

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: From Backend to DashMobile: Expanding the Horizons
of the Drone Engineering Ecosystem

TITULACIÓ: Grau en Enginyeria de Sistemes de Telecomunicació

AUTOR: Alejandro Samuel Pinto

DIRECTOR: Miguel Valero Garcia

DATA: 21 de agost del 2023

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 2

Títol: From Backend to DashMobile: Expanding the Horizons of the Drone

Engineering Ecosystem

Autor: Alejandro Samuel Pinto

Director: Miguel Valero Garcia

Data: 21 de agost del 2023

Resum

El projecte de l'Ecosistema d'Enginyeria de Drons (DEE) és una iniciativa
innovadora que té com a objectiu simplificar l'accés al món dels drons i
promoure el seu ús responsable, particularment en l'àmbit educatiu. Els
mètodes tradicionals de control i interacció amb els drons han estat complexos
i fragmentats. El projecte DEE busca superar aquests reptes mitjançant la
integració de diverses tecnologies, incloent Python, Tkinter, FastAPI,
MongoDB, Flutter i Dart, per crear un ecosistema coherent i fàcil d'usar.

El projecte va començar amb una anàlisi completa de l'ecosistema de drons
existent, identificant les seves limitacions i àrees de millora. Això va ser seguit
de la formulació d'objectius clars i un pla de treball detallat, visualitzat a través
d'un diagrama de Gantt. El procés de desenvolupament va abastar la creació
d'un backend robust, millores significatives al tauler de control existent i el
desenvolupament d'una aplicació mòbil utilitzant Flutter.

Un dels principals reptes va ser la integració de noves tecnologies com Flutter i
Dart, que es van aprendre específicament per a aquest projecte. Les proves
rigoroses i l'avaluació de l'experiència d'usuari van ser integrals per garantir la
funcionalitat i usabilitat del sistema. L'èxit del projecte no només va aconseguir
la majoria dels objectius establerts, sinó que també va obrir noves vies per a
l'exploració i desenvolupament futurs en el camp de la tecnologia de drons.

La meva passió per la programació i l'aplicació del meu grau en Enginyeria de
Telecomunicacions van ser claus en l'èxit del projecte. El projecte representa
una contribució significativa al camp, proporcionant una plataforma per a
l'aprenentatge i la promoció de l'ús responsable de drons. També reflecteix el
meu compromís a desafiar-me a mi mateix i aplicar els meus coneixements
acadèmics a problemes reals.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 3

Title: From Backend to DashMobile: Expanding the Horizons of the Drone
Engineering Ecosystem

Author: Alejandro Samuel Pinto

Director: Miguel Valero Garcia

Date: August 21st, 2023

Overview

The Drone Engineering Ecosystem (DEE) project is a groundbreaking initiative
that aims to simplify access to the world of drones and promote their
responsible use, particularly in the educational domain. Traditional methods of
drone control and interaction have been complex and fragmented. The DEE
project seeks to overcome these challenges by integrating various
technologies, including Python, Tkinter, FastAPI, MongoDB, Flutter, and Dart,
to create a cohesive and user-friendly ecosystem.

The project began with a comprehensive analysis of the existing drone
ecosystem, identifying its limitations and areas for improvement. This was
followed by the formulation of clear objectives and a detailed work plan,
visualized through a Gantt chart. The development process encompassed the
creation of a robust backend, significant enhancements to the existing
dashboard, and the development of a mobile application using Flutter.

One of the main challenges was the integration of new technologies like Flutter
and Dart, which were learned specifically for this project. Rigorous testing and
user experience evaluation were integral to ensuring the system's functionality
and usability. The project's success not only achieved most of the set goals but
also opened new avenues for future exploration and development in the drone
technology field.

My passion for programming and the application of my Telecommunications
Engineering bachelor's degree were key drivers in the project's success. The
project represents a significant contribution to the field, providing a platform for
learning and promoting the responsible use of drones. It also reflects my
commitment to challenging myself and applying my academic knowledge to
real-world problems.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 4

ÍNDEX

0. INTRODUCTION .. 8

0.1. What has been done in the Project ... 8

0.2. Personal Motivation ... 8

0.3. Project Structure ... 9

1. DESCRIPTION OF THE INITIAL ECOSYSTEM 10

1.1. Ecosystem Overview ... 10

1.2. On-Board Modules... 11
1.2.1. Autopilot Service ... 11
1.2.2. Camera Service .. 11
1.2.3. LEDs service ... 12

1.3. Front-End Modules .. 12
1.3.1. Dashboard .. 12
1.3.2. Mobile App .. 12
1.3.3. DashApp ... 13
1.3.4. Drone Circus ... 13

1.4. Back-End Modules... 13

1.5. Communication Mode ... 14

1.6. Drone Design ... 14
1.6.1. Frame and Flight Control ... 15
1.6.2. Raspberry Pi and Camera Integration .. 15
1.6.3. Mission Planning and Simulation ... 15

1.7. Project Contributions and Key Focus .. 16

2. OBJECTIVES AND WORK PLAN ... 17

2.1. Main Objectives ... 17

2.2. Work Plan ... 18

2.3. Timeline.. 19

2.4. Project Outcome .. 20

3. TECHNOLOGIES AND TOOLS USED .. 21

3.1. Backend Technologies .. 21
3.1.1. Frameworks .. 21
3.1.2. Database Technology ... 22
3.1.3. Libraries and APIs ... 23
3.1.4. Testing and Debugging Tools .. 24

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 5

3.2. Dashboard Technologies .. 25
3.2.1. Programming Language: Python ... 26
3.2.2. GUI Framework: Tkinter .. 26
3.2.3. Media Gallery: Python-VLC and PIL .. 26
3.2.4. Development Considerations... 26
3.2.5. Testing and Debugging ... 27

3.3. Mobile App Technologies.. 27
3.3.1. Framework and Development Choices .. 27
3.3.2. User Interface Design.. 27
3.3.3. Testing, Debugging, and Challenges ... 28

4. BACKEND DEVELOPMENT ... 29

4.1. Design Philosophy .. 29

4.2. Technology Stack .. 30
4.2.1. FastAPI ... 30
4.2.2. MongoDB and MongoEngine... 31
4.2.3. Integration of FastAPI and MongoDB .. 32

4.3. Backend Architecture .. 32
4.3.1. Overview ... 32
4.3.2. Data Models .. 32
4.3.3. MQTT Integration .. 33
4.3.4. API Endpoints ... 34
4.3.5. Data Flow ... 34
4.3.6. Database Structure ... 35
4.3.7. Error Handling ... 35

4.4. Key Functionalities .. 35
4.4.1 Flight Plan Management ... 35
4.4.2 Media Management .. 36
4.4.3 MQTT Integration .. 36
4.4.4 Exception Handling ... 36

4.5. Integration with DEE .. 37
4.5.1 Backend's Role in DEE ... 37
4.5.2 Integration with On-Board Modules ... 37
4.5.3 Integration with Front-End Modules ... 37
4.5.4 Communication Mode and Redundancy .. 38
4.5.5 Contribution and Continuous Development .. 38

4.6. Challenges and Solutions ... 38

4.7. Conclusion ... 39

5. DASHBOARD CHANGES ... 41

5.1. Flight Plan Management Tools ... 41
5.1.1. Background ... 41
5.1.2. Enhanced Picture and Video Commands at Waypoints 42

5.2. Loading Flight Plans from the Database .. 42
5.2.1. Motivation ... 42
5.2.2. Implementation ... 43
5.2.3. Benefits... 43
5.2.4. Future Enhancements ... 43

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 6

5.3. Viewing Past Flights and Associated Media .. 44
5.3.1. Accessing Past Flights .. 44
5.3.2. Visual Representation of Flights .. 44
5.3.3. Interacting with Media ... 45
5.3.4. Backend Integration and Data Retrieval... 46
5.3.5. Database Structure and Media Association ... 46

5.4. Integration with Other DEE Components ... 46
5.4.1. Backend Communication... 47
5.4.2. Mobile Application Synchronization ... 47
5.4.3. Future Integration Possibilities ... 47

5.5. Challenges and Solutions ... 48

5.6. Conclusions ... 49

6. DASHMOBILE DEVELOPMENT ... 50

6.1. Features and Functionalities... 50
6.1.1. User Interface and Navigation ... 50
6.1.2. Flight Plan Management ... 52
6.1.3. Past Flights ... 52
6.1.4. Media Galleries ... 53
6.1.5. Backend Communication... 54
6.1.6. Feedback and Error Handling .. 54
6.1.7. Theming and Aesthetics .. 54

6.2. Integration with DEE Components.. 54
6.2.1. Backend Communication... 55
6.2.2. Dashboard Synchronization .. 55
6.2.3. MQTT Broker and Autopilot Service Integration ... 55

6.3. Challenges and Solutions ... 56

6.4. Future Prospects ... 57
6.4.1. Direct MQTT Integration .. 57
6.4.2. Enhanced Flight Planning from Mobile .. 57
6.4.3. Real-time Monitoring and Gesture Control ... 57
6.4.4. Performance and Scalability .. 57
6.4.5. User Feedback and Iterative Design .. 58

6.5. Conclusions ... 58

7. TESTS AND USER EXPERIENCE .. 59
7.1. Technical Testing .. 59
7.1.1. DashMobile Tests .. 59
7.1.2. Dashboard Tests.. 60
7.1.3. Backend Tests ... 60
7.2. User Experience and Feedback .. 61
7.2.1. User Testing Methodology ... 61
7.2.2. DashMobile Feedback... 61
7.2.3. Dashboard Feedback .. 62
7.2.4. Overall Insights and Future Improvements .. 62
7.3. Conclusions .. 62

8. CONCLUSIONS ... 64

8.1. Achievement of Objectives ... 64

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 7

8.2. Personal Journey and Challenges .. 64

8.3. User-Centric Design and Feedback .. 64

8.4. Future Trajectories .. 65

BIBLIOGRAPHY .. 66

ANNEX A: ENDPOINTS .. 68

A.1. Overview .. 68

A.2. Documentation Snapshots .. 68

A.3. Key Endpoints ... 69
A.3.1 get_all_flights Endpoint ... 69
A.3.2 executeFlightPlan Endpoint .. 70

ANNEX B: DATABASE DOCUMENT STRUCTURE EXAMPLES 72

B.1 Flight Documents ... 72

B.2 Flight Plan Documents ... 73

B.3 Pictures Documents ... 73

B.4 Video Documents ... 74

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 8

0. INTRODUCTION

0.1. What has been done in the Project

Over the course of this project, I have embarked on a journey to enhance the
Drone Engineering Ecosystem (DEE), a platform that integrates various
technologies to control and operate drones. My work has spanned the
development of a robust backend, improvements to the existing dashboard, the
creation of a mobile application, and the integration of all these components into
the existing ecosystem.

The DEE is a comprehensive platform designed to facilitate the control,
operation, and learning of drones. It includes various modules and components
that work together to provide a seamless experience for users, whether they are
hobbyists, educators, or professionals. The ecosystem encompasses hardware,
software, and communication technologies, creating a flexible and adaptable
environment.

A significant part of my contribution has been the addition of functionalities that
enhance the user experience. I've incorporated features that allow users to
save and retrieve flight plans in the backend, which includes capturing photos
and videos. Additionally, I've enabled the creation of improved flight plans
directly from the dashboard and presented the results to the user in an intuitive
manner. Furthermore, the mobile application I developed facilitates the
execution and control of these flight plans on-the-go.

It's essential to emphasize that the DEE is a collaborative project. This
collaborative nature has meant that I've had to adapt to and build upon
decisions made by those before me. Moreover, I've made a concerted effort to
document my work comprehensively, ensuring that future contributors can
understand and continue from where I left off.

The primary motivation behind the DEE is to make access to the world of
drones easier and promote their good use, particularly for learning purposes. By
providing a platform that simplifies the complexities of drone operation, the
ecosystem encourages exploration, innovation, and responsible usage, opening
doors for new possibilities in education and beyond.

0.2. Personal Motivation

My passion for programming has always been a driving force in my life, pushing
me to explore new horizons and challenge myself continually. The world of
drones, with its blend of hardware and software intricacies, presented an

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 9

exciting opportunity to stretch my abilities and engage with a field that is both
innovative and rapidly evolving.

This project, in particular, allowed me to put to use my Telecommunications
Engineering bachelor's degree, bridging the gap between theoretical knowledge
and practical application. The integration of various technologies, the
development of a robust backend, and the creation of a user-friendly interface
were tasks that required a deep understanding of telecommunications
principles. The challenges I faced along the way were not just obstacles but
opportunities to learn, grow, and prove to myself what I was capable of.

The satisfaction of seeing the Drone Engineering Ecosystem come to life,
enhanced by my contributions, has been a rewarding experience. It's a
testament to what can be achieved with determination, technical skill, and a
love for what one does. This project has not only been a professional
accomplishment but a personal milestone, affirming my belief in the power of
programming and the endless possibilities it holds.

0.3. Project Structure

The report is organized into the following chapters:

 Chapter 1: Description of the initial ecosystem: An overview of the DEE
before my contributions, concluding with the goal of my contribution.

 Chapter 2: Objectives and Work Plan: Outlining the primary objectives
and work plan.

 Chapter 3: Technology and Tools Used: A detailed look at the
technologies, programming languages, and tools utilized, such as the
drone itself, Python, Tkinter, Flutter, etc.

 Chapter 4: Development of the Backend: An in-depth exploration of the
backend development process.

 Chapter 5: Changes in the Dashboard: Modifications and improvements
made to the existing dashboard.

 Chapter 6: DashApp Development: The creation of a mobile application
using Flutter.

 Chapter 7: Tests and Evaluation: Testing the system and evaluating user
experience.

 Chapter 8: Conclusions: Summarizing the achieved objectives, personal
evaluation, and future directions, including successes and areas where
challenges were faced.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 10

1. DESCRIPTION OF THE INITIAL ECOSYSTEM

The initial chapter provides an overview of the Drone Engineering Ecosystem
(DEE)[1], detailing the various modules and components that make up the
system. It includes a description of the on-board modules, front-end modules,
back-end modules, and the communication mode. Additionally, it highlights the
design of the drone and the key changes and contributions made in this project.

1.1. Ecosystem Overview

The Drone Engineering Ecosystem (DEE) (Fig. 1.1) is a software platform
consisting of different modules that enable the control and operation of a drone
platform in various ways. This platform began as a proof-of-concept for
performing flight tests on a UAV model at the UPC DroneLab, allowing for
control through different types of devices and applications. It is also constantly
being developed and improved based on the various contributions of EETAC
students.

Fig. 1.1: Schematic of the ecosystem at the initial state

Some modules can be run on the drone's Raspberry Pi (RPi) (red box in Fig.
1.1), controlling devices on the platform such as the autopilot, camera, LEDs,
servo, etc. Others are front-end applications that can be launched from a

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 11

computer or a cell phone, allowing the user to control the vehicle. The original
ecosystem is made up of different modules, each of which will be explained in
more detail in the following subsections.

The modules of the ecosystem are in constant development, reflecting the
dynamic nature of the DEE. In the following sections, you will find a brief
description of the current modules, showcasing the flexibility and adaptability of
this innovative platform.

1.2. On-Board Modules

The modules on the RPi are the three following services: Autopilot service,
Camera Service, and LEDs service.

1.2.1. Autopilot Service

The autopilot service can be defined as an onboard module that runs on the
drone's Raspberry Pi (RPi) board, controlling the operation of the flight control
module. It interprets messages received from the external broker and transmits
necessary commands to the drone through the internal broker. These
commands can include arming, disarming, taking off, landing, returning to the
launch point (RTL), moving in a specific direction, or executing a flight plan,
allowing the drone to navigate to specific points in a predetermined sequence. If
indicated, it can also trigger a photo to be taken at certain points, sending the
corresponding command to the camera service through the internal broker.

Dashboard applications and mobile applications rely on the autopilot service to
connect to the flight controller, arm the drone, take off, approach a specific
position, move in any direction, land, stop, etc. The autopilot service is also
used to send the same flight commands to the Mission Planner simulator in
simulation mode or directly to the drone in production mode. The existing
functionality of the autopilot service was employed in this project, and the
module was used without any changes to its original code.

1.2.2. Camera Service

The camera service is an integrated module on the drone that executes
commands such as taking a photo or obtaining a live video stream. These
commands, like those for the autopilot service, can be received from both the
dashboard and the mobile application. The service allows the capture of images
or the initiation of a video stream using the drone's incorporated camera.

The camera service provides images to the other modules of the Drone
Engineering Ecosystem (DEE) as needed, whether it's a single image or

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 12

starting/stopping a video stream. While the camera service has not been utilized
in the current stage of this project, its pre-existing functionality presents
opportunities for potential integration and use in subsequent phases.

1.2.3. LEDs service

The LED service is an onboard module installed to control the drone's LED
lights and a servomotor to convey its status and potentially serve other modules
in the future. Like the other services, it receives commands from both the
dashboard and the mobile application, allowing control over the LEDs on the
drone's platform.

The LED service can light certain LEDs with a given RGB color or move the
servo to drop an object, as required by the rest of the modules within the Drone
Engineering Ecosystem (DEE). Although this module is not used in this project,
it represents an essential part of the overall system, providing visual feedback
and additional functionalities.

1.3. Front-End Modules

There are several front-end modules developed in the DEE. Below is a brief
description of each one.

1.3.1. Dashboard

The dashboard is a desktop application that allows for the global control of the
drone system. Developed in Python using the Tkinter package for the graphical
user interface (GUI), it enables the development of user interfaces utilizing
graphical objects, such as icons, to represent actions and information.

The dashboard permits connection to the drone to execute various
functionalities, including arming, taking off, designing/executing flight plans, and
managing the data involved in the flight mission. It serves as a comprehensive
tool for controlling the drone, providing a user-friendly interface that
encapsulates the complex operations required for drone management.

1.3.2. Mobile App

The mobile app is a hybrid application designed for smartphones and tablets,
offering a subset of the dashboard's functionalities. It can be operated from any
device connected to the internet.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 13

This module is implemented using Vue and Ionic frameworks, which allow for
the development of user-friendly interfaces and multi-platform deployment.
Despite its reduced set of functionalities compared to the full dashboard, the
mobile app provides a convenient and accessible way to control the drone
system from a variety of devices.

As part of this project, we will also create a different Mobile app, this time using
Flutter and adding the functionality to plan flights and launch flight plans directly
from it.

1.3.3. DashApp

The DashApp is a web application that encompasses most of the functionalities
present in the Dashboard. Developed using the Vue framework, it can be
operated remotely from a computer connected to the internet. This provides a
flexible and convenient way to control the drone system, mirroring the
capabilities of the Dashboard but with the added advantage of remote access.

1.3.4. Drone Circus

Drone Circus is a desktop application developed using the same stack as the
Dashboard, but it offers a more interactive way to control the drone using the
camera of the device it's being operated from. It allows for unique control
methods, such as lifting a certain number of fingers or using specific facial
expressions.

In addition to these innovative control methods, Drone Circus also supports
voice and body posture controls. It is designed to allow audience members
participating in an exhibition to interact with the drone in a safe and fun way,
providing an engaging and interactive drone control experience.

1.4. Back-End Modules

The current backend consists of mostly placeholder modules, and here is where
we will focus part of our efforts for this project. We will define a database
structure and create an API Rest that can provide storage and retrieval of that
information. These enhancements will be discussed in more detail in the
objectives section.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 14

1.5. Communication Mode

There are two brokers in the ecosystem, the local and the global, both serving
as middleware that enables communication between systems. They utilize the
Machine to Machine (M2M) MQTT protocol with the Mosquitto server.

MQTT is a protocol for IoT devices. It bases its messaging service on a
publisher-subscriber (pub-sub) model. Clients connect to a central server, the
brokers, which filter messages arranged in topics. This means a client can
publish any content to a topic, and all other clients subscribed to that topic will
receive the message from the broker.

The Drone Engineering Ecosystem can operate in global or production mode. In
global mode, it is assumed that the UAV platform’s front-end and back-end
modules are all connected to the internet and communicate through an external
broker. The external broker can be any publicly available broker or a private
broker running on a campus server, for which credentials are required.

In production mode, used when there is no internet coverage, the front-end
module must connect to a Wi-Fi access point provided by the built-in Raspberry
Pi (RPi). The external broker also runs on the RPi, with on-board modules
connecting to this broker via localhost:8000, while external modules connect to
the 10.10.10.1:8000 access point.

Both an external and an internal broker are needed. The external broker is
responsible for the communication of all external devices with the services
running on the drone's RPi, such as the camera or the autopilot. The internal
broker enables communication between the different RPi services and always
runs on port 1884.

1.6. Drone Design

The UAV platform used in this project (Fig. 1.2) is a versatile and adaptable
drone, capable of carrying various payloads such as cameras, sensors, and
other equipment. It consists of a Hexsoon EDU450 kit, designed specifically for
the Pixhawk Cube autopilot, and includes all the necessary hardware
components like motors, propellers, and electronic speed controllers (ESC).

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 15

Fig. 1.2 Picture of the drone used in this project

1.6.1. Frame and Flight Control

The quadcopter's frame is equipped with four brushless motors, controlled by
an ESC, which interprets pulse width modulation (PWM) signals to adjust the
motor speed. The flight control module, Pixhawk's Orange Cube, is designed to
run ArduPilot software, featuring a 32-bit ARM Cortex-M7 processor, 4MB of
flash memory, and improved sensor capabilities like GPS, accelerometers,
gyroscopes, and magnetometers. This system enables complex flight control
algorithms and sensor fusion, allowing for operations such as takeoff, landing,
navigation, and autonomous flight planning.

1.6.2. Raspberry Pi and Camera Integration

A Raspberry Pi (RPi) is mounted on the UAV platform as the on-board
computer, running programs written in Python and interacting with the flight
control module through the DroneKit library. The RPi kit includes a high-quality
camera capable of capturing high-resolution images and videos, with features
like interchangeable lenses, low-light performance, and programmable control.
This integration allows for dynamic flight adjustments and event detection
during missions.

1.6.3. Mission Planning and Simulation

The ArduPilot software package offers a sophisticated flight control system,
GPS navigation, telemetry and communication, autonomous operation, and
mission planning. It supports the planning and execution of complex flight
missions and can adapt to changing conditions without human intervention. The
UAV platform's design ensures stability, maneuverability, and adaptability,
making it suitable for various applications and continuous development.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 16

1.7. Project Contributions and Key Focus

The initial back-end of the Drone Engineering Ecosystem (DEE) was mostly
undeveloped, with Flask serving as a placeholder for the intended API structure.
Recognizing the need for a more robust and scalable solution, part of the focus
for this project was to redefine the back-end architecture. The decision was
made to transition from Flask to FastAPI, aligning with the project's
requirements for performance, modern syntax, and built-in data validation.

This transition laid the groundwork for the development of a more sophisticated
back-end system, capable of supporting the complex operations and dynamic
nature of the DEE. Other key changes and decisions, including the retention of
MongoDB and the introduction of Flutter for mobile app development, are
detailed in the final project outcome (Section 2.4).

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 17

2. OBJECTIVES AND WORK PLAN

This chapter outlines the primary objectives, work plan, and timeline for the
development of the Drone Engineering Ecosystem. The project's goals are
fourfold: to develop a robust backend using FastAPI and MongoDB, to update
the existing dashboard with new features and improved usability, to create a
mobile application using Flutter, and to ensure seamless integration into the
existing ecosystem. The work plan is divided into seven key phases, each with
specific goals and requirements. A Gantt chart illustrates the planned timeline,
and the chapter concludes with a summary of the project's final outcome,
highlighting key changes and decisions made during development. The
following sections provide a detailed overview of the project's objectives, work
plan, timeline, and outcome.

2.1. Main Objectives

The primary objectives of this project are fourfold:

1. Develop a backend: To create a robust and scalable backend that will serve

as the foundation for the Drone Engineering Ecosystem. This backend will
define a database structure using mongoDB and create an API Rest using
FastApi that can provide storage and retrieval of information, enabling more
sophisticated data management and integration.

2. Update the Existing Dashboard: To enhance the current dashboard by
integrating it with the new backend, adding new features, and improving its
usability. Specific updates include:

 Updated Flight Plans: Enabling the creation and editing of flight plans
to capture videos and pictures.

 Storage and Retrieval: Implementing functionality for storing and
retrieving completed flights, videos, and images.

 User Interface Enhancements: Providing a more comprehensive and
user-friendly interface for controlling and monitoring the drone
system.

This update aims to provide a more comprehensive and user-friendly
interface for controlling and monitoring the drone system.

3. Create a Mobile App: To develop a mobile application using Flutter that will

showcase all the new functionality. This app will include features for

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 18

planning flights and launching flight plans directly, offering a convenient and
accessible way to interact with the drone system.

4. Integration into the Ecosystem: To ensure seamless integration of the

developed components into the existing Drone Engineering Ecosystem. This
includes:

 GitHub Repositories: Creating repositories, complete with READMEs,
documentation, and installation guides, to house the project's code

 Showcase Videos: Producing two showcase videos, one
demonstrating the code functionality and another providing a live
demo of the system in action.

 Documentation: Ensuring that all developments align with the
ecosystem's standards and are well-documented for future reference
and expansion.

These objectives reflect the comprehensive approach taken in this project,
aiming to enhance the existing ecosystem with new functionalities, improved
usability, and seamless integration.

2.2. Work Plan

The project was carried out in the following phases:

1. Project Scope Definition:

 Goal: Define the three main parts of the project: backend development,
dashboard update, and mobile app creation.

 Requirements: Ensure that the project supports new functionalities,
including loading and saving flight plans, handling completed flights, and
media retrieval.

2. Framework Research and Study:

 Criteria: Evaluate frameworks based on project needs, considering
options like Flask vs. FastAPI, MongoDB vs. SQL, and Vue vs. Flutter.

 Selection: Choose the frameworks that best align with the project's goals
and requirements.

3. Backend Development:

 Functionalities: Develop the backend to support loading and saving flight
plans, handling completed flights, and media retrieval endpoints.

 MongoDB Structure: Define database structure with linkage between
them to handle the required data.

4. Dashboard Development:

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 19

 Features: Add functionalities to load flight plans from the database, edit
flight plans with image and video info, view completed flights, and access
a media gallery.

 User Interface: Enhance the interface with new buttons and windows to
support the added features, ensuring a user-friendly experience.

5. Mobile App Development:

 Functionalities: Create an app to load and launch flight plans, view
completed flights, and access images/videos.

 Integration: Interface the app with the backend using REST API, utilizing
shared and unique endpoints.

6. General Bug Fixes and Testing:

 Testing Methodologies: Conduct hands-on testing, attempting unusual
actions to identify potential issues.

 Bug Prioritization: Address critical bugs that crash the app first, followed
by graphical issues, aiming for a mostly bug-free product.

7. Writing of the Study:

 Document the entire project, including methodologies, findings, and
conclusions.

2.3. Timeline

The planning for each task mentioned in the preceding section is shown in
detail in the Gantt chart (Fig. 2.1) below. Different work categories are
represented by various colors:

Fig. 2.1 Gantt chart planification

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 20

2.4. Project Outcome

As illustrated in Fig. 2.2 below, the final state of the ecosystem has evolved
significantly from its initial configuration. Key changes and decisions include:

 API Framework: While the initial design included a placeholder for an API
REST written in Flask, the final implementation utilizes FastAPI. The
rationale behind this choice will be elaborated in subsequent chapters.

 Database Selection: MongoDB was retained as the database for the
project, aligning with the initial plan. The reasoning for this decision will
also be detailed later.

 Mobile App Framework: A new framework for mobile app development
was introduced, utilizing Flutter. This choice not only serves the current
project but also offers future students more options if they decide to
expand upon it.

These changes reflect the iterative and thoughtful approach taken in the
development of the project, with decisions made based on careful evaluation
and consideration of the project's goals and requirements. The following
chapters will delve into the specifics of these decisions, providing insights into
the development process and project outcome.

Fig. 2.2: Schematic of the ecosystem at the final state

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 21

3. TECHNOLOGIES AND TOOLS USED

The development of the Drone Engineering Ecosystem (DEE) required a blend
of technologies, programming languages, and libraries to ensure the project's
success. The choices were influenced by the project's unique requirements,
scalability needs, and the desire for future adaptability.

In this project, I utilized familiar technologies and tools, including Python as the
primary programming language, Tkinter for GUI development, FastAPI for
building the web API, and MongoDB as the chosen database technology. My
prior experience with these tools provided a solid foundation for the
development.

On the other hand, I ventured into new territories by learning Flutter and Dart for
mobile app development. These were completely new to me and were learned
specifically for this project. The decision to explore these new technologies was
driven by the project's requirements and my interest in expanding my skill set.

This chapter provides an overview of the key technologies, programming
languages, and libraries utilized in the project, detailing the rationale behind
each choice and how they contributed to the overall functionality of the system.
The chapter is divided into three main sections, focusing on the backend,
dashboard, and frontend technologies, providing insights into the decision-
making process and the integration of various components.

3.1. Backend Technologies

3.1.1. Frameworks

Selecting the appropriate framework is a pivotal decision in software
development. For this project, the choice was between Flask and FastAPI, two
renowned Python web frameworks.

Flask is celebrated for its simplicity and minimalistic setup. Its flexibility allows
developers to choose their tools and libraries, providing a highly customizable
environment. Being around since 2010, Flask has a large community, numerous
resources, and third-party extensions.

FastAPI, on the other hand, offers several advantages that aligned with the
project's specific needs. Its modern syntax using Python-type hints enhances
code readability and reduces errors. Built on top of Starlette and Pydantic,
FastAPI offers high performance, even outperforming some non-Python
frameworks. One standout feature is its automatic API documentation using

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 22

OpenAPI and JSON Schema standards, simplifying both development and
consumption.

A significant factor in choosing FastAPI was its support for asynchronous
programming, which is particularly beneficial when working with media files like
photos and videos. This feature improves performance for I/O-bound
applications, making it an excellent fit for this project's media handling
requirements.

After careful consideration, FastAPI was chosen for this project. Its performance
advantages, modern syntax, and built-in features, including asynchronous
programming for media handling, provided a solid foundation for development.
The decision also considered future scalability, ensuring that the backend could
adapt to evolving requirements and handle increased loads.

The choice to use FastAPI over Flask was not only about meeting the current
needs but also about future-proofing the project. FastAPI's flexibility and
robustness make it a framework that can grow with the project, providing a
strong foundation for ongoing development and improvement.

For a comprehensive understanding of FastAPI's capabilities and features, refer
to the official documentation [2].

3.1.2. Database Technology

In the development of the project, a critical decision was the selection of the
appropriate database technology. The choice was between MongoDB and a
traditional SQL database, such as MySQL or PostgreSQL. After careful
consideration, MongoDB was selected as the preferred database technology for
the following reasons:

 Flexibility and Schema Evolution: MongoDB's document-based nature
allows for a flexible schema that can easily adapt to changes. This was a
significant consideration, given that the project is expected to evolve with
contributions from different students in the future. The ease of modifying
the structure without rigid schema constraints made MongoDB a more
suitable choice.

 Document Structure: The data in the project consists of various
collections, including flights, flight plans, pictures, and videos. Each
collection serves a specific purpose, with complex relationships and
attributes. For example, the flights collection includes details such as
date, description, start and end times, and references to pictures and
videos. The document-based nature of MongoDB allowed for an intuitive
organization of this data, supporting the project's goals.

 Integration with FastAPI: MongoDB's compatibility with Python and the
chosen FastAPI framework facilitated seamless integration. The use of

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 23

the mongoengine library further simplified the interaction between the
application and the database, providing an object-document mapper
(ODM) that translates Python classes to MongoDB documents.

 Consideration of SQL: While SQL databases offer robust and well-
established solutions, the project's need for flexibility and ease of
schema evolution outweighed the potential benefits of SQL. The rigid
schema constraints and relational nature of SQL databases were less
suited to the dynamic and evolving nature of the project.

In summary, MongoDB was chosen for its flexibility, ease of integration with
other technologies, and ability to naturally represent the complex data
structures required by the project. Its document-based nature and support for
schema evolution align well with the project's anticipated growth and future
contributions.

Detailed insights into MongoDB's structure, capabilities, and best practices can
be found in its official documentation [3].

3.1.3. Libraries and APIs

The backend development of the Drone Engineering Ecosystem (DEE) required
the integration of various libraries and APIs to facilitate different functionalities.
Here's a breakdown of the essential libraries and their applications:

 FastAPI: The core framework used for building the web API, providing
modern syntax, performance optimization, and automatic API
documentation.

 PIL (Python Imaging Library): Utilized for image processing, including
thumbnail creation, resizing, and other image manipulations.

 NumPy: A powerful library for numerical computations, used in
conjunction with PIL for image processing tasks.

 io (BytesIO): Used for handling byte streams, particularly for reading and
writing image files in memory.

 MoviePy (VideoFileClip): Employed for video processing, including
extracting frames, creating thumbnails, and handling video clips.

 MongoEngine: A Document-Object Mapper (ODM) for working with
MongoDB, allowing for easy interaction with the database using Python
objects.

 JSON: Essential for handling JSON data, enabling serialization and
deserialization of data between the application and the database.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 24

 Datetime: Used for handling date and time information, particularly for
tracking flight dates, start and end times, and other time-related data.

 Pydantic: Integrated with FastAPI for data validation and serialization,
ensuring that the data received and sent by the API is of the correct type
and format.

 Typing: Utilized for type hinting within the code, enhancing code
readability, and providing better error checking.

These libraries and APIs were carefully chosen to provide a robust and efficient
backend, capable of handling various tasks related to flight planning, media
retrieval, and data management. Their integration allowed for a streamlined
development process, ensuring that the backend was flexible, scalable, and
ready to support the evolving needs of the DEE.

3.1.4. Testing and Debugging Tools

The development of the backend using FastAPI and MongoDB required careful
attention to ensure the functionality, performance, and reliability of the system.
The following tools and methodologies were employed:

 Logging: Comprehensive logging was implemented throughout the
backend using Python's built-in logging module. This provided valuable
insights into the application's behavior and was instrumental in tracking
down and resolving issues. Different log levels (e.g., DEBUG, INFO,
WARNING) were used to categorize the information, making it easier to
filter and analyze the logs.

 Interactive Debugging: The Python Debugger (PDB) was used for
interactive debugging, allowing for step-by-step execution of the code,
inspection of variables, and a deep understanding of the execution flow.
This hands-on approach was particularly useful for identifying and fixing
complex issues requiring a detailed code examination.

 FastAPI TestClient: To ensure the robustness of the API, a series of tests
were written using FastAPI's TestClient. This tool simulates requests to
the API, enabling end-to-end testing of the API endpoints. By validating
request handling, data validation, and response formatting, these tests
helped confirm that the API was behaving as expected.

 Exploratory Testing: A significant portion of the testing was conducted
through exploratory testing, where the application was actively explored
and probed for weaknesses. This unscripted, hands-on approach
allowed for the discovery of unexpected issues and edge cases by trying
to input unusual or unexpected data to "break" the system.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 25

By utilizing these tools and methodologies, the development process was
streamlined, and the quality of the backend was ensured. Regular debugging
and testing ensured that the system was free of critical bugs and performed
optimally under various conditions, contributing to the overall success of the
Drone Engineering Ecosystem.

3.2. Dashboard Technologies

The Dashboard of the Drone Engineering Ecosystem showcased in Fig. 3.1.
serves as a central control interface, allowing users to define flight plans,
process data, and manage various functionalities. The technologies used in the
development and enhancement of the Dashboard are described below:

Fig. 3.1. Dashboard along with its mission planer window

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 26

3.2.1. Programming Language: Python

The Dashboard was originally developed in Python, and this language was
continued for the enhancements made during this project. Python's extensive
libraries, ease of use, and compatibility with various platforms made it an ideal
choice.

Python's versatility and extensive library support are well-documented in its
official documentation [4].

3.2.2. GUI Framework: Tkinter

Tkinter, the standard GUI toolkit for Python, was used to create the graphical
user interface of the Dashboard. Its simplicity and flexibility allowed for the
efficient design of user-friendly interfaces, accommodating the new features
added to the Dashboard.

3.2.3. Media Gallery: Python-VLC and PIL

The media gallery functionality within the Dashboard required the integration of
both video and picture viewing capabilities.

 Video Gallery: The python-vlc library was utilized to enable video
playback. This library provides a simple interface to the VLC media
player, allowing for the playback of video files within the Dashboard.
Users can view videos captured during flight plans directly from the
Dashboard.

 Picture Gallery: For displaying images, the Python Imaging Library (PIL)
was used. PIL offers extensive file format support and an efficient
internal representation, making it ideal for image processing and display
within the Dashboard.

Together, these libraries provide a comprehensive media gallery feature,
allowing users to view both images and videos related to their past flight,
enhancing the overall user experience.

3.2.4. Development Considerations

The development of the Dashboard focused on enhancing existing
functionalities and adding new features, such as loading flight plans from the
database and editing them to include image and video information. The choice
of technologies was guided by the need for compatibility with existing code,
ease of development, and the provision of a seamless user experience.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 27

3.2.5. Testing and Debugging

Similar to the backend, the Dashboard underwent rigorous testing, including
exploratory testing, to ensure its robustness and reliability. Debugging was
performed using Python's built-in tools, and manual testing was conducted to
verify the correct behavior of the new functionalities.

3.3. Mobile App Technologies

3.3.1. Framework and Development Choices

The mobile app was initially planned to be developed using Vue, but after
researching the requirements and potential future needs, Flutter was chosen.
Flutter's ability to compile into iOS, Android, and web platforms made it an
attractive option. The architecture was kept simple, with a singleton pattern for
state management, specifically in the api_service.dart, ensuring all views
access the same information and variables.

Integration with the FastAPI backend was achieved using various packages
such as http for making HTTP requests, convert for JSON parsing, and async
for handling asynchronous operations.

For a deeper dive into Flutter's capabilities, features, and best practices, the
official documentation serves as a comprehensive resource [5].

3.3.2. User Interface Design

The user interface was designed with a focus on simplicity and functionality. A
custom drawer was created to enhance navigation, and the material.dart
package was used to maintain a consistent look and feel. Custom assets were
used for waypoints on the map and the logo, adding a unique touch to the
design.

Key dependencies for design and functionality include google_maps_flutter for
integrating Google Maps, image for image processing, latlong2 for handling
latitude and longitude coordinates, cached_network_image for caching network
images, and video_thumbnail, video_player, and chewie for video-related
functionalities.

The design principles and considerations were influenced by established User
Experience (UX) design concepts, as discussed by Jamie Pinchot [6].

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 28

3.3.3. Testing, Debugging, and Challenges

Testing was primarily conducted through interactive debugging and exploratory
testing, where unusual inputs and scenarios were used to identify potential
bugs. Logging was also employed to diagnose more complex issues.
Challenges faced during development included developing the map functionality
with waypoints, which required extensive trial and error, and integrating MQTT
with Flutter, a challenge that was bypassed by using FastAPI as an
intermediary.

The decision to use Flutter, along with the design choices and dependencies,
aligns with the project's goals and requirements. The challenges faced were
met with innovative solutions, and the app's development can continue to
progress.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 29

4. BACKEND DEVELOPMENT

In the vast and intricate world of the Drone Engineering Ecosystem (DEE), the
backend serves as the central nervous system, orchestrating the flow of data,
ensuring seamless communication, and providing the foundational support upon
which all other components rely. While drones, with their soaring flights and
intricate maneuvers, might capture the imagination, it's the backend that
ensures these flights are well-coordinated, data-rich, and purposeful.

The backend's role is multifaceted. It not only stores and manages flight plans,
user data, and other essential information but also processes this data to derive
meaningful insights. Furthermore, it facilitates communication between the
various components of the DEE, from the dashboard where flight plans are
crafted to the mobile application that brings these plans to life in the field.

This chapter delves deep into the design, development, and functionalities of
the backend, shedding light on the technological choices made, the challenges
encountered, and the solutions crafted. By the end of this exploration, the
significance of a robust and efficient backend in the realm of drone engineering
will be unmistakably clear.

4.1. Design Philosophy

The backend development of the Drone Engineering Ecosystem (DEE) was
guided by a set of core principles. These principles were not just technical
benchmarks but also served as a compass to ensure the backend was scalable,
efficient, and adaptable to the needs of future developers and innovations [7].

Modularity: At the heart of the design was the principle of modularity. By
adopting a modular architecture, each component or service was designed to
operate independently while being capable of seamless integration with others.
This approach not only simplifies debugging and updating but also ensures that
new features or improvements can be added without causing disruptions to the
entire system.

Scalability: As drone technology continues to evolve and the potential for the
DEE to cater to an increasing number of users grows, it was imperative that the
backend be scalable. This scalability ensures that as the ecosystem expands,
the backend can handle increased loads, more data, and more complex
operations without compromising on performance.

Interoperability: Given that the DEE is a collaborative project, it was essential to
ensure that the backend was interoperable. Different components might be
developed using varied technologies, and the backend needed to facilitate
smooth communication and data exchange between these diverse parts. This

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 30

interoperability ensures that no matter the technology a component is built
upon, it can effectively communicate with the rest of the ecosystem.

Programmer-Centric: While the DEE serves a wide range of users, the backend
was designed with a programmer-centric approach. Recognizing that numerous
developers and students would contribute to and expand this project over time,
the backend was crafted to be intuitive for developers. This ensures that as new
contributors join the project, they can quickly understand, adapt, and enhance
the system without steep learning curves.

In conclusion, the design philosophy behind the backend was a harmonious
blend of technical foresight and adaptability. It aimed to provide a robust
foundation that supports the intricate operations of drones today while being
flexible enough to accommodate the visions and innovations of tomorrow's
developers.

4.2. Technology Stack

4.2.1. FastAPI

FastAPI emerged as the framework of choice for this project, and the reasons
were manifold:

 Modern Syntax: FastAPI's use of Python type hints not only enhances
code readability but also reduces the likelihood of errors. This modern
approach to syntax ensures that the codebase remains clean and easily
understandable, a crucial factor considering the collaborative nature of
the project.

 Performance: One of the standout features of FastAPI is its performance.
Built on the foundations of Starlette and Pydantic, it offers impressive
speed, even surpassing some non-Python frameworks. This
performance was vital for the backend, ensuring that it could handle
requests efficiently and provide a seamless user experience.

 Automatic API Documentation: The automatic generation of API
documentation using OpenAPI and JSON Schema standards was a
boon. It not only simplified the development process but also facilitated
collaboration. With multiple contributors potentially working on the project
in the future, having clear and automatically updated documentation is
invaluable.

 Built-in Data Validation: The integration of Pydantic within FastAPI
ensures rigorous data validation. This feature ensures that the data
interfacing with the API adheres to the expected type and format,
reducing potential errors and streamlining the data flow.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 31

 Asynchronous Programming: FastAPI's support for Python's async/await
syntax was a pivotal factor in its selection. Given the I/O-bound nature of
backend operations, especially when interfacing with databases or other
services, asynchronous programming ensures that the backend remains
responsive, even under heavy loads.

4.2.2. MongoDB and MongoEngine

MongoDB, a NoSQL database, was chosen to manage the data for this project.
Its document-oriented structure was particularly suited for the kind of data being
handled:

 Flexible Schema: MongoDB's schema-less nature meant that the
database could easily adapt to changing requirements. As the project
evolved, new data types or changes to existing structures could be
incorporated without significant overhauls.

 Collections: Four primary collections were established: flightPlan, flights,
pictures, and videos. These collections not only stored the respective
data but were also interlinked, ensuring that related data points could be
easily retrieved and processed.

 Performance and Scalability: MongoDB's performance, especially when
dealing with large volumes of unstructured data, is commendable. Its
built-in sharding capabilities ensure that as the data grows, the database
can scale horizontally, maintaining performance levels.

In the development process, MongoDB Compass, showcased in Fig. 4.1,
proved invaluable. As MongoDB's official graphical user interface (GUI),
Compass offers a visual exploration of the database. This intuitive navigation
allows developers to view collections, inspect documents, and even modify data
structures directly. Such a visual representation was instrumental in simplifying
data management, aiding both in development and debugging phases.

Fig. 4.1 MongoDB Compass

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 32

To interface with MongoDB, the MongoEngine library was utilized [8].
MongoEngine is an Object-Document Mapper (ODM) for MongoDB and Python.
It provides a high-level abstraction upon MongoDB, allowing for easier and
more Pythonic operations on the database.

4.2.3. Integration of FastAPI and MongoDB

The integration of FastAPI with MongoDB was seamless. FastAPI's
asynchronous capabilities paired well with MongoDB's performance, ensuring
efficient data retrieval and storage. The backend was designed to handle
various operations, from loading flight plans to saving them and retrieving media
associated with specific flights. The endpoints developed catered to both the
dashboard and the mobile application, ensuring a consistent data flow across
the ecosystem.

4.3. Backend Architecture

4.3.1. Overview

The backend architecture for the Drone Engineering Ecosystem is built using
FastAPI, a modern web framework for building APIs with Python. The
architecture is monolithic in nature, with all functionalities encapsulated within a
single application. This design choice simplifies deployment and maintenance,
especially given the scope and scale of the project.

4.3.2. Data Models

The data models are defined using mongoengine, an Object-Document Mapper
(ODM) for MongoDB and Python. The primary models include:

 Waypoint: A Waypoint represents a specific point in a flight plan. It
captures the latitude, longitude, height, and flags indicating if a video
should start or stop at that point. This model ensures that the drone
knows its path and actions at each point during its flight.

 VideoPlan: The VideoPlan model specifies how video recording should
occur. It differentiates between static and moving recording modes,
detailing start and end coordinates for moving videos and specific
locations for static ones. This granularity ensures that videos capture the
desired scenes during a flight.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 33

 Picture and Video: Picture and Video models represent the media
captured during a flight. While the Picture model captures the file path,
location, and timestamp of a snapshot, the Video model provides more
detailed information, including its mode (static or moving), start and end
coordinates, and timestamps.

 FlightPlan: A comprehensive model, FlightPlan encompasses all details
of a planned flight. It aggregates waypoints, video plans, and picture
intervals, ensuring that the drone has a clear path and action plan for its
journey.

 Flights: The Flights model captures details of completed flights. It
includes metadata like the title, date, and description, and references to
associated flight plans and media. This model serves as a historical
record, allowing for post-flight analysis and review.

To gain a deeper understanding of the specific document structures utilized
within the database, readers can refer to Annex B.

4.3.3. MQTT Integration

Given the challenges in establishing a direct connection between the mobile
app and the autopilot, the backend uses MQTT as a workaround [9]. The
backend acts as an intermediary, receiving commands from the mobile app and
forwarding them to the autopilot via the MQTT broker. Similarly, telemetry data
from the autopilot is received by the backend and can be relayed to the mobile
app or stored for further analysis.

4.3.3.1. Key MQTT Operations

 Connection Management: The backend provides endpoints to connect
and disconnect from the MQTT broker. This ensures that the backend
can establish a communication link with the autopilot when needed.

 Flight Plan Execution: When a command to execute a flight plan is
received from the mobile app, the backend translates this into an
appropriate MQTT message and publishes it to the broker. The autopilot,
subscribed to the relevant topic, receives this message and initiates the
flight plan.

 Telemetry Data: The backend subscribes to specific topics on the MQTT
broker to receive telemetry data from the autopilot. This data provides
real-time insights into the drone's status and can be used for monitoring,
logging, or relayed to the mobile app for live updates.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 34

4.3.4. API Endpoints

The backend offers a suite of API endpoints, catering to various functionalities
within the ecosystem. These endpoints facilitate interactions between the
frontend, mobile application, and the backend.

4.3.4.1. Flight Plans Management

Endpoints in this category allow users to add new waypoints and retrieve all
existing flight plans. They ensure that flight plans can be created, stored, and
retrieved efficiently.

 Add Waypoints: This endpoint receives a list of waypoints and associated
data, processes it, and stores it in the flightPlan collection.

 Retrieve All Flight Plans: This endpoint fetches all flight plans from the
database, providing a comprehensive view of all planned flights.

4.3.4.2. Media Retrieval

These endpoints facilitate the fetching of media files, ensuring that users can
access the pictures and videos captured during flights.

 Get Picture: Given a file name, this endpoint retrieves the corresponding
picture from the media/pictures directory.

 Get Video: Similar to the picture retrieval, this endpoint fetches a video
based on its file name from the media/videos directory.

 Video Thumbnail: For a more user-friendly experience, this endpoint
generates and provides a thumbnail of a given video, offering a quick
preview without needing to play the entire video.

4.3.5. Data Flow

When a request is made to the backend, it interacts with the MongoDB
database using the defined data models. For instance, when a request to
retrieve all flight plans is made, the backend queries the flightPlan collection in
MongoDB and returns the relevant data.

For MQTT-related operations, the backend communicates with the broker,
sending necessary commands and receiving telemetry data. This indirect

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 35

communication method ensures that the mobile app can control the drone
without a direct connection to the autopilot.

4.3.6. Database Structure

The MongoDB database is structured into four primary collections: flightPlan,
flights, pictures, and videos. These collections store and manage the respective
data types, with interlinkages between them to ensure related data points can
be easily retrieved and processed. For example, the Flights collection
references the FlightPlan, Picture, and Video collections to associate a
completed flight with its plan and media.

4.3.7. Error Handling

Custom exception handlers are implemented to manage validation errors and
HTTP exceptions. These handlers ensure that any errors encountered during
API interactions are handled gracefully, returning meaningful error messages to
the client.

4.4. Key Functionalities

1.4.1 Flight Plan Management

The backend provides comprehensive support for creating, storing, and
retrieving flight plans.

 Creation: Users can define a series of waypoints, each detailing the

drone's path and actions. This includes capturing pictures,
starting/stopping video recordings, and specifying flight heights.

 Storage: Once created, flight plans are stored in the MongoDB

database, ensuring they can be accessed and executed at any time.

 Retrieval: Users can fetch all existing flight plans, allowing for review,
modification, or execution.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 36

1.4.2 Media Management

The backend handles the media captured during flights, ensuring they're stored
securely and can be accessed efficiently.

 Storage: Pictures and videos captured during flights are stored in

designated directories (media/pictures and media/videos).

 Retrieval: Users can fetch specific media files using their file names.
Additionally, the system provides video thumbnails for a quick preview.

1.4.3 MQTT Integration

The backend leverages MQTT to bridge communication between the mobile
app and the autopilot.

 Connection Management: The backend can connect and disconnect

from the MQTT broker, ensuring a stable communication link with the
autopilot.

 Command Relay: Commands from the mobile app, such as executing a

flight plan, are received by the backend and relayed to the autopilot via
MQTT.

 Telemetry Data Handling: The backend subscribes to specific MQTT

topics to receive telemetry data from the autopilot. This data provides
insights into the drone's real-time status and can be used for monitoring
or relayed to the mobile app.

1.4.4 Exception Handling

To ensure robustness, the backend is equipped to handle exceptions gracefully.

 Validation Errors: If the data sent to the backend doesn't meet the
expected format or type, a validation error is raised, and the user is
informed.

 HTTP Exceptions: For other issues, like connection failures or internal

errors, the backend provides clear HTTP error responses, ensuring that
users are always informed of the system's status.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 37

4.5. Integration with DEE

The Drone Engineering Ecosystem (DEE) is a comprehensive software platform
designed to control and operate drones in various capacities. The integration of
the backend into this ecosystem is pivotal, as it serves as the bridge between
the front-end modules (like the mobile app and dashboard) and the on-board
modules (such as the autopilot service and camera service).

4.5.1 Backend's Role in DEE

The backend, developed using FastAPI, plays a crucial role in:

 Data Storage and Retrieval: With the integration of MongoDB, the
backend provides a structured way to store and retrieve flight plans,
telemetry data, and other relevant information. This ensures that flight
plans created or modified in the dashboard can be saved and later
accessed by the mobile app or other front-end modules.

 Communication Facilitator: The backend acts as a mediator, using MQTT
to relay commands from the mobile app to the autopilot and vice versa.
This indirect communication ensures that the mobile app can interact
with the drone's on-board systems without a direct connection.

4.5.2 Integration with On-Board Modules

 Autopilot Service: The backend interacts with the autopilot service by
translating commands from the mobile app or dashboard into MQTT
messages. These messages are then published to the broker, which the
autopilot service, running on the drone's Raspberry Pi, subscribes to.
This ensures seamless flight operations, from takeoff to landing and
executing flight plans.

 Camera Service: While not directly utilized in the current project phase,
the backend's architecture allows for potential integration with the
camera service. This would enable the mobile app or dashboard to
trigger photo captures or access live video streams.

 LED Service: The backend can potentially send commands to control the
drone's LED lights, providing visual feedback or other functionalities.

4.5.3 Integration with Front-End Modules

 Dashboard: The backend supports the dashboard by storing and
retrieving flight plans. Any modifications made in the dashboard can be

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 38

saved to the database, ensuring that the latest flight plans are always
accessible.

 Mobile App: The mobile app communicates with the backend through
defined endpoints, allowing users to send flight commands, retrieve
telemetry data, and potentially manage flight plans in the future.

 DashApp & Drone Circus: While these modules have specific
functionalities, the backend's scalable architecture ensures that it could
support their data storage and retrieval needs, as well as facilitate
communication with on-board modules.

4.5.4 Communication Mode and Redundancy

The DEE operates in both global and production modes, with the backend
facilitating communication through MQTT brokers. In the event of backend
failure, the DEE can revert to loading flight plans from files, ensuring that drone
operations aren't halted.

4.5.5 Contribution and Continuous Development

The backend's development follows a structured contribution protocol, ensuring
that any enhancements or modifications align with the DEE's objectives.
Whether contributions are individual or team-based, the use of GitHub and
adherence to the described protocol ensures that the backend remains
integrated and synchronized with the broader ecosystem.

4.6. Challenges and Solutions

During the development and integration of the backend for the Drone
Engineering Ecosystem (DEE), various challenges emerged, each requiring a
unique solution.

One of the primary technical challenges was the inherent complexities of
programming. Even with a familiarity with FastAPI, there were occasional
technical hiccups. However, this familiarity, combined with the freedom to start
from a blank slate, allowed for the creation of a flexible and robust backend.
This approach ensured that the system was both intuitive and efficient.

Operational challenges also arose, especially when ensuring seamless
communication with pre-existing systems, like the MQTT protocol. The
autonomy to design the communication process proved beneficial, as MQTT
was integrated in a manner that best suited the backend's requirements,
ensuring smooth and reliable data transmission.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 39

In terms of integration, the initial iterations of the database structure were not
optimal. The idea of consolidating everything into a single collection seemed
efficient initially, but it lacked clarity and scalability. After receiving invaluable
feedback from university teachers, the database structure underwent significant
changes. By dividing the data into separate collections and linking them, the
database became more organized, clearer, and scalable.

Building on an entirely empty backend presented its own set of challenges.
While it offered freedom, it also meant there was no reference point or existing
structure to rely upon. However, this blank slate was seen more as an
opportunity than a challenge. It allowed for the creation of a backend tailored to
the specific needs of the DEE, without being constrained by legacy systems or
designs.

Collaboration was another area that presented challenges. Working with
another student who was developing an onboard database for the drone meant
that both databases had to be consistent and complementary. Through regular
communication and collaboration sessions, the structure of both databases was
aligned, ensuring that the flight data collected onboard could be seamlessly
integrated into the land database upon landing.

4.7. Conclusion

The journey of developing the backend for the Drone Engineering Ecosystem
(DEE) has been both enlightening and challenging. It has underscored the
importance of a robust backend in the realm of drone engineering and has
showcased the intricate balance between design philosophy, technology
choices, and practical implementation.

The design philosophy, rooted in principles like modularity, scalability,
interoperability, and a programmer-centric approach, has been the guiding light
throughout the development process. It has ensured that the backend remains
adaptable to future innovations while serving the immediate needs of the DEE.

The technology stack, comprising FastAPI, and MongoDB, was chosen with
precision. Each technology brought its unique strengths to the table, from
FastAPI's modern syntax and performance to MongoDB's flexible schema and
scalability.

The backend architecture, with its data models, MQTT integration, API
endpoints, and error handling mechanisms, is a testament to the meticulous
planning and execution that went into the project. It ensures that the DEE
operates seamlessly, with efficient data storage, retrieval, and communication.

The integration of the backend into the DEE highlighted its pivotal role in
bridging the gap between front-end modules and on-board systems. Whether
it's storing flight plans, relaying commands to the autopilot, or facilitating

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 40

communication between the dashboard and mobile app, the backend stands as
the central nervous system of the DEE.

Challenges, as expected, were part and parcel of the development process.
From technical hiccups to database restructuring and collaboration hurdles,
each challenge was met with a solution, ensuring that the backend remained
resilient and efficient.

In conclusion, the backend development for the DEE is a testament to the
power of thoughtful design, the right technology choices, and a collaborative
approach. It stands as a robust foundation for the DEE, ensuring that drones
can operate efficiently, safely, and in a data-rich environment. As drone
technology continues to evolve, this backend will undoubtedly adapt, grow, and
continue to play a central role in the world of drone engineering.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 41

5. DASHBOARD CHANGES

The dashboard stands as a pivotal component within the Drone Engineering
Ecosystem (DEE), offering users a comprehensive interface to seamlessly
interact with the system. It's more than just a visual representation of data; it's
the command center, the place where flight plans come to life, where past
flights are revisited, and where the intricate dance of drones is choreographed.
As the DEE matured and expanded, the dashboard too underwent a series of
enhancements to better serve its users and to keep pace with the evolving
needs of the ecosystem.

In this transformative journey, the dashboard not only saw technical upgrades
but also embraced a more intuitive design, ensuring that users, whether they
are seasoned drone operators or novices, find the tools they need with ease
[10]. From the introduction of advanced flight plan management tools to the
ability to revisit past flights and their associated media, the dashboard's
evolution has been both extensive and impactful.

This chapter delves into these changes, shedding light on the motivations
behind each enhancement, the challenges encountered, and the solutions
crafted. Through this exploration, the significance of a dynamic and user-centric
dashboard in the realm of drone engineering will become unmistakably clear.

5.1. Flight Plan Management Tools

In the realm of drone operations, the flight plan is a pivotal component, dictating
the drone's trajectory, actions, and objectives during its flight. As the DEE
expanded its capabilities, it was evident that the dashboard's flight plan
management tools needed to be more sophisticated, offering users a blend of
precision, flexibility, and ease of use.

5.1.1. Background

The dashboard's initial design allowed users to define a series of waypoints,
plotting the drone's path. While this was functional, it was somewhat basic. As
the DEE expanded and introduced advanced capabilities, such as capturing
videos, taking pictures, and executing complex maneuvers, the dashboard's
flight plan tools needed to be enhanced to accommodate these functionalities.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 42

5.1.2. Enhanced Picture and Video Commands at Waypoints

Building on the existing feature that allowed users to add picture capture
commands at specific waypoints, several enhancements were introduced:

 Picture Interval: A new input box was added, allowing users to specify a
picture interval. When activated and a number is inputted, the flight plan
is saved with this interval. This means that, in future implementations, the
drone will be able to take pictures at the set interval throughout its flight.
While the actual picture-taking capability requires integration with other
projects, the dashboard is primed and ready for this feature.

 Static Video Duration: Similar to the picture interval, an input box for
static video duration was introduced. If a user specifies a value and has a
waypoint set for a static video, the flight plan is saved with this
information. This paves the way for the drone to capture static videos of
a specified duration in future operations.

 Interactive Waypoint Video Commands: A more interactive feature was
added, allowing users to middle-click on the map waypoints. This action
cycles through different waypoint states: default (blue), red (indicating the
start or stop of a video), and green (indicating a static video). Paths
between two red waypoints are marked green, visually indicating that a
video recording will take place along that route.

These enhancements not only provided users with more control over their
drone's operations but also made the flight planning process more intuitive and
visually informative.

5.2. Loading Flight Plans from the Database

5.2.1. Motivation

As the DEE grew in complexity and the number of flight plans increased, there
arose a need for a more efficient way to manage and retrieve these plans.
Originally, flight plans were stored as individual JSON files on the local
computer. While this method was functional, it had its limitations, especially as
the number of flight plans grew. With the backend's development and the
integration of MongoDB, an opportunity presented itself: to centralize the
storage of flight plans in a database. This not only streamlined the management
of these plans but also facilitated easier retrieval and modification.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 43

5.2.2. Implementation

The dashboard was enhanced with a dual-feature: users could choose to load
flight plans either from the local JSON files or directly from the database. A user
interface was developed that allowed users to make this choice and, if the
database option was selected, it communicated with the backend, fetching the
required data from the MongoDB collections.

Upon selecting a specific flight plan, the dashboard would display the waypoints
and associated data, allowing users to review, modify, or execute the plan. This
seamless integration ensured that users had real-time access to all their flight
plans, irrespective of when or where they were created

5.2.3. Benefits

 Dual-Mode Flexibility: By retaining the option to load from local JSON
files and introducing the ability to load from the database, users are given
flexibility and a backup option in case of backend or database issues.

 Centralized Storage: With all flight plans stored in a single database,
there's reduced risk of data loss or redundancy. It also ensures that all
modules or components of the DEE that need access to these plans can
retrieve them from a unified source.

 Efficiency: Users no longer need to manually input or reconfigure flight
plans. They can simply load them from the database, saving time and
reducing potential errors.

 Flexibility: As flight plans evolve or if there's a need to revisit past plans,
having them stored in a database allows for easy modifications and
updates.

5.2.4. Future Enhancements

While the current implementation serves its purpose effectively, there's always
room for improvement. Potential future enhancements could include features
like versioning of flight plans, allowing users to track changes over time, or
integrating advanced search functionalities to quickly locate specific plans
based on criteria like date, location, or mission type.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 44

5.3. Viewing Past Flights and Associated Media

The evolution of the dashboard brought forth an enhanced user experience,
especially when it came to reviewing past flights and the media associated with
them. This feature not only provides a retrospective look at the drone's
operations but also offers a comprehensive understanding of the media
captured during these flights.

5.3.1. Accessing Past Flights

Upon clicking the "Previous Flights" button, users are greeted with a new
window that mirrors the familiar layout of the dashboard. On the left, there's a
map, and on the right, a list awaits to be populated with past flights. Between
these two main components, a set of buttons, notably "View Images" and
"Clear," offer additional functionalities.

When the home position on the map is selected, the list on the right populates
with all the previous flights stored in the database, sorted by date. This list
provides a brief overview of each flight, including its date, and the number of
pictures and videos associated with it.

5.3.2. Visual Representation of Flights

Selecting a flight from the list brings its path to life on the map. The path is
color-coded to provide insights at a glance:

 Blue: Represents the default path.

 Green: Indicates a video location. This could be a segment between two
waypoints (for moving videos) or a specific waypoint (for static videos).

 Red: Denotes a picture location. If both a picture and a video are
associated with a location, the video takes precedence, given that
pictures can be viewed separately.

Below, in Figure 5.1, you can see a visual representation of a selected flight on
the dashboard, showcasing the color-coded paths and associated media
markers.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 45

Fig. 5.1 Visual representation of a selected flight on the dashboard

5.3.3. Interacting with Media

Clicking on a segment or waypoint that contains media prompts a new window.
For pictures, this window displays the image, while for videos, a rudimentary
video player emerges, equipped with basic controls like play, pause, and stop
[11].

For a more comprehensive view of the images from a particular flight, the "View
Images" button opens an image gallery. Here, users can browse through all the
pictures associated with the selected flight, enlarging them for a better view as
needed [12].

Below, in Figure 5.2, you can see an example of the media interaction window,
showcasing the image gallery.

Fig. 5.2 Media interaction window on the dashboard

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 46

5.3.4. Backend Integration and Data Retrieval

The dashboard's ability to display past flights and associated media is powered
by its seamless integration with the backend. When the list of past flights is
requested, the /get_all_flights endpoint is triggered, fetching the relevant data
from the database.

For media retrieval, the dashboard communicates with the backend
using specific endpoints. The /media/pictures/{file_name} and
/media/videos/{file_name} endpoints are utilized to fetch pictures and videos,
respectively, based on their file names.

5.3.5. Database Structure and Media Association

The database plays a pivotal role in linking flights with their associated media.
Each flight document in the database contains references (ObjectIds) to the
pictures and videos associated with that flight. These references point to
specific documents in the pictures and videos collections, which in turn contain
details like the file path, location, and timestamp of the media.

For instance, a flight document might contain links to several picture and video
documents. When a user selects this flight on the dashboard, the backend
fetches the associated media documents using these links, ensuring that the
user is presented with all the relevant media for that particular flight.

"For a detailed look at the structure of the documents used in the database,
refer to Annex B."

In conclusion, the ability to view past flights and their associated media offers
users a comprehensive retrospective tool, allowing them to relive their drone's
journeys and analyze the media captured during those flights. This feature,
combined with the dashboard's intuitive design, ensures that users have a
holistic and enriched experience.

5.4. Integration with Other DEE Components

The dashboard, while a significant component of the Drone Engineering
Ecosystem (DEE), does not operate in isolation. Its functionality is deeply
intertwined with other components of the DEE, ensuring a seamless and holistic
user experience. This integration is pivotal for the dashboard to effectively serve
as the user interface for drone operations, from flight planning to media
retrieval.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 47

5.4.1. Backend Communication

The dashboard's primary point of interaction is with the backend. Every action
taken on the dashboard, from creating a flight plan to viewing past flights,
necessitates communication with the backend.

 Flight Plan Creation and Storage: When a user crafts a new flight plan on
the dashboard, this data is sent to the backend for storage in the
MongoDB database. This ensures that flight plans are not only saved
locally but are also available for future retrieval and execution.

 Media Retrieval: The dashboard's ability to display past flights and
associated media is facilitated by the backend. When a user requests to
view a specific flight's media, the dashboard communicates with the
backend, which in turn fetches the relevant media files from the
database.

5.4.2. Mobile Application Synchronization

The dashboard and the mobile application must remain synchronized to ensure
consistent drone operations.

 Flight Plan Execution: Once a flight plan is crafted and stored via the
dashboard, it becomes available for execution through the mobile
application or the dashboard itself. This ensures that users can plan
flights on a more extensive interface (the dashboard) and then execute
them in the field using the mobile application.

 Post-flight Updates: While the dashboard can display the drone's
progress in real-time as it executes a flight plan, the mobile application
provides updates only after the flight is completed. This ensures that
users can review the flight's details, including its path and associated
media, once the operation is done.

5.4.3. Future Integration Possibilities

As the DEE continues to evolve, there are potential avenues for further
integration:

 Advanced Analytics: As more data is collected from drone flights, the
dashboard could integrate tools for advanced data analysis, providing
users with insights into flight patterns, efficiency, and more.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 48

 Cloud Storage Integration: As the amount of media (pictures and videos)
grows, integrating with cloud storage solutions might become necessary.
The backend can be enhanced to support seamless uploads to cloud
platforms, and the dashboard can facilitate easy management and
retrieval of these cloud-stored media files.

In conclusion, the dashboard's integration with other DEE components is a
testament to the ecosystem's interconnected nature. Each component, while
powerful on its own, derives its true strength from its ability to seamlessly
interact and collaborate with others, ensuring a comprehensive and user-
friendly drone operation experience.

5.5. Challenges and Solutions

The journey of enhancing the dashboard and integrating it with other DEE
components was marked by a series of challenges, each of which provided an
opportunity to refine the system and ensure its robustness.

Balancing legacy features with new enhancements was a primary concern. The
introduction of new capabilities, such as loading flight plans from the database,
raised the challenge of ensuring that the existing functionality of loading from
JSON files remained undisturbed. The approach taken was to offer both options
side by side, granting users the flexibility to choose based on their preference or
in case of any system contingencies.

The task of displaying media, especially videos, in a user-friendly manner on
the dashboard posed its own set of challenges. Integrating a video player
seamlessly was essential to maintain an intuitive user experience. The focus
was shifted to providing a basic yet functional player, emphasizing essential
controls like play, pause, and stop, ensuring smooth playback.

With the feature to view past flights and their associated media, efficiently
linking flight data with the respective media files in the database became
crucial. Leveraging linking in MongoDB proved to be an effective solution,
establishing a direct and efficient connection between flights and their
associated pictures or videos.

Maintaining a consistent and intuitive user interface was paramount, especially
with the addition of new features and functionalities. The challenge lay in
integrating new elements, such as the media gallery or the color-coded
waypoints on the map, without overwhelming the interface. A minimalist design
approach was adopted, ensuring that each element not only served a clear
purpose but also enhanced the overall user experience.

In conclusion, the process of refining the dashboard, while filled with
challenges, was approached with a keen focus on user experience, system
efficiency, and future scalability. The result is a dashboard that is well-equipped

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 49

to meet the current needs of the DEE and is also primed for future innovations
and expansions.

5.6. Conclusions

The dashboard's evolution within the Drone Engineering Ecosystem (DEE) is a
testament to the dynamic nature of technology and the importance of
adaptability. As the DEE expanded its horizons, the dashboard responded in
kind, ensuring that it not only met the immediate needs of its users but also
anticipated future requirements.

From the outset, the dashboard was more than just a tool; it was the heart of
the DEE, where users could visualize, plan, and review their drone operations.
The enhancements discussed in this chapter, from advanced flight plan
management to the integration with other DEE components, highlight the
dashboard's journey from a basic interface to a sophisticated command center.

The ability to load flight plans from a centralized database, view past flights with
their associated media, and the seamless integration with other DEE
components have transformed the dashboard into a powerful and user-friendly
tool. These changes, while technical in nature, were driven by a singular focus:
to enhance the user experience.

However, this journey was not without its challenges. Balancing legacy features
with new enhancements, ensuring a consistent user interface, and integrating
new functionalities required careful planning, innovative solutions, and a deep
understanding of the end-users' needs.

In conclusion, the dashboard's evolution within the DEE is a shining example of
how technology can be molded, enhanced, and refined to meet the ever-
changing needs of its users. As the DEE continues to grow and evolve, one can
be certain that the dashboard will continue to be at the forefront, ready to adapt,
innovate, and serve.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 50

6. DASHMOBILE DEVELOPMENT

In the dynamic realm of the Drone Engineering Ecosystem (DEE), while the
dashboard serves as the command center, orchestrating the symphony of
drone operations, there emerged a need for a maestro that could conduct this
symphony from anywhere, at any time. This maestro took the form of
DashMobile, a mobile application designed to bridge the gap between intricate
planning and real-time execution. It's not just an extension of the dashboard; it's
a beacon of mobility, ensuring that the power of the DEE is always within arm's
reach, regardless of location.

DashMobile's inception was driven by the realization that drone operations
aren't confined to a desk or a control room. They happen in the field, on the
move, and often in environments where quick decisions are paramount. The
application, therefore, was envisioned to be more than just a mobile interface; it
was to be a tool that empowers users, be they seasoned drone operators or
novices, to initiate, monitor, and review drone operations on-the-go.

This chapter embarks on a journey through the development of DashMobile,
exploring its features, the rationale behind its design choices, and the
challenges faced during its evolution. Through this narrative, the pivotal role of
DashMobile in enhancing the flexibility and reach of the DEE will come to the
forefront, highlighting its significance in the broader tapestry of drone
engineering.

6.1. Features and Functionalities

In the rapidly evolving world of drone operations, mobile accessibility has
become paramount. The DashMobile application, with its comprehensive flight
management system, stands as a testament to this shift, ensuring that users
have the power of drone management right at their fingertips. Let's delve into
the core features and functionalities that make DashMobile an exemplary
solution in the realm of drone flight planning and management.

6.1.1. User Interface and Navigation

Upon launching DashMobile, users are greeted with an interactive map
interface, showcasing the drone's flight plan (see Fig.6.1). This map, powered
by the google_maps_flutter package [13], is not just a static display but a
dynamic tool. Users can view and manipulate flight paths, add custom markers
representing waypoints, and even close a loop of waypoints to create a circular
flight path.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 51

Fig. 6.1 Interactive map interface of DashMobile.

To aid navigation, DashMobile features a custom drawer, themed with a dark
color scheme complemented by an orange accent (see Fig. 6.2). This drawer
facilitates smooth transitions to various sections of the app, such as viewing
past flights or selecting new flight plans.

Fig. 6.2 Custom drawer navigation in DashMobile.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 52

6.1.2. Flight Plan Management

Flight plans are pivotal to DashMobile. Users can easily select and manage
these plans through the app. The flight plans, fetched from a backend server,
are displayed in a structured manner (see Fig 6.3). However, to execute these
plans, users need to be connected to the MQTT broker. This connection is
facilitated using the backend as a middleman, ensuring real-time updates and
actions. If a user chooses a flight plan while connected to the broker, they are
navigated to the main interface. Here, they can view the flight path, detailed
insights into where pictures and videos will be taken, and even have the option
to launch that flight.

Fig. 6.3 Flight plan details and execution options.

6.1.3. Past Flights

DashMobile ensures that users can always revisit their aerial adventures. When
the Past Flights option is selected, users are directed to a new screen
displaying a list of their previous flights (see Fig. 6.4). By selecting a past flight,
users are then navigated to the main screen, showcasing the flight path with
detailed information on where pictures and videos were taken (see Fig. 6.5).
Additionally, two new buttons appear, allowing users to access dedicated photo
and video galleries related to that specific flight. This retrospective feature
ensures users can always look back on their journeys, understanding their flight
patterns and media captures.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 53

Fig. 6.4 List of past flights in DashMobile.

Fig. 6.5 Past flight showcase

6.1.4. Media Galleries

Memories are precious, and DashMobile ensures they're always at the users'
fingertips. The app features dedicated sections for photo and video galleries
(see Fig. 6.6). Users can view images from specific flights, with efficient loading
and caching mechanisms ensuring quick access. Videos are easily accessible,
with thumbnails providing a sneak peek. The integrated media player, powered
by the chewie package [14], offers an immersive viewing experience with
features like a seeking bar, pause, play, speed adjustments, volume control,
and more.

Fig. 6.6 Media gallery interface in DashMobile.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 54

6.1.5. Backend Communication

DashMobile's strength is anchored in its seamless communication with the
backend server. This communication ensures that users have access to the
latest flight plans and past flight data. Flight plans, once sent to the REST API,
are processed and liaised with an external broker and the autopilot service.
While DashMobile doesn't offer real-time updates, its efficient backend
communication ensures that users have all the necessary information at their
fingertips. Additionally, the app's caching mechanism, enhanced by the
cached_network_image package [15], plays a pivotal role in optimizing
performance and data usage, ensuring that images are loaded efficiently
without redundant API calls.

6.1.6. Feedback and Error Handling

DashMobile believes in keeping users informed. Whether it's about the status of
their broker connection or any discrepancies in waypoint postings, the app
provides immediate feedback. For instance, if a user tries to select a flight plan
without being connected, a prompt pop-up will inform them to connect first,
ensuring clarity and minimizing potential confusion.

6.1.7. Theming and Aesthetics

Beyond functionality, DashMobile is a visual delight. With a consistent dark
theme complemented by orange accents, the app is both aesthetically pleasing
and functionally robust. The design elements, combined with intuitive navigation
and interactive features, ensure a top-notch user experience.

In essence, DashMobile seamlessly integrates various features to offer users a
comprehensive flight management experience. From planning flights to
revisiting past journeys, from viewing media galleries to real-time updates,
every feature is woven together to create a cohesive and user-centric
application. The balance DashMobile strikes between functionality and user
experience makes it an indispensable tool in the Drone Engineering Ecosystem.

6.2. Integration with DEE Components

DashMobile, while a standalone application, is deeply integrated within the
Drone Engineering Ecosystem (DEE). Its functionalities are not just confined to
the app's boundaries but extend to communicate, synchronize, and collaborate
with other DEE components. This integration ensures a seamless user
experience, from flight planning to execution and retrospective analysis.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 55

6.2.1. Backend Communication

DashMobile's robustness is largely attributed to its continuous communication
with the backend. The app has a dedicated API service, which facilitates
various operations:

 Broker Connection: DashMobile can connect and disconnect from the
MQTT broker via the backend. This connection is pivotal for executing
flight plans. The backend serves as a bridge, ensuring real-time updates
and actions between the app and the broker.

 Flight Plans: The app fetches flight plans from the backend, ensuring
users always have access to the latest plans. If a flight plan is created or
modified on the dashboard, a simple reload on DashMobile fetches the
updated plans.

 Past Flights: DashMobile can retrieve data about past flights, allowing
users to revisit their drone's journeys once they're completed.

 Media Retrieval: The app fetches images and videos associated with
flights from the backend. Efficient loading and caching mechanisms
ensure quick access to this media.

6.2.2. Dashboard Synchronization

DashMobile and the dashboard are two sides of the same coin. While the
dashboard offers a comprehensive interface for flight planning, DashMobile
brings these plans to life in the field. When a flight plan is crafted or updated on
the dashboard, DashMobile can access these changes by simply reloading,
ensuring both platforms are always in sync.

6.2.3. MQTT Broker and Autopilot Service Integration

DashMobile's ability to execute flight plans hinges on its integration with the
MQTT brokers, which control the drone's autopilot. While a direct connection to
the broker from the app would be ideal, the current setup uses the FastAPI
backend as a mediator. When a flight plan is to be executed, DashMobile sends
the plan to the backend, which then communicates with the external broker and
the autopilot service. This ensures that the drone receives the correct
instructions for its flight.

In essence, DashMobile's integration with various DEE components ensures
that it's not just an app but a vital cog in the larger machinery of the Drone
Engineering Ecosystem.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 56

6.3. Challenges and Solutions

The development of DashMobile was a journey filled with learning curves,
unexpected roadblocks, and moments of innovation. Each challenge
encountered was not just a hurdle but an opportunity to refine and enhance the
application.

One of the most formidable challenges was the integration of DashMobile
directly with the MQTT broker. Despite numerous attempts using the mqtt_client
module for Flutter, the application consistently faced issues. WebSocket
failures, HTTP Exceptions, and silent errors made a direct connection seem
almost impossible. However, instead of persisting with this direct approach, a
creative workaround was devised. Recognizing that other Python modules,
such as the autopilot and camera controller, were already using MQTT, it was
decided to use FastAPI as a mediator. Being Python-based, FastAPI could
easily integrate MQTT, bridging the gap between DashMobile and the MQTT
brokers. This indirect approach, while not initially planned, ensured reliable
communication and functionality.

As a newcomer to Flutter, designing a user-centric application presented its
own set of challenges. Striking the right balance between aesthetics and
functionality was crucial. Initial designs ambitiously included features for
creating flight plans directly from DashMobile. This involved intricate map
interactions, waypoint management, and even a dropdown menu for waypoint
editing. However, after discussions and feedback, it became clear that creating
flight plans on a mobile device might not be the optimal user experience.
Instead of discarding the work done, much of the developed code was
repurposed. The intricate map interactions were adapted for displaying past
flights and flight plans, ensuring that the efforts were not wasted, and that the
application remained user-centric.

Media playback was another area that required attention. Initial attempts to
custom-build a video player for DashMobile didn't yield the desired results.
Recognizing the complexities of video playback, the decision was made to
integrate the chewie package into DashMobile. This package, tailored for video
playback in Flutter, provided a seamless and feature-rich video playback
experience, eliminating the need for a custom solution.

Lastly, the process of media retrieval needed optimization. Initially, every
request to view a flight plan's picture or video resulted in an API call. This
approach was not only inefficient but also increased latency and data usage.
The integration of the cached_network_image package proved to be a game-
changer. With this, images were cached after their initial retrieval, ensuring that
subsequent views of the same image fetched it from the cache, reducing both
latency and data usage.

In reflection, the challenges faced during DashMobile's development were
instrumental in shaping it into the robust and user-friendly application it is today.
Through adaptive thinking and innovative solutions, DashMobile stands as a

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 57

testament to the power of perseverance and problem-solving in software
development.

6.4. Future Prospects

The journey of DashMobile, as with any innovative technology, is one of
continuous evolution. As the Drone Engineering Ecosystem (DEE) expands and
the drone industry advances, DashMobile is poised to adapt, innovate, and
lead.

6.4.1. Direct MQTT Integration

One of the primary enhancements on the horizon for DashMobile is the direct
integration with MQTT brokers. While the current system leverages FastAPI as
a mediator, a direct connection would streamline operations, reduce latency,
and enhance the real-time responsiveness of the application.

6.4.2. Enhanced Flight Planning from Mobile

The initial design considerations of DashMobile included the ability to create
flight plans directly from the mobile interface. Although this feature was set
aside due to project scope and feedback, it remains a tantalizing prospect. With
the foundational code already in place, future iterations could reintroduce this
feature, offering users even more flexibility in drone operations.

6.4.3. Real-time Monitoring and Gesture Control

The potential integration of DashMobile with real-time monitoring systems and
the "drone circus" module could revolutionize how users interact with drones.
Imagine controlling drone movements with simple hand gestures captured by a
mobile camera or receiving real-time feedback on drone status and environment
directly on the mobile interface.

6.4.4. Performance and Scalability

 As the user base grows and the demands on the system increase, there will be
a continuous need to optimize performance. This could involve refining the
caching mechanisms, enhancing the backend communication protocols, or
even integrating more advanced data compression techniques to ensure rapid
media access.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 58

6.4.5. User Feedback and Iterative Design

 While DashMobile already boasts a robust set of features, the true potential lies
in iterative design based on user feedback. As more users interact with the
system, their insights, challenges, and needs will provide invaluable direction for
future enhancements.

In essence, the future of DashMobile is as expansive as the skies it seeks to
navigate. With a solid foundation in place and a vision for the future,
DashMobile is set to soar to new heights in the realm of drone flight
management.

6.5. Conclusions

The Drone Engineering Ecosystem (DEE) represents a paradigm shift in drone
operations, and DashMobile stands as a beacon of this transformation. From its
inception, DashMobile was not just envisioned as a mobile interface but as a
powerful tool that brings the vast capabilities of the DEE directly into the hands
of its users. The journey of its development, replete with challenges and
innovations, underscores the commitment to providing a seamless, user-centric
experience.

The features and functionalities of DashMobile, from its dynamic map interface
to its robust backend communication, showcase a meticulous design approach.
Every feature, whether it's the real-time flight plan management or the
immersive media galleries, has been crafted with the end-user in mind. The
challenges faced during its development, while formidable, were met with
innovative solutions that not only resolved the immediate issues but also
enriched the overall application.

The integration of DashMobile within the broader DEE ecosystem amplifies its
significance. It's not just an isolated application but a vital component that
communicates, collaborates, and synchronizes with other DEE modules. This
integration ensures that whether a user is in the field or in a control room,
DashMobile provides them with real-time insights and control over drone
operations.

Looking ahead, the future prospects for DashMobile are promising. As the
drone industry continues to evolve, so will the demands and expectations from
applications like DashMobile. The potential enhancements, from direct MQTT
integration to real-time monitoring, highlight the roadmap for DashMobile's
continuous evolution.

In conclusion, DashMobile is more than just an application; it's a testament to
the power of innovation, adaptability, and user-centric design. As it continues to
evolve and adapt, it will undoubtedly play a pivotal role in shaping the future of
drone operations within the Drone Engineering Ecosystem.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 59

7. TESTS AND USER EXPERIENCE

In the intricate dance of software development, two partners play a pivotal role:
rigorous testing and insightful user feedback. While the former ensures that the
system functions seamlessly, the latter guarantees that it resonates with its
intended audience. For the Drone Engineering Ecosystem (DEE) –
encompassing DashMobile, the dashboard, and the backend – this dance is
especially crucial. Each component, while individually significant, collectively
contributes to a harmonious user experience, ensuring that drone operations
are both efficient and intuitive.

This chapter delves deep into the meticulous testing processes that each
component underwent, from unit tests ensuring individual functionality to
integration tests confirming seamless interplay between components. But
beyond the technical realm, the real-world experiences of users provide
invaluable insights. Their feedback, their challenges, and their needs shape the
evolution of the DEE, ensuring that it not only meets but exceeds expectations.

Join us as we navigate the rigorous pathways of technical testing and the
enlightening avenues of user experience, understanding how they collectively
ensure the DEE's reliability, usability, and excellence.

7.1. Technical Testing

Technical testing is a cornerstone of any software development process. It
ensures that the developed features work as intended and that they can handle
a variety of scenarios. For the DEE components, a series of tests were
methodically designed and executed to validate their functionality and
robustness.

7.1.1. DashMobile Tests

 Map Interface Test: The primary goal was to validate the accurate
rendering of flight plans on the map. Tests were conducted to ensure that
waypoints and media markers aligned correctly. Challenges arose when
markers occasionally misaligned, prompting a review and adjustment of
the rendering logic.

 User Interaction Test: Simulated user journeys were conducted to test
the app's responsiveness. This involved selecting flight plans, viewing
past flights, and accessing media galleries. The primary challenge was
ensuring that the app remained responsive under various user scenarios,
especially when switching between different flight plans.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 60

 Backend Communication Test: The app's ability to fetch flight plans and
past flight data from the backend was tested. The focus was on ensuring
timely data retrieval without significant lags. Challenges included
optimizing the data retrieval process to minimize latency.

7.1.2. Dashboard Tests

 Flight Plan Creation Test: The functionality to create and modify flight
plans was tested. The primary challenge was ensuring that newly
created or modified flight plans were instantly available for selection
without delays.

 Media Retrieval Test: The dashboard's ability to fetch and display media
associated with specific flights was validated. The test aimed to ensure
that media (photos and videos) was loaded efficiently and displayed
correctly.

 User Interface Test: The dashboard's various functionalities, such as
flight plan selection, media viewing, and data visualization, were tested
for usability and responsiveness. Challenges arose in ensuring that the
dashboard remained responsive under heavy user interactions.

7.1.3. Backend Tests

 Load Test: To assess the backend's resilience and performance under
stress, a custom Python script was developed. This script was designed
to bombard the backend with multiple requests per second, targeting
various endpoints. The primary challenge was ensuring consistent
performance under this simulated heavy load, especially during
communication with the MQTT broker. It was crucial to identify any
potential bottlenecks and optimize them to ensure the backend could
handle real-world scenarios where multiple users might be interacting
with the system simultaneously.

 Data Retrieval Test: The backend's efficiency in fetching and transmitting
data to both DashMobile and the dashboard was tested. The focus was
on minimizing latency and ensuring accurate data transmission.

 MQTT Communication Test: The backend's communication with the
MQTT broker was tested to ensure reliable data exchange. Challenges
included establishing a stable connection and ensuring real-time data
updates.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 61

In summary, the technical testing phase was instrumental in identifying and
addressing potential issues in each DEE component. Through methodical
testing and iterative refinement, the DEE was optimized for performance,
reliability, and user experience.

7.2. User Experience and Feedback

In the realm of software development, especially for applications that serve a
niche yet critical function like drone management, user feedback is invaluable. It
provides a real-world lens to view the system, highlighting areas of success and
potential improvement. To ensure that the Drone Engineering Ecosystem (DEE)
components, including DashMobile and the dashboard, met user expectations
and were intuitive to use, a series of user tests were conducted.

7.2.1. User Testing Methodology

The methodology was straightforward yet effective. A mix of friends and family,
with varying degrees of familiarity with drones and software applications, were
selected. This diverse group ensured feedback from both novices and those
with a more seasoned perspective. Participants were given access to both
DashMobile and the dashboard, with a brief introduction to their purpose but
minimal guidance on their operation. This approach was intentional, aiming to
gauge the intuitiveness of the interfaces.

7.2.2. DashMobile Feedback

The response to DashMobile was overwhelmingly positive. Users appreciated
its:

 Usability: Many found the app user-friendly, with intuitive navigation. The
interactive map interface and the flight management system were
particularly highlighted for their ease of use.

 Design and Aesthetics: The dark theme complemented by orange
accents was well-received, with users commenting on the app's visual
appeal and modern design.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 62

7.2.3. Dashboard Feedback

While the dashboard was generally well-received, it did face some constructive
criticism:

 Usability Concerns: The primary feedback revolved around the flight
planning and editing functionalities. Users expressed that they weren't
immediately aware of certain controls, such as the need to middle-click
on two waypoints to set up a video between them or the ability to drag
waypoints.

 Need for Guidance: A recurring suggestion was the addition of a
guidance window or a brief tutorial. This would introduce users to the
various controls and functionalities, ensuring they could leverage the
dashboard's full potential without any initial hiccups.

7.2.4. Overall Insights and Future Improvements

The feedback sessions were enlightening. The positive reception of DashMobile
reinforced the importance of user-centric design and the value of intuitive
interfaces. For the dashboard, the feedback underscored the need for more
explicit user guidance, especially for functionalities that aren't immediately
obvious.

Incorporating a brief tutorial or a help section detailing the controls can
significantly enhance the user experience. As the DEE continues to evolve,
these insights will be instrumental in shaping its future iterations, ensuring that
both DashMobile and the dashboard remain user-friendly, efficient, and
effective in their roles.

7.3. Conclusions

The journey through the technical testing and user feedback processes has
illuminated the intricate balance between technical robustness and user-centric
design. While the technical tests ensured that each component of the Drone
Engineering Ecosystem (DEE) functioned optimally, the user feedback provided
a lens into the real-world application and usability of these components.

Technical testing was a rigorous process, ensuring that DashMobile, the
dashboard, and the backend were not only functional but also resilient under
various scenarios. From load tests to interface checks, each test played a
pivotal role in refining the DEE components, ensuring they were ready for
deployment.

On the other hand, user feedback provided invaluable insights into the user
experience. The overwhelmingly positive reception of DashMobile highlighted

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 63

the success of its design and functionality. The dashboard, while largely
successful, also provided learning opportunities, especially in enhancing user
guidance and improving certain functionalities.

In essence, this chapter underscores the importance of a dual approach in
software development: ensuring technical excellence while also catering to the
end-users' needs and experiences. The iterative process of testing, gathering
feedback, and refining has ensured that the DEE components are not only
technically sound but also resonate with their intended audience. As the Drone
Engineering Ecosystem continues to evolve, this foundation of rigorous testing
and user-centric design will undoubtedly guide its future trajectories, ensuring it
remains at the forefront of drone management solution

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 64

8. CONCLUSIONS

The Drone Engineering Ecosystem (DEE) stands as a testament to the intricate
dance between technology, design, and user experience. As we reflect upon
the journey undertaken in this thesis, several themes emerge, painting a holistic
picture of the DEE's evolution and its significance in the realm of drone
operations.

8.1. Achievement of Objectives

 The initial objectives set the stage for the entire project. From the development
of a robust backend, the enhancements of the dashboard, to the inception of
DashMobile, each objective was met with dedication, innovation, and a
commitment to excellence. The backend, serving as the central nervous system
of the DEE, showcased the importance of a solid foundation. The dashboard,
with its user-centric design and enhanced functionalities, highlighted the need
for adaptability in the face of evolving user needs. DashMobile, the beacon of
mobility, underscored the importance of real-time insights and control in drone
operations.

8.2. Personal Journey and Challenges

 The path to achieving these objectives was not without its hurdles. Technical
challenges, design dilemmas, and integration issues were part and parcel of the
journey. However, each challenge was met with a solution-oriented approach,
leading to innovative workarounds and enhancements. The iterative process of
design, testing, and refinement enriched not only the DEE components but also
the personal growth and understanding of the intricate world of drone
operations and software development.

8.3. User-Centric Design and Feedback

 Beyond the technical realm, the voice of the end-users echoed throughout the
development process. The overwhelmingly positive reception of DashMobile
and the constructive feedback for the dashboard emphasized the importance of
a user-centric approach. The balance between technical robustness and user
experience was a recurring theme, ensuring that the DEE not only functioned
optimally but also resonated with its users.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 65

8.4. Future Trajectories

 As we look ahead, the open lines of development promise a bright future for
the DEE. The potential enhancements, from direct MQTT integration to real-
time monitoring and improved user guidance, set the stage for the DEE's
continuous evolution. The drone industry, ever-evolving and dynamic, will
undoubtedly present new challenges and opportunities. However, with a solid
foundation in place and a commitment to innovation and user experience, the
DEE is poised to navigate these future trajectories with grace and excellence.

In essence, this thesis journey encapsulates the power of clear objectives,
innovation, and user-centric design. The Drone Engineering Ecosystem, with its
integrated components and user-focused approach, stands as a beacon of
excellence in the world of drone operations. As the DEE continues to evolve
and adapt, it will undoubtedly play a pivotal role in shaping the future of drone
management solutions, ensuring efficiency, adaptability, and a seamless user
experience.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 66

BIBLIOGRAPHY

[1] M. Valero (2023), DroneEngineeringEcosystemDEE, Retrieved from:
https://github.com/dronsEETAC/DroneEngineeringEcosystemDEE

[2] FastAPI (2023), Official FastAPI Documentation, Retrieved from:
https://fastapi.tiangolo.com/

[3] MongoDB (2023), Official MongoDB Documentation, Retrieved from:
https://www.mongodb.com/docs/

[4] Python3.7 (2018), Official Python Documentation, Retrieved from:
https://docs.python.org/3.7/

[5] Flutter (2023), Official Flutter Documentation, Retrieved from:
https://docs.flutter.dev/

[6] Jamie Pinchot (2020), User Experience (UX) Design Concepts for Mobile
App Development Courses, Retrieved from:
https://www.researchgate.net/publication/345012505_User_Experience_UX_De
sign_Concepts_for_Mobile_App_Development_Courses

[7] R. C. Martin (2003), Agile software development: principles, patterns, and
practices, Prentice Hall.

[8] MongoEngine (2023), Official MongoEngine Documentation, Retrieved from:
http://docs.mongoengine.org/guide/index.html

[9] MQTT Version 3.1.1 (2014), OASIS Standard, Retrieved from:
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[10] Python Software Foundation (2023), Official Tkinter Documentation,
Retrieved from: https://docs.python.org/3/library/tkinter.html

[11] VideoLAN (2023), Official Python-VLC Documentation, Retrieved from:
https://www.olivieraubert.net/vlc/python-ctypes/doc/

[12] Python Software Foundation (2023), Official Pillow (PIL Fork)
Documentation, Retrieved from: https://pillow.readthedocs.io/en/stable/

[13] Flutter Team (2023), Official google_maps_flutter Documentation,
Retrieved from: https://pub.dev/packages/google_maps_flutter

[14] Flutter Community (2023), Official chewie Documentation, Retrieved from:
https://pub.dev/packages/chewie

[15] Flutter Community (2023), Official cached_network_image Documentation,
Retrieved from: https://pub.dev/packages/cached_network_image

https://github.com/dronsEETAC/DroneEngineeringEcosystemDEE
https://fastapi.tiangolo.com/
https://www.mongodb.com/docs/
https://docs.python.org/3.7/
https://docs.flutter.dev/
https://www.researchgate.net/publication/345012505_User_Experience_UX_Design_Concepts_for_Mobile_App_Development_Courses
https://www.researchgate.net/publication/345012505_User_Experience_UX_Design_Concepts_for_Mobile_App_Development_Courses
http://docs.mongoengine.org/guide/index.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.python.org/3/library/tkinter.html
https://www.olivieraubert.net/vlc/python-ctypes/doc/
https://pillow.readthedocs.io/en/stable/
https://pub.dev/packages/google_maps_flutter
https://pub.dev/packages/chewie
https://pub.dev/packages/cached_network_image

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 67

ANNEXOS

From Backend to DashMobile: Expanding the Horizons of the Drone
Engineering Ecosystem

TITULACIÓ: Grau en Enginyeria de Sistemes de Telecomunicació

AUTOR: Alejandro Samuel Pinto

DIRECTOR: Miguel Valero Garcia

DATA: 21 de agost del 2023

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 68

ANNEX A: ENDPOINTS

The Drone Engineering Ecosystem (DEE) is underpinned by a robust backend,
facilitating seamless communication between its various components. Central to
this backend's functionality is a set of well-defined API endpoints, which allow
for data retrieval, command issuance, and system synchronization.

The following annex provides a comprehensive overview of these endpoints,
offering insights into their purpose, usage, and expected responses. This
documentation has been autogenerated using FastAPI, ensuring accuracy and
up-to-date representation of the backend's capabilities.

A.1. Overview

FastAPI's autogenerated documentation provides:

 Endpoint Descriptions: A brief summary of what each endpoint does.

 HTTP Methods: The type of HTTP request (GET, POST, PUT, DELETE,
etc.) associated with each endpoint.

 Request Parameters: Details on any parameters that need to be
provided, their format, and whether they are required or optional.

 Response Models: Expected structure of the response data, including
potential status codes and their meanings.

A.2. Documentation Snapshots

Given that the documentation is hosted locally and cannot be accessed
externally, we've provided snapshots of the key endpoints and their details.
These snapshots offer a visual representation of the documentation, ensuring
readers can gain insights into the backend's capabilities without requiring direct
access.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 69

Fig. A.1 Autogenerated Documentation

For each endpoint, the following details are showcased:

 Endpoint URL: The specific URL associated with the endpoint.

 HTTP Method: The type of request (e.g., GET, POST).

 Description: A brief summary of the endpoint's purpose.

 Parameters: Any required or optional parameters for the request.

 Response: A sample response structure.

A.3. Key Endpoints

The backend of the Drone Engineering Ecosystem (DEE) is equipped with a
myriad of endpoints, each tailored to specific functionalities. While all endpoints
play a crucial role in the system's operation, some are particularly noteworthy
due to their significance in drone operations. In this section, we'll delve into a
couple of these key endpoints, highlighting their structure, purpose, and usage

A.3.1 get_all_flights Endpoint

The get_all_flights endpoint, as depicted in Fig. A.2, serves as a gateway to
retrieve all the flight plans stored in the system. This endpoint is particularly
useful for users who wish to review or analyze past flight plans.

 Request Type: GET

 Parameters: None required.

 Usage: This endpoint can be directly executed from the documentation
interface. Upon invocation, it fetches and displays all the flight plans,
providing a comprehensive overview right within the documentation.

 Response: 200 OK Successful Response

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 70

Fig. A.2 Example of get_all_flights endpoint

A.3.2 executeFlightPlan Endpoint

The executeFlightPlan endpoint, showcased in Fig. A.3, is pivotal for initiating a
drone's flight based on a predefined plan. It requires a specific structure of data,
primarily the waypoints, to guide the drone's trajectory.

 Request Type: POST

 Parameters: A list of waypoints, provided in the request body. The
documentation offers a sample structure for reference, ensuring users
can easily format their data.

 Responses:
o 200 OK: Successful execution of the flight plan.
o 422 Validation Error: This response is triggered if the provided

data in the request body doesn't adhere to the expected format. It
serves as a safeguard, ensuring that only valid flight plans are
executed.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 71

Fig. A.3 Example of executeFlightPlan

These key endpoints, among others, form the backbone of the DEE's backend,
ensuring that users have a comprehensive toolkit at their disposal for efficient
and effective drone management. The interactive nature of the documentation,
combined with detailed endpoint descriptions, empowers users to understand,
test, and leverage the system's capabilities seamlessly.

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 72

ANNEX B: DATABASE DOCUMENT STRUCTURE
EXAMPLES

This annex provides a detailed look at the structure of the documents used in
the database for the Drone Engineering Ecosystem (DEE) dashboard.

B.1 Flight Documents

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 73

B.2 Flight Plan Documents

B.3 Pictures Documents

From Backend to DashMobile: Expanding the Horizons of the Drone Engineering Ecosystem 74

B.4 Video Documents

	0. INTRODUCTION
	0.1. What has been done in the Project
	0.2. Personal Motivation
	0.3. Project Structure

	1. DESCRIPTION OF THE INITIAL ECOSYSTEM
	0.
	1.
	1.1. Ecosystem Overview
	1.2. On-Board Modules
	1.2.1. Autopilot Service
	1.2.2. Camera Service
	1.2.3. LEDs service

	1.3. Front-End Modules
	1.3.1. Dashboard
	1.3.2. Mobile App
	1.3.3. DashApp
	1.3.4. Drone Circus

	1.4. Back-End Modules
	1.5. Communication Mode
	1.6. Drone Design
	1.6.1. Frame and Flight Control
	1.6.2. Raspberry Pi and Camera Integration
	1.6.3. Mission Planning and Simulation

	1.7. Project Contributions and Key Focus

	2. OBJECTIVES AND WORK PLAN
	2.1. Main Objectives
	2.2. Work Plan
	2.3. Timeline
	2.4. Project Outcome

	3. TECHNOLOGIES AND TOOLS USED
	3.1. Backend Technologies
	3.1.1. Frameworks
	3.1.2. Database Technology
	3.1.3. Libraries and APIs
	3.1.4. Testing and Debugging Tools

	3.2. Dashboard Technologies
	3.2.1. Programming Language: Python
	3.2.2. GUI Framework: Tkinter
	3.2.3. Media Gallery: Python-VLC and PIL
	3.2.4. Development Considerations
	3.2.5. Testing and Debugging

	3.3. Mobile App Technologies
	3.3.1. Framework and Development Choices
	3.3.2. User Interface Design
	3.3.3. Testing, Debugging, and Challenges

	4. BACKEND DEVELOPMENT
	4.1. Design Philosophy
	4.2. Technology Stack
	4.2.1. FastAPI
	4.
	4.1.
	4.2.
	4.2.1.
	4.2.2. MongoDB and MongoEngine
	4.2.3. Integration of FastAPI and MongoDB

	4.3. Backend Architecture
	4.3.1. Overview
	4.3.2. Data Models
	4.3.3. MQTT Integration
	4.3.3.1. Key MQTT Operations

	4.3.4. API Endpoints
	4.3.4.1. Flight Plans Management
	4.3.4.2. Media Retrieval

	4.3.5. Data Flow
	4.3.6. Database Structure
	4.3.7. Error Handling

	4.4. Key Functionalities
	1.4.1 Flight Plan Management
	1.4.2 Media Management
	1.4.3 MQTT Integration
	1.4.4 Exception Handling

	4.5. Integration with DEE
	4.5.1 Backend's Role in DEE
	4.5.2 Integration with On-Board Modules
	4.5.3 Integration with Front-End Modules
	4.5.4 Communication Mode and Redundancy
	4.5.5 Contribution and Continuous Development

	4.6. Challenges and Solutions
	4.7. Conclusion

	5. DASHBOARD CHANGES
	3.
	4.
	5.
	5.1. Flight Plan Management Tools
	5.1.1. Background
	5.1.2. Enhanced Picture and Video Commands at Waypoints

	5.2. Loading Flight Plans from the Database
	5.2.1. Motivation
	5.2.2. Implementation
	5.2.3. Benefits
	5.2.4. Future Enhancements

	5.3. Viewing Past Flights and Associated Media
	5.3.1. Accessing Past Flights
	5.3.2. Visual Representation of Flights
	5.3.3. Interacting with Media
	5.3.4. Backend Integration and Data Retrieval
	5.3.5. Database Structure and Media Association

	5.4. Integration with Other DEE Components
	5.4.1. Backend Communication
	5.4.2. Mobile Application Synchronization
	5.4.3. Future Integration Possibilities

	5.5. Challenges and Solutions
	5.6. Conclusions

	6. DASHMOBILE DEVELOPMENT
	3.
	4.
	5.
	6.
	6.1. Features and Functionalities
	6.1.1. User Interface and Navigation
	6.1.2. Flight Plan Management
	6.1.3. Past Flights
	6.1.4. Media Galleries
	6.1.5. Backend Communication
	6.1.6. Feedback and Error Handling
	6.1.7. Theming and Aesthetics

	6.2. Integration with DEE Components
	6.2.1. Backend Communication
	6.2.2. Dashboard Synchronization
	6.2.3. MQTT Broker and Autopilot Service Integration

	6.3. Challenges and Solutions
	6.4. Future Prospects
	6.4.2. Enhanced Flight Planning from Mobile
	6.4.3. Real-time Monitoring and Gesture Control
	6.4.4. Performance and Scalability
	6.4.5. User Feedback and Iterative Design

	6.5. Conclusions

	7. TESTS AND USER EXPERIENCE
	7.1. Technical Testing
	7.1.1. DashMobile Tests
	7.1.2. Dashboard Tests
	7.1.3. Backend Tests
	7.2. User Experience and Feedback
	7.2.1. User Testing Methodology
	7.2.2. DashMobile Feedback
	7.2.3. Dashboard Feedback
	7.2.4. Overall Insights and Future Improvements
	7.3. Conclusions

	8. CONCLUSIONS
	8.3. User-Centric Design and Feedback
	8.4. Future Trajectories

	BIBLIOGRAPHY
	ANNEX A: ENDPOINTS
	A.1. Overview
	A.2. Documentation Snapshots
	A.3. Key Endpoints
	A.3.1 get_all_flights Endpoint
	A.3.2 executeFlightPlan Endpoint

	ANNEX B: DATABASE DOCUMENT STRUCTURE EXAMPLES
	B.1 Flight Documents
	B.2 Flight Plan Documents
	B.3 Pictures Documents
	B.4 Video Documents

