tasks which define the project’s
scope, planning, sustainability and organization. This group consists of five
tasks:

• Context and Scope: Definition of the project’s scope, contextualiza-
tion and justification. Its general objective is presented, along with its
relevance and methodology.

• Project Planning: Temporal planning for the complete development of
this study, including a description of the different project phases and the
resources and requirements associated with each of them.

• Budget and Sustainability: Total cost and impact produced during
this project’s development. An analysis of the sustainability of the project
is included, along with a budget plan.

• Integration in a Final Document: Grouping of the different docu-
ments submitted previously with general improvements and adjustments
based on the director and tutor’s suggestions.

• Weekly Meetings: Periodic meetings which have been scheduled with
the director of this project to supervise and discuss the progress of this
study.

Research

In order to correctly develop an implementation for the different RBFN Network
models it is fundamental to understand how RBFNNs work and be aware of all
their important concepts. It is also necessary to have great knowledge about
different data science problems in order to test the RBFNNs with a problem set
that encompasses a wide range of areas and applications. This part is divided
into three tasks:

• RBFN Networks: Research about the fundamentals of RBFN Networks
and study the existing implementations and applications.

• Activation Function Selection: Research and select different biolog-
ically plausible activation functions to develop a RBFN Network design
for each function.

• Problem Selection: Research and select a diverse set of problems in or-
der to develop a performance comparison of the different RBFN Networks.
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Implementation and Testing

Once different biologically plausible activation functions have been selected and
there is sufficient knowledge about RBFN Networks, the implementation of dif-
ferent Artificial Neural Networks can be carried out. This group includes three
tasks:

• RBFN Networks Implementation: For each biologically plausible ac-
tivation function, develop a Radial Basis Function Neural Network. These
designs may be based on already existing models, but several modifications
are still required.

• RBFN Network Training for Different Problems: Once all models
are implemented, it is still necessary to train the models for the selected
problems.

• Test and Measurement: Test and measure the efficiency and prediction
accuracy of the RBFNs for different problems.

Analysis

After implementing the different models, training them with a set of problems
and obtaining the corresponding results, an analysis of the obtained data can
be made in order to compare the RFBNN predictions. This group consists of
two tasks:

• Model Comparison: Compare the individual results obtained for each
activation function in order to determine the best performing models.

• Conclusion Extraction: Extract conclusions from the comparison and
metrics obtained during the study to determine which problem each cur-
rent activation function yields the best results for.

Delivery

When all the previous tasks are completed, it is still needed to complete the
project’s documentation. It is also important to prepare the study’s oral defense.
This final group includes two tasks:

• Project Documentation: This task will be done while the other tasks
are being completed, with a final dedicated time to revise all contents.

• Oral Defense Preparation: It is of great importance having a well orga-
nized summary of all contents which can be presented to the corresponding
tribunal members.
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8.3.2 Resources

To be able to complete the specified tasks, it is necessary to count with certain
resources. These resources have been classified in the following groups:

Human Resources

The main human resource of this study is the researcher, as it is responsible
for the project’s development. Both the director Luis Antonio Belanche Muñoz
and the GEP tutor Joan Sardà Ferrer are also human resources involved in this
study, as they are in charge of guiding and helping the researcher throughout
the project.

Hardware Resources

A necessary resource for the realization of this study is a computer. Two dif-
ferent computers have been used during this project:

• Desktop computer with 32GB of RAM and Intel® Core™ i7-6700K CPU
4.0GHz.

• Laptop computer with 16GB of RAM and Intel® Core™ i7-9750H CPU
2.6GHz.

Software Resources

Google Meet has been used to effectuate the meetings with the research director.
In order to control the different versions of the implemented code, Github has
been used. ClickUp web-app has been used to properly organize the different
tasks. Visual Studio Code has been used for the development of the different
RBFNs. To write the documentation of this study, Overleaf has been used,
which is a LaTeX editor. Finally, Ganttproject has been used to create the
Gantt charts presented in this work.

Material Resources

Some material resources such as papers or books were consulted in order to
accompany the online research.
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8.3.3 Risk Management and Alternative Plans

During the development of this study, a risk analysis was conducted in order to
dispose of an alternative planning strategy. Next, a solution for each planned
problem is presented, suggesting an alternative task arrangement along with its
level of risk.

• Library Issues: This problem has a medium risk in this project. An
incompatibility or a bug in a used library could be resolved by searching for
a more stable version, or finding a different library which offers the same
functionality. This would require the PC, VSCode and the researcher as
the main resources, and would mean having to reimplement the affected
code with the new library. Although this problem can be easily solved in
case of an alternative library, the additional time required to solve this
issue is calculated considering a reimplementation of the library, which
would take around 30 additional dedication hours.

• Delays in the Delivery: This problem would have a high risk in this
project. A possible solution for this problem would be to develop an
alternative planning in the future, when better time estimations can be
made from experience. Ganttproject and the researcher would be the
additional resources required. The development of an alternative planning
can require an additional time between one or two hours, approximately.
An increase in the dedicated time per day could also solve this problem
in case the proposed solution is not enough to correct the delay in the
delivery.

• Limited Existing Research: This problem has a medium risk in this
project. Due to a low amount of existing research about this study’s topic,
a good solution could be to keep in contact with the director, who can
provide detailed explanations or suggest physical or online documenta-
tion. The resources required for this solution would be the researcher and
the project director. The dedicated time to solve this problem could be
around 15 hours, considering five one-hour extra meetings with the direc-
tor and ten additional hours to study the provided additional content and
information.

• Computational Complexity: This problem has a medium risk in this
project. Google Collab or Kaggle Kernel could be used to solve this prob-
lem, as they offer a high performance execution of trained models with
various GPU options. This problem would require one of the mentioned
software resources, and the dedicated implementation time would increase
close to five hours in order to port the code to the new chosen platform.
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ID Name Time(h) Dependencies Resources
PM Project Management 85
PM1 Context and Scope 25 PC, Researcher
PM2 Project Planning 10 PM1 PC, Researcher, Ganttproject
PM3 Budget and Sustainability 15 PM2 PC, Researcher, Google Spreadsheets
PM4 Integration in the Final Document 20 PM1, PM2, PM3 PC, Researcher, GEP Tutor
PM5 Weekly Meetings 15 PC, Researcher, Director
R Research 120
R1 RBFN Networks 45 PC, Researcher, Papers, Director
R2 Activation Function Selection 45 PC, Researcher, Papers, Director
R2 Problem Selection 30 PC, Researcher, Papers, Director
IT Implementation and Testing 130
IT1 RBFN Networks Implementation 50 R1, R2 PC, Researcher, VSCode, GitHub, Papers, Director

IT2
RBFN Network Training for Differ-
ent Problems

50 R1, R2 PC, Researcher, VSCode, GitHub, Papers, Director

IT3 Test and Measurement 40 IT2 PC, Researcher, VSCode, GitHub, Papers, Director
A Analysis 60
A1 Model Comparison 30 IT3 PC, Researcher, Director, Obtained Results
A2 Conclusion Extraction 30 R, IT3 PC, Researcher, Director, Obtained Results
D Delivery 90
D1 Project Documentation 70 PC, Researcher, Overleaf, Obtained Results

D2 Oral Defense Preparation 20 D1
PC, Researcher, Project Documentation, Obtained
Results

Total 485

Table 5: Summary of the tasks to be performed
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Figure 12: Gantt Diagram
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8.4 Budget and Sustainability

In this section, a budget estimation has been done by identifying the different
costs necessary for the project’s correct realization, along with an estimation of
the total needed budget.

8.4.1 Budget

Personnel Costs

An essential part inside the various costs in this study are the personnel costs.
To give an approximate cost of the different tasks presented, each one has been
be assigned to an individual or a personnel. Then the cost of a task has been
calculated by multiplying the personnel’s cost per hour by the needed amount of
time. The following calculations have been done with three types of personnel:

• Technical Writer: This type of personnel is focused on the writing of the
required documentation, which includes the Project Management specifi-
cations, the development of this project and its results.

• Programmer: This role is dedicated to the implementation and devel-
opment phases of the project, where the usage of programming languages
and measurement tools will be necessary.

• Researcher: This personnel’s objective is to search and collect informa-
tion about the fields of Radial Basis Function Networks and Activation
Functions. From the compiled information and the developed study, it is
also his responsibility to extract conclusions and plan possible extensions
for the project.

The researcher of this study has played the different types of personnel pre-
sented, but the GEP tutor and the project’s director can also play the technical
writer and researcher roles when proposing corrections and suggestions.

The salary of each described role [12] is shown in the following table:

Role
Annual
Salary (€)

Total with
SS (€)

Cost / h
(€)

Role
played
by

Technical
Writer

26.263 34.191,90 19,5
R, GEP Tu-
tor, Director

Programmer 26.198 34.057,40 19,46 R, Director
Researcher 35.259 45.836,70 26,19 R, Director

Table 6: Annual Salary of the presented personnel
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The total calculated cost for each task (known as CPA) is summarized in
table X:

Activity
Import
(€)

Acti-
vity
hours

Tech.
writ-
er
hours

Pro-
gra-
mmer
hours

Res-
ear-
cher
hours

PM - Project Manage-
ment

1.707,375 85 70 7,5 7,5

PM1 - Context and Scope 487,5 25 25 0 0
PM2 - Project Planning 195 10 10 0 0
PM3 - Budget and Sustain-
ability

292,5 15 15 0 0

PM4 - Integration in the Fi-
nal Document

390 20 20 0 0

PM5 - Weekly Meetings 342,375 15 0 7,5 7,5
R - Research 3.142,8 120 0 0 120
R1 - RBFN Networks 1.178,55 45 0 0 45
R2 - Activation Function Se-
lection

1.178,55 45 0 0 45

R3 - Problem Selection 785,7 30 0 0 30
IT - Implementation and
Testing

2.529,8 130 0 130 0

IT1 - RBFN Networks 973 50 0 50 0
IT2 - RBFN Network Train-
ing for Different Problems

778,4 40 0 40 0

IT3 - Test and Measurement 778,4 40 0 40 0
A - Analysis 1.470,45 60 0 15 45
A1 - Model Comparison 684,75 30 0 15 15
A2 - Conclusion Extraction 785,7 30 0 0 30
D - Delivery 1.888,8 90 70 0 20
D1 - Project Documentation 1.365 70 70 0 0
D2 - Oral Defense Prepara-
tion

523,8 20 0 0 20

Total 10.215,43 485 140 152,5 192,5

Table 7: Total calculated personnel cost for each task defined
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General Costs

Amortization: Another important aspect inside the total calculated cost is
the amortization. To calculate the amortization of the material resources used
in this project, it has been considered an average daily usage of 3.5 hours during
a total of 136 days in a four-year lifespan. It has also been considered that 80%
of the project has been done with the laptop, and the remaining 20% with the
desktop computer.

The following formula has been used for the amortization calculations:

Amortization =
Resource cost · Usage hours

4 years · 136 hours · 3, 5 daily hours

Hardware Price (€)
Time used
(h)

Amortizati-
on (€)

Personal Desktop Computer 1.600 97 81,51
Laptop Computer 1.000 388 203,78
Total 2.600 485 285,29

Table 8: Amortization costs of the employed resources

Electric Cost: Currently, the cost of electricity, represented by its €/kWh, is
around 0,1638€/kWh [31]. After calculating the electric consumption cost of
the different hardware used, the following table is obtained:

Hardware
Power
(W)

Time
used (h)

Consum-
ption
(kWh)

Cost
(€)

Personal Desktop Com-
puter

420 97 40,74 6,67

Laptop Computer 180 388 60,84 11,44
Total 600 485 101,58 18,11

Table 9: Electric cost of the used hardware
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Internet Cost: By the personal experience of the researcher, it has been as-
sumed a cost of 32€ per month in internet services. Considering a duration of
5 months, the estimated cost in internet connection is obtained by multiplying
the monthly cost with the number of months, which results in a total of 160€.

Total General Cost:

Concept Cost (€)
Amortization 285,29
Electric Cost 18,11
Internet Cost 160
GC Total 463,4

Table 10: Total General Cost (GC ) of this study

Other Costs

Contingency Plan: After calculating the personnel cost and the total gen-
eral cost, it is also important to add a contingency margin in case of unforeseen
problems or incidences. For this project, an additional 15% of the initially
calculated cost has been added in order to cover unexpected problems.

Contingency Cost = (10.215, 43 + 463, 40) · 0, 15 = 1.601, 82

Incidental Costs: For the possible incidents planned in Section 8.3.3, an ad-
ditional cost has been added depending on each incident’s risk and the cost of
its proposed solution.

Incident Cost (€) Risk (%)
Final cost
(€)

Library Issues 120,28 10 12,03
Delivery Delays 485,51 30 145,65
Limited Existing Research 168,03 50 84,01
Computational Complexity 59,5 40 23,8
Total 833,32 130 265,49

Table 11: Incidental costs of the project
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Total Cost

From the previous sections, the following total cost has been calculated:

Activity Cost (€)
CPA Cost 10.215,42
GC Cost 463,4
Contingency 1.601,82
Incidental Costs 265,49
Total 12.546,13

Table 12: Total cost required for the project

Management Control

In order to control the budget estimations correctly during the development
of the study, it is recommended to establish indicators and management control
mechanisms to regulate the potential budget deviations. In this section, devia-
tion formulas are presented, and will be used throughout the project to correct
the budget differences.

• Personnel Deviation: It is caused when the planned personnel’s dedi-
cated hours don’t correspond with the scheduled timeline.

(Planned cost per hour− Real cost per hour) · Total hours consumed

• Amortization Deviation: It is caused by using more or less time the
mentioned hardware resources.

(Planned usage hours− Real usage hours) · Cost per hour

• Incidental Costs Deviation: It is caused by a bad estimation on the
incidental costs initially planned.

(Planned incidental hours−Real incidental hours) ·Total incidental hours

To calculate the general costs deviation from the described indicators, the
following formula is used:

Cost Deviation = Personnel Deviation + Amortization Deviation +
Incidental Costs Deviation
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8.5 Sustainability

8.5.1 Self-assessment

In recent years, sustainability has risen as an important issue, given the need
to balance economic development, social progress and environmental protec-
tion. To ensure a sustainable future, it is essential to consider all dimensions of
sustainability, including the economic, environmental and social dimensions.

The completed poll has made me think that many people associate sus-
tainability with products that minimize harm to the environment and society,
promoting economical balance. However, it is also important to consider the
economic dimension of sustainability, which requires additional thinking about
economic growth.

In conclusion, I consider that to achieve sustainability, it is essential to mea-
sure the impact of projects in each of its dimensions before the required imple-
mentation. Doing so enables the identification of any sustainability issues that
may happen, and the use of available tools and resources to address them.

8.5.2 Economic Dimension

Regarding PPP: Reflection on the cost you have estimated for the
completion of the project:

The estimated cost of the project has been estimated reasonably, and each
part has been carefully measured to be carried out in a real situation.

Regarding Useful Life: How are currently solved economic issues
(costs) related to the problem that you want to address (state of
the art)?

It is very possible to suffer economic issues in a project with this complexity,
for each economic issue, a plausible solution has been presented. These solutions
can vary the total economic cost, but without causing a high raise.

How will your solution improve economic issues (costs) with respect
to other existing solutions?

Currently, the economic cost necessary to train a complex RBF Network is
high. Improving its efficiency and temporal training cost will possibly reduce
the needed economic cost.

8.5.3 Environmental dimension

Regarding PPP: Have you estimated the environmental impact of the
project?

Having in mind the nature of this project, its impact has not been directly
stated. This has been done based on the low environmental impact it has.
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Regarding PPP: Did you plan to minimize its impact, for example,
by reusing resources?

Some parts during the implementation and training of the different models
will probably use libraries or pre-trained models to minimize the required elec-
trical consumption.

Regarding Useful Life: How is currently solved the problem that
you want to address (state of the art)?

To determine if some of the presented new models perform better than the
existing solutions, the best way is to make a wide comparison using different
real data science problems.

How will your solution improve the environment with respect to other
existing solutions?

As stated before, the proposed new models may reduce the necessary elec-
tric and time consumption in case a better performance is achieved, therefore
improving the environment.

8.5.4 Social dimension

Regarding PPP: What do you think you will achieve in terms of
personal growth from doing this project?

This project will introduce me to research, and will make possible the learn-
ing of newly arisen topics, further investigating them. This study will make me
learn about project management and tasks organization.

Regarding Useful Life: How is currently solved the problem that
you want to address (state of the art)?

There currently exist very efficient designs of RBF Networks, most of them
being specialized in a selected range of problems. This limits the usage of each
model, but helps to keep a low complexity training.

How will your solution improve the quality of life (social dimension)
with respect to other existing solutions?

This solution may present better performance models that may help pro-
grammers and ML users to spend less time in training.

Regarding Useful Life: Is there a real need for the project?
In order to maintain a dynamic evolution in the field of artificial intelligence

and machine learning, it is always needed to keep investigating better performing
models.
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8.6 Changes and Difficulties

The project planning initially made in GEP has been followed throughout the
project’s development. At its current stage, some eventual deviations have
arisen, affecting the project’s objectives and time distribution.

The first deviation has happened during the research part of the project,
specifically during the Activation Function Selection stage. This stage was es-
pecially important, given that the selected Activation Function would directly
affect the model’s predictions, performance and implementation complexity.
Different functions have been considered, such as the Ormsby or the Klauder
functions, and support programs have been developed in order to study their
hyperparameters. The before unnoticed complexity of finding a good hyper-
parameter estimation method has resulted in a higher research time span. In
order to control the mentioned research time increase, only the Ricker Wavelet
function has been selected as an activation function, as it only has one hyper-
parameter. This solution has helped reduce the research time, but has affected
the objective of selecting multiple possible activation functions.

A second difficulty has also affected the project in later stages. The devel-
opment of the different RBFNN models has been more complex than expected,
thus resulting in more needed time to finish the implementation. The reason for
this time miscalculation is a lack of Python statistical libraries, with the exist-
ing ones being limited and unfinished. In R and other programming languages,
these libraries are more abundant and complete, and include methods like sigest
or step, which have been manually implemented for this project.

In terms of cost increase, it has been necessary to increase the number of
dedicated hours for the research and implementation stages. The following table
shows the additional cost with these hours:

Activity
Import
(€)

Extra
Acti-
vity
hours

Tech.
writ-
er
hours

Pro-
gra-
mmer
hours

Res-
ear-
cher
hours

R2 - Activation Function Se-
lection

392,85 15 0 0 15

IT1 - RBFN Networks 233,52 12 0 12 0
Total 626,37 27 0 12 15

Table 13: Additional cost of the project with the new dedicated hours
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8.7 Knowledge Integration

8.7.1 Programming Knowledge

The implementation phase of the project requires a good understanding of pro-
gramming languages, as it is needed to interpret and understand code from
different sources as well as knowing about various data structures and perfor-
mance optimization algorithms. For this task, the knowledge gained in different
subjects has been applied. These are Programming 1 and 2, EDA and Algo-
rithmics.

8.7.2 Statistics and Artificial Intelligence

Statistics is the base of Artificial Intelligence models, and it is a universal tool for
measuring and validating a study. In this project, Generalized Linear Models
are used, along with the gathering of different statistical metrics. The PE
subject has helped to better understand the Generalized Linear Models, and
has eased the interpretation of the regularization process (throughout Aikaike’s
Information Criterion) and the model’s results.

In the same way, the Artificial Intelligence subject has provided the necessary
knowledge to correctly understand various concepts about RBFNNs, such as the
activation functions, the design matrix or cross validation.

Some M1 and M2 concepts have also been used for matrix multiplications,
various initial tests with a gradient descent algorithm and the calculation of
euclidean distances.

8.7.3 Other Knowledge Fields

Different neuroscience articles have provided useful information about lateral
inhibition and how it can affect a neuron’s output. Moreover, Kukjin Kang et
al. article provides evidence and investigation of Mexican-hat shaped electric
signals present in the visual cortex.

The majority of the found activation functions, along with their parame-
ters have been studied in the seismics field. These include functions such as
the Ricker, Ormsby and Klauder Wavelets. Although this field is not related
with this research, it has provided practical information about the studied basis
functions.
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8.8 Laws and Regulations

In this project there are no laws or regulations which directly affect it. However,
third-party software is used, and it can have license and citation policies.

The usage of Python as the selected programming language for this project
requires the agreement of the Python Software Foundation License (PSFL).
This license grants all users the right to run, distribute, modify, study and copy
its software. Nevertheless, it is not copyleft. As Python is used to run and
distribute the developed RBFNN models, the PSFL terms and conditions are
not breached.

For the development of a basic RBFNN model, a sigest method has been
developed, based on its R implementation included in the Kernlab package.
This package has a GPL-2 license, which grants users the ability to reproduce
its code.

Once the implementation is finished, it is also possible that the datasets
selected for the experimentation phase have a license under certain conditions
and regulations. Therefore, it is important to be informed about their licenses
in order to not violate any of their terms of usage.
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