
Data Oriented Design

in Video Games

Marc Rosell Hernandez

Supervised by Mónica Mart́ın Mı́nguez

Bachelor’s Degree in Video Game Design and Development

2022-2023

Universitat Politècnica de Catalunya

Abstract

Object-Oriented Programming is the paradigm currently used in the video-game industry, and

learnt by students or people wanting to become a video-game developer. Said methodology pri-

mary characteristics, and how they are used, can be considered its own flaws, often overlooked

due to the rapid capability advances in hardware. This situation may not be considered sustain-

able, so in this thesis the Data-Oriented Design paradigm is presented as an alternative, offering

a better hardware control resulting in a more efficient product.

To test whether such a method is indeed more efficient, two projects have been developed

with one paradigm each, using C/C++ in the Visual Studio environment. In them, the simple

structure defined by each paradigm in order to have entities has been created. By defining a

maximum of objects to simulate and a time limit, along with a time control based code insertion,

the applications themselves derive update time metrics for analysis. Moreover, a profiler has been

used to benchmark the L1 cache usage to check which of them makes a better usage of cache.

The gathered data has been studied using RStudio, and the cache metrics have been presented,

showing that Data-Oriented Design is indeed more efficient and cache friendly, becoming a great

paradigm contender if given the chance, demonstrating being up to 70 times faster than Object-

Oriented Programming in the case of study.

i

Keywords

Data-Oriented Design, Object-Oriented Programming, C/C++, cache friendly, efficiency, opti-

mization, metrics

ii

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Links

Object-Oriented Programming Repository: https://github.com/MarcRosellH/OOP-Minigame

Object-Oriented Programming Release: https://github.com/MarcRosellH/OOP-Minigame/releases/

tag/0.9

Data-Oriented Design Repository: https://github.com/MarcRosellH/DOD-Minigame

Data-Oriented Design Release: https://github.com/MarcRosellH/DOD-Minigame/releases/tag/0.9

iii

https://github.com/MarcRosellH/OOP-Minigame
https://github.com/MarcRosellH/OOP-Minigame/releases/tag/0.9
https://github.com/MarcRosellH/OOP-Minigame/releases/tag/0.9
https://github.com/MarcRosellH/DOD-Minigame
https://github.com/MarcRosellH/DOD-Minigame/releases/tag/0.9

Marc Rosell Hernandez
Data-Oriented Design in Video Games

List of Tables

2.1 Initial Pick-up Table . 8

2.2 1st Normal Form Pick-up Table . 9

2.3 1st Normal Form Weapon Table . 9

2.4 2nd Normal Form Weapon Table . 10

2.5 2nd Normal Form Pick-up Table . 10

2.6 3rd Normal Form Assets Table . 11

2.7 Boyce-Codd Normal Form Rooms Table . 11

2.8 FullAnimKey Data Layout by Fabian . 26

2.9 DataOnlyAnimKey Data Layout by Fabian . 26

3.1 Gantt diagram . 32

3.2 Costs analysis . 35

A.1 512 Objects OOP L1 Cache . 61

A.2 512 Objects DOD L1 Cache . 61

A.3 1024 Objects OOP L1 Cache . 63

A.4 1024 Objects DOD L1 Cache . 63

A.5 2048 Objects OOP L1 Cache . 65

A.6 2048 Objects DOD L1 Cache . 65

iv

Marc Rosell Hernandez
Data-Oriented Design in Video Games

List of Figures

2.1 Object-Oriented Approach Call Sequence . 6

2.2 Data-Oriented Approach Call Sequence . 6

2.3 Murder of Crows Example, Hierarchical LOD by Fabian 21

2.4 Squadron Defence Game Example, Hierarchical LOD by Fabian 22

2.5 JIT Memento Example, Hierarchical LOD by Fabian . 23

4.1 HacknPlan project management board . 36

6.1 512 Objects RStudio ANOVA . 54

6.2 1024 Objects RStudio ANOVA . 55

6.3 2048 Objects RStudio ANOVA . 56

A.1 OOP 512 Objects Simulation Terminal . 60

A.2 DOD 512 Objects Simulation Terminal . 60

A.3 512 Objects Simulation AB Testing . 61

A.4 OOP 1024 Objects Simulation Terminal . 62

A.5 DOD 1024 Objects Simulation Terminal . 62

A.6 1024 Objects Simulation AB Testing . 63

A.7 OOP 2048 Objects Simulation Terminal . 64

A.8 DOD 2048 Objects Simulation Terminal . 64

A.9 2048 Objects Simulation AB Testing . 65

v

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Listings

2.1 Operating table structured data by Fabian . 11

2.2 Initial Health Regen by Fabian . 13

2.3 Existential Processing Health Regen by Fabian . 13

2.4 Dynamic Polymorphism by Fabian . 15

2.5 Container Dynamic Polymorphism by Fabian . 15

2.6 Class Converting Dynamic Polymorphism by Fabian . 15

2.7 Monolitic Player Class by Fabian . 17

2.8 Composite Player Class by Fabian . 18

2.9 Manager Ticked Components by Fabian . 19

2.10 Sparse Arrays for Components by Fabian . 20

2.11 Binary Search Through Objects by Fabian . 25

2.12 Binary Search Through Values by Fabian . 25

2.13 Keeping More Than You Need by Fabian . 26

2.14 Mixing Hot Reads with Hot and Cold Writes by Fabian 27

2.15 Ensuring Each Stream Is Continuous by Fabian . 28

2.16 Join By Looping Through All Tables by Fabian . 28

2.17 Simple Particle Update with SIMD by Fabian . 30

5.1 OOP Render Class . 41

5.2 OOP Resource Manager Class . 42

5.3 OOP Module Template Class . 43

5.4 OOP Application Class . 43

5.5 OOP Main Entry Point . 44

5.6 OOP App Update . 44

5.7 DOD Main Entry Point . 45

5.8 DOD App Clean-Up . 45

5.9 OOP Scene . 45

5.10 DOD Scene . 46

5.11 OOP Object Class . 47

5.12 OOP Camera Component . 48

5.13 OOP Behaviour Component . 49

5.14 DOD ObjectData Structure . 49

5.15 DOD apply transform Method . 50

5.16 DOD objects to delete Method . 50

5.17 DOD re create objects Method . 51

vi

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Glossary

OOP: Object-Oriented Programming.

DOD: Data-Oriented Design.

Polymorphism: Provision of a single interface to entities of different types.

Inheritance: Object or class based upon another object or class retaining similar implementation.

SIMD (Single Instruction Multiple Data): Type of parallel internal processing directly accessible

through an instruction set architecture, performing the same operation over multiple data.

LOD (Level of Detail): Method through which the complexity of a 3D model is decreased as its

distance to the viewer keeps increasing.

vii

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Formulation . 1

1.3 Overall Objectives . 2

1.4 Specific Objectives . 2

1.5 Project Scope . 3

2 State of the Art 4

2.1 Current Paradigm . 4

2.2 Data-Oriented Design . 5

2.3 Data-Oriented Design in Depth . 8

2.3.1 Relational Databases . 8

2.3.2 Existential Processing . 12

2.3.3 Component Based Objects . 16

2.3.4 Hierarchical Level of Detail and Implicit-state . 21

2.3.5 Searching . 24

2.3.6 Optimizations . 27

2.3.7 Maintenance and Reuse . 31

2.3.8 Last Mentions . 31

3 Project Management 32

3.1 Gantt Diagram . 32

3.2 SWOT . 33

3.3 Risks and Contingency Plan . 34

3.4 Initial Costs Analysis . 34

3.5 About the Delayed Delivery . 35

4 Methodology 36

4.1 Development Methodology . 36

4.2 Tools for Project Monitoring . 36

4.3 Equipment and Software Used . 37

4.4 Project Validation Methods . 37

5 Project Development 39

5.1 External Tools . 39

5.1.1 OpenGL and Related . 39

5.1.2 AssImp and stb . 40

5.1.3 PhysX . 40

viii

Marc Rosell Hernandez
Data-Oriented Design in Video Games

5.2 Equalities of the Projects . 40

5.3 Paradigms Development Comparison . 43

5.3.1 Game Systems . 43

5.3.2 In-Game Entities . 47

5.4 Project Changes . 51

6 Project Validation 53

6.1 Cache Metrics Explanation . 53

6.2 512 Objects Comparison . 54

6.3 1024 Objects Comparison . 55

6.4 2048 Objects Comparison . 56

6.5 Validation of the Thesis Premise . 57

7 Conclusions 58

7.1 Thesis Conclusions . 58

7.2 Future Lines of Action . 58

A Data Dump 60

A.1 512 Objects . 60

A.1.1 Simulation Terminal . 60

A.1.2 AB Testing . 61

A.1.3 L1 Cache Benchmark . 61

A.2 1024 Objects . 62

A.2.1 Simulation Terminal . 62

A.2.2 AB Testing . 63

A.2.3 L1 Cache Benchmark . 63

A.3 2048 Objects . 64

A.3.1 Simulation Terminal . 64

A.3.2 AB Testing . 65

A.3.3 L1 Cache Benchmark . 65

ix

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Chapter 1

Introduction

1.1 Motivation

The main motivation for this project comes from hearing about the Data-Oriented Design paradigm,

about how good it is in terms of readability, ease to debug and efficient, three keystones for me back when

I first heard about it, and now. Other than this, I have been always curious about knowing how everything

works in its most simple form, from mathematics to any subject with a logic process behind. So, the

same happens for computation. Data-Oriented Design offers me the opportunity to better understand

the most low-level characteristics and processes that occur when executing any program, software and

hardwarewise, motivating me to develop this project, study this paradigm and analyse how more or not

efficient it is in comparison with Object-Oriented Programming.

1.2 Problem Formulation

There are two major problems regarding the current video-game development sector. On the one hand,

the video-game sector currently relies on a lot of third-party game engines to develop a product, except

for some video-game studios that may create their own. These third-party ones, are made following the

standard in our sector, using the Object-Oriented Programming paradigm, and even during the gameplay

development the same model is used. This model is fantastic on itself, but is its own flaw when trying to

optimize the product, debugging it, or even read. This does not mean that OOP is useless, nor products

created using it are not optimizable, but it truly has a bottleneck, thus slowing the development process

as well.

On the other hand, the current video-game industry may be facing an important and defying problem

when it comes to optimization, in a few years to come, due to a lack of good tools and programming

techniques. Until now, the sector has been relying on the fact that the technology and hardware keeps

evolving. This evolution, even if it looks like a good thing, comes with a stagnation of some software

development sectors. Moore’s Law already explained how transistors halved their size every one and a half

years, which has resulted, until now, in this tech evolution. Now, transistors have almost reached their

limit in size, because these are approximating the size of an atom.1 Smaller transistors are physically

impossible due to quantum mechanics, and quantum computers are being visualized and designed for

other purposes than video-games.

1News article from the Institute of Electrical and Electronics Engineers Spectrum <https://spectrum.ieee.org/smallest-
transistor-one-carbon-atom>.

1

Marc Rosell Hernandez
Data-Oriented Design in Video Games

These two seemingly different and distant problems may converge into one of optimization, when in

a near future, with all the advancements in tech and the programming skills taught and learned cannot

be used to optimize and offer new and better game experiences, and we might not wait for the transistor

problem to occur to take action. The hardware problem may be out of reach for several years for anyone

to confront it, since it is more about knowledge and physics problems. Hence, to solve said bottleneck,

offer a better final product, and ensure the continuity of improvement in the game industry, it is needed

to look for another paradigm which may make it possible to squeeze the maximum potential out of the

hardware, so us, developers, can offer a better experience.

Data-Oriented Design has been around for not so long, even though its fundamentals have been

applied in software frequently. This model, as its name suggests, is about data management and how a

program needs to be developed depending on data input and output. It already has been proposed by

several video-game developers to use this paradigm in the industry, yet commercial game engines are not

making use of it or are just starting to create packages to apply it. When talking about specific game

studios, it is not known if this is in use already, but even if some might already be developing around it,

there is not a good deal of information about it, and what can be seen is that it has no importance in

education programs. So, this thesis is about how this model can be implemented in video-games and test

if it truly solves efficiency related problems and other that the paradigm mentions, like readability and

debug ease.

1.3 Overall Objectives

The general objective of this study is to get a different point of view when it comes to optimizations

which are seen as a few improvements made in the later stages of development, in terms of efficiency,

or sometimes during the development itself. By changing from Object-Oriented Programming to Data-

Oriented Design, the whole program’s conception changes as well, theoretically making it more efficient

from the start, more readable, and easy to debug, which might also decrease a project’s development time.

Being more efficient and having more frame time may have other consequences such as the availability

to spend more time budget to do other computation or, for example, spending it in other shaders or

graphics enhancing the experience.

With this approach, the main objective is to see and analyse how Data-Oriented Design needs to

be implemented and what are their pros and cons taking into account the current industry, by using it,

benchmarking and compare it with Object-Oriented Programming.

1.4 Specific Objectives

This project has several specific objectives. The first objective is to learn about Data-Oriented Design

and how a piece of software, a video-game in this case, needs to be programmed to make a correct

use of said model. Beyond learning and researching about Data-Oriented Design, a second specific goal

is to apply everything learned about Object-Oriented Programming during the Bachelor’s Degree and,

after the research, about the DOD model as well, to create two prototype clones using both paradigms

independently. Furthermore, another objective is to learn about AMD µProf 2 and do benchmarking

to gather data of both applications, which may lead to the final and main goal which is to make a

comparison of both programming models in the same game systems and overall game, to conclude if the

Data-Oriented Design paradigm may be better or not.

2Link to software: <https://www.amd.com/en/developer/uprof.html>.

2

Marc Rosell Hernandez
Data-Oriented Design in Video Games

1.5 Project Scope

The project scope is mostly the video-game industry, as well as the education programs related to the

sector, yet which specific studios would apply it is certainly unclear. What has been proposed as Data-

Oriented Design is a model that has been already used before, and it is not known what models are used

by the development studios in the video-game industry. What it is known is that some minor or even

major ideas of this paradigm are being used in, not just video-games, but the software industry. In our

sector, the OOP paradigm seems to be the one leading, and might continue like this for a long time when

taking the firsts steps into video-games development. Beyond the beginners learning point, and with no

prior knowledge of which model uses which studio in the industry, the scope can be every company into

video-game development, to avoid longer development calendars, preventing optimization sprints, and

improving the player’s gaming experience, so not just the studios applying this paradigm would benefit

of it, but also clients and players who may live a better gaming experience.

3

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Chapter 2

State of the Art

This chapter is divided in three different sections. The first one reviews and explains the main point of the

current industry paradigm, Object-Oriented Programming. The following section is an introduction to

the Data-Oriented Design, its concepts and why said concepts makes this model better than the Object-

Oriented Programming paradigm. Finally, the last section is about the introduction of some methods to

apply the Data-Oriented paradigm in projects.

2.1 Current Paradigm

The current industry model is Object-Oriented Programming which has been around since the 1960, when

the expression object was firstly used to make reference to atomic symbols, in other terms, items with

attributes.1 It is assumed that around the mid-1990s it became more popular in video-games development

due to its characteristics and ease to apply in this type of coding, growing and being the leading model

in the industry until now, and maybe even for many years to come.

The main points of Object-Oriented Programming are classes, followed by other additions to offer

more functionalities around these. Said classes are fundamentally a set of attributes and procedures

packed into a specific layout created by the programmer. Attributes, or in other words parameters, are

always basic data types used to represent the most simple data, and procedures are functions, often called

methods as well, that become inherent to the class. These classes are used as a new data type to perform

specific and complex behaviours. Upon using them, by declaring and defining a new variable whose data

type is said class, the instance is considered an object or entity, since its attributes are now established,

creating a specific behaviour.

Other important OOP features used in the video-game industry are inheritance and polymorphism.

Inheritance itself allows programmers to create new classes depending on others that already exist by

determining what attributes and procedures can be modified in the new class, thus creating the concept

prototypes or abstract classes. To be precise, any class attribute or function can be either public,

protected, or private, implying that they can be modified, whether said class is inheriting from another

one, or not. Furthermore, polymorphism is when, inheriting from a class, whether it is abstract or not,

some class attributes or procedures are added or modified, to represent another subgroup of said class.

For example, a prototype class could be called vehicle, containing attributes like a position vector, a

velocity vector, and any other data that all vehicles have in common. Then, by inheritance, other classes

like a car class and a plane class, would inherit the parent’s class parameter’s type, but between these

two, they would have discrepancies, such as in which axis they can travel, wheels count, and so on.

1McCarthy et al. 1960, p. 88

4

Marc Rosell Hernandez
Data-Oriented Design in Video Games

All the features above are used in video-games development by creating systems in which data is

organized in two different groups: entities and components. Entities are usually inert objects, with no

data or specific procedures, and their behaviour is defined by all the components belonging to them. This

structure creates an update dynamic that affects the game performance, as it is shown in the next section

(Section 2.2), that makes development teams try to reduce time costs per frame by using multi-threading

and refactoring code to avoid expensive operations. Said changes are not bad, in fact, they are important

and needed, yet they may not make quite the difference. Nowadays, the need to make other improvements

has led to some teams and companies to explore outside the Object-Oriented Programming paradigm

and new entity systems have appeared, such as the Entity-Component System developed by the Unity

team. As they say, the ECS:

is a data-oriented framework compatible with GameObjects, enabling seasoned Unity creators

to build more ambitious games thanks to an unprecedented level of control and determinism.2

As they mention, it is data-oriented, yet it is also an optional framework within their game engine, so its

main processes are not computed using this model yet, and being optional does not make any relevant

improvement for the public.

2.2 Data-Oriented Design

When talking about Data-Oriented Design, there are some important things to know. Even if it is another

paradigm, it does not need any specific structure to be defined in a language, as it is the case for keywords

in OOP languages, such as class, public, or any other, making certain languages to be prone to be used

within the model. The DOD model relies on the basics of computation, as it did the first definition of

object back in the 1960.3 So, even if DOD may or could make use of a class layout, it is not needed, and

simple structures can be used, along with simple data containers, such as arrays. With this in mind, it

can be seen that by the data layouts there is no seemingly difficulty in DOD, and the same data patterns

and programming techniques could have been applied, and most probably were applied, in the origins of

not just video-games and software creation, due to computer’s low memory capacity.

It was in September 2009, when Noel Llopis firstly used the terminology Data-Oriented Design in that

month’s Game Developer Magazine.4 Later that year, he also published the same article in his own blog,

which is used as the main source in this section, in order for the information to be up-to-date. In said

blog, Llopis explains the main points and model’s principles. The most important concept, or principle,

is that of how to use the data and its characteristics. Since the first computers’ existence, these have

been used to solve problems in its most basic way, computing the given input data and offer an output

as a solution. Llopis exemplified this concept, saying that

a game is nothing more than a program that works at interactive rates, so wouldn’t it make

sense for us to concentrate primarily on that data instead of on the code that manipulates

it?5

When objects appeared, programmers started to confer physical object attributes and behaviours to

software elements that did not necessarily need them. Procedural programs, as another example, are

centred in procedures and functions. DOD, on the other hand, proposes not just to process the data and

give an output, but to do it the most efficient possible by being aware of the hardware used and how it

2Unity ECS Webpage <https://unity.com/ecs>.
3See footnote 1.
4Llopis 2009b
5Llopis 2009a.

5

Marc Rosell Hernandez
Data-Oriented Design in Video Games

works. The DOD paradigm, so, is centred in the type of data used, how it is laid out in memory, as well

as how it is read or processed.6 To get some more detail, here there is the DOD model’s main point in

comparison with OOP.

An important step to understand the differences between both models is to get to known which the

ideal data is, and how it is organized. Llopis mentions that the ideal data is the one in need of minimal,

or even none, transformations, so its process would just be to copy that data and offer it as an output,

also making it the most homogeneous and contiguous as possible. A program with perfectly laid out data

may not exist, but DOD is about designing a program depending on the data used, since achieving an

almost ideal data format is a primary goal. With this in mind, and going back to OOP, it can be seen

that ‘all elements are naturally contained as trees’, in Llopis’ words. Pretty much everything has a tree

structure, from inheritance to scene elements. This implies that, when updating an element, it would

probably need to access another object down the tree.

A

B E

FC D

Figure 2.1: Object-Oriented Approach Call Sequence

The image above (Figure 2.1) is a tree structure typical of a OOP approach, which call sequence

produces a cascading effect. In this specific case, the cascade effect makes the following succession: A,

B, C, D, E and F. Each letter represents a different in-game entity, having their own attributes and

procedures. So, for example, when updating a scene root element, it would call its children to update,

and so would do each entity in the scene, causing a cascading effect. And it is important as well to

visualize how each entity calls different methods, first for space transformations, logic processes, and to

be rendered, in their own update method.

The DOD approach, on the other hand, is about making the data contiguous, as can be seen in the

image below (Figure 2.2).

A A A
...

B B B
...

C C C
...

D D D
...

Figure 2.2: Data-Oriented Approach Call Sequence

6It is important not to confuse Data-Oriented Design with something data-driven. Data-driven only implies that some
application analyses data, and uses its conclusions to make strategic decisions.

6

Marc Rosell Hernandez
Data-Oriented Design in Video Games

In this case, every object is broken down into different components, so a specific system computes the

data of its distinct array. So, each array, or in other words said contiguous memory, is data to be executed

by a single system, and each index represents an object, making that the firsts A, B, C and D, belong to

the same object. This adjacent data allows computing everything that belongs to a system manager one

after the other, so the call sequence would be: A, A, A. . . B, B, B. . . C, C, C. . . D, D, D. . . , and so on.

Comparing both sequences, it can be seen that OOP ignores if there are many objects of the same type,

working on objects in isolation. But DOD groups the same data type in data structures to be computed

one after the other, making it easier for us developers and hardware. The hardware takes advantage of

this data format, because cache misses decrease by a great amount, due to the same data types being

contiguous, and their need to be executed by the same process, which is not the case for OOP.

Having seen how data is important and what this model proposes, there are other advantages, as

Llopis points out. Firstly, the paradigm makes it easier to parallelize code. On the one hand, if someone

wanted to parallelize code based in OOP, it would be difficult at least, not really efficient, and more

susceptible to errors. Even if these problems can be solved by using synchronization primitives like locks,

semaphores, or others, to prevent accessing the same variables at a time, it would also cause efficiency

issues, because of the wait implied for them to be accessible again. On the other hand, the DOD model

is easier to parallelize, since the same data types belonging to a specific system are grouped in a data

structure, requiring a small procedure to output the desired data. Each array, of a ‘component’ type, can

be in a different thread, requiring minimal data synchronization. Secondly, another DOD objective is to

be cache friendly, because nowadays, there are more complex instruction pipelines and, even if memory

systems are improving, the data transfer is still slow. This is achieved by making the data adjacent, as

explained above, since the CPU would only need to execute the same set of instructions, but for different

data. Another advantage of Data-Oriented Design is that to achieve all these optimizations, the systems

managers responsible for each type of ‘component’ it is needed to create small functions related to a

certain computation. This modularity makes the code easier to develop, re-write, read, and updating.

Finally, another beneficial characteristic of this model is the ease to be tested. If it is desired, some

unit tests could be created, and as explained in the previous point, having such modularity, tests can be

created independently per each specific function, for the output to be checked.

Llopis also exposed a major drawback. Basically, as explained before in this report, there is a lack

of knowledge of, not just the model, but the optimizations and practices that are part of it. This makes

that trying to change the mental model becomes difficult, and Llopis warns of the challenge it is trying

to implement it in an existing OOP project, or even rewriting it. So what this problem tell us, is that

the paradigm should be taught as well.

The author finishes the article by giving some indications on how to implement the Data-Oriented

Design model in a project. The first step mentioned is to pick a concrete area, from navigation or collisions,

to animations or any other. Next, the main focus is identifying which data inputs are necessary for that

system. Llopis gives the example of an animation system, in which the desired input would be the

skeletons, base poses, animation data, and current state. He mentions to bear in mind that the result of

this system example is not to play the animation, but to return, or give as a result, a set of new poses and

an updated state. The next important step, a further one, is classifying the input data depending on if it

is read-only, read-write, or write-only. These few steps are the same that could be taken when thinking

of a OOP approach based project. The, LLopis points out that it is needed to stop thinking about the

required data for a single object, but to think about how to apply it to large quantities of data segments,

leaving behind the concept of manipulating each individual animation data, and instead having a block

of each type with several instances in each block. Also, given a specific data, Llopis warns that, if there is

the need to scan or to iterate several times a data structure, it would probably mean that field needs to

be split into a different memory block, so said data can be processed independently, allowing for a better

7

Marc Rosell Hernandez
Data-Oriented Design in Video Games

memory and cache utilization. Finally, when coding how the data has to be transformed, he presents

it as simple as to fill the blanks, since the input data being previously defined, the output data should

be fairly simple as well to figure out, because it would be the input data to another function, and the

procedure to transform it may then be known as a consequence.

2.3 Data-Oriented Design in Depth

Having seen the introduction to the fundamental DOD concepts, here some process parts are explained

with a greater detail. Most of the time, the steps to implement the model of study, do not go much

further than the points already explained, yet in 2018 a book was published, showing and talking about

how to proceed when using this paradigm.7 In this section, the source is a web-page, by Fabian, author

of the book mentioned, which contains plenty of useful information, even not being as extended as the

physical book.8 Said book, does start with an introduction with basic key points, that are worth reading,

but as it presents the basics talked about in the last section, this focuses in the development concepts.

2.3.1 Relational Databases

As said in section 2.2, the fundamental characteristic is the data format, but making data blocks and

inserting them into arrays may cause some problems. Fabian uses the expression relational databases,

because of a comparison with databases themselves. Thinking about data like a database, helps when

converting the existing or desired data into a linear layout. To be able to create a relational data model,

that can work on video-games it is important how data is separated and structured, hence normalization

is needed. Said normalization also helps in the prevention of getting null elements in a data structure,

which is a major problem, because of empty memory being used and null-checking. Fabian remarks the

importance primary keys have in databases, and so do in the relational system he presents for the DOD

model. He presents an example case in which there are multiple elements in a scene, some pickups to be

precise. This example is used to explain the following normalizations models, and is a way to represent

data as in a data structure.

The first normalization model, 1st Normal Form, is defined by him as a table with no sparse elements.

As said above, null elements, or pointers, are not useful, and if there is some data with that value, it may

mean it is optional in the current table.

PickupID MeshID TextureID PickupType ColourTint Animation
k1 mesh key texture key KEY copper anim keybob
k2 mesh key texture key KEY silver anim keybob
k3 mesh key texture key KEY gold anim keybob
p1 mesh potion texture potion POTION green NULL
p2 mesh potion texture potion POTION purple NULL
a1 mesh armour texture armour ARMOUR NULL NULL

Table 2.1: Initial Pick-up Table

The example presented, has keys and potions as pickups, which have different attributes, like a mesh ID,

a texture ID, a colour tint, an animation, and its type. Both pickups, having or not the same attributes,

they all have another ID identifying them in the scene, which is the primary key. If those attributes were

all in a single data table, there would possibly be some null data, because, for example, keys may have

an animation, but potions do not. So, the elements that are optional, like the animation, need to have a

separate table.

7Fabian 2018b.
8Fabian 2018a.

8

Marc Rosell Hernandez
Data-Oriented Design in Video Games

PickupID MeshID TextureID PickupType
k1 mesh key texture key KEY
k2 mesh key texture key KEY
k3 mesh key texture key KEY
p1 mesh potion texture potion POTION
p2 mesh potion texture potion POTION
a1 mesh armour texture armour ARMOUR

PickupID ColourTint
k1 copper
k2 silver
k3 gold
p1 green
p2 purple

PickupID Animation
k1 anim keybob
k2 anim keybob
k3 anim keybob

Table 2.2: 1st Normal Form Pick-up Table

In the example case, the mesh IDs, texture IDs, and pickup types can go in a same table, but tints and

animations should have a table each. When these are separated like this, there are no elements in the

table having a null value.

The second normalization form, 2nd Normal Form, is about trying to separate table elements from

the current one that do not depend on a compound primary key into another table. Primary keys can

be useful for game elements, for example, like weapons, which may have a couple defining attributes that

modify the damage value. In a weapons table example, applying the 1st Normal Form would result as

the following:

WeaponType WeaponQuality WeaponDamage WeaponDamageType
Sword Rusty 2d4 Slashing
Sword Average 2d6 Slashing
Sword Masterwork 2d8 Slashing
Lance Average 2d6 Piercing
Lance Masterwork 3d6 Piercing
Hammer Rusty 2d4 Crushing
Hammer Average 2d4+4 Crushing

Table 2.3: 1st Normal Form Weapon Table

A compound key, may mean having duplicate values for cases in which these duplicates are not needed.

Coming back to the pickups example, with all the elements mentioned above, values like textures IDs,

pickup types, or mesh IDs would be duplicated.

9

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Applying this new concept to the weapon example would result as:

WeaponType WeaponQuality WeaponDamage
Sword Rusty 2d4
Sword Average 2d6
Sword Masterwork 2d8
Lance Average 2d6
Lance Masterwork 3d6
Hammer Rusty 2d4
Hammer Average 2d4+4

WeaponType WeaponDamageType
Sword Slashing
Lance Piercing
Hammer Crushing

Table 2.4: 2nd Normal Form Weapon Table

This second form creates simpler tables, using the table 2.2 again as an example, a table for pickup IDs

related to their pickup type, another with pickup IDs with their tint, a third table relating pickup types

with their unique assets, like mesh ID and texture ID, and finally a pickup type referencing the animation

ID.

PickupID PickupType
k1 KEY
k2 KEY
k3 KEY
p1 POTION
p2 POTION
a1 ARMOUR

PickupID ColourTint
k1 copper
k2 silver
k3 gold
p1 green
p2 purple

PickupType MeshID TextureID
KEY mesh key texture key
POTION mesh potion texture potion
ARMOUR mesh armour texture armour

PickupType Animation
KEY anim keybob

Table 2.5: 2nd Normal Form Pick-up Table

This result comes from applying both normalization forms, to simplify data, avoid null elements, and in

this case, to avoid having a compound key, which would generate a table with duplicate elements. With

this normalization step, the duplicates are most likely inexistent, yet sometimes it could be impossible

to apply some normalizations, like Llopis said in his article, even if the primary goal of the model is to

achieve an ideal data format, ‘we won’t always be able to make it exactly ideal’.

This leads to the 3nd Normal Form that Fabian presents. It consists of removing any ‘transitive

dependencies’, in his own words, on that primary key. For example, in assets or game resources every

mesh has its own texture, so it is not needed to have an independent table for each. The developer can

choose either the texture ID or the mesh ID as the primary key for this table, and can be used to look

up, for example, both resources file name. Fabian presents the following example:

10

Marc Rosell Hernandez
Data-Oriented Design in Video Games

TextureID TextureName MeshName
texture room “roomtexture” “roommesh”
texture roomstart “roomtexturestart” “roommeshstart”
texture roomtrap “roomtexturetrapped” “roommeshtrapped”
texture key “keytexture” “keymesh”
texture potion “potiontexture” “potionmesh”
texture armour “armourtexture” “armourmesh”

Table 2.6: 3rd Normal Form Assets Table

Fabian also proposes to use the Boyce-Codd Normal Form when having a functional dependency. He

uses an example of rooms, whose assets change if they are either the starting room, a trapped room, both

at a time, or neither. So, instead of having the same asset ID repeated depending on the room, which is

not determinant, he proposes to create a table where the primary keys are two booleans indicating both

properties, and assigns the asset ID for each property condition that is possible.

RoomID WorldPosition IsStart IsExit
r1 0,0 true false
r2 -20,10 false false
r3 -10,20 false false
r4 -30,20 false false
r5 20,10 false true

IsStart HasTrap TextureID
true false texture rmstart
false false texture rm
false true texture rmtrap

Table 2.7: Boyce-Codd Normal Form Rooms Table

Finally, Fabian explains how a table structured data can be iterated and computed, just by having a

specific data array and another variable, just doing deletes and pushbacks. He uses a level with opened

and closed rooms as an example. Basically, said example proposes that code can be optimized by giving

the array some order. He does not mean sorting the array, but having doors closer to the beginning of

the structure meaning they are open, while the others are still closed, using an integer to say until which

index doors are open.

1 typedef std::pair <int , int > Door;
2 typedef std::vector <Door > DoorVector;
3 DoorVector gDoors;
4 int gDoors_firstClosedDoor = 0;
5

6 AddClosedDoor(Door d) {
7 gDoors.push_back ();
8 }
9

10 AddOpenDoor(Door d) {
11 gDoors.insert(gDoors.begin() + gDoors_firstClosedDoor , d);
12 gDoors_firstClosedDoor += 1;
13 }

Listing 2.1: Operating table structured data by Fabian

The example above does not mention the state change when a closed door is opened. Yet, he proposed

that after unlocking a door, it might delete the element from closed doors, then adding it to the opened

doors vector section.

11

Marc Rosell Hernandez
Data-Oriented Design in Video Games

2.3.2 Existential Processing

In this section, Fabian works around what data is unnecessary to process. As an example, he talks

about the null checks often found in code and points out that programmers, using the DOD methodology

in combination to some runtime polymorphism, could trust that all objects would have a valid value.

Said checks, and virtual tables in case of polymorphism, increment the code complexity in distinct ways.

Fabian here talks about how complexity may be calculated and possible sources of said complexity, yet

this is overlooked, and centred in how to avoid said complexity.9 He points out that system complexity

increases with each for, while, if, do-while, and every switch case that statements in the code. This might

make the code less efficient, but it also causes the code to be harder to test and debug.

Fabian then proceeds to explain where does complexity come from, starting with the if statements.

He highlights its most common usages, like stopping crashes or any other errors to occur, and to avoid

entering invalid memory, whether they are out of bounds or null pointers. There are as well loops, as a

flow control, as well as polymorphic calls, which are tag by Fabian as inessential, and to ‘entertain the

do-more-with-less-code development model’. Following the explanation on how complexity increases due

to flow control, he indicates that most of the time it is not due to branching, but the whole cascading of

calls, tree traversals, loops, and checks done to just return a piece of data that allows a boolean value to

grant, or not, access to a certain code part. For example, to reduce the workload when it comes to flow

control, by using data in collections of arrays like presented above, it is ensured that no elements have

a null value, hence having the possibility to delete the null checks. So, the author, while explaining how

certain statements create complexity, also introduces the concept already explained, that these processes

are not cache friendly. He mentions the update calls and how the objects are stored in some cases as

arrays of pointers. Said arrays are heterogeneous called within the update, which causes cache misses. A

tool proposed by him, is having a to-do list, and estimated time budgets, so developers can take measures

to reduce limitations.

Fabian identifies three major and a minor types of processing. Mutation, the first one, is about getting

some input and some constants, which produce a transformed data, generating an output per incoming

input. Secondly, there are filters, with other constants that transform data in a way that, for each input,

the function can return an output or none. The third major processing type is the emission, which

manipulates the input data to produce multiple outputs, so it can produce between zero or an indefinite

amount of them. Finally, the fourth and minor type of processing is not considered, by Fabian, as a

data manipulation method, since it is about generating it. So, this fourth element is a generator, that

does not take any input data, yet just produces an output depending on the constants already existing.

These types might help the developer choose between which data structures to use, or if the developer

even needs said structures. Using this classification, a developer is allowed to create SIMD10 procedures.

For example, calling a procedure to transform some data, such as entity positions by applying their

respective speeds, the function can iterate an array to do a computation over all the different active

entities. Notice that a MIMD11 proposition, is not really suitable to compute a big amount of data in a

small amount of time, because, as Fabian notes, a multiple instruction procedure might cause that some

data computation to take a path different from some other, as well as to cause branching and prediction,

difficulty to parallelize, and finally, a more error-prone code.

9To further read about Fabian’s Complexity writing: <https://www.dataorienteddesign.com/dodbook/node4.html>.
10Single Instruction, Multiple Data
11Multiple Instruction, Multiple Data

12

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Following the major data transformation types, it is mentioned that algorithms and data can be

optimized by compression. This is to avoid including some data, or in this case even procedures. To

achieve it, Fabian mentions a Domain Knowledge Normalization, which is often used during development.

Said standardization is more of a concept one than a methodology, because domain knowledge is any

induced or deduced knowledge, that can be somewhat taken for granted. Here, Fabian uses the example

of health management for entities, which’s processing can be reduced by planning it beforehand. He

assumes the following:

• An entity with full health does not need to regenerate life points.

• There is a time delay between taking an injury and to begin regenerating life points.

• If an entity dies, it does not need to regenerate.

• An entity dies when its life points or health is zero.

The following example, takes for granted an entity system, in which these are stored in a list, with data

such as health and a variable to keep track of how much time has elapsed since the specific entity has

taken any damage, both represented as floating point variables.

So, this list of assumptions, along with the variables explained, can be implemented as follows:

1 void UpdateHealth(Entity *e) {
2 TimeType timeSinceLastShot = e->timeOfLastDamage - currentTime;
3 bool isHurt = e->health < MAX_HEALTH;
4 bool isDead = e->health <= 0;
5 bool regenCanStart = timeSinceLastShot > TIME_BEFORE_REGENERATING;
6

7 // if alive , and hurt , and it’s been long enough
8 if(! isDead && isHurt && regenCanStart) {
9 e->health = min(MAX_HEALTH , e->health + tickTime * regenRate);

10 }
11 }

Listing 2.2: Initial Health Regen by Fabian

The code above has some flaws, the main one is that it is called for each entity in the list every update,

and might as well have cache utilization issues. Fabian points out how the regeneration case is not the

common one, and said function should not be called when health is at its maximum, if the entity is already

dead nor when enough time has elapsed since it lastly had been damaged. These considerations allow

making some improvements when it comes to flow control statements, by avoiding the creation of boolean

variables and their checks. After applying these criteria, both health and time variables mentioned before,

can be stored in a different structure, apart from the main entity one, then creating a map, which has an

entity reference and the new structure called EntityDamage. The new code is the following:

1 void UpdateHealth () {
2 for(edIter : entityDamage) {
3 EntityDamage &ed = edIter ->second;
4 if(ed.health <= 0) {
5 // if dead , insert the fact that this entity is dead
6 EntityRef entity = edIter ->first;
7 deadEntities.insert(entity);
8 // if dead , discard being damaged
9 discard(ed);

10 } else {
11 TimeType timeSinceLastShot = e->timeOfLastDamage - currentTime;
12 bool regenCanStart = timeSinceLastShot > TIME_BEFORE_REGENERATING;
13 if(regenCanStart)
14 e->health = min(MAX_HEALTH , e->health + tickTime * regenRate);
15 // if at max health or beyond , discard being damaged
16 if(ed->health >= MAX_HEALTH)
17 discard(ed);
18 }
19 }
20 }

Listing 2.3: Existential Processing Health Regen by Fabian

13

Marc Rosell Hernandez
Data-Oriented Design in Video Games

The code above is just used when an entity takes damage. By having the EntityDamage structure

independently of the object, when an entity already stored in the map takes damage again, the time and

health can be updated by using the reference. New elements are just the creation of new entries in said

maps. To know the health some entity has, it is not needed to iterate over a tree of entity instances, but

can be looked up in the map, and if they do not appear in the table, nor in the dead entities table, it

would mean it has full health. By extent, the data is being compressed. In the first code example, each

health update had two more boolean variables, the isHurt and the isDead ones. The system proposed by

the second example, avoids them by categorizing entities into tables depending on whether they are hurt,

or dead, and if none of them applies, they are full health. Fabian, explains that avoiding loading a float,

and checking the booleans, as well as converting data to boolean, reduce processing time. Along with it,

there are other booleans created and checked when, in OOP, a developer is checking whether something

has a null value or not. Any management system can be expressed like the example, but Fabian also takes

the chance to clarify that not every system needs to be updated every frame. He compares the update

need to how we, humans, react to different stimulus, comparing rational thinking to survival instincts and

reflexes, such as the ones to protects us from danger like pulling the hand from the fire. An animal NPC

should not be always aware of the player, but when a sound event or an environment change happens,

then is when the animal behaviour has to be triggered, or doing it regularly, but not once per frame, so

that different tasks can be done in different frames, saving frame time.

The author also suggests avoiding using enums, as in the case of the health system, for example, it

would cause the code to have several unnecessary enums. Instead, it is much simpler to have several

tables, which represent an enumerable value each where, as explained before, setting an enumeration

value would be equivalent to inserting a value into a table, or moving it from one to another. Pure

functions, such as explained as types of processing, are not meant to access external states like enums,

and as explained in the first section, any dependent data should already exist in a table. So, there

could be two cases in which a programmer can operate over data differently. Foremost, if said enum is

previously handled or checked by a virtual call or switch, the whole situation can be avoided by running

data transforms in which the previous switch or virtual methods contents are the computations to apply,

in this case, to the table which owns the enumeration value. The second case would be when the enum

determines if a specific data can be operated upon. Usually this would imply to querying and checking

said enumerator, then proceeding or not to compute it. This can be avoided by previously generating

an auxiliary table, which represents said enum state, or if the data is being operated upon by different

procedure calls, a filtering operation could be used to create the desired table in its desired form. The

goal is not to eradicate the enumerators, but to use the best computation option by avoiding the control

flow impact. Needless to say, in some cases when entities or other data state changes frequently, the

enum might be better due to the cost of moving instances or data across tables. Finally, there are other

enums that are not needed to be transformed into tables, such as identifiers like key bindings, colours,

limits, or collision types for example.

Some OOP features are still useful, like classes, yet the polymorphism is a problem to consider.

Polymorphism can happen to be a compile-time type or a dynamic runtime type. The compile-time poly-

morphism does not represent such a threat, because by using templates and overloads, being computed

at compile-time, it does not take such an amount of processing during execution. The main problem

comes when considering dynamic runtime polymorphism. It is used to provide a data transformation

for a common base operation when the type is still unknown at compile-time, so it is managed using

virtual tables, which call the right procedure to use depending on the class type. This allows to create

that specific behaviour, yet said virtual tables are a set of pointers, that are being looked up at runtime,

wasting some processing time.

14

Marc Rosell Hernandez
Data-Oriented Design in Video Games

1 class shape {
2 public:
3 shape() {}
4 virtual ~shape() {}
5 virtual float getarea () const = 0;
6 };
7

8 class circle : public shape {
9 public:

10 circle(float diameter) : d(diameter) {}
11 ~circle () {}
12 float getarea () const { return d*d*pi/4;}
13 float d;
14 };
15

16 class square : public shape {
17 public:
18 square(float across) : width(across) {}
19 ~square () {}
20 float getarea () const { return width*width;}
21 float width;
22 };
23

24 void test() {
25 circle circle (2.5f);
26 square square (5.0f);
27 shape *shape1 = &circle , *shape2 = □
28 printf("areas are %f and %f\n", shape1 ->getarea (), shape2 ->getarea ());
29 }

Listing 2.4: Dynamic Polymorphism by Fabian

In the example above, Fabian explains that not knowing the type and requesting to execute a procedure

requires some compromise, due to the computation time it takes to traverse the virtual tables. He

proposes a 1st yet not perfect model, in which the class itself is not a specific instanced shape, but a

container of the variable type and its data:

1 enum shapetype {circletype , squaretype };
2

3 class mutableshape {
4 public:
5 mutableshape(shapetype type , float argument) : m_type(type), distanceacross(argument){}
6 ~mutableshape () {}
7 float getarea () const {
8 switch(m_type) {
9 case circletype: return distanceacross*distanceacross*pi/4;

10 case squaretype: return distanceacross*distanceacross;
11 }
12 }
13 void setnewtype(shapetype type) {
14 m_type = type;
15 }
16 shapetype m_type;
17 float distanceacross;
18 };
19

20 void testinternaltype () {
21 mutableshape shape1(circletype , 5.0f);
22 mutableshape shape2(circletype , 5.0f);
23 shape2.setnewtype(squaretype);
24 printf("areas are %f and %f\n", shape1 ->getarea (), shape2 ->getarea ());
25 }

Listing 2.5: Container Dynamic Polymorphism by Fabian

Even though the example above might help to work with polymorphism, it is causing a control-flow

impact due to the switch in the procedure, so the final solution would be to have independent classes

representing each type, then using another procedure to handle the data conversion:

1 square squarethecircle(const circle &circle) {
2 return square(circle.d);
3 }
4

5 void testconvertintype () {
6 circle circle (5.0f);
7 square square = squarethecircle(circle);
8 }

Listing 2.6: Class Converting Dynamic Polymorphism by Fabian

15

Marc Rosell Hernandez
Data-Oriented Design in Video Games

The main issue when converting classes is that any old pointer is, after converting the object, invalid.

This can be solved by using the existential processing methodologies, which can bring other benefits. By

joining new or converted classes into tables, there is no additional problems, so a class can be formed

up by several attributes and abilities, then be changed after being created. It is important to remember,

that doing these changes between tables is already normal in existential processing, so there is only an

increase of memory space in use, in exchange for dealing with virtual table pointers, increasing the cache

effectiveness. A benefit of applying this method, is that classes can be more than one at a time, having

an object or entity in more than one table, but also a single object can react in multiple ways to a same

trigger, depending on which tables it has joined.

The final thoughts regarding existential processing presented by Fabian are related to how to handle

events. He proposes to use tables to register and de-register events, by inserting or deleting them into

said table. It is possible as well to create global tables for subscribing to a global event, and proposes to

use names so that a subscriber can subscribe to any event before the publisher exists. Firing off an event,

on the one hand, can be done immediately, so data can be transformed almost instantly, or on the other

hand, all the new events can be queued and then fired off all at once. Fabian presents the example of a

player getting closer to a door and trying to open it. When said player comes close to the door, it can

register the player action procedure with the open door event. This avoids wasting CPU time figuring

out which thing the player is trying to interact with, and also can be used to show on-screen any HUD

info to help the player. To develop more the concept, if all tables are allowed to have triggers like in

the Database Management System, then it is possible for any event to register an interest for a specific

change and react to it.

2.3.3 Component Based Objects

Component-oriented design is a good starting point to avoid linking concepts unnecessarily, as it is

wanted in Data-Oriented Design. So, said components can be easily computed by its type, instead of

by instance, which also allows designers to create specific objects, with a specific behaviour due to its

components. This arrangement of components allows a faster design and easier profiling, in comparison

with any monolithic object, in Fabian’s words, which is just a recollection of attributes and procedures in

a plain code file. The problem that component-oriented design faces is the amount of systems it implies,

so, to deepen the understanding of this, there are few ways to describe it. The foremost and most used

component-oriented manner is the compound object. This makes use of the specific game engine scripting

language to create a flexible and friendly way for designers to edit or create objects. It is the case for

Unity’s GameObject, which consists of a base entity type that can include, via being added to a specific

entity instance components list, several components that define it. Said GameObjects are built upon

the core entity object, and both components and the entity reference each other, which means as well

that any updates are based on root instances iterations, and not on iterating distinct systems. Fabian

then explains that introducing component based entities is an opportunity to turn the idea of an object

on its head. On the one hand, in the commonly used OOP paradigm, an object if it does not extend

from another class, then at least has some other data about it, such as meshes, collisions, and so on, as

well as specifying if it needs other objects to be created and referenced, or its behaviour, if controlled

by the player or by an AI. On the other hand, in the component-oriented design, objects are not so

rigidly defined. If creating a car using this model, Fabian explains that it would only require instancing

a physics component consisting of four wheels, instancing its renderable parts, and adding AI or a player

controller, so the car in this case is rather something implicit than explicit and immutable. So, Fabian

exposes that a truly component based objects is just the sum of its parts, which makes refactoring and

redesigning much easier. Unity’s Entity Component System, makes use of this theory.

16

Marc Rosell Hernandez
Data-Oriented Design in Video Games

The component based approaches have been tried and tested, and have demonstrated that storing

all data attributes and procedures into a single object was not efficient. The complexity of entities has

decreased since then, due to dividing it into smaller and simpler parts, which also has helped developers

and modders. So within a component based method, entities do not need any ability to do anything,

because every attribute or procedure come from the components themselves, thus in combination defining

the entity. Fabian proceeds by showing how to rewrite an existing class into a component based style, in

this case a Player class for a generic 3rd person game. The starting point to explain it is a monolithic

class, as the following:

1 class Player {
2 public:
3 Player ();
4 ~Player ();
5 Vec GetPos (); // the root node position
6 void SetPos(Vec); // for spawning
7 Vec GetSpeed (); // current velocity
8 Vec GetSpeed (); // current velocity
9 float GetHealth ();

10 bool IsDead ();
11 int GetPadIndex (); // the player pad controlling me
12 float GetAngle (); // the direction the player is pointing
13 void SetAnimGoal (...); // push state to anim -tree
14 void Shoot(Vec target); // fire the player ’s weapon
15 void TakeDamage (...); // take some health off , maybe animate for the damage reaction
16 void Speak (...); // cause the player to start audio/anim
17 void SetControllable(bool); // no control in cut -scene
18 void SetVisible(bool); // hide when loading/streaming
19 void SetModel (...); // init streaming the meshes etc bool IsReadyForRender ();
20 void Render (); // put this in the render queue
21 bool IsControllable (); // player can move about?
22 bool IsAiming (); // in normal move -mode , or aim -mode
23 bool IsClimbing ();
24 bool InWater (); // if the root bone is underwater
25 bool IsFalling ();
26 void SetBullet Count (int); // reload is -1
27 void AddItem (...); // inventory items
28 void Use Item (...);
29 bool HaveItem (...);
30 void AddXP(int); // not really XP, but used to indicate when we let the player power -up
31 int GetLevel (); // not really level , power -up count
32 int GetNumPowerups (); // how many we’ve used
33 float GetPlayerSpeed (); // how fast the player can go
34 float Get JumpHeight ();
35 float GetStrength (); // for melee attacks and climb speed
36 float GetDodge (); // avoiding bullets
37 bool IsInBounds(Bound); // in trigger zone?
38 void SetGodMode(bool); // cheater
39 private:
40 Vec pos;
41 Vec up, forward , right;
42 Vec velocity;
43 Array <ItemType > inventory;
44 float health;
45 int controller;
46 AnimID idleAnim;
47 AnimID shootAnim;
48 AnimID reloadAnim;
49 AnimID movementAnim;
50 AnimID currentAnimGoal;
51 AnimID currentAnim;
52 int bulletCount;
53 float shotsPerSecond;
54 float timeSinceLastShot;
55 SoundHandle playingSoundHandle; // null most of the time
56 bool controllable;
57 bool visible;
58 AssetID playerModel;
59 LocomotionType currentLocomotiveModel;
60 int xp;
61 int usedPowerups;
62 int SPEED , JUMP , STRENGTH , DODGE;
63 bool cheating;
64 };

Listing 2.7: Monolitic Player Class by Fabian

17

Marc Rosell Hernandez
Data-Oriented Design in Video Games

The example above has many attributes and procedures found in code which has grown organically during

development. As can be seen, player classes typically use lots of helper functions, so that code writing

becomes easier, considering said player as more of an instance throughout the whole execution time, from

start to end, than a class. AI characters have also become more generalized classes than specialized ones.

Specific classes for characters were more regularly used when games were limited by hardware, yet now,

due to the player class need to interact with many game elements, they are generalized into a single class,

then inherited, so interaction processing becomes easier.

A step usually made by the ones trying to change from an object-oriented hierarchy to a component

based methodology, is the transitional states in which developers try to turn the already existing classes

into smaller objects, called composition. Said approach takes place when finding the limits between

concepts inside an existing class and trying to refactor into a new class, that can be pointed to by the

parent class. In a monolithic class, like the player one above, there are usually things that are not right

away related, yet they may need to be linked to each other. In object-oriented classes relationships are

a type of implicit an inherent hierarchy, somewhat as predefined, whereas in composition or component

designs relationships between elements are not needed, just pointed out. A first step to change a mono-

lithic class into a composite design is to take any related data and actions, that modify said data, into

specific structures containing such elements. These structures are meant to be instanced by a class, the

player one in this case, so that it can delegate any actions to the specialized structures. Data needs to

be reorganized into the structures by if it is inside a specific system boundaries. For example, everything

about position and in-game movement should be in a structure, and the same goes to animations, input,

or anything that may have a specialized system.

1 struct PlayerPhysical {
2 Vec pos;
3 Vec up, forward , right;
4 Vec velocity;
5 };
6

7 struct PlayerGameplay {
8 float health;
9 int xp;

10 int usedPowerups;
11 int SPEED , JUMP , STRENGTH , DODGE;
12 bool cheating;
13 float shotsPerSecond;
14 float timeSinceLastShot;
15 };
16

17 struct EntityAnim {
18 AnimID idleAnim;
19 AnimID shootAnim;
20 AnimID reloadAnim;
21 AnimID movementAnim;
22 AnimID currentAnimGoal;
23 AnimID currentAnim;
24 SoundHandle playingSoundHandle; // null most of the time
25 };
26

27 struct PlayerControl {
28 int controller;
29 bool controllable;
30 };
31

32 struct EntityRender {
33 bool visible;
34 AssetID playerModel;
35 };
36

37 struct EntityInWorld {
38 LocomotionType currentLocomotiveModel;
39 };
40

41 struct Inventory {
42 Array <ItemType > inventory;
43 int bulletCount;
44 };
45

46

47

48

18

Marc Rosell Hernandez
Data-Oriented Design in Video Games

49 class Player {
50 public:
51 Player ();
52 ~Player ();
53 // ...
54 // ... the member fucntions
55 // ...
56 private:
57 PlayerPhysical physical;
58 PlayerGameplay gameplay;
59 EntityAnim anim;
60 PlayerControl control;
61 EntityRender render;
62 EntityInWorld inWorld;
63 Inventory inventory;
64 };

Listing 2.8: Composite Player Class by Fabian

The code above is an initial way to create a composite design player class. As can be seen, data is

now organized into distinct structures depending on their purpose. In this case, it can be noticed that

most code pieces need to access other data, in other structures, so some procedures need multiple data.

This points out that data and procedures are things that do not belong together. In the piece of code,

the player class has become a component container that needs to be instanced, and when in doing so,

the player consequentially exists. It could be worked on into cleaner and reusable code by moving the

components to be managed by managers instead of handling them in update calls, which it also brings

with it the benefit of cache locality, being able to operate multiple entities by transforming its data, which

is now separated from the entity represented. Now it can be seen how each system just requires certain

data, and even though it may overlap with some data needed in another system, not all data is shared.

Some known systems, already used and owned by the player in the current OOP model, are sharing data

due to how the class is created, such as animations or inventory, which do not need to effect each other,

so if in any case it is truly needed, it is better to keep said data apart, and manage a new correlation

between them.

1 class Renderable {
2 void RenderUpdate () {
3 auto pos = gPositionArray[index];
4 gRenderer.AddModel(playerModel , pos);
5 }
6 };
7

8 class RenderManager {
9 void Update () {

10 gRenderer.BeginFrame ();
11 for(auto &renderable : renderArray) {
12 renderable.RenderUpdate ();
13 }
14 gRenderer.SubmitFrame ();
15 }
16 };
17

18 class PhysicsManager {
19 void Update () {
20 for(auto &physicsRequest : physicsRequestArray) {
21 physicalArray[physicsRequest.index]. UpdateValues(physicsRequest.updateData);
22 }
23 // Run physics simulation
24 for(auto physical : physicalArray) {
25 positionArray[physical.index].pos = physical.pos;
26 }
27 }
28 };
29

30 class Controller {
31 void Update () {
32 Pad pad = GetPad(controller);
33 if(pad.IsPressed(SHOOT)) {
34 if(inventoryArray[index]. bulletCount > 0)
35 animRequest.Add(SHOOT ONCE);
36 }
37 }
38 };
39

40

41

42

19

Marc Rosell Hernandez
Data-Oriented Design in Video Games

43 class PlayerInventory {
44 void Update () {
45 if(inv.bulletCount == 0) {
46 if(animArray.contains(inv.index)) {
47 anim = animArray[index];
48 anim.currentAnim = RELOAD;
49 inventoryArray[index]. bulletCount = 6;
50 anim.playingSoundHandle = PlaySound(GUNFIRE);
51 }
52 }
53 }
54 };
55

56 class PlayerControl {
57 void Update () {
58 for(auto &control : controlArray) {
59 control.Update ();
60 }
61 for(auto &iny : inventoryArray) {
62 inv.Update ();
63 }
64 }
65 };

Listing 2.9: Manager Ticked Components by Fabian

The code above uses classes, not to store data, which happens in separate structures, but to transform

said data. Even if at first hand it may look strange, it is a way to keep non-important data away from the

process. It can be noticed that now the player class does not own an update method, but each component

that compose the player entity does. This way, it is possible to update every component existing in the

scene that is controlled by a single manager, leading to be able to process said collection of components

before rendering, at a time, or even all of them in different threads, so making it prone to be parallelized.

Fabian, ending this section, points out that a final step towards a component based design is to

eliminate the player class. As seen in the last example, it is made from said components, so it may not

need any identity apart from them.

1 struct Orientation { Vec pos , up, forward , right; };
2 SparseArray <Orientation > orientationArray;
3 SparseArray <Vec > velocityArray;
4 SparseArray <float > healthArray;
5 SparseArray <int > xpArray , usedPowerupsArray , controllerID , bulletCount;
6 struct Attributes { int SPEED , JUMP , STRENGTH , DODGE; };
7 SparseArray <Attributes > attributeArray;
8 SparseArray <bool > godmodeArray , controllable , isVisible;
9 SparseArray <AnimID > currentAnim , animGoal;

10 SparseArray <SoundHandle > playingSound;
11 SparseArray <AssetID > modelArray;
12 SparseArray <LocomotionType > locoModelArray;
13 SparseArray <Array <ItemType >> inventoryArray;
14

15 int NewPlayer(int padID , Vec startPoint) {
16 int ID = newID();
17 controllerID[ID] = padID;
18 GetAsset("PlayerModel", ID); // adds a request to put the player model into modelArray[ID]
19 orientationArray[ID] = Orientation(startPoint);
20 velocityArray[ID] = VecZero ();
21 return ID;
22 }

Listing 2.10: Sparse Arrays for Components by Fabian

Deleting the player class and treating the components as shown above, it implies that now the player

class is no longer the code centre, and none other code part needs to be specifically related to it, avoiding

other possible issues. Applying a code style like the one above, allows as well to generate entities by

composition and prototyping, with a more clean code, with a performance increase and none added

complexity. By using the same specific procedures for all components, every data transformation is more

simple and centralized, permitting programmers more opportunities to optimize the code, and having

less code intricacies in which bugs could appear.

20

Marc Rosell Hernandez
Data-Oriented Design in Video Games

2.3.4 Hierarchical Level of Detail and Implicit-state

Graphics applications are not usually bottlenecked at the polygon rendering step during the rendering,

but because of bandwidth, since there is a lot of alpha blending. A great amount of time is also spent

while loading textures due to the bandwidth as well. So, in a graphics case, a level of detail optimization

approach is enough by just having multiple meshes, with a lower polygon count, but would be better if

it took into account the actual data required. Hierarchical level of detail is a solution to a high primitive

problem, which is causing such amount of driver calls. A basic technique for art is to optimize by grouping

and merging low level of detail meshes into a single one, reducing the time spent in the render calls setup.

In a large scale environment a hierarchical level of detail approach can diminish a game engine workload

significantly, by an order of magnitude approximately, Fabian assures.

Considering that entities can be implicit based on their attributes, the hierarchical level of detail

can be used to achieve some optimizations. In a traditional level of detail methodology, as the object

of interest is further away, both details and fidelity are lost. Polygon count, texture sizes, bones, or

others can be reduced, and game logic can be decreased as well. For example, making time steps larger

as less apparent the entity is to the player, as done with some AIs, changing from a 50Hz to a 1Hz

update, and the same applies the other way around, making them exist only when they are close enough

to be apparent to the player. Consider a shooter game, in which the player has to defend its base from

outside attackers. Said attackers come in aircraft squadrons, over ten thousand of them, up to a hundred

per squadron, and the player has to shoot them down, or be annihilated along with its base. Running

the attackers’ behaviours as AI, both swarming or flocking motion, avoidance and so on, for each and

every airship every tick would be too much, but it is not needed. A common assumption is that AI

does not need to be run unless said AI entities are within attack range, which is an improvement on

speed in comparison with the previous and more näıve approach. In a hierarchical LOD methodology,

the same problem can be solved in another manner, by changing the amount of entities perceived by

the player. Another name for this solution is collective lodding, which is inspired by this collective term

that implies how there are some levels of entities, or detail in the current case. Sometimes there is no

hierarchy existing, yet the references between levels of detail in an element can be expressed the same way

proposed. For example, imagine a murder of crows seen as a single element, yet composed by different

crows that are, in consequence, a lower level of detail, the previous collection sub-element (Figure 2.3).

Murder

Crow Crow Crow

Figure 2.3: Murder of Crows Example, Hierarchical LOD by Fabian

In a defender game version using collective lodding, there are some entities that project squadron blips

in the radar. Squadrons do not exist as entities until they are close enough. Once it is in range, a wave

counter might decrease the squadron count, and pop up the upcoming same type entity. A new squadron

entity shows said blips on the radar for each member aircraft, yet aircraft themselves do not currently

exist, but are implicit to a squadron as well as this later is implicit to the wave.

21

Marc Rosell Hernandez
Data-Oriented Design in Video Games

When squadrons are close enough they cease to exist and new aircraft entities are created, and as the

airships come closer, the traditional LOD techniques can be applied (Figure 2.4).

Blip

Squadron Squadron Squadron

Aircraft Aircraft Aircraft

EjectingPilot Fuselage Wing

Figure 2.4: Squadron Defence Game Example, Hierarchical LOD by Fabian

This hierarchy also allows implementing some other behaviour. Expanding from the tables seen in

Relational Databases, entities can be stored in tables depending on whether they are damaged or not,

then AI can manage some entities to react with fear and eject the pilot, thus creating a pilot entity.

The same applies to a wing if it is shot off and tore apart. When the aircraft crashed to the ground,

it can be entirely deleted or, in another case, replaced by another smoking fuselage entity. With this

example, it can be seen how the principles of Existential Processing apply to DOD, always transforming

entities within a collective lodding into other ones, transforming their data, with no need to use extended

amount of classes as well. Imagine a case where there is an increasing amount of airships, where a player

device cannot keep up even using a näıve level of detail. In such situation, collective lodding can help

by returning aircraft to squadrons and flying them around attacking as a group, instead of individuals.

Some heuristic can be used to determine how many shoots when passed through the squadron, making it

more probable for the front aircraft, and less for the rear ones, as well as the front can be more detailed

than the ones overlapped. These techniques are similar to the ones already used in the industry, to reduce

processing, yet this takes it to when the player is also present and observative as well.

Fabian continues this section talking about mementos, as the name says, as an object to remember

or that acts as a reminder, in this case of in game objects. This appears meeting the need to avoid losing

data of a high level detail entity, when converting it back to a lower detail one, that may affect later on

the gameplay. Using the previous defence game example, if a high detail squadron goes out of sight and is

later substituted with another one, it is wanted to have the same damage or any other characteristics that

had before despairing. When any high level detail entity is dropped to a lower level detail, a memento

should be stored, in order to know how to recreate the higher level detail entity. If said squadron goes

out of sight, then the damage suffered, where it has been damaged, or any distinctive data should be

compressed and stored into a memento. When reappearing, it needs to be decompressed and used to

build the higher level entities. Fabian also points out that, the compression method may not need a full

fidelity, meaning that not every data piece is important, giving the example of broken windows. It may

not be important to know specifically which windows were broken previously, but how many of them.

22

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Fabian talks about another type of memento, called JIT memento or just in time memento. This

offers a method to create fake mementos that provide continuity using pseudo-random generators, so a

suitable data is created on demand, without having to store data. A JIT memento relies on information

that is implicitly provided by the entity that needs a higher level of detail. Imagine a game in which the

player can navigate through the map by driving a car and ambient entities such as pedestrians and cars

need to be created and rendered. Instead of using a global random number generator, it is better to use

a specific seed. When the player is getting closer to a specific car, assume that it is a completely new

entity, the driver and the passengers need to be created, so it can be done by using a lookup table. Once

said car goes out of sight, but later on the player drives by it again, there is a need for consistency, so

that the passengers and drivers look the same. This can be done by using a specific seed, such as the

licence plate, as Fabian suggests, so there is no extra memory usage, and the memento still offers the

same viable solution, as long as the developer wants and from nothing (Figure 2.5).

Vehicle

PassengerStub

Memento

Character

seed

seed extract

Figure 2.5: JIT Memento Example, Hierarchical LOD by Fabian

Another usage for JIT mementos could be when generating landscapes or specific entities in a landscape.

He proposes, for example, that as well as the x and y coordinates are used via noise to generate a scenery,

they can also be used to create buildings. Furthermore, if the player can choose building specifications,

such as the amount of rooms to give a sense of personalization, the operation used after the random

number is generated can be changed, depending on the player preferences, yet the result is always the

same when reloading, because the seed remains the same.

Fabian also takes the chance to talk about what levels of detail rely on. It is usually formulated as a

distance function, in which, depending on the distance of an object, the target data, or entity, is dropped

into a lower level of detail or raised to a higher one. He points out that this vision might be somewhat

correct, yet, if seen from another perspective, it might help to solve other problems. A level of detail is

related to its entity presence and how it is perceived. To make an obvious example, if a giant projectile is

far away from the camera, it is perceived the same as a small projectile closer to the same camera, so it

does not only depend on the relative distance. So, understanding that level of detail is about perception,

it helps with how to describe and know where the boundaries lay. There is some data that might be

processed as a level of detail, even if it is game logic, so he analyses and explains how to remove and

reduce details from a game. On the one hand, if there is anything that is unnecessary to process, and is

about to be removed, said data can be flushed from memory. On the other hand, if there is something

that the player might care about, then the developer start thinking about recollection and attention, to

manage how to represent it. An entity that has the player’s attention, yet is hidden from him, still has

high interest in his perception, so it maintains a high priority on the level of detail. Would be the case

of a chasing mission in an assassination game, where, even if the player losses track of the character, it

should always remain the same. This leads to another question proposed by Fabian, which is how long

23

Marc Rosell Hernandez
Data-Oriented Design in Video Games

it takes for a player to forget something that in any other case would be important. Fabian talks about

how Grand Theft Auto IV managed this, when it comes to vehicles. Every automobile disappeared when

they were not looked at, and later replaced by a new car entity that did not have to look the same. It

was not the case of any vehicle the player had interacted with previously, so if the player had an accident,

it would still be there. Other games, completely opposed to this approach, save every bit of data, where

if an action produced an item output in the first gameplay hour, it is still present after hundreds more.

This can be achieved by spatially mapping mementos onto the level, so this level of player attention can

be rationalized. Level of detail can be used in other axes, such as how many times has a player done

a specific action or any other progression, reducing simple animations, that both occupy memory space

and the player might get tired to see, such as world interactions.

Fabian finishes this section by centring his thoughts on collective lodding, and start by referencing

the massive amount of instances that current games unnecessarily have, even though they do not need

them. He gives an example of a gardening simulator, which nowadays said type of simulators have several

instances of leafs, insects and so on. Having a 100 by 100 tiles field, each with wheat crops planted and

growing, in a typical simulator each would be an instance, and each wheat would be a distinct instance.

Such amount of data can be reduced significantly by thinking what is really important to know about a

field and a wheat sprout. The positioning is not necessary since it is a tiled map, so can be viewed as a

grid. To know if a specific tile has wheat, a whole instance is not needed as well, and any other effect

once saved in the instance can be cheated, so no rotation needs to be saved to represent wind movement,

just a global shader. Summing up, Fabian says that to represent such a field it is only needed an array of

10,000 unsigned chars, each one handling values between 0 and 100 that represent the growth progress,

concluding that the wheat does not need positions, but are the positions that either have or not wheat.

The same happens with Minecraft, a cooking game, or any other, where elements can stack. There are no

several instances in a stack, but just a type and a multiple of it to represent it. The underlying principle

is to make sure to have slots in the virtual world, so entities can be tracked. Fabian recommends referring

to things by how an external would call them, giving the example of what a stranger would say there is

in a room he can not see. He would not say specific items such as a sofa, a table, and so on, but furniture

in general. The same can apply to the player, so understanding how they understand the world, is a

helping hand to know their mental model and how they perceive it.

2.3.5 Searching

As explained in the previous sections, data is saved as tables, so it is important to consider how said data

is looked up. Foremost, in some cases a data search might be unnecessary, so avoiding it would be a big

time budget save. On any other case, doing it näıvely would be slow, so other helpers such as binary

trees, hash tables, or sorted tables come in handy.

DBMS, or database management systems, introduced quite ago the index concept. Said indexes were

automatically added when a DBMS noticed a query has been run multiple times. The same idea can be

used to implement a just-in-time indexing system to a game. In SQL, a query that creates a row or table

is an object that stays around in case it is used again, and can be modified depending on how it is used

over time. A simple linear search that is often used, can be able to analyse what it returns, for example

a set containing the first N elements. So, to avoid repeating that query over and over again, it is better

to such process, to update its answer by hooking it up into the insertions, modifications, or deletions,

so when said query is used, it can rapidly answer. Fabian explains that this is what OOP can offer to

DOD, since it can save computation time sometimes, and it is as well safe, due to it being optional. If

generalized backend are used to handle building queries into tables, they provide multiple benefits. A

system for garbage collection of indexes, self-documenting and self-profiling are some of them.

24

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Both, self-documenting and self-profiling, via logging can help find hotspots and room for improvement,

so said search code can be optimized.

A first step in a data-oriented searching approach is understanding the difference between search

criteria and the data dependencies of that search criteria. In the object-oriented methodology, objects

are often asked if they do satisfy some criteria, implying maybe more code line, indirectly accessed

memory, and non-optimal cache lines. The code below is an example of a simple binary search in a näıve

implementation of an animation container.

1 struct FullAnimKey {
2 float time;
3 Vec3 translation;
4 Vec3 scale;
5 Vec4 rotation; // sijk quaternion
6 };
7

8 struct FullAnim {
9 int numKeys;

10 FullAnimKey *keys;
11 FullAnimKey GetKeyAtTimeBinary(float t) {
12 int l = 0, h = numKeys -1;
13 int m = (l+h) / 2;
14 while(l < h) {
15 if(t < keys[m].time) {
16 h = m-1;
17 } else {
18 l = m;
19 }
20 m = (l+h+1) / 2;
21 }
22 return keys[m];
23 }
24 };

Listing 2.11: Binary Search Through Objects by Fabian

Understanding what the process is meant to do, what is the producer, or the consumer, is a helping hand

to improving the code piece. See the code below.

1 struct DataOnlyAnimKey {
2 Vec3 translation;
3 Vec3 scale;
4 Vec4 rotation; // sijk quaternion
5 };
6

7 struct DataOnlyAnim {
8 int numKeys;
9 float *keyTime;

10 DataOnlyAnimKey *keys;
11 DataOnlyAnimKey GetKeyAtTimeBinary(float t) {
12 int l = 0, h = numKeys -1;
13 int m = (l+h) / 2;
14 while(l < h) {
15 if(t < keyTime[m]) {
16 h = m-1;
17 } else {
18 l = m;
19 }
20 m = (l+h+1) / 2;
21 }
22 return keys[m];
23 }
24 };

Listing 2.12: Binary Search Through Values by Fabian

This code is a rewrite that saves memory requests by having a structure-of-arrays, and the data layout

originates from understanding and identifying what data is needed to satisfy the program requirements.

Foremost, it is important to consider what data is needed as an input, and what is required as an output.

The given input is a float value encoding a time, and the return value is an animation key, which is

internal to said system and offers the possibility to re-structure the data as the developer likes. Since

the comparison value is the time itself, the whole process does not need to have any access to the other

animation key data, so separating the time values into another array. Fabian then proceeds to explain

why this second piece of code is faster, and continues to show, firstly looking at the AnimKeys data

layout.

25

Marc Rosell Hernandez
Data-Oriented Design in Video Games

t tx ty tz sx sy sz rs
cacheline

ri rj rk t tx ty tz sx
sy sz rs ri rj rk t tx

cacheline
ty tz sx sy sz rs ri rj
rk t tx ty tz sx sy sz

cacheline
rs ri rj rk t . . .

Table 2.8: FullAnimKey Data Layout by Fabian

In the table above (Table 2.8), contiguous elements of the same colour represent values in the structure.

A colour change represents a new structure loaded in the cache. Values t represent the time, and the

others represent each component of translation, scale, and rotation. The process to be done is to find

a key animation index by searching through a list of time values. So, there is no need to load all the

data into the cache to look for a single value, because as it can be seen in a single cache line there are

only a couple time values. In the search through vales code example, where times are extracted from the

structure into an array, the execution is faster since the cache line is mostly filled with pertinent data,

having 16 key times per cache line (Table 2.9).

t0 t1 t2 t3 t4 t5 t6 t7
cacheline

t8 t9 t10 t11 t12 t13 t14 t15

Table 2.9: DataOnlyAnimKey Data Layout by Fabian

A binary search is one of the best search algorithms for using the smallest number of instructions. From

this point, trying to use fewer and fewer instructions might not be useful. Instead, it is better trying

to load a whole cache line with valuable information, since loading it and using it properly could have

a greater impact than the algorithm used. Also, another solutions to this problem were attempted that

load some amount of time values, key values, the key count, and took the chance to make use of the free

cache line to read other values that made the data processing faster.12

Fabian also points out there are times when there are problems miscategorised as a searching type,

but they are really a more of a sorting one. He sets up the example of having to search for something

within a distance range, the closest shelter, food, or cave. If a query often happens, it can be promoted

to a runtime-updating sorted-subset, in Fabian’s words, of other tables’ data. In the problem suggested,

if the three closest elements are needed, then it is better to keep a separate list of said three elements,

which is updated with every update, insert, or delete effecting the bigger list.

1 Array <int > bigArray;
2 Array <int > bestValue;
3 const int LIMIT = 3;
4

5 void AddValue(int newValue) {
6 bigArray.psuh(newValue);
7 bestValue.sortedinsert(newValue);
8 if (bestValue.size() > LIMIT)
9 bestValue.erase(bestValue.begin());

10 }
11 void RemoveValue(int deletedValue) {
12 bigArray.remove(deletedValue);
13 bestValue.remove(deletedValue);
14 }
15 int GetBestValue () {
16 if (bestValue.size())
17 {
18 return bestValue.top();
19 } else {
20 int best = bigArray.findbest ();
21 bestValue.psuh(best);
22 return best;
23 }
24 }

Listing 2.13: Keeping More Than You Need by Fabian

12To further read about the solution: <https://www.dataorienteddesign.com/dodbook/node7.html> (Listing 6.3).

26

Marc Rosell Hernandez
Data-Oriented Design in Video Games

In some cases, there might be needed a check of the best values. The best is to find, during runtime, the

best value that covers the requirement.

Sorting itself is really important in every programming paradigm, so due to it being applied frequently,

Fabian points out several improvements to be made. Mentioning radix sort as one of the best and

fastest sorting algorithms, depending on whether values or whole objects are sorted, presenting several

improvements on what sorting function to use depending on the case, and how to optimize them, so they

are cache friendly. Even though these changes are optimal and really appropriate to the DOD paradigm

they could, subjectively13 speaking, have been found with other means and applying other paradigms,

so it is left to the reader as an optional reading14, since it is not paradigm dependable.

2.3.6 Optimizations

Fabian, at the beginning of this section, talks about several major points about optimization. Foremost,

he gives an overview on it by pointing out that the instructions or algorithms themselves are not the

major problems, sometimes it could be, but data movement, which is a fundamental pillar for DOD.

Along with it, he rejects premature optimization. He identifies any change applied to the code that has

not been proven to be slow by some logging or profiling results, as well as any unreasoned change made

by a developer just because it may seem faster. Furthermore, he values having some frame budgets,

distributing the costs, and accounting for any hardware type that any player might use. He also explains

a strategy to efficiently optimize, by defining the problem, measuring it, analysing it, implementing a

solution, and confirming it is solved. As well as in sorting, these explanations are as fundamental as

interesting, but once more, this state of the art is meant to explain the methodologies used to achieve

said optimizations, so this is centred on it.15

Initially, Fabian centres his attention explaining how to optimize tables. A big detail is how important

it is to keep data in vectors or arrays, either STL vectors or a custom dynamically sized array. Most

of the time the data is either read, transformed, or modifying a table in place, so an array is a good

container for it. Structures of arrays are good, but considering access patterns, mostly by readability, is

much better, to keep it cache friendly. CPUs are optimized for certain patterns of memory activity, since

they have a cost associated with changing from read to write operations, so it is useful to arrange writing

memory in a predictable and serial form. Arrays of objects do not take this into account.

1 struct PosInfo {
2 vec3 pos;
3 vec3 velocity;
4 PosInfo ():
5 pos (1.0f, 2.0f, 3.0f),
6 velocity (4.0f, 5.0f, 6.0f)
7 {}
8 };
9 struct nodes {

10 std::vector <PosInfo > posInfos;
11 std::vector <vec3 > colors;
12 std::vector <LifetimeInfo > lifetimeInfos;
13 } nodesystem;
14 // ...
15 for (size_t times = 0; times < trialCount; times ++) {
16 std::vector <PosInfo >& posInfos = nodesystem.posInfos;
17 for (size_t i = 0; i < node_count; ++i) {
18 posInfos[i].pos = posInfos[i]. velocity * deltaTime;
19 }
20 }

Listing 2.14: Mixing Hot Reads with Hot and Cold Writes by Fabian

13By me, the thesis author.
14To further read about sorting: <https://www.dataorienteddesign.com/dodbook/node8.html>.
15To further read about optimization premises: <https://www.dataorienteddesign.com/dodbook/node9.html>.

27

Marc Rosell Hernandez
Data-Oriented Design in Video Games

The code above, with an array of structures, does not take into account the usage of each value, since, to

update them, there are both values meant to be read and written and some others just to be read. An

improvement in performance would be found in the code below:

1 struct nodes {
2 std::vector <vec3 > positions;
3 std::vector <vec3 > velocities;
4 std::vector <vec3 > colors;
5 std::vector <LifetimeInfo > lifetimeInfos;
6 } nodesystem;
7 // ...
8 for (size_t times = 0; times < trialCount; times ++) {
9 for (size_t i = 0; i < node_count; ++i) {

10 nodesystem.positions[i] += nodesystem.velocities[i] * deltaTime;
11 }
12 }

Listing 2.15: Ensuring Each Stream Is Continuous by Fabian

Structs of arrays are more cache friendly if data is not related both for reading and writing. It is important

to point out that this does not mean that having every component of a position, in this example, on

different arrays is better, since most of the time all the component values have to be either written or

read in group. This implies that every element would occupy thrice the amount, instead of a single

cache line. If the operation needs for other data, then it may overfill the cache, thus why it is important

knowing where data comes from, how it relates to each other, and how it is meant to be transformed.

Another reason why it might be preferred to save data in trivial structs of arrays format, is because it is

commonly operated to insert or delete elements. Several tables, referring to each other and containing

data of a same entity, may need a way to splice the tables together and keep them sorted to assist with

zipping operations. If said tables are sorted by the same value, then the different tables can be processed

altogether. There may be cases in which tables are zipped together without being sorted by the same

column. Fabian explains a render example where lots of entities refer to a model ID, and a lot more

mesh-textured combinations referring to the same model ID, thus needing to zip together the matching

orientation rows, the model ID, and the mesh and texture combinations. The easiest way to code this is

as it can be seen below:

1 ProcessJoin(Func functionToCall) {
2 for(auto A : orientationTable){
3 for(auto B : entityRenderableTable) {
4 if(A == B) {
5 for(auto C : meshAndTextureTable) {
6 if(A == C) {
7 functionToCall(A, B, C);
8 }
9 }

10 }
11 }
12 }
13 }

Listing 2.16: Join By Looping Through All Tables by Fabian

Foremost, it is important to, once again, remember that a comparison of values, such as (A == B),

both values are the same type, and the column by which both tables are sorted. This piece of code is

a trivial attempt, as it is a simple iteration over the whole three tables, being a O(n3) complexity for

same size tables, so it may be fine for small tables. Another strategy would be to join tables by lookup,

or even keeping a join cache, so tables appear to be sorted.

28

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Fabian then proceeds to talk about data transformation specifically. The database schema16 concept,

can be taken further, in this case, by making a static schema definition allows for another usage of iterators.

Alternatively to iterating over a container, the merging can be done during iteration, generating a context

upon which the transform operates. This would be beneficial for large merges that would do little with

the data, due to not having to create temporary tables, but would not benefit complex transforms, since

the next set of data may not be in the cache. Another key point of data transformations is to distinguish

between loading the data, apart from the code that would later operate on that data. Mapping and

reducing can be the basis of a transform and flow driven program. Both, mapping and reducing, are

helping processes to store as little data as possible, for all matching values, and reduce being associative,

it can be parallelized.

The author makes a little claim on using spatial sets outside the common applications they have been

given, such as collision detection. He postulates that they can be used to organize data, such as audio.

With this example, he proposes that nth dimensional spatial partitioning systems could be used to sort

out audio by their significance, not just in space and proximity, but volume or entity importance. Even

giving a set of all nearby entities to the AI by location, threat, reward, or other significant characteristics.

Another problem is entity updating and how game engines commonly use dirty flags to represent

whether an entity and its children need to be updated or not. Most of the time, due to the cycles it

takes to load from memory, it would be better to update them in OOP. In the DOD case, there is no

such problem, because, as it has been explained before, existential processing is a building pillar. Said

flag can be represented with a dirty table, instead of a dirty flag, hence knowing that every element in

that table needs to be updated, and it can be iterated on. This also applies to any other evaluation that

may cause branching unnecessarily.

Fabian explains about varying length sets and how to process them, for the next part. This section is

about memory management, how to achieve fitting data into a fixed size pool or buffer, by reduce. Due

to a complex reasoning and, although being important as management, not being a fundamental it is left

to the reader as optional.1718 Still, there is an important concept in this section about parallelization,

that can apply to the other game systems, because of the paradigm’s ease to be parallelized. The idea is

about how to use smart pointers in a multithreaded environment, keeping it simple by either not using a

mutex or avoid deleting table elements. To avoid using mutex, a smart pointer may only be bound to a

single specific thread, storing an identifier for the thread it belongs to. For example, if a sub-system runs

in its own independent thread, the best is to bind the memory allocation to said thread, so if another

sub-system is accessing its memory it may be due to the subsystem exposing its memory, or it is doing

more work that it should in any callback function, if there are any. Such bad usage of smart pointers are

caught by the assets, so they can be detected and solved. The idea behind avoiding deleting elements is

that of, in deleting a lot in a system it changes constantly, so it is better to use pools. Instead of deletion,

the data can be marked as not used, saying it is still valid yet not computed, so either they are in a small

table by themselves or not, the only price to pay is keeping pools of the components or other memory.

Whenever there is an update, the state can be overwritten and processed again.

Following the sets’ explanation, Fabian claims that the data-driven model uses two major techniques

which can be learnt from. Foremost, there are callbacks, which instead of being called every time they

are triggered, they can be used more safely by using triggers of subscription tables. This implies firing

a trigger only when its specific job is done. An example by him is a scoring system which would have

16A database schema defines how data is organized within a relational database; this is inclusive of logical constraints such
as, table names, fields, data types, and the relationships between these entities. <https://www.ibm.com/topics/database-
schema>.

17To further read about varying length sets, search it in: <https://www.dataorienteddesign.com/dodbook/node9.html>.
18For a better understanding of the Radix sorting algorithm, and related concepts, it is recommended to read: Radix

Sort - <https://upcommons.upc.edu/handle/2117/77204>, p. 6-7.

29

Marc Rosell Hernandez
Data-Oriented Design in Video Games

a callback from ‘badGuyDies’, in an object-oriented approach, a message watcher would increment the

internal score whenever it received said message. A different method would be to execute each of the

callbacks in the callback table once the whole set of enemies has been checked for death which happens

when they had their tick, then adding score points once for all the killed enemies. The second technique

is related to scripting. Often there are scripts run over multiple entities and are interpreted on update.

Instead, they can be operated as done with graphics parallelization, by predicting possible states, and

returning the correct one, reducing the amount of branches by interpreting it on demand. Furthermore,

SIMD can be built into the scripting core, resulting in a great amount of entities using scripts, in

comparison to traditional serial scripting. If the SIMD is applied, then there is almost no price to pay for

script interpretation. SIMD is very beneficial when a large amount of calculations needs to be done, and

it has proven to be four times faster than the array of structs and struct of arrays. Here is an example

which handles updating positions of particles, the first part as a struct of arrays and the second as SIMD:

1 void SimpleUpdateParticles (particle_buffer *pb, float delta_time) {
2 float g = pb->gravity;
3 float gd2 = g * delta_time * delta_time * 0.5f;
4 float gdg = g * delta_time;
5 for(int i = 0; i < NUM_PARTICLES; ++i) {
6 pb->posx[i] += pb->vx[i] * delta_time;
7 pb->posy[i] += pb->vy[i] * delta_time + gd2;
8 pb->posz[i] += pb->vz[i] * delta_time;
9 pb->vy[i] += gd;

10 }
11 }
12 void SIMD_SSE_UpdateParticles(particle_buffer *pb, float delta_time) {
13 float g = pb->gravity;
14 float f_gd = g * delta_time;
15 float f_gd2 = pb->gravity * delta_time * delta_time * 0.5f;
16

17 __m128 mmd = _mm_setr_ps(delta_time , delta_time , delta_time , delta_time);
18 __m128 mmgd = _mm_load1_ps(&f_gd);
19 __m128 mmgd2 = _mm_load1_ps(&f_gd2);
20

21 __m128 *px = (__m128 *) pb ->posx;
22 __m128 *py = (__m128 *) pb ->posy;
23 __m128 *pz = (__m128 *) pb ->posz;
24 __m128 *vx = (__m128 *) pb ->vx;
25 __m128 *vy = (__m128 *) pb ->vy;
26 __m128 *vz = (__m128 *) pb ->vz;
27

28 int iterationCount = NUM_PARTICLES / 4;
29 for(int i = 0; i < iterationCount; ++i) {
30 __m128 dx = _mm_mul_ps(vx[i], mmd);
31 __m128 dy = _mm_mul_ps(_mm_mul_ps(vy[i], mmd), mmgd2);
32 __m128 dz = _mm_mul_ps(vz[i], mmd);
33 __m128 newx = _mm_add_ps(px[i], dx);
34 __m128 newy = _mm_add_ps(py[i], dy);
35 __m128 newz = _mm_add_ps(pz[i], dz);
36 __m128 newvy = _mm_add_ps(vy[i], mmgd);
37 _mm_store_ps ((float*) (px+i), newx);
38 _mm_store_ps ((float*) (py+i), newy);
39 _mm_store_ps ((float*) (pz+i), newz);
40 _mm_store_ps ((float*) (vy+i), newvy);
41 }
42 }

Listing 2.17: Simple Particle Update with SIMD by Fabian

Compilers usually tend to vectorize by default, but it has to figure it out. Nowadays, most machines

support SSE19, therefore allowing to get more data into the CPU. The example above is loading four

particles at a time, and are updated at the same time as well, and as can be seen do not require anything

clever nor special around the data layout. So, the code can be prepared to use structures of arrays

preparing to be turned into SIMD once a specific section becomes a bottleneck.

Before finishing the optimization section, Fabians talks again about structures of arrays and how they

improve cache utilization in comparison with arrays of structures. He uses a specific example with two

small fragments, here obviated, to point out how using tables and a DBMS, the cache misses can be

diminished in great degree.

19Streaming SIMD Extensions.

30

Marc Rosell Hernandez
Data-Oriented Design in Video Games

2.3.7 Maintenance and Reuse

Hierarchies in large C++ or object-oriented projects, are a weakness due to how base classes from which

a great amount of others inherits, thus not supporting ‘introspection’ in Fabian’s words. In a database

driven approach, like the one presented in the first example on rooms, in relational databases, and as

talked in component based objects, not every entity need and owner, this later understood as an ID.

Said example of rooms, only had mesh, texture, and a generic room ID, and it was due to emergence,

that doors needed a specific identifier. The basic idea is that by applying knowledge about relational

databases and how data can be normalized, said hierarchies are no longer needed.

When speaking about debugging, Fabian highlights two prime causes of bugs, an unexpected side

effect of a transform or a corner case in which a code piece does not return a correct value. He also

points out other reasons often faces in object-oriented programming that are bugs, from exceptions due

to de-referencing a null to logic ignoring player interactions. A common cause of de-referencing a null is

due to a class lifetime. Most of the time, some objects are referenced by others, so when deleting said

structures, the developer has to be careful to update every object that had the deleted one reference, or

else later can be de-referencing invalid memory, maybe leading to de-referencing a null pointer. In DOD,

said scenario is quite impossible as entities existence is tied to arrays implying a greater capacity to be

processed, and if some data is still in an array after deleting an entity, it would cause a bug, but not a

crash bug, which is also easier to solve. One last problem that can cause bugs is bad states, meaning

when data or values are not in the right state. A first step to avoid this from happening is avoiding

re-assigning values to a variable that already had one, due to trying to have one single return statement,

Fabian says. Having several return statements has other problems as well. Encapsulation itself is hiding

data, what often leads to having more debugging logs. In a data-oriented approach, data is kept as simple

as possible, so a way to solve this bugs is to keep said data around longer, so it can be inspected more

easily. It is also easier, if a bug happens in specific situations, to assert it, avoiding guess work.

This section is closed by summing how the code is more reusable, since it is not dependent on specific

hierarchies or relations, the data is processed and transformed from tables, making it able for programmers

to take the same code pieces, and just change the little behaviour wanted to change. In a data-oriented

paradigm, it is also easier to refactor code, because of the same reason. As well, due to the small functions

and the existential processing principles, unit testing can be applied in an easier manner, to check for

errors and bugs from an early stage. All these final characteristics, although important, are not angular

stones of why the methodology is efficient and faster computationally, yet were worth mentioning.

2.3.8 Last Mentions

Beyond the sorting section which was already mentioned to be discarded to be presented here, there are

also a couple sections not included yet worth mentioning. Foremost, there is a chapter about how to

help the compiler20 where there is a mix of reasons why to apply some modifications and optimizations.

So, they could have been included in those sections. The reason they are not even mentioned is that of,

although being interesting enough, they are mostly sum ups of other optimizations or are too specific,

yet able to be applied in other paradigms.

Lastly, the second chapter to be mentioned here is called What’s wrong? 21. Here Fabian does some

claims on why object-oriented programming is worse in his opinion, and arguing about them. It is a

rather interesting read, yet once more, this thesis is meant to be centred on how to apply the DOD

paradigm, then be able to conclude with a small project, whether it is better or not than OOP in the

first instance.

20To read about how to help the compiler read: <https://www.dataorienteddesign.com/dodbook/node10.html>.
21To read this chapter, read: <https://www.dataorienteddesign.com/dodbook/node12.html>

31

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Chapter 3

Project Management

3.1 Gantt Diagram

The Gantt Chart (Table 3.1) is used to manage this project. The main goal is to compare results to be

able to conclude if the Data-Oriented Design model is most optimal than Object-Oriented Programming.

So, the project is divided in two programming subprojects, which are meant to be the same final game,

yet using the different models studied. To keep a better track of the development and to work on the

same features on both projects, these are organized to be done at a time.

Weeks, Monday to Sunday
1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
u
ra

ti
o
n

B
e
g
in

W
e
e
k

E
n
d

W
e
e
k

M
a
rc
h

2
7

A
p
ri
l
3

A
p
ri
l
1
0

A
p
ri
l
1
7

A
p
ri
l
2
4

M
a
y
1

M
a
y
8

M
a
y
1
5

M
a
y
2
2

M
a
y
2
9

J
u
n
e
5

J
u
n
e
1
2

J
u
n
e
1
9

J
u
n
e
2
6

OOP Project 11 1 11
Base Creation and Render 1 1 1
Basic Geometry Handling 1 2 2
Component System 2 3 4
Physics Implementation 2 5 6
Player Interaction 1 7 7
Enemy Behaviour 2 8 9
Debug Input and Error Solving 2 10 11

DOD Project 11 1 11
Base Creation and Render 1 1 1
Basic Geometry Handling 1 2 2
System Managers 3 3 5
Physics Implementation 2 5 5
Player Interaction 1 7 7
Enemy Behaviour 2 8 9
Debug Input and Error Solving 2 10 11

Analysis 3 12 14
Benchmarking 1 12 12
Datasets Comparison 2 12 13
Conclusions 1 13 14

Table 3.1: Gantt diagram

The first two major tasks groups are the development of both projects that are planned in parallel,

as explained above. These are planned to last for eleven weeks and are subdivided in simple sprints.

The first sprint is about solutions creation, as well as programming a base game architecture to handle

the features to be implemented during the following sprints, and finally to render a simple primitive.

Merging with this sprint, the second, is meant to expand the amount of primitives and meshes that can

be rendered and handling them, so that no more work on the rendering part needs to be worked on later

sprints. The third and fourth sprints are related to creating the component system. Said system is the

one which differs the most between the two models. It implies the creation of transform, mesh, rigid

body and other components if desired or needed. Notice that, in said chart, on week 5, specifically in the

32

Marc Rosell Hernandez
Data-Oriented Design in Video Games

DOD project, there are two tasks open, and one of these is not parallel to the one in the OOP project.

This is because developing the system managers in DOD is expected to be the most difficult part, since

it is where it lies most of the complexity. Further on, during the fifth and sixth sprint it is expected to be

working on the implementation of a physics library, and incorporate it in the component system for the

OOP and the physics manager for the DOD. The final five sprints all the work is centred in interaction,

to add some playability, enemy behaviour and debugging key bindings. Player interactivity is meant to

be minor, since no graphic user interface is planned to be created and the controls are intended to be as

simple as possible. Enemies or other entities behaviours are expected to be different depending on types,

so different types of computations need to be done, as well as to add some interactivity between the

entities themselves. Finally, some debug key bindings are meant to be added, so some types of entities

can be spawned in large quantities, to check how each model handles a certain amount of objects. As can

be seen, the last two weeks are also used to grant some stability in each solution and handle any possible

errors or bugs found previously.

Lastly, there is the last subproject, which are assigned to getting data on the game performance,

to compare said results and be able to conclude the project. As well as in the case of week 5, already

exposed, weeks from 12 to 14 have simultaneous tasks, due to not knowing how long it might take to

analyse said data. How this data is meant to be analysed, and how the project is intended to be validated,

can be found in section 4.4.

3.2 SWOT

To do a SWOT analysis, the four components are displayed as subsections with an element list each,

due to presenting them in a chart might not come in handy, and this representation let more space for

explanations.

Strengths

• Some projects of the degree have already been developed as a one-person team.

• There is previous knowledge and experience in developing a video-game engine and how the game-

object component system works.

• Almost every piece of software and libraries used in the development process, have been used before

and there is prior knowledge on how to use them.

Weaknesses

• As people into DOD programming warns, changing the mindset from OOP to DOD take a huge

effort, meaning that at any point there could be a delay in the work progress or any other unexpected

difficulties.

• It is the first time trying to get so detail when benchmarking, and have a limited amount of time

to learn to use a new software to do so.

• There could be a problem with either hardware or software used to develop and compare both

projects, or, in other case, with one’s health condition.

33

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Opportunities

• There could a potential usage in the industry, since it is not known if the DOD model is being used

in the industry for either game or tools development.

• It could be used to impulse the way game development is taught, adding DOD to the already

existing model, to further deepen the next generations’ knowledge.

Threats

• A larger team could be working on the DOD application in video-games or video-game development

tools.

• Online services used during development, like git or any other used to manage, could go down and

slow down the developing process.

3.3 Risks and Contingency Plan

On one hand, the main and major risk is to not be able to finish the projects and, consequentially, compare

them, due to how long it could take to program both projects and how difficult it is to approximate how

much time it could take.

To try to avoid this situation, it has already been planned the project according to these problems, as

it can be seen in the Gantt Diagram (Table 3.1). Firstly, both projects are being developed in parallel,

not just to make sure they are clones even using different programming paradigms, but to have progressed

equally in each one if the developments have to be stopped and staged as finished to make the conclusions.

To ensure that the whole process does not take too long, it has been decided that projects need some

level of complexity, but efficiency can also be tested by the amount of objects or entities present during

execution time, so this may be used to the benefit of being able to finish it.

On the other hand, any problem that can probably occur is either related to the hardware equipment

or software services. In case of a hardware major issue, the only solutions would be to replace it, since

finishing it on time is more important. If said hypothetical issue is a service one, there would be almost

no problem, because even if the projects and management tools are in the cloud, some copies of them

exists in local as well. The only major service inconvenience would be that, either electricity or internet

provider, go down for a considerable amount of time, in which case nothing much could be done.

3.4 Initial Costs Analysis

To quantify the costs of this report, there are some key points that need to be taken into account.

Foremost, the developed projects are not meant to be shipped or released, but benchmarked and used

as case of study. Secondly, it would be odd to calculate how much would it cost for a professional team

of unknown size and expertise. So, the whole cost analysis, as can be seen (Table 3.2), are considered as

if someone alone did the study by request. In this case, the costs are approximated, with a single den

and related expanses, like electricity, internet service and others needed. There is as well the minimum

needed equipment, which in this case is a computer along with the peripherals needed, such as mouse,

keyboard, and a couple of monitors. When it comes to salary, which for a junior developer is between

12e and 15e per hour, the chosen one is 14e an hour. Finally, to analyse the costs, the developer only

works for the same 14 weeks planned in the Gantt Diagram, but the renting and services are counted as

a whole 4 months.

34

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Notice that, there are no software products listed. This is because during the development process

of both projects, no paid programs are meant to be used. In this case, the only software used is Visual

Studio Community, which is free.

Initial Costs

Salaries
Developers Salary per Hour Total Hours Salary Cost

1 14e 560 7,840e
Total Salaries: 7,840e

Equipment
Price Quantity Equipment Cost

Computer 1,300e 1 1,300e
Monitor 100e 2 200e
Mouse 30e 1 30e
Keyboard 50e 1 50e
Total Equipment Costs: 1,580e

Utilities
Price per Month Months Used Utility Cost

Office 350e 4 1,400e
Internet Service 40e 4 160e
Electricity Service 59e 4 236e
Other 120e 4 480e
Total Utilities Costs: 2,276e

Total Costs: 11,696e

Table 3.2: Costs analysis

The final costs, as can be seen above (Table 3.2) are quantified as, 7,840e for salary, 1,580e for

equipment and 2,276e for utilities and a den renting, adding up to a total of 11,696e.

3.5 About the Delayed Delivery

This project was due to deliver in June, yet it is being delivered in September. It was delayed, because

during the whole scholar year I have been combining work and studies, which in addition with this thesis,

research, and development has become a major workload. The results during June were far from like the

ones presented here, so it was decided to delay the final delivery. As well, the development during these

last months has not been what it was expected, due to problems when coding, as well as other external

ones.

35

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Chapter 4

Methodology

To get good results, it is convenient to apply a good methodology, as well as to know which tools are being

used in every step of the development. In the following subsections the main development methodology

and why it has been chosen, how the project is monitored, and what application has been chosen to do

so, while applying the selected methodology, are explained. In the last two subsections the main topics

are what tools, hardware, and software is being used during the development process, as well as what

validation methods, in both short and long term, have been applied.

4.1 Development Methodology

To specify a methodology adequate to a one-man team and two applications that are not meant to be

shipped or for public use, but comparison, can be complex. Most of the methodologies were conceived

with a final product to deliver in mind, because are user-centred, or the planning is in constant change.

Finally, an important thing to bear in mind is that the projects have been planned to be developed in

small fragments and in parallel. These characteristics are pretty much the same found in the Kanban

Methodology, which is the one used.

Basically, the Kanban methodology, is used to split a project in several stages, each one of them

having some tasks. Tasks can be organized by if they are planned, in progress or completed, and other

categories can be added if desired. Once a stage or phase is considered to have ended, the team starts

with the next one. An example can be found in the next section, along with a figure.

4.2 Tools for Project Monitoring

To keep track of the progress made on both projects and be cautious to end the report as desired, the

whole process has followed the Gantt Diagram (Table 3.1). Simultaneously, another tool, HacknPlan,

used to organize small sprints, since said service is used to apply the kanban methodology, as can be seen

(Figure 4.1).

Figure 4.1: HacknPlan project management board

36

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Other tools, like Trello, could be used to manage and achieve small intermediate milestones, yet has

not be chosen due to familiarity with HacknPlan. As the tool allows, each week of work is divided into

a different sprint, having its unique board. Also, it is a good tool to log the development time taken

by a single or a set of task, being able then to modify and adjust the planned work to ensure a better

progression if needed.

4.3 Equipment and Software Used

The main project’s goal is to compare Data-Oriented Design with Object-Oriented Programming, by

developing two projects and benchmark them. Said analysis could be planned for different platforms, yet

it is not the case, so the environment in which it has been emplaced is important. These parameters,

hardware and software, are important because if someone who is using the projects here developed to

make a benchmark, it would cause a difference between the results obtained. As explained in the state of

the art, the Data-Oriented Design model is meant to make the most out of the cache memory and other

components, and even if cache times might not differ a lot, system accesses to RAM might do depending

on both physical and program elements.

About the hardware, there are two elements that are the most important, the CPU and the RAM. In

the case of study, the CPU is an AMD Ryzen 7 5800X 8-Core Processor and the RAM, a DDR4 with

a CAS Latency of 16 and a 3200 MHz Clock Speed. For software, the most important is the operative

system, which is Microsoft Windows 10 Home, to be more precise, the version 10.0.19044. Beyond the

possibility of tests recreation, it is worth to mention that both projects have been developed only using

Visual Studio Community 2022. This might be important in a future, due to compiler changes, or any

other configuration made by Microsoft in said software, if someone tries to recreate the projects, or in the

present because of compiler optimizations or other existing parameters used in comparison, for better or

for worse, with other compilers. Beyond the development environment, there are two libraries that have

been used during the game creation. The first one is OpenGL, for graphics handling as well as glfw and

glm if needed. The other one is PhysX which may be used to simulate the physics in the engine.

4.4 Project Validation Methods

The whole project has two types of validation methods, depending on the development state, if both

project solutions are still in progress or the final validation of this report. In either case, it is important

to have a set of rules or steps to follow in these validations.

On the one side, during the development process, said validations are meant to take place when a

sprint, or a task from the Gantt Diagram, has been completed. It is not intended to be a formal validation,

but a confirmation step to ensure the projects’ viability and progress. Such steps shall be checking if the

sub-tasks listed for a specific week have been completed, by debugging and trying the new changes in the

application. Moreover, checking for any errors and bugs, if they have not been found previously during

said week. Finally, after these steps, it is planned for both projects to have a small validation and quality

assurance, to further work on them.

37

Marc Rosell Hernandez
Data-Oriented Design in Video Games

On the other side, the final validation is related to this thesis. After getting data from benchmarking

both game projects, this is meant to be compared and analysed. The data is intended to be separated

in two different datasets, then compared to ensure they can be treated as two different groups of data

by AB testing, and finally said datasets shall be analysed to make the conclusions. This analysis is

about comparing update times in both projects, how much does each solution need to compute specific

states, not just by looking at speed but, for example, how many cache misses does each model case,

hence knowing which is more hardware friendly. The expected conclusions are to detect a difference in

efficiency using the two methods, which would result in the project validation, to be precise, as the theory

says, it is expected to see a significant improvement using Data-Oriented Design. Otherwise, due to any

problem, any other conclusions would be rather odd, but would mostly tell that the Data-Oriented Design

would have not been correctly implemented, or if both results are not different enough, when trying to

differentiate the datasets as groups, it would mean it does not make such a major difference.

38

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Chapter 5

Project Development

This chapter is a review for all the development made. It is divided in four different sections, in which

the foremost explains the tools that were to be used to create the programs. The second one is about the

similarities between projects, such as utility functionalities or even how specific behaviours are the same,

such as the rendering technique. The third is about the different methodologies and techniques applied

during development, centred on the main differences between both paradigms, and how they have been

applied. These sections have been under development and writing during several weeks, yet to reasons

explained at the fourth section, both projects have finally been alternated in order to have a better data

dump towards this thesis conclusions. Even though this changes, the code as initially described has been

developed and is in the repositories, yet it was not more worked on since it was decided, and avoiding

having restraints when gathering data. Every piece of code that is not currently in use is commented, so

it can be looked at, yet it is not used.

5.1 External Tools

To develop the projects, and as explained in the methodology (Section 4.3), there are several tools in

use. Hardware-wise, it is not as important as the biggest effect would be shown in the final efficiency

comparison, if the projects were run on different machines, and in the case of study, the specifications

are the ones found in the section referenced above. In terms of software, it is more important to make

clear which libraries have been used and how, since there are different dependencies, each one with an

impact on performance.

When developing both projects, there are some external dependencies needed to achieve the desired

goals. On the one hand, there are the main libraries, which are OpenGL, and two other related APIs,

that may ease the 3D graphics handling. On the other hand, there is PhysX, which may be used to create

a more complex behaviour on scene, by creating some physics interactions between in-game objects, and

player interaction with said objects as well.

5.1.1 OpenGL and Related

To handle graphics, the chosen libraries are, not just OpenGL, but glfw, glad and glm as well. Each

one is used for a specific set of functions that are either needed or desired to be available. Firstly, these

dependencies have been selected due to previous knowledge of them. Even though Data-Oriented Design

can be applied to every algorithm, including graphics processing, input polling or any other system, it

has been desired to make use of said libraries to ease these more complex development steps.

OpenGL (Open Graphics Library1) is a cross-language, cross-platform API used to render 2D and

3D graphics by interacting with the GPU. This is the most used graphics library in the industry, even

1OpenGL website: <https://www.opengl.org>.

39

Marc Rosell Hernandez
Data-Oriented Design in Video Games

though Vulkan, another graphics API by the same group Khronos2, is raising in popularity. As said

before, OpenGL has been chosen due to the familiarity when programming with it, which in Vulkan’s

case is none, and even having extraction layers with other APIs such as glfw, it has been preferred to

avoid it. The other dependencies used for graphics in both projects are mostly for handling OpenGL.

It is the case for glfw and glad. The first of them, glfw3 is a platform independent API, which allows a

user to manage and create the OpenGL basics in any OS and machine architecture. It has been chosen

because these abstraction layers, provide any needed functionality from the graphics library and makes it

easier to use, reducing development time, compared as if it had to be done from scratch. Again, this has

been already used before, so the previous knowledge about the dependency and the aid it offers, are the

reasons why it has been used. As for glad45 it is used to manage function pointers, so they are queried

at run-time. It has also been chosen due to prior usage.

5.1.2 AssImp and stb

AssImp6 has been used to import .obj models into the project, processing them into models, meshes and

sub-meshes, while creating the appropriate buffers related to vertex objects. With the same library, the

main characteristics such as albedo colour, smoothness, or emissive colour are imported as well. In most

cases models have their own materials, with related diffuse, emissive, specular, or normal textures, to

say some examples. All of them are loaded using stb library7, to be concise the files stb image.h and

stb image write.h, since they are single-file public domain libraries. Along with other data loading, such

as shader program loading and creation, these processes are inner methods of a resource manager class.

5.1.3 PhysX

As explained above, to add interactivity, the PhysX8 library was also meant to be used.9 It is a multi-

platform physics simulation solution, that can target the GPU to process said physics. In these projects

case, it is not needed to execute a realistic and complex physics system, yet it has been chosen due to

previous knowledge and usage, as well as how the dependency covers the need to simulate such situations

to add complexity and interactivity.10

5.2 Equalities of the Projects

Both projects share some similarities, such as utility functions and techniques. Firstly, there is a collection

of functions that are just for memory management, as well as a macro re-defining the new keyword, to

detect memory leaks. There are also some functions that might be used, such as MAX and MIN macros,

an assert re-definition, a macro to count an array length, and a read file function to read shaders.

2Khronos website: <https://www.khronos.org>.
3GLFW website: <https://www.glfw.org>.
4GLAD website: <https://gen.glad.sh>.
5GLAD repository: <https://github.com/Dav1dde/glad>.
6AssImp repository: <https://github.com/assimp/assimp>.
7stb repository: <https://github.com/nothings/stb>.
8PhysX website: <https://developer.nvidia.com/physx-sdk>.
9Once the first objects were simulated, it was decided to readjust both projects, before even including PhysX.

10As said at the beginning of this section, the final project has some differences of what was first thought. The final
version does not contain interactivity, nor the PhysX library included.

40

Marc Rosell Hernandez
Data-Oriented Design in Video Games

The following paragraphs are about some systems or code lines used in both projects, with examples.

Notice that examples may not have every single code line in order to have every variable or method as

projects do, due to examples taking a lot of space. In all the cases, there are the most important methods

and variables, but with comments pointing out there might be more data, which is later presented in the

explanation.

Beyond these utilities, there are some other procedures that are equal. It is important to recall that

the goal is to compare both paradigms, yet even if each one has its own way to process data, the global

data process might be the same, to ensure they have a different procedure yet the same final result. This

is the case of the rendering technique. To render, it has been implemented a deferred lighting method,

to make sure that rendering and lighting does not take a really long time, leaving more frame budget

to CPU computation. The main point is not to have a perfect graphics result, yet to compare. So, the

renderer has been created using a base of what has been taken in the advanced graphics programming

subject. Said method requires several frame buffers, which save data such as positions, normals, diffuse

colour, and depth. The data contained in each frame buffer is saved using a shader, to be later used

in another shader, which disposing of that data along with the world light sources, can generate the

final scene frame. To ease the use of buffers and the graphics libraries, there are some functions that

are used to manage buffers, check for errors, and more. As they are meant to fulfil the same purpose,

said functions are the same in both projects. Furthermore, every function related to any library, mostly

speaking of callbacks in OpenGL case, are the same. The render class has different methods, it looks like

the following:

1 class RenderModule : public Module
2 {
3 public:
4 RenderModule(App* _app , ResourceManager* _resource , Scene* _scene_ref);
5 virtual ~RenderModule ();
6

7 bool initialize () override;
8 Update_State pre_update () override;
9 Update_State post_update () override;

10 bool clean_up () override;
11

12 void set_display_size(const int _new_width , const int _new_height);
13

14 private:
15 GLuint find_vao(Mesh& _mesh , unsigned int submesh_index , const ShaderProgram& _program);
16

17 private:
18 GLFWwindow* window;
19 glm::ivec2 display_size;
20

21 // Deferred rendering data ---------------------
22 // ...
23 // ---
24

25 // Buffer management data ----------------------
26 // ...
27 // ---
28

29 Scene* scene_ref;
30 };

Listing 5.1: OOP Render Class

This has some elements removed, such as rendering attachment handles or buffer management parameters.

The DOD version is the same, yet without a class, just a structure containing the data and the methods

substituted by functions. The main methods are initialize() so that GLFW can be started, post update()

which is the responsible to render the objects on screen, getting mesh data by using the third most

important method find vao(), which creates a vertex array object for meshes that have not been processed

yet, or returns the corresponding VAO.

41

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Another class that is the same in both projects, yet methods have been externalized as functions, and

data kept inside a structure, in DOD’s case, is the resource manager. As it was not intentional to have

several types of resources, this was meant to load and save data related to shader programs or models,

both meshes and materials, whether they had albedo or a texture. The main structure and methods of

said class are the following:

1 class ResourceManager
2 {
3 public:
4 ResourceManager(App* _app);
5 ~ResourceManager ();
6

7 void initial_load ();
8 unsigned int get_model_index(const std:: string& _model_name);
9 std::vector <RenderPackage >* get_render_packs_vector ();

10 void add_render_pack(unsigned int _mesh_index , glm::mat4 _matrix);
11 ShaderProgram& get_shader_program(unsigned int _index);
12

13 private:
14 unsigned int load_model(const char* _file_name);
15 void process_assimp_material(aiMaterial* material , Material& myMaterial , std:: string directory);
16 unsigned int load_shader_program(const char* _file_path , const char* _program_name);
17 unsigned int load_texture_2D(const char* _file_path);
18 GLuint create_texture_2D_from_image(Image _image);
19 Image load_image(const char* _file_name);
20 void free_image(Image image);
21

22 public:
23 // Deferred rendering uniforms data ------------
24 // ...
25 // ---
26 std::vector <Texture > textures;
27 std::vector <ShaderProgram > shader_programs;
28 std::vector <Material > materials;
29 std::vector <Mesh > meshes;
30 std::vector <Model > models;
31

32 private:
33 App* app;
34

35 // Shader programs data ------------------------
36 // ...
37 // ---
38 std::vector <RenderPackage > to_render;
39 };
40

41 // Shader loader
42 GLuint create_shader_program_from_source(std:: string& _program_src , const char* _shader_name);
43 unsigned char get_attric_component_count(const GLenum& _type);

Listing 5.2: OOP Resource Manager Class

There is a shader program loader, and a model loader, which are the main methods. The model loader

delegates the loading process into other functions, to traverse all the assimp scene nodes, as well as to

load any texture using stb. After loading a model, data is saved into vectors by their type, whether they

are a model, mesh, material, or texture. Another specific structure is the RenderPackage which contains

the bare minimum object data to render said object, its transformation matrix and model index, which

are later processed in the render module.

To be able to get a large enough data dump, each project has a time counter to check how much time

takes a whole update cycle of a scene, then averaging the result, which is shown and said data is also

dumped into an output file. Said average, since the updates count can vary each time the application is

executed, is calculated by incremental averaging, which can carry a small relative error. Time counting is

done by using a steady clock, std::chrono::steady clock, having a time point re-written after each update

cycle, then times are subtracted having a delta time, used to calculate update time, average values, and

how much execution time has elapsed. Both project’s execution time can be set by using a macro called

MAX TIME, which is set to ten seconds due to the amount of data generated in such short amount of

time.

42

Marc Rosell Hernandez
Data-Oriented Design in Video Games

5.3 Paradigms Development Comparison

In this section, all the development made to create both projects, is divided in two major groups in which

the programming paradigms may make a difference. These groups are: systems and in-game entities.

The first of them encompasses any system used to run the application, such as render, input or other

managers. In the case of in-game entities, it is about how entity data is used and processed, as for

example, transformations, mesh data, or any other needed. In both major groups, the comparison is

made by explaining a more specific or generic characteristic and how it has been implemented using each

system. As a final introductory note to this section, the Object-Oriented Programming project has been

based on everything learned until now during this same degree, and the Data-Oriented Design project has

been based on the research made, and the understanding of that same research. In the following pages

there are some listings with code fragments, which may not be identical to the code, because any comment

or logging being redundant, is erased to shorten the code size, or because the code was extensive, and

had to be reduced.

5.3.1 Game Systems

The first difference is the way systems are implemented. By using the OOP properties, a template class

has been created called module. Said module has the minimal methods and attributes, such as update

methods, start, and others, and a pointer to the app class itself, which is a total independent class. Then

each independent system inherits from the module class, overriding any needed method and adding any

required attribute. This template does not have a counterpart in DOD, since grouping systems in a set

of functionalities is too general, and not data friendly. The OOP project base module template class is

the following:

1 class Module
2 {
3 public:
4 Module(App* _app_root) : app(_app_root) {}
5 virtual ~Module () {}
6

7 virtual bool initialize () { return true; }
8 virtual bool start() { return true; }
9 virtual Update_State pre_update () { return UPDATE_CONTINUE; }

10 virtual Update_State update () { return UPDATE_CONTINUE; }
11 virtual Update_State post_update () { return UPDATE_CONTINUE; }
12 virtual bool clean_up () { return true; }
13

14 public:
15 App* app;
16 };

Listing 5.3: OOP Module Template Class

The next main class is the application itself, which, as said above, does not inherit from the module class.

It has a some data such as the modules needed to run the application along with a vector of them to

update the app sequentially, a clock to preview the execution times for the analysis, and a boolean to

check if the app is meant to close. The main methods are an initializer, the update and clean up.

1 class App
2 {
3 public:
4 // Modules declaration
5 RenderModule* renderer = nullptr;
6 InputModule* input = nullptr;
7

8 private:
9 bool quit;

10 std:: chrono :: steady_clock :: time_point frame_begin;
11 std::vector <Module*> modules;
12

13 public:
14 App();
15 ~App();
16

17

43

Marc Rosell Hernandez
Data-Oriented Design in Video Games

18 bool initialize ();
19 Update_State update ();
20 bool clean_up ();
21

22 void quit_app ();
23

24 private:
25 void module_add(Module* _module);
26 };

Listing 5.4: OOP Application Class

The app in DOD is a struct containing all the data, such as other systems as members. Also, every

function needed to process, initialize, start, or update, is independent of the struct, as it is shown in the

next comparison, the main entry point.

In the main function, the structure of both projects can be seen how they are changed. In the case

of OOP, as did during the degree subjects, it has a main loop with a state identifying if the app has to

start, update, or clean up calling the needed method, as can be seen below:

1 int main()
2 {
3 Main_State state = MAIN_INITIALIZATION;
4 App* app = nullptr;
5 Update_State update_state;
6

7 while (state != MAIN_EXIT)
8 {
9 switch (state)

10 {
11 case MAIN_INITIALIZATION:
12 app = DBG_NEW App();
13 ASSERT(app ->initialize (), "Error when initializing the application!");
14 state = MAIN_UPDATE;
15 break;
16

17 case MAIN_UPDATE:
18 update_state = app ->update ();
19 ASSERT(update_state != UPDATE_ERROR , "Error when updating the application!");
20 (update_state == UPDATE_STOP) ? state = MAIN_FINISH : 0;
21 break;
22

23 case MAIN_FINISH:
24 ASSERT(app ->clean_up (), "Error when cleaning up the application!");
25 state = MAIN_EXIT;
26 break;
27 }
28 }
29 RELEASE(app);
30 return 0;
31 }

Listing 5.5: OOP Main Entry Point

The OOP project, has inside each method, a loop that goes through every module in the vector, to call

the respective methods of each system or module. The best example is how the app update method goes

through all the update stages for each system:

1 Update_State App:: update ()
2 {
3 Update_State ret = UPDATE_CONTINUE;
4

5 for (unsigned int i = 0; i < modules.size() && ret == UPDATE_CONTINUE; ++i)
6 {
7 ret = modules[i]->pre_update ();
8 }
9 for (unsigned int i = 0; i < modules.size() && ret == UPDATE_CONTINUE; ++i)

10 {
11 ret = modules[i]->update ();
12 }
13 for (unsigned int i = 0; i < modules.size() && ret == UPDATE_CONTINUE; ++i)
14 {
15 ret = modules[i]->post_update ();
16 }
17 return (quit) ? UPDATE_STOP : ret;
18 }

Listing 5.6: OOP App Update

44

Marc Rosell Hernandez
Data-Oriented Design in Video Games

In the DOD version, the main is much simpler, since the data is preferred to be stateless, conditionals

to be avoided and so on, as explained in the section 2.3. Even if pointers are better to be avoided in some

cases, it has been chosen to have an application pointer. This pointer is also used to pass it as a function

parameter to all the functions that are responsible to run each step of the app. The main function is the

following:

1 int main()
2 {
3 App* app = DBG_NEW App;
4

5 app_initialize(app);
6 app_start(app);
7 app_update(app);
8 app_clean_up(app);
9

10 RELEASE(app);
11 return 0;
12 }

Listing 5.7: DOD Main Entry Point

As each function is called independently, in this case the main loop is only contained inside the update.

Furthermore, each of these only call the needed functions, for example the app start would only call the

systems that specifically need a start, avoiding the iteration and call of empty methods through a virtual

table. The clean-up procedure only needs to clean the renderer, since the input module uses the event

polling that glfw offers, and destroy the pointers to said systems, as can be seen:

1 void app_clean_up(App* _app)
2 {
3 render_clean_up(_app ->renderer);
4

5 RELEASE(_app ->input);
6 RELEASE(_app ->renderer);
7 }

Listing 5.8: DOD App Clean-Up

So, as explained, the main differences between both paradigms in the systems, are mainly the way they

are iterated, and the non-dependence from a template class in the case of DOD, as well as the lesser

usage of conditional statements, and states or enumerators.

Another main structure that differs between projects is the scene class. To handle the entities desired

to simulate, a scene has been created which manages them all.

1 class Scene
2 {
3 public:
4 Scene(App* _app , ResourceManager* _resource);
5 ~Scene();
6

7 bool update ();
8 bool clean_up ();
9 bool delete_object(Object* _ref);

10

11 ResourceManager* get_resource_manager ();
12

13 public:
14 ComponentCamera* camera_ref;
15

16 unsigned int object_count;
17 unsigned int total_count;
18 unsigned int last_max_count;
19

20 std::vector <Object*> to_delete_objects;
21

22 private:
23 Object* root;
24 Object* camera;
25

26 ResourceManager* resource;
27 App* app;
28 };

Listing 5.9: OOP Scene

45

Marc Rosell Hernandez
Data-Oriented Design in Video Games

As can be seen, the scene structure in OOP has a few elements. To begin with, it has no start method,

because its root object is created in the constructor, and was not essential. The camera attributes are

designed so that it can be accessible, and its component, so when the render has to be done, not make it

mandatory to traverse objects in search of the camera. The resource manager is also important to add

render packages which, as explained above, are used to save the bare minimum data to render an entity,

not having to load each whole object for every entity when rendering. Another characteristic are the

unsigned integer variables, these are used to debug when it is needed, as well as to check if there is always

the maximum amount possible of entities in existence. Said maximum is set as a macro to 1024, but

can be changed as desired. Furthermore, there is the delete object(Object* ref) method, which calls the

specific parent to delete its child. Said removal process is the following, when a behaviour is triggered by a

behaviour component the objects that need to be deleted are added to the vector called to delete objects,

so they can be processed at once, disallowing a bad memory and cache usage. The method used to delete

objects here, erases the entity from his parent child list, then proceeds to delete the data. It has been

done this way, not just to prevent callbacks that might disturb the CPU and cache pace, but to avoid

having to create a whole event system as well. It is important to point out that objects, in the OOP

project, are able to create child objects if the maximum has not been achieved, so that the iteration

through objects during update can be as realistic as possible. This cascade behaviour has been added to

object deletion as well, making that upon removing an entity its children are removed too. In the DOD

project, when an object is deleted it does not cause other objects to do so as well, so, in OOP, it has

been tried to just change parent pointers and children from an object to another, thus just deleting the

desired object, but with no remarkable improvement. To delete all children has been tested to be several

times faster than changing pointers, due to the only need to release memory, so it has been decided to

delete all children. A final point to the scene in the OOP project scene is how objects are updated. As

it is wanted to replicate a OOP game, the scene updates a root object, which proceeds to update its

components and children, creating a cascade effect of updates commonly seen in the OOP paradigm.

In the DOD project, the scene contains fewer data and functions, to be precise it only has the objects

and nothing more.

1 struct Scene
2 {
3 ObjectData* objects;
4

5 unsigned long long total_created;
6 unsigned long long total_destroyed;
7 };
8

9 void create_scene(Scene* _scene);
10 void update_scene(Scene* _scene , float dt);
11 void destroy_scene(Scene* _scene);

Listing 5.10: DOD Scene

As it can be seen in the code above, it just has a pointer to an object structure, in order to have, as Fabian

explains, a more cache friendly code, it is better to use a structure of arrays than arrays of structures.

The total created and total destroyed variables are again for debugging usage, to know if every possible

entity had been created. These are unsigned long long variable due to the amount of updates that happen

in this project, yet once the speeds had been normalized, it could have been changed back to an unsigned

int variable. The functions are pretty self-explanatory, as in the OOP project. The create function is to

declare and instantiate the scene objects data, the update is a cycle into three different methods of the

ObjectData struct, and the destroy function is to delete any scene allocated memory, like the objects.

There is no more complexity. The main processes are inside the objects methods, which are discussed in

the next subsection.

46

Marc Rosell Hernandez
Data-Oriented Design in Video Games

5.3.2 In-Game Entities

The entities, components, and their management is, for repetition, where most of the performance impact

can be found. The entities, or objects, are here explained by methodology, starting with how the OOP

entity has been coded, as well as its components, and later the DOD objects are presented. In this specific

part, the main OOP methods and attributes are explained, but due to its common names and usage in

the industry or learning process, the explanation is not long not goes into great detail. It is not the case

for DOD, which is the paradigm being researched and tested in comparison to the already known.

Entities in OOP

Entities in the OOP project have several parameters and methods. In this case, it only has a few

attributes, such as a vector of components, and a boolean variable to set an object as active or inactive.

The methods are some like, adding a new component, set parents or child, or updating.

1 class Object
2 {
3 public:
4 Object(Scene* _scene , bool _active);
5 ~Object ();
6

7 Component* add_component(COMPONENT_TYPE _type);
8

9 void start();
10 void update(float _dt);
11 void clean_up ();
12

13 // Parent -children related methods -----
14 // ...
15 // -------------------------------------
16

17 OBJECT_TYPE get_type () const;
18 void set_type(OBJECT_TYPE _type);
19

20 Scene* get_scene ();
21

22 public:
23 ComponentTransform* transform;
24

25 private:
26 OBJECT_TYPE type;
27

28 std::vector <Component*> components;
29 std::vector <Object*> child;
30

31 Object* parent;
32 Scene* scene;
33 };

Listing 5.11: OOP Object Class

As can be seen, it is a common structure, where the object has a set of components as well as children.

Children are added by a method, not present here, that creates the objects, assigns its parent and

returns a pointer to it, so another code section can add components or treat it as desired. The things

that stand out the most, may be the scene reference and getter, which are here in order to ease some data

computation, so that some processes are not so slow, such as entity deletion, explained above with the

difference of scene management between projects. A part of these small functionalities, the main method

used during the simulation is the update. During the update phase, the scene calls the root object’s

update over and over. An object update method, calls for components’ updates and then updates its

children, creating the cascade effect typically seen in OOP. It is done by iteration over the vectors, both

components and children, like done in start or clean up methods, which need to create the same cascade

effect to apply the correct state to every object.

47

Marc Rosell Hernandez
Data-Oriented Design in Video Games

There are also the components that give a sense of existence to objects. Initially there were four of

them, the transform, the camera, the mesh renderer, and a behaviour component. Due to the changes

explained in section 5.4 the camera and mesh renderer components are no longer useful nor used, yet here

is an explanation of how both of them were used, and they are still available to see in the repository. On

the one hand, the most simple is the mesh renderer, which was supposed to store a model index of which

model had to be used when rendering, as well as a boolean variable indicating if it had to be rendered.

This component also had a method with which could request the desired model data during the start of

it. And finally, the update method was responsible to create a render package if the object had to be

rendered. The camera component, on the other hand, has quite more content. It has its own position,

because, even though being able to have its own transform component, it was desired to not have to

interpellate another component just to get a position vector. Its main method is the update, where other

calls to methods like update vectors(), used to update the front, up and right vectors, happen. Most

of its data like, near and far planes or fov, would have been set from the start, yet other variables like

yaw and pitch angles, would have been updated as well in the update method. Finally, the other most

important methods are get view matrix() and get projection matrix(), which would have been called from

the renderer each update, to get said matrices and send them to the shader program. Here is the class

structure for the camera component.

1 class ComponentCamera : public Component
2 {
3 public:
4 ComponentCamera(Object* _parent);
5 virtual ~ComponentCamera ();
6

7 void start() override;
8 void update(float dt) override;
9 void clean_up () override;

10

11 glm::mat4 get_view_matrix ();
12 glm::mat4 get_projection_matrix ();
13

14 glm::vec3 get_position ();
15 glm::vec3 position;
16

17 void set_aspect_ratio(float dX, float dY);
18

19 private:
20 void update_vectors ();
21

22 private:
23 glm::vec3 front;
24 glm::vec3 up;
25 glm::vec3 right;
26 glm::vec3 world_up;
27

28 float yaw;
29 float pitch;
30 float fov;
31 float near_plane;
32 float far_plane;
33 float aspect_ratio;
34 };

Listing 5.12: OOP Camera Component

The other two components, transform and behaviour, are the ones mostly used during the simu-

lation. The transform is not really complicated, because as always it is used as a container for po-

sition, rotation, and scale vectors. It includes some getters and setters, as well as a method called

matrix position rotation scale(), used to get a four by four matrix, to pack into a render package. The

behaviour component, on the contrary, looks like the following:

48

Marc Rosell Hernandez
Data-Oriented Design in Video Games

1 class ComponentBehaviour : public Component
2 {
3 public:
4 ComponentBehaviour(Object* _object);
5 ~ComponentBehaviour ();
6

7 void update(float dt);
8

9 private:
10 void set_to_delete ();
11

12 private:
13 glm::vec3 vel;
14 };

Listing 5.13: OOP Behaviour Component

The behaviour only has a vector for a velocity as an attribute. Velocities in both projects are set as a

random value for each component, and if all of them happen to be zero, it is automatically set to delete.

Once the velocity is set, each time the component is updated the transform position is also updated

accordingly to the velocity and delta time. As said above, there was no need to create an event system

for object removal, so in the update there is a check to know if the entity has exited an imaginary cube

of ten units per side. Once it is out of the cube, it is set to delete, calling the private method, which

pushes the entity into the vector previously seen in the scene explanation.

Entities in DOD

The DOD entities are more straightforward, knowing the theory explained. As Fabian says, components,

or better said its data, is what forms and gives a sense of existence to an entity. De only data structure

in the scene, as seen before, is the ObjectData, which looks like the following:

1 struct ObjectData
2 {
3 float posx[MAX_OBJECTS]; // Objects position
4 float posy[MAX_OBJECTS];
5 float posz[MAX_OBJECTS];
6

7

8 float velx[MAX_OBJECTS]; // Objects velocity
9 float vely[MAX_OBJECTS];

10 float velz[MAX_OBJECTS];
11

12 int deleting_indexes[MAX_OBJECTS];
13

14 void create_objects ();
15 void apply_transform(float _dt);
16 void objects_to_delete ();
17 void re_create_objects(Scene* _scene);
18

19 Scene* scene_ref;
20 };

Listing 5.14: DOD ObjectData Structure

As the theory explains, data iteration is easier and more cache friendly when adjacent, once again

MAX OBJECTS being a macro defining the maximum possible objects. They could have been dy-

namically allocated, but the result stays the same. Making each component in a single array may not

be necessary, but if it was necessary, it would also be correct if wanted to iterate each. Beyond positions

and velocities, there is the deleting indexes array, which saves the indexes of which objects need to be

removed. The structure methods are the four here seen.

The first called is create objects(), during scene creation, and the other three are called inside the

update scene() function in the same order as here declared. The create objects() is obviated, since it is

only the position and velocity component arrays initialization, as well as in the OOP project, giving them

a random value, except for position which are all zero.

49

Marc Rosell Hernandez
Data-Oriented Design in Video Games

The most intricate method is the apply transform() which looks like:

1 void ObjectData :: apply_transform(float _dt)
2 {
3 __m128 delta = _mm_setr_ps(_dt , _dt , _dt , _dt); // Save delta time for all 4 simultaneous

operations
4

5 __m128* px = (__m128 *) posx; // Set position pointers
6 __m128* py = (__m128 *) posy;
7 __m128* pz = (__m128 *) posz;
8 __m128* vx = (__m128 *) velx; // Set velocity pointers
9 __m128* vy = (__m128 *) vely;

10 __m128* vz = (__m128 *) velz;
11

12 int total_iterations = MAX_OBJECTS / 4;
13 for (int i = 0; i < total_iterations; ++i)
14 {
15 __m128 dx = _mm_mul_ps(vx[i], delta); // Calculate distance traveled
16 __m128 dy = _mm_mul_ps(vy[i], delta);
17 __m128 dz = _mm_mul_ps(vz[i], delta);
18

19 __m128 nx = _mm_add_ps(px[i], dx); // Calculate new position
20 __m128 ny = _mm_add_ps(py[i], dy);
21 __m128 nz = _mm_add_ps(pz[i], dz);
22

23 _mm_store_ps ((float*)(px + i), nx); // Save new position
24 _mm_store_ps ((float*)(py + i), ny);
25 _mm_store_ps ((float*)(pz + i), nz);
26 }
27 }

Listing 5.15: DOD apply transform Method

The method uses SSE11 to be able to operate the data more efficiently, by using the <xmmintrin.h>

include header. This is a major difference with the OOP approach, because by saving the data as done

here, it can ease its computation. Applying SSE to a game using the OOP paradigm, would not be as

efficient since it would require some previous data transformation and reassignment to have it sorted

and stored as desired, and would require the same process to get it back to where it came from. The

functionality of this code is much easier than it can seem at first sight. Firstly, the function mm setr ps()

is used, which requires four arguments. Said arguments are the same in this case, because it requires which

value to use in each parallel step. Then some SSE specific pointers are set to point to the position and

velocity component arrays beginning, to operate each one. Following this, total iterations is initialized

to the amount of elements divided by four, since SSE computes four array positions at a time. With

this, the amount of distance travelled by each object is computed for each component, and added to a

new variable by adding up the previous known position. The final step is to store the resulting data into

the specific array position desired by using the mm store ps, which requires a type pointer, the memory

position, and the value to be saved.

The creation of the other two methods was quite hard, since it is easy to introduce some sort of

branching, resulting in one of the conclusions from the project. Since data is treated as tables, it was

desired to have the object deletion as a sorting function, yet was impractical due to the small amount of

time applying the DOD concepts, and an easier, and probably worse option, was chosen.

1 void ObjectData :: objects_to_delete ()
2 {
3 int index = 0;
4 bool aux;
5 memset(deleting_indexes , 0, sizeof(int) * MAX_OBJECTS);
6 for (int i = 0; i < MAX_OBJECTS; ++i)
7 {
8 aux = (velx[i] == 0 && vely[i] == 0 && velz[i] == 0);
9 if (abs(posx[i]) > 10 || abs(posy[i]) > 10 || abs(posy[i]) > 10 || aux)

10 {
11 deleting_indexes[index ++] = i;
12 }
13 }
14 deleting_indexes[index] = -1;
15 }

Listing 5.16: DOD objects to delete Method

11Streaming SIMD Extensions

50

Marc Rosell Hernandez
Data-Oriented Design in Video Games

This is the solution proposed, in which the previous array of deleting indexes is set to zero, then every

component is checked to be neither outside the ten unit length side cube, nor having zero movement. If

any condition is given, the object index is stored and later processed. This was the best option thought

during the development stage, yet, as can be seen, it has branching involving every array, which is not

practical nor desired in DOD. The last index is set to minus one, so that the following function knows

when to stop iterating this array.

The last function is named re create objects() and it is meant to not delete, but reset the values that

were meant to be deleted.

1 void ObjectData :: re_create_objects(Scene* _scene)
2 {
3 int i = 0, index;
4 while (deleting_indexes[i] != -1)
5 {
6 index = deleting_indexes[i];
7 posx[index] = 0.F;
8 posy[index] = 0.F;
9 posz[index] = 0.F;

10

11 velx[index] = (((rand() - (RAND_MAX / 2)) % 10));
12 vely[index] = (((rand() - (RAND_MAX / 2)) % 10));
13 velz[index] = (((rand() - (RAND_MAX / 2)) % 10));
14

15 i++;
16 }
17 }

Listing 5.17: DOD re create objects Method

Once again, although avoiding creating a new table, and reusing instantly the indexes to create new

objects, it is not the most efficient way to compute it, since the positions and velocities change are not

linearly continuous, but data can be all loaded in cache.

5.4 Project Changes

As said in this section’s introduction, there have been some changes on how to visualize and develop

the project. The main goal has always been to be able to gather enough data to compare the main

paradigms points. From the beginning, the project has been given a sense of video-game with physics

and 3D graphics, yet they have been finally discarded due to how much time do they take to process

and how little information they give. For example, the renderer has always been meant to be the same

for both projects, and the physics as well, since developing a new one was not meant for this project.

Having the same systems cloned, would result in the same impact on both models, a thing that can be

obviated since this project conclusions lay on how each model manages data. Furthermore, the renderer

has been finally discarded from the application, due to how limiting it was the one implemented, allowing

only for a hundred and few more entities to exists at a time. This could have been solved by including

optimizations, culling, and other algorithms, yet again, it is not this project’s goal. So, it has finally been

discarded, which also has led to being able to simulate more than thousands of objects at a time. Any

code that was previously part of the projects, now discarded, has been commented, so it is still inside

the code files to be checked, yet not used.

51

Marc Rosell Hernandez
Data-Oriented Design in Video Games

As well, it is important to point out that any code added to get metrics, has been included trying

to make as less impact as possible. There is the case that the main timer used for delta time, has been

extracted from the app update method or function, and implemented directly in the main file. This

was due to the compiler doing optimizations when compiling a release version, since the process was too

exhaustive for the little data used afterwards in the application. To solve said problem, there was the

possibility to add a little fragment of assembly code to get data from the update loop, so the compiler

could not obviate it. The source found with a plausible solution was using AT&T assembly version, yet

Visual Studio uses the Intel version, and due to a lack of time, it was not possible to use said solution.

As explained, the solution applied has been to get the timers into an upper level of execution, by using

them outside the application update function, yet inside the main.

52

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Chapter 6

Project Validation

This project validation is made by comparing both projects’ metrics, as was explained in the validation

methodology. The simulation allows configuring for how long someone wants to run it, and for how many

objects in total. Besides that, the projects can be compiled targeting either x86 or x64 platforms, but all

the metrics have been calculated targeting a x64 platform. When it comes to other configurations, the

time has always been set to eleven seconds of execution, because while the simulation was running the

application has been benchmarked, to know how many L1 cache misses the simulations did. This specific

benchmarking has been done using AMD µProf, a tool developed by AMD. Said benchmark has been

set to ten seconds, creating a lag between both timers, to avoid the CPU benchmark to register cache

misses by the end of execution. So, each execution was done by AMD µProf, generating its L1 cache data

dumps, and the default built-in results: average update data, and another output file containing every

update time. The next validation steps have been organized by the amount of objects created, starting

with 512, following it with 1024 and ending with 2048. Each one consists of every piece of information

extracted: console data, the RStudio AB testing of update times depending on the paradigm, and the

cache data. All extracted data is attached in the annex.

6.1 Cache Metrics Explanation

AMD µProf L1 cache analysis gives five different metrics, here explained. Foremost, IC (32B) Fetch

Miss Ratio or, as written in the tables below, IC (32B) FMR. This kind of cache miss happens when the

instruction is not in the cache, because the program counter has jumped to an instruction not yet loaded.

Secondly, there is the Op Cache (64B) Fetch Miss Ratio. This is related to how data or instructions are

loaded from a main memory into cache memory. It can happen in two different ways, if something is

loaded it is stored at Op cache, because it may be needed soon again, or if a piece of data is loaded, the

CPU also loads instructions or data found near the location being fetched. The third metric is IC Access,

which is all the instruction cache accesses, calculated per thousand instructions. This counts the amount

of hits using the instruction cache, so in other words, the amount of times an instruction had not to be

loaded from main memory, due to it already being present in the instruction cache. The fourth metric,

the IC Miss, is the previous one opposite. It counts the amount of times that the instruction cache has

been missed, as well per thousand instructions. Finally, the last metric is DC Access are the data cache

accesses, once again calculated per thousand operations. The main difference with an instruction cache,

is that this last the data cache can write and load data, while the instruction can only load, apart from

the main difference of one being dedicated to instructions and the other to data.

53

Marc Rosell Hernandez
Data-Oriented Design in Video Games

A final thought on getting, not just CPU, but L1 cache metrics is that they are probably not good

indicators due to cores not being specially dedicated to a single task, implying that other background

operations may have cause more misses. Taking it into account, it is plausible that said background

operations have had the same impact on both paradigms, thus creating a proportional final result between

them, and that each value is extracted every second.

6.2 512 Objects Comparison

On the one hand, executing the OOP simulation, the initial built-in metrics are the ones seen in figure A.1,

giving that an update took an average of 4.232 34×10−5 s, an average of 236 448 updates per second, and

generated, and outputted, a total of 260 611 update values. On the other hand, in the DOD simulation,

as seen in figure A.2, the average update time lays around 5.4145 × 10−7 s, resulting in an average of

1.844 56× 106 updates per second. The simulation exited outputting more than 18 million update times.

The data extracted from the built-in metrics, after being processed in an AB testing, indicates how

these data is clearly from different groups.

Figure 6.1: 512 Objects RStudio ANOVA

As seen above (Figure 6.1), the null hypothesis is rejected, since the probability of both datasets being

from the same group is less than 2 × 10−16%, near 0. As well, the box plot of the AB testing (Figure

A.3), shows how the distribution has resulted. Most of the OOP times are around the average previously

mentioned, yet are distributed between said value and around 1.5×10−4 s. In the DOD case, it has three

values out of a specific range, maybe due to the computer background work, but most times collected lie

around the mentioned average, while a small amount is between said value and 1× 10−4 s.

Knowing that data is distant enough to be considered of different groups, now small calculations

can be done. The average DOD update time has been 78.1668 times faster, obtained by dividing the

OOP average time over the DOD average time. When comparing the proportional difference between the

two paradigms by the amount of total updates, the difference is just of 70.1724 times the OOP updates

amount.

Finally, using tables A.1 and A.2, the L1 cache usage can be compared, to see if DOD really has

a better cache usage. Since the L1 cache benchmark lasted ten seconds and the analysis took the rate

values every second, the complete metrics have ten different values for each. But here the values are being

presented as the average of them. The first thing to notice is that, in this 512 objects case, the instruction

cache and operation cache fetch missing rates are way lower in the OOP, than the DOD simulation. The

OOP instruction cache fetch miss rate average is around 0.209 and in the DOD case is around 0.301. In

the operation cache fetch miss rate metrics, the averages are more distant, 0.126 average miss rate in the

OOP and 0.392 miss rate in the DOD simulation. As well, the instruction cache misses per thousand

instructions, is way larger for the DOD simulation. This is explained by putting the data together with

the one previously analysed, and the instruction and data cache accesses. If the misses are way numerous

in the DOD, it is due to the amount of updates the simulation had. Way more updates, imply more

times to have both cache hits and misses.

54

Marc Rosell Hernandez
Data-Oriented Design in Video Games

This is held by looking at cache accesses, where instruction cache accesses are around 47.812 in the OOP

program and around 201.885 in the DOD case, per thousand instructions on average. The data cache

accesses are less different, being around 416.163 and 528.341,in the OOP and DOD projects respectively,

on average. The cache analysis also points to the DOD paradigm as a better method to do a better cache

usage.

6.3 1024 Objects Comparison

When simulating 1024 objects, the built-in metrics point out that the OOP application (Figure A.4) has

had an average update time of 8.722 24× 10−5 s, 11 484.4 average updates per second, and has generated

126 109 total updates, and outputted their values. In the DOD case (Figure A.5), the average update

time is around 1.168 87× 10−6 s, updating the application around 855 468 times per second, generating a

total of 9 372 635 updates.

Figure 6.2: 1024 Objects RStudio ANOVA

Once again, having a look at figures 6.2 and A.6, it can be determined that the null hypothesis is rejected,

since the data has a near 0 probability of belonging to the same group, less 2× 10−16% to be precise. By

the numbers previously exposed, and the AB testing graphic, it can be seen that both projects update

time has doubled, which makes total sense due to doubling the amount of entities created. By doing the

same operations as in the 512 objects analysis, the relation between average update times and the total

amount of updates is that of a 74.621 and 74.322, resulting once again in the DOD paradigm being faster

than the OOP.

Checking the L1 cache benchmark (Tables A.3 and A.4), it can be seen this time that the data is

less unalike. The instruction counter fetch miss rate has increased to an average of 0.268 in the OOP

application, while the average in the DOD case has decreased to 0.253. The same has happened in the

operation cache fetch miss rate metric. The OOP average has increased to 0.4, while the DOD average

has lowered to 0.257. It is also important to point out how the situation has also changed when it

comes to instruction cache and data caches accesses. In both cases, the OOP simulation has had more

accesses than the DOD one, 202.63 and 144.702 on average respectively to the instruction cache access,

and 487.167 and 471.928 accesses on average to the data cache, all of them per thousand instructions.

This again compensates with the amount of instruction cache misses per thousand instructions which,

again, has increased to an average of 54.887 in the OOP case, and decreased to an average of 40.711

in the DOD case. So, in general terms, the DOD simulation is still a lot more cache friendly, because

even doing less cache accesses, their misses are way lower, and lowering from the previous case of study,

making it more efficient.

55

Marc Rosell Hernandez
Data-Oriented Design in Video Games

6.4 2048 Objects Comparison

Simulating 2048 objects, the built-in metrics are the ones seen in figures A.7 and A.8. In the OOP

application, the average update time is about 1.925 54×10−4 s, resulting in an average of 5228.01 updates

per second, and a total of 57 129 updates and update times outputted. When it comes to DOD, the average

update time around 2.593 15 × 10−6 s, generating an average of 387 544 updates per second, and a final

total of 4 002 052 updates during execution. The extracted data, the updates count and average update

time, confirms again that the complexity has doubled, since both of them are either the double in case

of update time, and the updates count has been halved.

Figure 6.3: 2048 Objects RStudio ANOVA

Once again, by ANOVA analysis (Figures 6.3 and A.9), it is proven that both data sets have a near zero

probability of being part of the same group, less than 2 × 10−16%. So, by comparing again the built-in

metrics, it can be concluded again that the DOD simulation is about 70 times faster. 74.255 times faster

comparing average update times, and 70.053 times faster comparing total updates during execution.

The L1 cache profiling (Tables A.5 and A.6), once again, points out how the OOP efficiency has

decreased, yet increased in the DOD simulation. The OOP average values are: 0.275 for the instruction

cache fetch miss rate, 0.345 for the operation cache fetch miss rate, 222.142 and 508.824 for the instruction

cache and data cache accesses per thousand instructions, respectively, and 63.227 for the instruction cache

miss per thousand instructions. Each of them has increased taking the previous cases of study as a starting

point, except for the operation cache fetch miss rate, which has decreased a bit in comparison to the 1024

objects simulation case. The DOD simulation average values are all lower than the previous: 0.197 for

the instruction cache fetch miss rate, 0.059 for the operation cache fetch miss rate, 22.514 and 363.893

for the instruction cache and data cache accesses respectively, and 4.218 for the instruction cache miss,

all three of the last ones per thousand instructions. This points out, not just that OOP is doing a worse

usage of L1 cache over the increasing amount of objects, but that the DOD paradigm uses it better.

The DOD fetch miss rates have decremented significantly, while the instruction cache access miss per

thousand instructions is around 4 on average, being really low. This does not just prove how the DOD

method is faster, but how much can be improved the cache usage in order to make video-games.

56

Marc Rosell Hernandez
Data-Oriented Design in Video Games

6.5 Validation of the Thesis Premise

As presented in Project Validation Methods (Section 4.4), the final validation is about demonstrating the

Data-Oriented Design as a better and more efficient paradigm than Object-Oriented Programming, by

setting out data metrics and analysing them. After doing so in three different tests, it can be concluded

that the Data-Oriented Design is, indeed, a more efficient and cache friendly methodology than the

current one, being around 70 times faster in the results presented. Because of the project changes during

development, an early and not deep understanding of the Data-Oriented Design, and the habits when

coding using Object-Oriented Programming, it is fair to trust there might be some relative error in the

results obtained, yet not enough to make a substantial difference.

Not all the points covered in the State of the Art (Section 2) have been demonstrated to be certain,

from sorting, or that a database approach for assets being better, due to the project encompassed points.

Furthermore, it can be assured that in the project developed, the Data-Oriented Design is more readable

and debuggable, yet it is more of a subjective thing. Nevertheless, the metrics are consistent and prove

that, as said in the previous paragraph, the paradigm here presented has more strengths than Object-

Oriented Programming.

57

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Chapter 7

Conclusions

7.1 Thesis Conclusions

As the results and analysis point out, Data-Oriented Design is a paradigm rather optimal and more

efficient than Object-Oriented Programming. It has been proven by simulating the most exhausting video-

game process: updating large amounts of objects. This does not imply Object-Oriented Programming

being obsolete, but that there is still more to learn and apply when developing video-games. Readability,

the capacity to be debuggable, plus the ability of decreasing update times, all of them are major points

that would not only increase a company efficiency, but also playability. Object-Oriented Programming

is a good method to learn to code and video-game development, yet if the game industry is in need to

progress further beyond the hardware restrains, or to offer more content in the same time span of a frame

update, it is pretty interesting to adopt the Data-Oriented Design approach. As explained by Fabian,

inheritance or other Object-Oriented Programming techniques are still valuable, yet need to be revised

how they are used. Any of these changes need to be applied not only inside the industry, in case of

adopting them, but also in the formative level, which leads to the personal considerations part.

Data-Oriented Design is an intricate paradigm, even more if the Object-Oriented Programming

paradigm is already internalized as the main thought process when developing. In recent months, even

having understood the main concepts, it has been difficult to lay out how the project would work, leading

to a project still having branching and other flaws considered better to avoided in Data-Oriented Design,

which also reassures that, in case to be incorporated into the industry, it needs to be internalized and

learnt much earlier.

7.2 Future Lines of Action

Both projects, are not being further developed, even though it might be interesting to test and benchmark

other operations. To create and compare two projects is quite laborious, yet it can be done in so many

ways, and having a general idea of the results here presented, it is clear that Object-Oriented Programming

is not as efficient. The way I personally will proceed from here, is creating a new project and get a

deeper knowledge on how to implement said structures and methodologies. Alongside with unit testing

implementation, it will be an easier task comparing if a change is more appropriate or not for Data-

Oriented Design, allowing to learn more and develop a full product or engine using said paradigm. By

also deepening the graphics knowledge and creating a more sustainable renderer, it would be great to do

the same comparison here done, but as said it would require the same for both paradigms thus not being

as relevant. So, the main future line of action is acquiring a deeper understanding of the Data-Oriented

Design paradigm, and other systems to have a change of developing a full final product, whether it is a

video-game, or a video-game development tool.

58

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Bibliography

Fabian, Richard (Oct. 2018a). Data-Oriented Design. Book. url: https://www.dataorienteddesign.

com/dodbook/ (visited on 03/24/2023).

— (2018b). Data-oriented design: software engineering for limited resources and short schedules. eng.

OCLC: 1102812941. Place of publication not identified: Richard Fabian. isbn: 978-1-916478-70-1.

Llopis, Noel (2009a). Data-Oriented Design (Or Why You Might Be Shooting Yourself in The Foot With

OOP). English. Personal Website. url: https://gamesfromwithin.com/data-oriented-design

(visited on 03/04/2023).

— (Sept. 2009b). “Data-Oriented Design (Or Why You Might Be Shooting Yourself in The Foot With

OOP)”. en. In: Game Developer - September 2009 16.8, pp. 43–45. url: https://ubm-twvideo01.

s3.amazonaws.com/o1/vault/GD_Mag_Archives/GDM_September_2009.pdf.

McCarthy, J. et al. (Mar. 1960). Lisp I Programmer’s Manual. Computation Center and Research Labo-

ratory of Electronics. Massachusetts Institute of Technology Cambridge, p. 88.

59

https://www.dataorienteddesign.com/dodbook/
https://www.dataorienteddesign.com/dodbook/
https://gamesfromwithin.com/data-oriented-design
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/GDM_September_2009.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/GDM_September_2009.pdf

Marc Rosell Hernandez
Data-Oriented Design in Video Games

Appendix A

Data Dump

A.1 512 Objects

A.1.1 Simulation Terminal

Figure A.1: OOP 512 Objects Simulation Terminal

Figure A.2: DOD 512 Objects Simulation Terminal

60

Marc Rosell Hernandez
Data-Oriented Design in Video Games

A.1.2 AB Testing

Figure A.3: 512 Objects Simulation AB Testing

A.1.3 L1 Cache Benchmark

IC (32B) FMR Op Cache (64B) FMR IC Access (pti) IC Miss (pti) DC Access (pti)
0.22 0.12 45.53 10.10 416.72
0.30 0.29 97.18 29.51 424.75
0.18 0.08 32.70 5.74 409.97
0.18 0.08 32.49 5.77 410.43
0.17 0.09 32.61 5.68 409.93
0.19 0.08 35.45 6.60 421.82
0.30 0.28 93.72 28.42 427.26
0.19 0.08 35.52 6.78 412.35
0.19 0.08 37.32 7.19 416.73
0.17 0.08 35.60 6.23 411.67

Table A.1: 512 Objects OOP L1 Cache

IC (32B) FMR Op Cache (64B) FMR IC Access (pti) IC Miss (pti) DC Access (pti)
0.31 0.01 4.71 1.48 284.07
0.24 0.20 70.45 16.84 511.72
0.30 0.38 123.82 37.49 538.37
0.33 0.54 222.90 73.84 556.98
0.28 0.33 117.21 33.16 458.27
0.33 0.45 188.94 62.46 513.95
0.34 0.39 124.58 42.63 478.70
0.30 0.60 511.12 155.00 707.66
0.31 0.57 401.36 122.61 652.53
0.27 0.45 253.76 68.53 581.16

Table A.2: 512 Objects DOD L1 Cache

61

Marc Rosell Hernandez
Data-Oriented Design in Video Games

A.2 1024 Objects

A.2.1 Simulation Terminal

Figure A.4: OOP 1024 Objects Simulation Terminal

Figure A.5: DOD 1024 Objects Simulation Terminal

62

Marc Rosell Hernandez
Data-Oriented Design in Video Games

A.2.2 AB Testing

Figure A.6: 1024 Objects Simulation AB Testing

A.2.3 L1 Cache Benchmark

IC (32B) FMR Op Cache (64B) FMR IC Access (pti) IC Miss (pti) DC Access (pti)
0.25 0.08 19.14 4.81 320.96
0.33 0.57 193.27 63.14 453.08
0.20 0.53 333.99 67.19 556.44
0.26 0.40 177.13 45.74 524.73
0.27 0.12 28.35 7.78 330.91
0.21 0.19 83.43 17.32 443.09
0.32 0.54 198.98 64.45 472.05
0.29 0.51 321.72 92.79 601.44
0.28 0.55 395.88 112.20 624.44
0.27 0.51 274.41 73.45 544.53

Table A.3: 1024 Objects OOP L1 Cache

IC (32B) FMR Op Cache (64B) FMR IC Access (pti) IC Miss (pti) DC Access (pti)
0.30 0.02 6.85 02.09 280.66
0.22 0.37 142.34 31.66 496.53
0.25 0.11 35.94 8.87 369.34
0.19 0.29 112.03 21.41 514.08
0.30 0.01 2.89 0.87 271.91
0.30 0.61 363.51 109.64 648.27
0.28 0.29 140.99 39.33 568.89
0.31 0.69 567.07 178.39 730.42
0.16 0.07 30.17 4.84 408.81
0.22 0.11 45.23 10.01 430.37

Table A.4: 1024 Objects DOD L1 Cache

63

Marc Rosell Hernandez
Data-Oriented Design in Video Games

A.3 2048 Objects

A.3.1 Simulation Terminal

Figure A.7: OOP 2048 Objects Simulation Terminal

Figure A.8: DOD 2048 Objects Simulation Terminal

64

Marc Rosell Hernandez
Data-Oriented Design in Video Games

A.3.2 AB Testing

Figure A.9: 2048 Objects Simulation AB Testing

A.3.3 L1 Cache Benchmark

IC (32B) FMR Op Cache (64B) FMR IC Access (pti) IC Miss (pti) DC Access (pti)
0.26 0.01 1.95 0.51 309.02
0.23 0.01 1.69 0.40 310.73
0.24 0.14 49.52 11.72 455.20
0.29 0.09 18.11 5.25 363.21
0.27 0.61 534.69 146.43 714.37
0.32 0.56 270.84 85.65 546.75
0.27 0.29 144.30 39.48 576.20
0.28 0.55 425.10 120.25 649.98
0.32 0.57 195.34 63.29 457.16
0.27 0.62 579.88 159.29 705.62

Table A.5: 2048 Objects OOP L1 Cache

IC (32B) FMR Op Cache (64B) FMR IC Access (pti) IC Miss (pti) DC Access (pti)
0.22 0.04 12.70 2.79 310.28
0.21 0.12 34.15 7.31 450.28
0.16 0.00 1.50 0.25 280.02
0.17 0.01 2.72 0.47 284.71
0.18 0.08 34.81 6.24 410.48
0.18 0.09 37.21 6.57 402.86
0.18 0.08 34.29 6.10 410.04
0.19 0.09 32.81 06.07 411.36
0.18 0.08 34.65 6.29 410.46
0.30 0.00 0.30 0.09 268.44

Table A.6: 2048 Objects DOD L1 Cache

65

	Introduction
	Motivation
	Problem Formulation
	Overall Objectives
	Specific Objectives
	Project Scope

	State of the Art
	Current Paradigm
	Data-Oriented Design
	Data-Oriented Design in Depth
	Relational Databases
	Existential Processing
	Component Based Objects
	Hierarchical Level of Detail and Implicit-state
	Searching
	Optimizations
	Maintenance and Reuse
	Last Mentions

	Project Management
	Gantt Diagram
	SWOT
	Risks and Contingency Plan
	Initial Costs Analysis
	About the Delayed Delivery

	Methodology
	Development Methodology
	Tools for Project Monitoring
	Equipment and Software Used
	Project Validation Methods

	Project Development
	External Tools
	OpenGL and Related
	AssImp and stb
	PhysX

	Equalities of the Projects
	Paradigms Development Comparison
	Game Systems
	In-Game Entities

	Project Changes

	Project Validation
	Cache Metrics Explanation
	512 Objects Comparison
	1024 Objects Comparison
	2048 Objects Comparison
	Validation of the Thesis Premise

	Conclusions
	Thesis Conclusions
	Future Lines of Action

	Data Dump
	512 Objects
	Simulation Terminal
	AB Testing
	L1 Cache Benchmark

	1024 Objects
	Simulation Terminal
	AB Testing
	L1 Cache Benchmark

	2048 Objects
	Simulation Terminal
	AB Testing
	L1 Cache Benchmark

