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Study of compliant mechanisms and flexible hinges in
topology optimization

Abstract

This thesis presents a comprehensive study on the application of compliant mechanisms and flexible hinges

in topology optimization. Compliant mechanisms are a promising approach for achieving desired function-

alities and structural flexibility in engineering designs. By exploiting the inherent elasticity of materials,

compliant mechanisms offer advantages such as reduced complexity, improved reliability, and enhanced

performance. Topology optimization, conversely, allows obtaining compliant mechanisms with reduced weight

through the creation of holes, thus achieving an optimized design. In this work, we explore the integra-

tion of compliant mechanisms and flexible hinges within the framework of topology optimization, aiming to

propose a method of improvement for the design efficiency and performance of structures in the aerospace field.

The thesis begins with a thorough literature review of compliant mechanisms and their role in current

aerospace applications. Various design principles and analysis techniques are examined to establish a solid

foundation for the subsequent chapters. The study then focuses on the implementation of mathematical

models and computational algorithms to incorporate compliant mechanisms and flexible hinges into the

topology optimization process.

To validate the proposed approach, a series of numerical experiments are conducted. Various case studies

are considered, including a gripping and inverter mechanisms. The results demonstrate the effectiveness

of compliant mechanisms and flexible hinges in enhancing the performance of optimized structures. The

compliant mechanisms exhibit improved flexibility, adaptability, and energy absorption capabilities enabling

smooth and controlled motion.

Overall, this thesis significantly contributes to the understanding and implementation of compliant mech-

anisms and their integration with topology optimization techniques. The study not only showcases their

potential for creating innovative and efficient designs across various engineering disciplines but also emphasizes

their particular relevance in the aerospace field. By exploring the application of compliant mechanisms and

topology optimization in aerospace engineering, it has been seen that this cutting-edge technology is opened

up for new avenues for further research and development.

Keywords: Compliant mechanisms, Flexible hinges, Topology optimization, Aerospace engineering, De-

sign efficiency, Computational algorithms.
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Resumen

Esta tesis presenta un estudio exhaustivo sobre la aplicación de mecanismos flexibles y bisagras en la

optimización topológica. Los mecanismos flexibles son un enfoque prometedor para lograr funcionalidades

deseadas y flexibilidad estructural en diseños de ingenieŕıa. Al aprovechar la elasticidad inherente de los

materiales, los mecanismos flexibles ofrecen ventajas como una menor complejidad, una mayor confiabilidad

y un rendimiento mejorado. Por su parte, la optimización topológica permite obtener mecanismos conformes

con un peso reducido a través de la creación de agujeros, logrando aśı un diseño optimizado. En este trabajo,

exploramos la integración de mecanismos flexibles y bisagras dentro del marco de la optimización topológica,

con el objetivo de proponer un método para mejorar la eficiencia y el rendimiento del diseño de estructuras

en el campo aeroespacial.

La tesis comienza con una exhaustiva revisión bibliográfica de los mecanismos flexibles y su papel en las

aplicaciones aeroespaciales actuales. Se examinan varios principios de diseño y técnicas de análisis para

establecer una base sólida para los caṕıtulos posteriores. El estudio se centra luego en la implementación de

modelos matemáticos y algoritmos computacionales para incorporar mecanismos flexibles y bisagras dentro

del proceso de optimización topológica.

Para validar el enfoque propuesto, se llevan a cabo una serie de experimentos numéricos. Se consideran

diversos estudios de casos, incluyendo mecanismos de agarre e inversores. Los resultados demuestran la eficacia

de los mecanismos flexibles y las bisagras en la mejora del rendimiento de las estructuras optimizadas. Los

mecanismos flexibles exhiben una flexibilidad, adaptabilidad y capacidad de absorción de enerǵıa mejoradas,

lo que permite un movimiento suave y controlado.

En general, esta tesis contribuye significativamente a la comprensión e implementación de mecanismos

flexibles y su integración con técnicas de optimización topológica. El estudio no solo muestra su potencial

para crear diseños innovadores y eficientes en diversas disciplinas de ingenieŕıa, sino que también destaca

su relevancia particular en el campo aeroespacial. Al explorar la aplicación de mecanismos flexibles y

optimización topológica en la ingenieŕıa aeroespacial, se ha visto que esta tecnoloǵıa de vanguardia se abre a

nuevas oportunidades para futuras investigaciones y desarrollos.

Palabras clave: Mecanismos flexibles, Bisagras flexibles, Optimización topológica, Ingenieŕıa aeroespacial,

Eficiencia de diseño, Algoritmos computacionales.
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Chapter 1

Introduction

1.1 Object

The objective of this bachelor’s thesis is to conduct an extensive literature review on Compliant Mechanisms

(CMs) and provide an in-depth study of the fundamental concepts of topology optimization for the purpose

of applying them to the numerical design of a compliant mechanism within a given initial design domain. To

better comprehend the codes utilized in topology optimization studies, a course on clean code development

and Object-Oriented Programming (OOP) has been undertaken. The thesis will present a comprehensive and

meticulous overview of the current state of the art, offering detailed explanations of the principal mechanisms

involved. Additionally, a comprehensive background in topology optimization will be explored to acquire a

broad understanding of this field. Subsequently, a topology optimization process will be employed to design a

compliant mechanism that, if feasible, will be fabricated using additive manufacturing technologies.

1.2 Scope

This study focuses on a thorough understanding of the operation of compliant mechanisms encompassing the

following states:

• A clean code development practice will be done in order to be able to understand the codes used in

topology optimization including the use of Object-Oriented Programming in the Swan repository from

Git Hub environment.

• A meticulous analysis of the most significant mechanisms and the latest literature in the field will be

conducted.

• A comprehensive review of the utilization of Finite Element Method (FEM) in the context of elastic

problems will be conducted.

• A study of topology optimization will be performed to understand the basics of this area and apply the

knowledge to CMs.

1



1.3. REQUIREMENTS

• As a final objective, a numerical design of CMs based on some of the mechanisms analysed in the first

part of the study will be done following the next steps:

– Case studies definition: Gripper and inverter mechanisms.

– Simulations set-up

– Analysis of results

• Finally, if possible, the mechanism will be printed using additive manufacturing technology.

• A possible application of CMs inside the aerospace field will be provided.

• Project time management.

Although the main focus of this study is on topology optimization of CMs, it is not feasible to develop a code

entirely from within the allotted time frame. Nonetheless, a comprehensive understanding of the existing

code will be achieved as part of this research, along with the preparation of input deck files with tunning

parameters.

1.3 Requirements

In order to fully complete the project, certain specifications need to be met. The primary requirement for the

final stage of the design involves access to a 3D printer for fabricating the project’s ultimate design. However,

it should be noted that while this aspect is not integral to the study, its non-fulfillment will not compromise

the principal objective, which is to gain a comprehensive understanding of CMs.

Furthermore, it is essential to emphasize the study’s robust theoretical foundation, necessitating access to a

reliable database to obtain articles on CMs. This can be accomplished through institutional authentication.

Additionally, it is important to ensure that the design domain and boundary conditions cited in the literature

are capable of replicating a CM during the topology optimization simulations. Lastly, access to a MATLAB

license is also indispensable, which can once again be acquired through institutional channels.

1.4 Justification

Compliant mechanisms are single-piece flexible structures, which use elastic deformation to achieve force and

motion transmission and accomplish their function due to the deformation of one or more slender segments of

their members [1, 2]. These mechanisms represent a burgeoning area of research that is gaining prominence in

the aerospace domain. Over the past decade, this novel class of mechanisms has garnered significant attention

from scientists due to its compelling advantages and potential to address the shortcomings associated with

conventional mechanisms, particularly in aerospace applications. These challenges encompass issues such as

lubrication outgassing, friction and binding of joints, and inadequate force or torque safety margins, which

necessitate special considerations for mechanisms operating in space to mitigate the risk of failure.

2



1.4. JUSTIFICATION

Furthermore, the study places emphasis on topology optimization, as it represents a valuable approach to

achieving weight reduction in structures while optimizing some properties, such as maximum stiffness or

maximum output displacements. The pursuit of lightweight structures holds significant relevance in the

aerospace industry, as it directly contributes to the goal of minimizing fuel consumption and mitigating

environmental impact.

On the other hand, the interest in additive manufacturing stems from the fact that it is an emerging

technology that makes it possible to design almost any structure, even if the shape is complex or with

unintuitive holes, and is also cheaper than other manufacturing processes.

Many studies have yet to be conducted, but promising results have been obtained and some space agencies

and researchers are showing interest in investing and investigating in this area. Combining these three areas

of the engineering cloud yields an interesting result that solves some current problems and provides a new

way to understand structures and mechanisms.

In particular, ESA is conducting important research in this area and doing a significant investment. In fact,

a call for a founding project form ESA (Additive Manufactured compliant mechanism system with integrated

sensor/actuator) is the main inspiration for this study.

3



Study of compliant mechanisms and flexible hinges in
topology optimization

Chapter 2

State-of-the-art Compliant

Mechanisms

This chapter presents a comprehensive investigation into the existing body of knowledge concerning compliant

mechanisms, encompassing their applications, particularly in the filed of space applications, and elucidating

the advantages offered by these mechanisms.

2.1 Compliant mechanisms

Nature provides an example of how to effectively create controlled motion. Most moving components in

nature are flexible instead of stiff, and the motion comes from bending the flexible parts instead of rigid

parts connected with hinges (for example, consider hearts, elephant trunks, and bee wings). The smaller the

specimen, the more likely it is to use the deflection of flexible components to obtain its motion [3].

Compliant mechanisms are single-piece flexible structures, which use elastic deformation to achieve force and

motion transmission and accomplish their function due to the deformation of one or more slender segments

of their members [1, 2]. CMs gain some or all of its motion from the relative flexibility of its members rather

than from rigid body joints alone. Such mechanisms, with built-in flexible segments, are simpler and replace

multiple rigid parts, pin joints and add-on springs [1].

Due to their monolithic nature, CMs possess two main benefits over conventional rigid-link mechanisms,

namely no relative motion among pieces and no overlapping pieces. The absence of relative motion implies the

absence of sliding friction, which eliminates wear, noise, vibration and the need for lubrication. Consequently,

less maintenance is required. The fact that there are no overlapping pieces allows fewer parts and single piece

production, which reduces the assembly and weight. Therefore, compactness, miniaturization are enhanced

while production costs are reduced [2].

4



2.2. CURRENT CHALLENGES

All these benefits help to create more innovative designs and actuation arrangements which increase the

solution search space [2].

2.2 Current challenges

It has been unequivocally ascertained that CM exhibit numerous advantages in comparison to rigid body

joint mechanisms. Nonetheless, it is imperative to acknowledge that certain significant challenges persist in

this field, necessitating further research and resolution.

One drawback of CMs is that most are unable to undergo continuous rotation. Also, if a fully compliant

mechanism is constructed from a single layer of material, then special care has to be taken to ensure that

moving segments of the compliant mechanism do not collide with other segments of the same mechanism [3].

The performance of CMs is highly dependent on the material properties, which are not always well known.

Moreover, the deflections experienced by this mechanisms often extend beyond the range of linearized beam

equations and this can make their analysis and design more complicated [3].

Furthermore, because most compliant mechanisms undergo repeated loading, it is important to consider

the fatigue life of the device. An understanding of how to achieve controlled compliant mechanism motion

and the associated stresses, makes it possible to design compliant mechanisms with the desired fatigue life.

Factors such as stress concentrations, the operating temperature, and other environment conditions can affect

the fatigue life [3].

Henceforth, it becomes apparent that the design of CMs encompasses numerous challenges arising from

existing issues such as the integration of functions into fewer components, nonlinear displacements, dependence

on material properties, the need to avoid self collisions during motion, and designing for appropriate fatigue

life, all combine to make the design of compliant mechanisms nontrivial and often difficult [3].

2.2.1 Space mechanisms challenges

Satellites, rovers, the international space station, and other space vehicles require mechanisms to perform

mechanical tasks. These space mechanisms have been designed to perform in the demanding environments of

space and launch [4].

Current space mechanisms are almost entirely composed of traditional rigid-link assemblies. However, the

harsh environments of space impose demanding requirements and rigid-link mechanisms can experience a

variety of issues, including lubrication outgassing, friction and binding of joints, and inadequate force or

torque margin of safety. The mission objectives or desired mechanism functionality also have demanding

requirements and rigid-link mechanisms are naturally prone to issues concerning size, weight, and accuracy of

motion [4].

Since mechanisms often perform functions that are singularly vital for mission success, a failure could be

catastrophic to the mission. Many of the failures of space mechanisms have been documented [5, 6] and occur

because of the design trade-offs and inherent challenges [4].
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The application of CMs technology could prove vital in overcoming some of the difficult challenges that

current space mechanisms face when put in the space environment. Table 2.1 shows key challenges of space

mechanisms and which advantages of CMs could possibly address each challenge [4].

Table 2.1: Current space mechanism challenges and the advantages of compliant space mechanisms that
overcome those challenges. Extracted from [4].

These advantages eliminate or reduce many of the disadvantages inherent in rigid-link space mechanisms.

CMs also offer an increased number of mechanism designs, joints, and configurations. This provides more

options in finding an optimized, low-cost mechanism design. The distributed compliance of some CMs could

be particularly useful in robotic grasping, sample collection, landing platforms, and rover suspensions. Overall,

the advantages of compliant space mechanisms provide the opportunity to design simpler, more reliable,

better performing, and more cost-effective solutions for many space applications [4].

This numerous advantages also come with some challenges. Two distinct challenges are that the cou-

pling of motion and forces in CMs creates a more complex design situation, and the fact that off-axis stiffness

and motion are possible [4].
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Typically, a mechanism is designed so it can achieve a certain motion. Then, the forces in the joints and

links are determined. However in CMs, the kinematics and dynamics are coupled. Moreover, in current space

mechanisms, off-axis stiffness are significantly larger than the stiffness in the desired direction/axis, and

hence they are often neglected. In CMs, off-axis stiffness can be lower and could create undesirable parasitic

motion [4]. Another significant challenge is the design of thin flexible segments to withstand the vacuum and

thermal extremes of space [7].

Fortunately, these challenges are surmountable if proper attention is given to already established com-

pliant mechanism design and analysis guidelines. Some aspects, such as manufacturing and testing, will

involve a certain level of difficulty due to the stringent requirements for space applications [4].

2.3 Space mechanisms

Many earth-sensing satellites, planetary rovers and orbiters, and manned spacecraft have been developed that

require mechanisms to perform specific tasks, such as deployments, instrument pointing, stage separations,

dockings, sample return, landings, retention and release, attitude stability, etc [4].

Since the general paradigm for designing space mechanisms has remained fairly consistent over the years,

design rules exist for space mechanisms and have been generally well established by industry. The NASA

Space Mechanisms Handbook is the space industry’s authoritative document on space mechanism design and

contains guidelines and details for space mechanisms of all types [8]. The AIAA has a similar document that

standardizes how to, for example, calculate margins of safety for a space mechanism and is commonly used in

the space industry [9]. Research needs to be performed in collaboration with these knowledge standards [4].

Table 2.2 lists different types of mechanisms needed in space, most of which are identified in the NASA Space

Mechanisms Handbook.

Table 2.2: Space Mechanism Types. Extracted from [4].

Besides, the NASA Technology Roadmaps provide specific areas where CMs may make an immediate impact

and help to show how research in this field contributes to technological goals on a national level [4, 10].

Technology Roadmaps 12 and 9 are most applicable to compliant space mechanisms. Technology Roadmap

12, “Materials, Structures, Mechanical Systems, and Manufacturing” [10] provides detailed technologies that

are priority for research and development in the areas most related to compliant mechanisms. Several of the

identified technologies are listed in Table 2.3 [4].
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Table 2.3: Technologies Identified for Future Development by NASA Technology Roadmap 12. Extracted
from [10].

Lately, Technology Roadmap 9 “Entry, Descent, and Landing” [11] also provides areas for application of

compliant space mechanisms, such as: flexible thermal protection systems for entry; mechanical deployments

for attached deployable decelerators for descent; and anchoring, touchdown, and extreme terrain suspension

systems for landing [4].

2.3.1 Compliant space mechanisms

Although not yet widespread, flexible links have been successfully used on space mechanisms and the field is

just beginning to be explored [12, 13]. Compliant vibration isolation systems such as SoftRide are produced

by CSA Engineering (a division of Moog), and these have been used on numerous satellite missions [14] .

Figure 2.1 show these compliant mechanisms being effectively used to isolate a satellite from launch vehicle

vibrations. Similar mechanisms have been used on the Hubble Space Telescope for on-orbit jitter reduction

and solar array vibration damping. Propellant tank tab flexures and compliant universal joints are other

common examples [4].

The mechanism in Figure 2.1 was designed and tested successfully for damping the vibration generated in the

process. The design parameters are considered to replace the existing mechanism with a new compliant one;

the joints can withstand high-temperature gradients, statically balance joints, high tolerance of deflection of

joints (+90 to -90 degrees) [15].
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Figure 2.1: On the left, example of a compliant space mechanism. SoftRide vibration isolation mechanism.
The compliant segments separate the launch vehicle adapter and the satellite WISE that was launched on
a Delta II in December 2009. On the right, another example of a compliant space mechanism. SoftRide
vibration isolation mechanism. Extracted from [4].

Moog CSA’s SoftRide vibration isolation systems protect whole satellites from the rough ride into orbit.

SoftRide also provides some shock isolation and reduces transmission of energy that drives acoustic loading

[14].

Figure 2.2: SoftRide vibration isolation mechanism. Extracted from [14].

The problems of outgassing, cold welding, and limited means of heat transfer created by the vacuum of space

can be mitigated by using full CMs to eliminate, for instance, joint clearance or lubrication, as commented in

previous sections [16]. Furthermore, CMs have been used for efficient energy harvesting, vibration isolation,

or suppressing resonant vibrations (as seen in Figure 2.1) by using their nonlinear load-displacement charac-

teristics such as negative stiffness and load-stiffening [16].
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2.4 Applications of Compliant Mechanisms

Compliant mechanisms can be used in a variety of promising applications in both micro and macro scales,

especially where high-precision motions are required. These emerging applications can fall into six fields,

which are detailed in Figure 2.3.

Figure 2.3: Applications of Compliant Mechanisms. Extracted from [16].

As previously mentioned, the NASA Space Mechanisms Handbook provides comprehensive identification of

various mechanisms required in space applications [8]. This section will now showcase specific instances of

CMs employed within such mechanisms, as outlined in the aforementioned Table 2.2.

Deployable space structures

Deployable space structure technology is the optimal solution for addressing engineering problems in the

field of aerospace, which is the frontier field of engineering research. What is more, it is a potential approach

to solve the contradiction between the requirements of large-scale spacecraft structures and the envelope

limitation of a rocket launch [17]. Deployable structures can be comprised of bistable mechanisms or tape

springs to effectively fulfill their primary function.

On one hand, a compliant bistable mechanism has two stable equilibrium positions. The bistable mechanisms

will tend to one of two positions if no external forces are acting on it. Each stable position represents the local

potential energy minimum, called the potential energy wells. A specific amount of external energy is required

if the compliant bistable mechanism jumps from one stable position to another. This energy is called an

energy barrier between two potential wells. Additionally, there is a certain distance between two equilibrium

positions. This distance can change the overall dimensions of the structure, accordingly making the structure

deployable. In addition, this distance determines the deformation ability of the deployable structure [18].

Figure 2.4 shows an example of a deployable structure designed with a compliant bistable mechanism.
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Figure 2.4: Cylindrical deployable structure. Extracted from [18].

On the other hand, tape springs are mainly used in space deployable structures for satellites. Indeed, they

represent simple, autonomous, robust and easy-to-integrate components compared to common mechanisms

usually composed of several kinematic joints set into motion by the means of motors [19]. Figure 2.5 and

Figure 2.6 show examples of deployable structures based on tape springs.

Successful uses of tape springs can be found in several space missions such as the six MYRIADE micro-

satellites for the deployment of solar arrays, antennas and masts [20, 21]. Also, the MARS EXPRESS

spacecraft used tape springs for the deployment of a long wavelength antenna [22, 23]. Lastly, tape springs

will be found in future missions such as SOLAR ORBITER for the deployment of a radio and plasma wave

antenna or NORSAT-1 for the deployment of an AIS (Automatic Identification System) receiver [19].

They are also considered as support structures for the deployment of Cassegrain telescopes, inflatable

structures and solar sails [24, 25, 26, 27].

Figure 2.5: Tube hinge with three cutting slots. Extracted from [28].

Figure 2.6: Tape springs folded (a) and extended (b) position. Extracted from [29].

As an example, the mechanism shown in Figure 2.6 is studied in the context of solar panel deployment

applications [30]. Furthermore, it is worth noting that further investigations can be undertaken concerning

CMs to uncover additional applications, including those pertaining to space orbit missions or the provision of

support for space inflatable structures (refer to the references cited in article [19]).
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Restraint and release space structures

The Apollo missions, the only crewed lunar missions performed so far, provided an enormous amount of data

about the Moon. One of the aspects which had a substantial impact on hardware operations was lunar dust.

During the Apollo operations, particles smaller than 2 µm proved to be the most problematic. The fragments

of this size are able to enter hardware gaps, clearances and backlashes between hardware elements, causing

the increase of friction and decrease of performance. Furthermore, the minerals present in the dust, such

as anorthite, bytownite, labradorite, fayalite or forsterite, score 6 and above on the Mohs scale of minerals

hardness. As for comparison, most steel alloys score 4–4.5 on the same scale. This means that the engineering

materials of the hardware are exposed to sharp particles consisting of harder materials, leading to the risk of

abrasive wear. Some examples of dust-related damage of mechanisms mentioned in the Apollo de-briefing

reports and discussed in the literature are presented in Table 2.4 [31].

Table 2.4: Apollo mechanisms dust-related problems based on the astronaut de-briefings. Extracted from
[32].

An example of conventional rigid body hinge compared to compliant hinge designs is presented in Figure 2.7.

The input work supplied to a CMs is partially stored as elastic energy in the material, and once the input is

removed the mechanism can spring back to its original shape. This makes CMs particularly well suited to

replace traditional spring loaded mechanisms [31].

Figure 2.7: Rigid body hinge (a), and various designs of compliant hinges (b) and (c). Extracted from [31].
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One of the geological tools from the Apollo program, namely the Tongs, is reproduced using CMs in literature

[31]. This has been a critical tool for the Apollo missions since the astronauts’ spacesuits did not provide

enough dexterity to allow them to pick up rock samples from the ground without any tools. The Tongs

(Figure 2.8 ) were used to collect rock samples with diameters smaller than 10 cm.

Figure 2.8: The training replica of Apollo Tongs, photographed in ESA’s European Astronaut Centre
Extracted from [31].

The proposed solution is to use an alternative design methodology where all the inter-element gaps are

eliminated, and traditional mechanisms are replaced with CMs [31]. The Figure 2.9 shows a rigid body hinge

and two possibles re-designs using CMs.

Figure 2.9: Various deflection stages of the TPC gripper with undeformed blue shape visible in the background.
Extracted from [31].

On the other hand, CMs can achieve bistable motion without bearings or friction. They can be designed to

provide precise state positions. Compliant bistable mechanisms, such as that shown in Figure 2.10, have

potential application in space systems as switches, latches, or as an alternative to pyromechanical release

devices [33].

Figure 2.10: Bistable mechanism prototyped in ABS plastic, using a Dimension SST 1200ES 3D Printer.
Extracted from [33].

Compliant bistable release mechanisms can be used as non-explosive release mechanisms at a fraction of the

cost and weight of traditional release mechanisms.
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Therefore, it would eliminate the challenges of having explosive charges on the spacecraft. They can be

compact compared to other alternatives, thereby reducing weight. They will enable systems to be testable

and resettable [33].

Compliant mechanisms for shape control

Starting in 1998, CM technology was first applied to the wing morphing problem. Working with funding from

the AFRL Air Vehicle Directorate, a compliant variable camber wing leading edge (a 3-foot NACA63418

profile embedded with CM) was designed, fabricated, and tested. The leading edge CM is designed to

withstand the external air-loads while producing a 0 to 6 degree change in camber. Wind tunnel test results

showed a 51% increase in lift-to-drag ratio and a 25% increase in the lift coefficient for the 6-deg leading edge

camber change, see Figure 2.11 [34].

Figure 2.11: Adaptive Compliant Wing with an embedded compliant mechanism provided 6-degree leading
edge camber change on demand. Wind Tunnel test results showed a 51% increase in lift-to-drag ratio and a
25% increase in the lift coefficient for a 6-deg. LE camber. Extracted from [34].

Nowadays, extensive investigations have been conducted within this domain, leading to the discovery of novel

technologies.

Lockable devices are a kind of key components in robotic systems and adaptive structures, which can be

utilized to achieve energy management and/or structure reconfiguration. For a geometry variable truss

system, lockable devices can be used to achieve its reconfiguration between a truss and a mechanism [35]. A

new modular lockable prismatic (P) joint based on a CM is shown in Figure 2.12.

Figure 2.12: Compliant mechanism design for shape control. Extracted from [35].
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One of the immediate applications of the design is the reconfigurable variable geometry truss (VGT) systems.

In this application, many compact and lightweight lockable P joints are needed to construct a passive lockable

load-bearing structure for an adaptive trailing edge. Different kinds of motion modes can be obtained by

releasing specific joints to make the trailing edge reach desired shapes through active skins actuation [35].

Figure 2.13: Application of CMs on shape control. Extracted from [35].

In Figure 2.13 a design prototype of this application is exposed, which is actuated by two linear motion

modules in which the sliding platforms are connected with flexible limbs [36].

In this context, the term adaptive compliant wing is to be understood as an aircraft wing morphing its

geometry in flight without losing the surface integrity and without the elements of the “gapped” flap system.

Some designs proposed for the adaptive compliant wing frame are based on the use of the reconfigurable

honeycomb core combined with actuators intended to ensure the elements of the wing structure will be

reciprocally and concordantly repositioned at a given angle, as shown in Figure 2.14 [37]. The reconfigurable

honeycomb core of an adaptive compliant wing is a controllable dynamic spatial structure with flexible cell

jointing in the form of joints with the hidden topological surfaces.

Figure 2.14: Reconfigurable honeycomb core fragment diagram of the adaptive compliant wing with the
integrated mechatronic node. Extracted from [37].

An adaptive compliant wing can considerably increase the aircraft aerodynamic quality and enhance its

maneuverability, fuel efficiency, engineering-and-economic performance as well as improve the aircraft func-

tionality as compared with the conventional wing system [37].
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In addition, adaptive compliant wings can be most relevantly applied in supersonic aircraft, short takeoff and

landing (STOL) aircraft, and aircraft with optimal aerodynamics in various flight modes [37].

Pointing / oscillating space structures

Another design for space applications accomplished using CMs is a monolithic 2-DOF fully compliant space

pointing mechanism. A pointer is a mechanism that has the capability to orient an output stage along one

or more axes. Pointing mechanisms have wide applications in spacecraft design. In space, the capability of

pointing a thruster could eliminate the need for multiple thruster arrays, reducing part count and potential

failure points. The ability to accurately point a communications antenna could decrease the power required

to send data. Similarly, pointing a solar array would give the ability to orient it for optimal capturing of

solar radiation, increasing efficiency of energy capture [38].

Figure 2.15 shows the pointer mechanism developed in an effort to incorporate compliant mechanism design

in a space-centered application [38].

Figure 2.15: Monolithic 2-DOF fully compliant space pointing mechanism. Extracted from [38].

Numerous mechanism topologies were evaluated and a five-bar spherical mechanism was selected for the

pointer mechanism. It requires only two actuators and can passively support the applied thruster load as

seen in Figure 2.16.

Figure 2.16: The pointer mechanism integrated with a small attitude control thruster demonstrating compliant
mechanism design in a space-centered application. Extracted from [38].
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The performance of the pointer mechanism shows that combining compliant mechanisms with the manu-

facturing capabilities of 3-D printing has the potential to influence the way space mechanisms are designed

[38].

Compliant mechanisms for separation

The Monolithic tools and devices with bi-stable mechanisms are very useful in space applications with stable

and consistent deflection, as mentioned before. Rapid motion is achieved when actuated as the energy release

is constant and significant. The permissible stress had a high range that can withstand a million repetitions

that would be promising in the further development of aerospace application in monolithic devices [15]. This

tools can be applied in satellites, for instance as shown in Figure 2.17.

Figure 2.17: The application of a Bi-stable wire cutter device applied to a satellite for the deployment of
segments. Extracted from [15].

The Cubesat satellites (ESA) used very complex mechanisms for the deployment of solar panels arrays.

Contrarily, Figure 2.17 shows the release of flexural material with internally stored energy, which is released

when the bistable Mechanism’s blade moves it to its second stable position by cutting the string, resulting in

the deployment.

Compliant mechanisms for vibration isolation

Vibrations are produced in machines that have unbalanced masses. These vibrations will be transmitted

to the foundation upon which the machines are installed and are usually undesirable because it can affect

the functioning of the machine. Vibration isolation reduces the level of vibration transmitted to or from a

machine, mechanism, or structure from another source [39].

CMs is the focus of active research because of the stability, robustness, and ease of manufacturing endowed

by their unitized construction. In Figure 2.18, an application of compliant mechanism for a vibration

isolation system with a rigid foundation is explored. The structural optimization approach is focused on the

determination of the topology, shape, and size of the mechanism. The building blocks are used to optimize a

structure for force transmission [39].
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Figure 2.18: On the left, the compliant isolator design. On the right, the displacement transmissibility for
various frequency ratios. Extracted from [39].

On the other hand, a novel compliant positioning stage with low-frequency vibration isolation capability is

developed in literature [40]. It adopts a symmetry design, shown in Figure 2.19, which combines a stretching

mechanism and four quarter bridge-principle amplifiers to realize the large amplification ratio, meanwhile

utilizes a giant magnetostrictive actuator (GMA) to obtain the capabilities of ultra-precision positioning and

vibration isolation in low frequency.

Figure 2.19: Conceptual scheme of the z-directional positioning stage. Extracted from [40].

The corresponding performance is validated by finite element analysis, the prototype is fabricated and

experimental tests are conducted to investigate the factual performance [40]. The test results demonstrate

that the amplification ratio could be up to 4.15 which matches well with the simulation value 4.18. The

natural frequencies along the z-direction are tested to be 458 Hz, which is 3.4% higher than the simulation

result. The positioning performance tests show that the actual positioning trajectories track well with the

desired sinusoidal trajectories in different driving frequencies, which means a good positioning capability. In

addition, the vibration isolation effect in low frequency is evaluated and the results confirm that nearly -15.8

dB vibration attenuation could be realized under the harmonic disturbance which shows a bright future in

aerospace engineering. [40]

Drive space structures

A compliant variable diameter mechanism useful in variable diameter wheels is shown in Figure 2.20 [41]. The

mechanism proposed allows the rover wheels to transform its structure using contraction expansion-retraction

motion and gives excellent running performance to it. Compliant variable diameter mechanism prevents
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backlash, wear, need of lubrication, simplifies assembly, makes mechanism more lightweight as well as compact

compared to the conventional rigid body mechanism. Hence this compliant variable diameter mechanism is

useful for creating variable diameter wheels for the application of lunar rover [42].

Figure 2.20: Compliant variable diameter mechanism Extracted from [41].

2.4.1 Compliant mechanisms in the biomedical field

Compliant mechanisms are well suited for application in biomedical applications because of their low wear,

the ability to be fabricated of bio-compatible materials, and their compactness. There are many possible

research areas and applications, and one implant is described in [3].

The design objective of the spinal implant is to restore healthy physiologic biomechanics to the degenerated

spinal segment. A CM was designed as a spinal implant to share load with a damaged or diseased intervertebral

spinal disc, as shown in Figure 2.21.

Figure 2.21: Prototype of the baseline configuration. Extracted from [3].

The baseline configuration of the spinal implant is based on the Lamina Emergent Torsional (LET) joint.

The LET geometry offers advantages in terms of manufacturability and independently controlled flexibility

in multiple directions. The device consists of a LET joint that has been split into two parts that are

independently attached to the vertebral pedicles. The vertebra themselves act as semi-rigid connections

between the two parts of the LET joint. Figure 2.22 shows the baseline configuration deflected in the two

modes of loading for which it was designed [3].
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Figure 2.22: Deflected positions of the baseline configuration. Extracted from [3].

Lastly, another application of CM in the biomedical field consists in Minimally Invasive Surgery (MIS) which

has revolutionized surgery by allowing operations to be conducted through incisions of a few millimeters

utilizing thin, flexible instruments. Such operations lead to shorter hospital stays, less cost, and less scarring.

Minimally invasive implies a set of surgical techniques in which special instrumentation allows surgeons to

perform complicated operations via small incisions in a patient’s side, rather than through large cavities, as

in traditional open surgery. Surgical instruments based on CM offer a number of potential advantages over

traditional MIS instruments and the current robotic systems [43].

The designs postulated for surgical compliant tools encompass a macroscopic-scale compliant gripper and a

compliant kidney manipulator.
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Study of compliant mechanisms and flexible hinges in
topology optimization

Chapter 3

Introduction to Topology Optimization

The primary focus of this study is CMs design in Topology Optimization (TO). While alternative methods

have been used in the past, TO has become a cutting-edge technology in this field in recent years and it is

being actively studied to find new innovations. For this reason, this study has focused on TO as a method

of designing CMs and other methodologies are not considered. In this section, a comprehensive theoretical

background on TO is presented and the design methodology of CMs is explained.

The majority of structures contain a significant amount of superfluous material that could be eliminated with

a more optimal design. The goal of TO is to propose, design or improve structures by finding designs that

can guarantee equal stress, strain, or any material physical property of a structure while using less material.

Furthermore, because this technology involves the removal of material from structures, it is of particular

interest to the aerospace industry, which faces a significant challenge in achieving lighter designs. Nowadays,

TO is implemented in a variety of scientific fields as thermal process, fluid dynamics, physics or engineering,

for instance [44].

3.1 The topology optimization problem

A topology optimization problem inherently encompasses a minimization problem in which a cost function,

typically denoted as J(x), and constraints (either equality, inequality or box constraints) need to be specified.

For instance, we can postulate the minimization of the structural volume, J(x), while simultaneously ensuring

that the stress remains below the plastic stress. In certain problem domains, a discretized form of a Partial

Differential Equation (PDE) constraint may arise, manifesting as the equilibrium equation for the structural

system.
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Example of a generic topology optimization problem:

min J(u(x), x); cost,

x

s.t. A(x)u = b(x); PDE constraint,

hi(x) = 0; equality constraint,

gj(x) ≤ 0; inequality constraint,

0 ≤ x ≤ 1; box constraint.

(3.1)

For the sake of simplicity, the term J(u(x), x) will be denoted as J(x) henceforth. It is important to

acknowledge that the cost J(x) represents a shape functional, meaning an operation that accepts a function

as input and yields a real number as output.

In topology optimization problems, a computational domain is usually defined in the following manner

Ω = {x ∈ D ; x = 1} (3.2)

where D is the reference domain and Ω the material domain. The assignment of black color is conventionally

associated with x = 1 values, while white color corresponds to x = 0 values. Herein, we introduce the

designation of Ω as the ultimate design represented by black, x that denotes a spatial point, and D that

represents the total bounding box. Consequently, Ω comprises the aggregate set of points within the domain

that equate to 1. The design variable x is commonly referred to as the characteristic function χ in the context

of structural problems.

3.2 Topology optimization limitations

The primary challenge in TO lies in the absence of pre-existing solutions, needing the incorporation of

constraints. For instance, consider the establishment of a structure characterized by a pulling force exerted

from both sides. The objective is to attain a volume equivalent to 50% of the entire domain D while

maximizing its stiffness to the greatest extent possible.

Figure 3.1: Optimal solution to the problem.

The structure shown in Figure 3.1 represents an optimal solution; nevertheless, it is worth noting that an

alternative solution also achieves optimality, as seen in Figure 3.2.
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Figure 3.2: Alternative optimal solution to the problem.

It becomes evident that when the number of horizontal bars is doubled while simultaneously reducing the

volume allocated to each bar by half, an infinite set of optimal solutions arises for this particular problem,

with higher stiffness as the amount of bars increases. In order to address this and, thus, ensure the presence

of feasible solutions, the introduction of a perimeter constraint can be considered to limit the solutions within

a defined boundary.

Introduction of a perimeter constraint to a topology optimization problem example:

min J(x) + αPer(x) ,

x

s.t hi(x) = 0,

gj(x) ≤ 0,

(3.3)

where α represents a penalty coefficient for the perimeter constraint, which serves as a limiting factor to

prevent the solutions from reaching excessively high values of perimeter and, consequently, the solutions are

truncated at a specific point.

An alternative approach to address the issue of non-existent solutions is through the use of a technique

known as Filtering. This process involves computing the average of the characteristic function values within

the continuous range of 0 and 1, the extent of which relies on the size of the applied filter. By employing

a filter, an intermediate zone (referred to as grey) is established between the black and white boundaries,

transforming the domain from a state of discontinuity to continuity. These grey zones encompass values

ranging between 0 and 1, facilitating the existence of solutions by effectively mitigating smaller scales. That

is why the resulting field, which will serve as an additional tool to compute shape functionals (not a new

design variable), will be referred as regularized density.

When implementing a filter with a specific size the resulting outcome manifests as shown in Figure 3.3.

Figure 3.3: Result of the implementation of the Filtering approach.

However, when employing a smaller-sized filter the resultant outcome yields a distinct solution depicted in

Figure 3.4.
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Figure 3.4: Alternative solution of the implementation of the Filtering approach employing a smaller-sized
filter.

It is important to emphasize that the filter should be kept as limited as feasible to avoid the risk of information

loss. Using excessively large filters may compromise the accuracy and fidelity of the results obtained.

3.3 Density and level set approach

The main limitation of the original problem lies in the discrete nature of the design variable χ. As a result,

derivatives are non-existent at the boundaries between white and black values. To overcome this limitation,

various methodologies have been proposed to substitute χ with an alternative design variable.

Among all the exiting methods developed for topology optimization, the two most prominent are the

density-based SIMP method and the Level Set method.

To achieve a comprehensive understanding of both methods, it is essential to revisit the definition of χ, shown

bellow

χ (xi) =

{
1 if xi ∈ Ω

0 if xi ̸∈ Ω
, (3.4)

where xi denotes a position within the reference domain D. Due to χ is constrained to assume only values of

0 or 1 a more flexible formulation is introduced for the problem: the density approach.

3.3.1 Density approach

In this context, the variable x from the original problem, representing the quantity we aim to minimize, is

designated as the density ρ. Therefore, the problem can be defined as follows.

Example of a structural topology optimization problem implementing a density approach:

min J(ρ) = f · u(ρ)

ρ, u

s.t K(ρ) · u = f

V (ρ) ≤ V ∗

0 ≤ ρ ≤ 1

(3.5)

where the PDE constraint K(ρ) · u = f refers to the structural equilibrium equation discretized with finite
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elements, K is the stiffness matrix, f the external forces vector, u the displacement vector and V the volume.

Here, the cost used is known as the compliance c = f · u, a measure for the structural flexibility.

The density variable now spans a range between 0 and 1, expanding beyond the restriction of exclusively

assuming one of these two values. Hence, it can be asserted that a relaxation of the problem has been

accomplished with the introduction of grey values. The primary objective of this problem is to determine the

optimal values for both density and displacements, such that the resulting displacements are minimized when

subjected to an applied force.

It is noteworthy to mention that in this specific problem, if the value of ρ is known, the corresponding value

of u can be obtained by solving the system of equations. Is in such cases where the problem is categorized as

a PDE-constrained optimization problem, as the constraint is represented by a partial differential equation.

Revisiting the aforementioned problem, it is compelling to expound upon the role played by ρ in the

stiffness matrix. The partial differential equation represents the strong form of the problem. To facilitate the

discretization of the problem and acquire a solution, it is advantageous to transform the problem from the

strong form to the weak form or variational problem. This transition allows for the formulation of a system

of equations (typically algebraic in the form of A · u = b) through discretization, enabling the attainment of a

solution for the problem.

In the context of the elasticity problem, the strong form can be represented as follows

∇(C : ∇su) = f, (3.6)

wherein the constitutive tensor is denoted by C, the symmetric gradient of displacements is represented as

∇su, and f stands for the applied force.

It is well-established that an alternative representation of the elasticity problem can be attained through the

utilization of the following equivalent equation to define the stress tensor

σ = (C : ∇su), (3.7)

where ∇su is in fact the strain tensor ϵ. The elasticity problem has been formulated in its strong form;

nevertheless, in the context of TO, it proves advantageous to transform it into the weak form, typically

achieved by multiplying the strong form by a test function and integrating over the domain as

∫
∇sv : C : ∇su =

∫
fv , (3.8)

where v is defined as the test function. It will be now interesting to comment the significance of the weak

form. To expound upon this matter, the following domain is proposed in Figure 3.5, wherein the unknown

variables correspond to the displacements.
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Figure 3.5: Proposed domain.

The displacements fields u is a function of spatial coordinate x, denoted as u(x). It is crucial to acknowledge

that obtaining the solution for every point of xi through analytical means is unfeasible. Hence, the approach

is to introduce a discretization in infinite elements that employs a combination of proposed functions to

approximate the solution, with convergence being achieved as the number of shape functions increases.

Therefore, the objective is to compute the value at a particular domain point and interpolate the remaining

ones. This forenamed functions are represented as follows

u(xi) = Nj(xi)uj , ∇u(xi) = BKj(xi)uj , (3.9)

v(xi) = Nj(xi)vj , ∇v(xi) = BKj(xi)vj , (3.10)

where Nj can represent various types of functions, such as shape functions, exponential functions, or Fourier

functions, among others; and BKj stands for the gradient of Nj . Consequently, if the evaluation of the

solution is required at 10 distinct points, it necessitates the formulation of 10 equations to accommodate

the 10 unknowns. The objective is to satisfy the strong form equation specifically for these 10 points in

order to establish the weak form. This approach facilitates the integration of the individual equations for the

unknowns, resulting in an averaging effect across the relevant regions. In this case proposed, the integration

would encompass the fulfillment of 10 equations.

It is worth mentioning that the test function is usually represented with the same basis as the displacements,

following the Galerkin method for finite elements.

The problem can now be reformulated employing the following terminology

∇sv : C : ∇su → a(ρ, u, v), (3.11)

fv → l(v). (3.12)

Here, the constitutive tensor C is dependent on ρ through the Young modulus and the Poisson ratio. Thus,

the problem can be reformulated according to the aforementioned nomenclature as follows
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min l(u)

ρ, u

s.t a(ρ, u, v) = l(v) ,

V (ρ) ≤ V ∗

0 ≤ ρ ≤ 1

(3.13)

which represents the problem to be addressed. It is worth noting that upon discretizing the problem, the

connection between the constitutive tensor C(ρ) and the variables u and F can be formulated as the equation

K(ρ)u = F , since K integrates the constitutive tensor of each element assembled.

In contrast, the resolution of such problems can be accomplished through the use of the isotropic material

with penalization approach or the SIMP method. The concept of problem relaxation is represented by the

acceptance of intermediate gray values during the optimization process, with the ultimate requirement being

the attainment of a final solution consisting solely of black and white values. To elaborate further on this

notion, consider Figure 3.6.

Figure 3.6: Representation of the density values regarding the Young modulus for a optimized structure.

The graph portrays the density values, denoted as ρ, in relation to the Young modulus, E, across various

regions within the domain, Ω.

At the beginning of the graphic, white values are depicted, representing regions where the Young modulus

is zero or extremely small. Conversely, at the opposite end, the point signifies the Young modulus value

associated with the attainment of black values (χ = 1). Note that it is required to define the Young modulus

values for the intermediate range between 0 and 1. This is the aim of the SIMP method.

To ensure the ultimate achievement of solutions characterized by black and white values, meaning 0 or 1

values of ρ, it is necessary to propose competitive microstructures.
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Definition of microstructure

As previously defined, an intermediate value of, for instance, ρ = 0.5 will be depicted as a gray region in the

code; nevertheless, this value can also be represented through black and white solutions, which are referred

to as microstructures, see Figure 3.7.

Figure 3.7: Representation of microstructures.

The homogenization of the two microstructures with ρ = 0.5 results in an identical solution (the left square).

Conversely, when the process is reversed, an infinite number of microstructures can be generated. Considering

this, the gray zones can be interpreted as the homogenization of a microstructure. It is worth noting that the

distinguishing factor among these microstructures lies in the different value of their average Young modulus

E or, in general, their constitutive tensor C.

Upon examining the graphic in Figure 3.6, it becomes apparent that the connection between the white and

black values is not constrained and can assume infinite forms. Nevertheless, the SIMP method introduces a

prescribed functional relationship for this connection, characterized by the following expression

C(ρ) = ρP · C0 ; P = 3, (3.14)

where C0 is the constitutive tensor of the black material (χ = 1).

The proposed solution takes into consideration the relaxation of the problem, allowing for values between

0 and 1 while ultimately aiming for a final result composed solely of white or black zones. The function

proposed exhibits a slight gradual increase in the elastic properties for density values ranging from 0 to

0.5, making these values highly noncompetitive for structural applications. Consequently, the emphasis is

placed on values 0 or 1, which are considered the most competitive. By employing this function, it is ensured

that the final result exclusively consists of white or black values, as intermediate values are penalized. This

approach enables the relaxation of the problem during the intermediate stages, allowing for the inclusion of

values between 0 and 1, thus defining a differentiable design variable.
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This concept, wherein the code itself replaces the intermediate values with either white or black to obtain

competitive solutions, is referred to as interpolation.

3.3.2 Level Set approach

To avoid the treatment of grey values of density, another alternative for the design variable is found. The

concept revolves around parameterizing the problem using a level set Ψ function, to replace the original χ.

Mathematically, it is expressed as follows.

χ (Ψ) =

{
1 if Ψ(xi) ≤ 0

0 if Ψ(xi) > 0
. (3.15)

It can be elucidated as a continuous and differentiable function whereby positive values within the domain

correspond to white, while negative values or zero coincide with black values of the final result. As it can

be observed at in Figure 3.8 this function can be also expressed in equivalent way with the Heaviside step

function, as shown bellow

χ(Ψ) = 1−HΨ>0. (3.16)

Figure 3.8: Graphic representation of χ when the characteristic function is replaced by the level set function.

The previously proposed problem with density was referred to as the extended, full, or monolithic problem,

formulated in Equation 3.13.

Now, in the context of this problem, the variable u is dependent on χ, resulting in a single variable formulation.

This gives rise to the reduced form of the problem, which can be expressed as follows:

min l(u(Ψ)

Ψ, u .

s.t V (Ψ) ≤ V ∗

(3.17)

Considering u(χ(Ψ)) ≡ u(Ψ) as a solution to the equation a(ρ, u, v) = l(v), it becomes apparent that in this

problem u is no longer regarded as a design variable by the optimizer. Instead, the focus is solely on χ as the

variable of interest, which is defined with the new design variable Ψ. This approach is specifically applicable

to problems with PDE constraints. It is worth emphasizing that the information regarding u(Ψ) must be

provided for this procedure. The Level Set method can be implemented using two distinct approaches, as

seen in following sections.
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Shape derivative

The concept aims to displace the boundary defining two states of the structure, see Figure 3.9. The shape

derivative is precisely determined as the disparity between the two states, which can be interpreted as the

linear variation or, the linear approximation of the cost when the boundaries of holes are moved a certain

quality δχ. Mathematically, this concept is expressed as follows

J1(χ) = J0(χ) +DSJ(χ)∆χ. (3.18)

Figure 3.9: Graphic representation of the to states of the structure when implementing shape derivative.

Topological derivative

In an alternative implementation, the boundaries remain unchanged, and instead, the topology is modified by

introducing an infinitesimal hole quantified by ∆χ, see in Figure 3.10. The topological derivative quantifies

the variation in the cost resulting from the introduction of, for instance, a hole, providing insight into the

sensitivity of the cost with respect to infinitesimal changes in the topology as

J1(χ) = J0(χ) +DTJ(χ)∆χ (3.19)

Figure 3.10: Graphic representation of the to states of the structure when implementing topological derivative.

The topological derivative possesses certain properties, which indicate that the following condition will be

satisfied at the optimal point

DTJ(χ) < 0 → χ = 1

DTJ(χ) > 0 → χ = 0

}
. (3.20)

This constraint is imposed to attain the optimal point. Consequently, it can be inferred that at the optimal

point, DTJ(χ) is equivalent to Ψ. However, this process is highly rigorous, necessitating the proposal of

certain procedures to relax the problem.
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3.4 Reduced formulation and adjoint problem

As previously mentioned, when considering a topology optimization problem in the monolithic problem

form, it involves two design variables. In this formulation, when using an optimizer, the resulting vector can

become excessively large due to the requirement of gradients for each component. However, in the specific

case of PDE-constrained optimization problems, it is possible to formulate a reduced problem that leads to a

single variable formulation, as explained earlier. In this context, it becomes necessary to explore approaches

for optimizing the variable χ, while solving for u as a linear system of equations. The only outcome of the

PDE constrain is the redefinition of a new gradient for J(χ), concurrently diminishing the number of design

variables exclusively to χ.

Thus, to address this problem, it is crucial to compute the total gradient, depending initially on χ and

u. First, the previously established reduced problem will be reformulated into the canonical formulation.

Mathematically and in the most general way, it is expressed as follows

min j(x) = J(u(x), x)

x A(x) · u = b(x) .

s.t h(x) = 0

xlb ≤ x ≤ xub

(3.21)

The objective is to compute the gradient, ∇xJ , when the cost function j depends on the variable x according

to the expression shown above for the cost. This procedure is carried out by means of the adjoint problem,

which can be formulated as the following sub-problem

min J(u, x)

x, u .

s.t A(x)u = b(x)

(3.22)

Given the invertibility of matrix A, the problem can be reformulated by replacing the cost function with a

reduced cost function, resulting in a formulation with a single variable as shown bellow

min
x

J(A(x)−1b(x), x). (3.23)

Therefore, the gradient ∇xJ of the cost function can be obtained as the sum of the gradient of J with respect

to x and the product of the gradient of J with respect to u and the gradient of u with respect to x. This

product is necessary because the variable u depends on x through the PDE constraint. Hence,

∇xJ =
∂J

∂x
+

∂J

∂u

∂u

∂x
. (3.24)
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It is necessary to evaluate how the gradient of u with respect to x is computed. Given that u is defined as

u = A−1(x)b(x), the gradient can be computed as follows

∂u

∂x
=

∂

∂x
(A−1(x))b+A−1(x)

∂bx

∂x
. (3.25)

Applying the following propriety of the matrix:

A(x)A−1(x) = I, (3.26)

∂

∂x
[A(x)]A−1(x) +A(x)

∂

∂x
[A−1(x)] = 0, (3.27)

∂

∂x
[A−1(x)] = −A−1(x)

∂

∂x
[A(x)]A−1(x). (3.28)

Finally, the gradient is obtained in the subsequent way as follows

∂u

∂x
= −A−1(x)

∂A(x)

∂x
A−1(x)b(x) +A−1(x)

∂b(x)

∂x
=

= A−1(x)

[
−∂A(x)

∂x
A−1(x)b(x) +

∂b(x)

∂x

]
. (3.29)

By using this expression, it becomes feasible to calculate the gradient ∇xJ , as

∇xJ =
∂J

∂x
+

∂J

∂u
A−1(x)

[
−∂A(x)

∂x
A−1(x)b(x) +

∂b(x)

∂x

]
. (3.30)

It is worth noting that the term A−1(x)b(x) represents the definition of u, and in order to streamline the

formulation, the term ∂J
∂uA

−1(x) will be defined equivalent to a new term called adjoint variable p, resulting

in the following expression

∇xJ =
∂J

∂x
+ p

[
−∂A(x)

∂x
u+

∂b(x)

∂x

]
. (3.31)

Thus, in order to address this problem, two approaches are proposed. If we consider the term within the

brackets in Equation 3.30 as a matrix, denoted as B, and ∂J
∂u as a vector v, we can obtain the product A−1B

and then multiply it by v. It is important to note that the product A−1B is computed for each column

of the matrix B, corresponding to each element x of the problem, as B depends on x. Furthermore, it is

worth mentioning that A−1 is not explicitly computed due to its computational cost, but rather solved as a

linear system of equations. However, due to the high computational cost associated with the first option, it is

common to tackle this problem by employing the aforementioned variable p in Equation 3.31. By considering

its definition as p = vA−1(x), the expression to be solved can be obtained:

A(x)p =
∂J

∂u
(x, u) (3.32)
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This is referred to as the adjoint problem since the computation of the gradient involves solving this additional

system of equations. Subsequently, the algorithm for computing the gradient of the reduced cost will be

presented.

1. Solve A(x)u = b to find u.

2. Solve A(x)p = ∂J
∂u (x, u) to find p. It is important to note that in this step, u refers to the previous value

of u, rather than the updated value computed in step 1.

3. Compute ∇xJ = ∂J
∂x + p

[
−∂A(x)

∂x u+ ∂b(x)
∂x

]
with the updated values of u and p.

4. By employing a gradient descent method, the variable x is updated iteratively using the computed

gradient according to the expression xk+1 = xk − t∇xJ , where t is a scalar parameter called line search,

chosen such that the reduced cost is minimized compared to the previous value of x. This condition is

mathematically expressed as J(xk − t∇xJ) < J(xk).

In the context of the elasticity problem, the adjoint problem can be interpreted as an additional displacement

field that is determined by the gradient of J with respect to u, rather than being influenced by the applied

force, represented by b, thus defining a self adjoint case in minimum compliance problems.

3.5 Unconstrained and constrained optimization problems

The interpretation of the adjoint problem as a Lagrange multiplier is also of considerable interest. In order to

elucidate this concept, it is essential to grasp the fundamental concepts of unconstrained and constrained

optimization problems.

In the case of an unconstrained optimization problem, the requisite condition for optimality to be satisfied

is given by ∇J(x∗) = 0. Note that when x is an element of Rn, the optimality condition ∇J(x∗) = 0 also

belongs to Rn. Consequently, in the case of having 10 unknowns, a system of 10 equations needs to be

solved. On the contrary, in the case of a constrained optimization problem, the task of finding the optimal

solution extends beyond solving the optimality condition ∇J(x∗) = 0. It needs the fulfillment of additional

conditions, namely h(x) = 0, which significantly increase the number of equations that must be addressed

and the problem can not be solved. Therefore, it becomes necessary to employ Lagrange multipliers, denoted

as λ, in order to handle such constraints. The number of Lagrange multipliers required corresponds to the

number of constraints in the problem.

In this context, the functional Lagrangian is introduced. It is characterized as a scalar function due to the

inherent scalar nature of J(x), while the term λh(x) involves the multiplication of a vector by a transposed,

resulting in a scalar value. Specifically,

L(x, λ) = J(x) + λh(x). (3.33)
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Thus, when dealing with a formulated constrained optimization problem, the objective is to minimize the

Lagrangian with respect to its variables. This in mathematical formulation can be expressed as follows:

D(λ) = min
x

L(x, λ) = min
x

J(x) + λh(x), (3.34)

where D is refered as the dual function.

Hence, the problem entails resolving the minimization of a combination of the objective function and the

constraints, where the value of the Lagrange multiplier λ determines the influence of the constraints on the

minimization problem. For example, in the scenario where the value of λ is either 0 or exceptionally low, the

primary objective becomes the minimization of f(x) but the constraint may not reach its minimum value so,

the problem is not fully solved. Conversely, when λ assumes high values, the emphasis shifts to minimizing

the constraint to 0, while the significance of f(x) diminishes and the results are not optimal. Therefore,

it can be demonstrated that the optimality condition translates into the maximization of D(λ) since it is

concave. Thus,

max D(λ) = max
λ

min
x

J(x) + λh(x). (3.35)

This is due to the fact that the minimization of the Lagrangian is aimed at the highest value of λ among all

possible values. By minimizing the Lagrangian for this maximum value, the optimization is effectively carried

out for all smaller values as well and the most optimal solution is obtained as it represents a balance between

minimizing the constraint at its maximum point and simultaneously minimizing the objective function

J(x). This approach ensures the attainment of a highly competitive value that satisfies both criteria of the

optimization problem.

The significance of D(λ) is also worth commenting. It can be construed as a parameterized representation

encompassing the minimum values of both the objective function and a part of the constraint influenced by

the parameter λ. Hence, the resolution of the problem needs the determination of the maximum value of

D(λ).

Note that for a constrained optimization problem, the optimality conditions can be stated as the following

∂L

∂x
=

∂J

∂x
+ λ

∂h

∂x
= 0,

∂L

∂λ
= h(x) = 0, (3.36)

which system is known as the Karush-Kuhn-Tucker (KKT) conditions.

The derivative of L with respect to x is commonly referred to as the primal optimality condition, while the

derivative of L with respect to λ is denoted as the dual optimality condition.

By introducing an additional optimality condition, the process required to solve the problem becomes more

complex. However, it is important to emphasize that the increased number of constraints and unknowns is
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accompanied by a corresponding increase in the number of equations. As a result, despite the augmented

complexity, the problem remains solvable.

Moreover, by introducing the Lagrange multiplier, we can resume the aforementioned problem and provide an

interpretation of the variable p as a Lagrange multiplier. Consequently, the initial problem can be formulated

as the task of minimizing the sum of the cost function and the constraint multiplied by the Lagrange multiplier

p as

max
p

min
x,u

L(x, u, p) = max
p

min
x,u

J(x, u) + pT [A(x)u− b(x)]. (3.37)

Here, the Karush-Kuhn-Tucker (KKT) conditions serve as a powerful tool also for resolving the adjoint

problem in topology optimization. These conditions encompass the essential prerequisites for attaining

optimality by incorporating the objective function, constraints, and design variables into the framework. In

this particular context, the KKT conditions entail deriving the Lagrangian function with respect to each

variable, namely p, u, and x as follows

∂pL(x, u, p) = A(x)u− b(x) = 0, (3.38)

∂uL(x, u, p) =
∂J

∂u
+ pTA(x) = 0, (3.39)

∂xL(x, u, p) =
∂J

∂x
+ pT

[
−∂A(x)

∂x
u+

∂b(x)

∂x

]
. (3.40)

Having established this formulation, the variables u and p are determined with the the first and second

conditions, respectively, as fixed points, meaning solving the system of equations. On the contrary, the

variable x is computed through a gradient-based method. Consequently, to address the problem, it becomes

necessary to compute the gradient, which, in turn, requires solving the aforementioned two systems of

equations due to the presence of a PDE constraint. To this end, the following algorithm presents a potential

approach for solving the problem:

1. Solve A(x)u = b to find u.

2. Solve A(x)p = ∂J
∂u to find p.

3. Compute ∂xL = ∂J
∂x + pT

[
−∂A(x)

∂x u+ ∂b(x)
∂x

]
with the calculated values of u and p.

4. By employing a gradient descent method, the variable x is updated iteratively using the computed

gradient according to the expression xk+1 = xk − t∇xL (the parameter t, as introduced previously,

maintains its original definition and usage in this steps of the algorithm). Lastly, the criterion to satisfy

is expressed now as L(xk − t∇xL, u, p) < L(xk, u, p)

It is noteworthy to emphasize that the optimizer is unaware of the variables u and p since they are obtained by

solving the systems of equations and only required for the gradient computation. Thus, from the optimizer’s
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perspective, only the gradient is considered as information for the optimization process. For instance, in

the specific case of a stress minimization problem, the variable p serves as a measure of the significance of

equilibrium within the problem. In regions where p takes on higher values, the role of equilibrium becomes

more pronounced and influential.

Steepest descent method as main basis for any solver.

If the problem is an unconstrained optimization problem, it can be effectively solved by employing a gradient-

based method such as the steepest descent method. The gradient serves as a reliable indicator of the direction

in which the objective function exhibits the steepest descent locally. By appropriately adjusting the step

size, as determined by the line search parameter t, a descent is ensured. The steepest descent method can be

mathematically formulated as follows:

xk+1 = xk − t∇J(xk). (3.41)

The choice of t should be an appropriate value that strikes a balance between ensuring a descent in the

optimization process and achieving computational efficiency. The chosen value should be small enough to

guarantee the desired direction of descent while being large enough to expedite the algorithm’s convergence.

It is worth noting the importance of devising an effective strategy for determining the value of t and for this

reason substantial research efforts are being dedicated nowadays to the development of optimal line search

techniques.

There is a particular case of a unconstrained optimization problem when a box constraint is imposed,

demanding an alternative approach for its resolution, as presented below

min J(x), x ∈ Rn

x .

s.t. 0 ≤ x ≤ 1

(3.42)

In the given context, the optimality conditions can be expressed as follows:

∇J(x∗) > 0 x = 1, (3.43)

∇J(x∗) = 0 0 ≤ x ≤ 1, (3.44)

∇J(x∗) < 0 x = 0. (3.45)

These problems are approached by employing the method of alternating directions, as it takes into consideration

the minimization of the cost function and the satisfaction of the constraints simultaneously.
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The minimization process is tackled using the steepest descent method as mentioned earlier, while the

constraint is handled through a process known as box projection:

Box projection xk+1 = max (0, min (1, xk+1)). (3.46)

The line search parameter t in the steepest descent method must satisfy two requirements: the projection of

the volume and the descent of the direction.

To acquire additional insights into constrained problems and the dual problem in topology optimization,

readers may refer to Appendix A for comprehensive information.

3.6 Optimization methods

In the context of unconstrained optimization problems, it is common to employ the following optimizers

based purely in the steepest descent method:

• Project gradient. Specifically designed for density-based optimization problems (x = ρ).

• The Slerp optimizer. Applicable when working with Level Set topological optimization (x = Ψ).

• The Hamilton-Jacobi optimizer. Another approach for Level Set shape optimization problems (x = Ψ).

These optimizers primarily focus on updating the values of variable x. However, when dealing with constrained

optimization problems, the following optimizers are commonly employed:

• Dual Nested in Primal. Can work with density and Level Set.

• Alternating Dual and Primal. Can work with density and Level Set.

• MMA (ρ), IPOPT(ρ)

• Fmincon (ρ)

• Null Space (ρ,Ψ)

• Etc.

These optimizers are specifically designed to handle optimization problems with constraints updating both

the variables x and λ. It is noteworthy that the optimizers, namely Dual Nested in Primal, Augmented

Lagrangian, and Null Space, are composed of unconstrained optimizers, as a constrained optimization problem

always provides a means to update the variables x. Subsequently, a more comprehensive account for select

optimizers that were previously introduced will be elucidated.
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Projected gradient

In the case of the projected gradient method, a brief introduction has been provided earlier in relation to the

steepest descent method using the following formulation

min J(ρ)

ρ → min
ρ

J(ρ) + δ[0,1](ρ),

0 ≤ ρ ≤ 1

(3.47)

which steps are

ρk+1 = ρk − t∇J(ρk), (3.48)

Box projection ρk+1 = max (0, min (1, ρk+1)). (3.49)

The approach aims to minimize both the box constraint δ[0,1](ρ) and the cost function f(ρ) using a tech-

nique called alternating directions. This method involves two steps: first, minimizing the cost function

while disregarding the constraint using the first equation mentioned; and second, finding the minimum

value of the constraint while ensuring that it remains within the box using the second equation provided.

It is important to note that the projected gradient method is applicable only to density optimization problems.

Slerp (Level Set)

On the contrary, in the context of level set optimization, the slerp optimizer is commonly employed as an

effective approach. The slerp optimizer is characterized by the following formulation

min J(Ψ) ; DTJ(χ) < 0 → χ = 1

Ψ DTJ(χ) > 0 → χ = 0 ,
(3.50)

J1(χ+∆χ) = J0(χ) +DTJ(χ)∆χ. (3.51)

This optimizer uses the topological derivative to assess the impact of introducing a hole in the structure

on the cost function. By introducing a small perturbation in the structure, this formulation allows for the

evaluation of how the cost (such as compliance) would change. Consequently, the formulation expresses the

cost variation as a linear combination. Considering the characteristic function’s requirement to take values of

1 or 0, the topological derivative must be negative or positive, respectively.
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It is worth remembering that in order to achieve optimality, the Level Set formulation should exhibit

the same sign as the topological derivative. Specifically, when the characteristic function χ takes a value of

1, the Level Set should have a negative sign, while a value of 0 for χ should correspond to a positive sign.

Consequently, the optimality condition can be established as DTJ(χ) = Ψ, up to a constant, while ensuring

that the signs remain consistent. To solve these optimization problems, the following formula is commonly

employed

Ψk+1 = αk(κ)Ψk + βk(κ)DTJ(χ(Ψ)). (3.52)

The values of αk and βk are determined to satisfy ||Ψk+1|| = 1, while the convergence criterion θ requires the

scalar product of the Level Set and the topological derivative to be minimized.

Alternating primal and dual

For a constrained optimization problem, the objective is to minimize the specified objective function within

the bounds defined by the given constraints. Consider the following constrained problem

min J(x)

x .

s.t h(x) = 0
(3.53)

In the preceding sections, the Karush-Kuhn-Tucker (KKT) conditions for a basic constrained optimization

problem have been expounded upon. For a basic constrained optimization problem the KKT are the following:

∇J + λ∇h

h(x) = 0

}
= KKT. (3.54)

One approach to tackle the optimization problem is by formulating a linear penalization problem, where λk

is introduced as an additional unknown. It is important to note that despite this formulation, the problem

still retains its constraints as

min J(x) + λkh(x)

x ,

s.t h(x) = 0
(3.55)

∇f + (λ+ λk)∇C = 0

C(x) = 0

}
= KKT. (3.56)
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The introduced unknown can subsequently be eliminated through a quadratic penalization approach, removing

the variable via a quadratic penalty. In contrast to the linear penalization, this formulation does not impose

any constraints as shown

min
x

J(x) +
1

2
ρ h(x)2, (3.57)

KKT = J(x) + (ρh)∇h = 0. (3.58)

By combining these two procedures, introducing an unknown variable through linear penalization and

eliminating an unknown variable by incorporating a constraint in the cost function using quadratic penalization,

the augmented Lagrangian method is obtained. It is noteworthy that the original constrained problem has

been transformed into an unconstrained problem through the addition of an unknown variable. The final

constrained problem yields

min
x

J(x) + λkh(x) +
1

2
ρ h(x)2, (3.59)

KKT = J(x) + (λk + ρh)∇h = 0 (3.60)

Despite the transformation of the problem, the underlying concept remains the same, aiming to determine λk

such that it converges to λ. This solving approach is referred to as the augmented Lagrangian method, as the

primary objective is to minimize the Lagrangian (consisting of the first two terms of the formulation above)

in addition to a penalty term (the last term of the formulation) determined by the parameter c, known as the

penalty parameter.

Therefore, the augmented Lagrangian is formulated as follows for updating the variable x and solving the

problem

LA(x, λk) = J(x) + λkh(x) +
1

2
ρ h(x)2, (3.61)

max
λ

min
x

LA(x, λ), (3.62)

xk+1 = xk − α∇LA(x, λk)

λk+1 = λk + ρ C(xk)

}
, (3.63)

where LA represents the definition of the augmented Lagrangian. This method of problem resolution is

commonly referred to as alternating primal and dual, as it involves alternating between two steps: updating

the variable x and updating the Lagrange multiplier λ. The objective is to find a suitable value for α such

that LA(xk+1, λk) < LA(x, λk). If this condition is not satisfied, t is divided by two. Finally, the new value

of λ is computed based on the updated variables and Lagrangian.

40
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Dual Nested in Primal

In this case, the mathematical formulation can be expressed as follows:

min J(x)

x

s.t h(x) = 0
(3.64)

xk+1 = xk − t∇L(x, λk) (3.65)

h(xk+1) = 0 (3.66)

The objective in this case, in contrast to previous methods, is to find suitable values for t and λ such that

L(xk+1, λk) < L(x, λk). Subsequently, the volume is modified and assessed to ensure it fulfills the constraint.

If the constraint is not satisfied, the value of λ is recomputed, and this iterative process is continued. This

approach is referred to as ”dual nested in primal” because the constraint is always satisfied, and there is no

alternating process as in previous methods.

Null Space

The null space optimizer operates by decomposing the design variables gradient flow into two components:

the null space component and the active constraint component. The null space component represents the

part of the design that can be freely manipulated without violating any constraints, while the active con-

straint component ensures that the design adheres to the imposed constraints. By optimizing the null space

component independently, the optimizer can explore different design configurations and identify solutions

that may have been overlooked in traditional optimization approaches. Further information regarding the

functioning of this optimizer is expounded upon in the subsequent section. It is noteworthy to acknowledge

the work in literature as a valuable source for in-depth insights and comprehensive understanding of the Null

Space optimizer [45] .

In this case the mathematical formulation is expressed by the following expressions

min J(x)

x ,

s.t h(x) = 0
(3.67)

which can be also expressed as

min
x

max
λ

J(x) + λ h(x). (3.68)
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The mathematical formulation involves employing a quadratic expansion of the Lagrangian. Subsequently, it

can be proved that the technique of alternating directions is implemented in the following manner:

For (λ, x) :

{
λk = AG(∇hT∇h)−1 · h−AJ(∇hT∇h)−1∇h∇J

xk+1 = xk − t(∇J + λk∇h)
, (3.69)

After each iteration, the quadratic expression for the Lagrangian is updated with the new design variable

distribution (xk = xk+1).

Then, the process consists in iterate until it is fulfilled that ||L(xk+1)− L(xk)|| < δ.
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Chapter 4

Numerical study

In this section, Topology Optimization methods will be employed for the design of two compliant mechanisms.

The design process will be conducted using Finite Element Methods (FEM) through the implementation

of the Swan code. Swan is a specialized Topology Optimization software developed in Matlab, facilitating

the resolution of 2D and 3D topology optimization problems using density or level-set variables as design

parameters. The numerical methodology applied in the designs will incorporate both density-based SIMP

and Level Set methods.

4.1 Design of compliant mechanism with topology optimization

methods

The finite element method is a numerical technique for solving problems which are described by partial

differential equations or can be formulated as functional minimization. A domain of interest is represented as

an assembly of finite elements [46]. The design process of compliant mechanisms in topology optimization

necessitates the utilization of FEM, whereby the topology optimization problem is implemented within a

discretized domain.

The initial phase in the design process of compliant mechanisms entails identifying the specific domain for

each intended design to be developed. Within the scope of this paper, two distinct designs will be undertaken:

the compliant force inverter and the gripper mechanism seen in state-of-the-art for the application in [31], for

instance.

Recall that a gripper mechanism converts a force, applied at the input port, into an output displacement

at the two output ports in an orthogonal direction to the force vector. On the other hand, an inverter is a

mechanism that converts an input force applied at the input port, into an opposite output displacement at

the output port [47].
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4.1.1 Design of a gripper mechanism

With the purpose of implementing the acquired knowledge in topology optimization, the present part aims to

determine the optimal design of a gripper mechanism. To achieve this objective, the computational domain

illustrated in Figure 4.1 is discretized into a quadratic mesh comprising a total of 20.000 elements.

Figure 4.1: Setting of the gripping mechanism. Extracted from [48].

The structure is fixed at two nodes on its symmetry axis; the region ΓN where loads are applied is decomposed

as ΓN = Γ1
N ∪ Γ2

N and :

• Vertical loads g1 = (0,±10) are applied on Γ1
N , which represent the pressure exerted by the user,

• Vertical loads g2 = (0,±1) are applied on Γ2
N , which account for the reaction force applied by the object

undergoing the action of the gripping mechanism.

The considered objective function J(Ω) reads:

J(Ω) =

∫
ΓN

k · uΩ ds+Vol(Ω),

where the vector k is defined by:

• k = (0,−1) on the upper side of Γ1
N and k = (0, 1) on the lower side of Γ1

N ,

• k = (0, 2) on the upper side of Γ2
N and k = (0,−2) on the lower side of Γ2

N ,

so that it is expected that the elastic displacement of the resulting design shows a pinching of the jaws Γ2N

without inducing an excessive displacement of the region Γ1N where the user applies forces [48].

In this particular case, the topology optimization (TO) problem can be mathematically formulated as follows
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min J(Ω) ,

χ

s.t V (Ω)− V ∗ ≤ 0 .

(4.1)

It is worth noting that the problem under consideration is not self-adjoint, in contrast with minimum

compliance case.

The computational domain has been constructed utilizing the GID software, a comprehensive CAD system

that features the widely used NURBS surfaces for the geometry definition, including several CAD repairing

tools and mesh generators. The applied conditions and the delineated domain are visually represented in

Figure 4.2.

Figure 4.2: Gripper mechanism domain with the applied conditions.

The mesh, as depicted in Figure 4.3, has been also generated and computed employing GID software and is

used for the computation in the Swan code, employing the ”Null Space” optimizer in conjunction with the

”Projected Gradient” Primal Updater for the Density design variable, and ”SLERP” for the Level Set design

variable. Computations have been performed for volume fractions of 0.5, 0.4, 0.3, and 0.2, individually for

each design variable.
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Figure 4.3: Gripper mechanism mesh.

The ensuing code snippet illustrates the pertinent segment wherein the conditions are explicitly defined.

1 filename = ’gripping ’; % Try other meshes

2 ptype = ’MACRO’;

3 method = ’SIMPALL ’;

4 materialType = ’ISOTROPIC ’;

5 initial_case = ’full’;

6 cost = {’nonadjoint_compliance ’};

7 weights = [1];

8 constraint = {’volumeConstraint ’};

9 incrementFactor = 1.2;

10 optimizerUnconstrained = ’PROJECTED GRADIENT ’; % See PrimalUpdaterFactory

11 optimizer = ’NullSpace ’; % See OptimizerFactory

12 designVariable = ’Density ’; % Density/LevelSet

13 filterType = ’P1’;

14 constraint_case = {’INEQUALITY ’}; % EQUALITY or INEQUALITY

The variable indicated in line 2 of the code signifies the type of problem, which can be toggled between

MACRO and MICRO. The former is employed for structural problems, while the latter pertains to represen-

tative volumes of a domain. In this particular study, the MACRO problem type is utilized, as the objective

is to design structures. Furthermore, the ’SIMPALL’ method assigned to the ’method’ variable dictates the

interpolation approach for density.

It is important to note that this thesis solely focuses on topology optimization (TO) problems where the cost

function is non-adjoint, accompanied by a volume constraint. Other types of TO problems are intentionally

omitted from the scope of this research. These specific constraints are defined in lines 6 and 8 of the code.

46



4.1. DESIGN OF COMPLIANT MECHANISM WITH TOPOLOGY OPTIMIZATION METHODS

Within the framework of employing the Null Space optimizer, it is essential to define and specify two pivotal

functions, namely ’aJmax’ and ’aGmax’ empowering the Lagrange multipliers concerning the Nullspace and

range space directions, respectively. . Additionally, gaining a comprehensive understanding of the functioning

of the Null Space optimizer is of interest. The Null Space optimizer initiates the optimization process from a

random initial point and proceeds by traversing two distinct directions, with the objective of simultaneously

minimizing the cost and adhering to the imposed constraints. The ’aJmax’ function denotes the direction that

facilitates the reduction of the variable, while ’aGmax’ represents the direction that guides the optimization

towards satisfying the constraints.

It is worth noting that if these variables are set to zero in the code, the simulation ceases to progress, as it

results in the nullification of the Lagrange multiplier. As a consequence of the monotonic behavior of the

compliance function, the volume remains unaltered in such cases. Thus, comprehending this concept in depth

is of paramount importance. In Figure 4.4, a visual depiction illustrating the operational concept of the Null

Space optimizer is presented.

Figure 4.4: Visual representation of the operational concept of the Null Space optimizer.

The strategy for determining the values of aJ and aG entails an initial focus on gradually approaching the

desired J value until achieving a stable volume in close proximity to the target volume. Finding the optimal

balance between a large J value, which may yield a feasible solution but not necessarily the optimal one,

and a small J value, which may fall short of achieving the desired final volume, is of paramount importance.

Once a satisfactory J value is achieved, the estimation of G becomes the subsequent objective.

To estimate the G value, the code segment corresponding to the Lagrange multiplier associated with G, which

is located in the DualUpdater NullSpace class, is utilized. The Lagrange multiplier can be decomposed into

two parts: the part associated with G and the part associated with J, both of which are the values under

investigation. The λJ values typically range from 1 to 9, or on the order of 100. Similarly, the λG value needs

to be within the same order of magnitude to maintain balance in the problem.
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Consequently, it can be checked that the assigned value for ’aGmax’ should be on the order of 10−1 or 10−2

to achieve this balance in accordance with its mathematical formulation.

For the design of the gripper mechanism, a total of eight simulations have been performed, each requiring a

search for different values of ’aJmax’ and ’aGmax’. The final values for these two variables in each simulation

are presented in Table 4.1.

Table 4.1: Final values used in the gripping mechanism simulations for ’aJmax and ’aGmax’ variables.

Volume Fraction Density Level Set

aJmax aGmax aJmax aGmax

0.5 2.3 0.3 0.1 0.3

0.4 2 0.3 0.1 0.1

0.3 0.5 0.3 0.3 0.1

0.2 0.1 0.01 0.1 0.01

Finally, the results of the gripping mechanism simulation are presented in Table 4.2. The code was configured

to execute 1000 iterations, starting from an initial volume value of 1.

It is worth mentioning that the results obtained from the Matlab code have been post-processed using

the GID software. For the design variable Density, a minimum display value of 0 and a maximum display

value of 1 were set. Similarly, for the design variable Level Set, a minimum display value of -0.001 and a

maximum display value of 0.001 were applied.

Based on the obtained results, several conclusions can be drawn. Firstly, it is observed that both the

density and level set methods yield similar outcomes for equivalent volumes. Additionally, it is noteworthy

that the density optimizer displays gray values in the results, indicating the utilization of a wider range

of values between the two extremes. This phenomenon arises due to the inherent complexity of achieving

outcomes solely restricted to the two prescribed values.

Upon examination of the calculated values from the code, it becomes evident that the structure does

not initially exhibit characteristics of a CM. However, as the simulation progresses, the introduction of hinges

leads to the transformation of the structure into a CM. This transition is reflected in the final stage of the

simulation, where the cost function J(Ω) assumes a negative value, indicating a reversal in the achieved

display of the mechanism uout.

48



4.1. DESIGN OF COMPLIANT MECHANISM WITH TOPOLOGY OPTIMIZATION METHODS

Table 4.2: Final results of the gripping mechanism simulations.

Volume Fraction Density Level Set

0.5

0.4

0.3

It should be noted that as the volume decreases, the results exhibit an increased number of holes and hinges.

This behavior can be attributed to the algorithm’s attempt to satisfy the increasingly stringent volume

constraint. As the algorithm strives to meet the specified volume requirement, it introduces additional voids

and hinges in the structure. This observation highlights the trade-off between volume reduction and the

complexity of the resulting design.

Finally, it is worth noting that while it was initially planned to conduct eight simulations for these mechanisms,

the simulations for a volume fraction of 0.2, although feasible, yield a final result with a larger volume fraction

than desired. This discrepancy becomes apparent when comparing the volume of the simulation conducted

for a volume fraction of 0.2, as depicted in Figure 4.5, to the volume of the simulation conducted for a volume

fraction of 0.3.
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Figure 4.5: Simulation conducted for a volume fraction of 0.2 with level set optimizer.

In the appendix, an example of the gripping mechanism designed using the MMA optimizer can also be

found. This example serves as a demonstration of the application of the MMA optimizer in generating an

optimized gripping mechanism.

4.1.2 Design of an inverter mechanism

To introduce further diversity to the study, an alternative design is proposed. In this case, the computational

domain is a 1x1 square discretized into 10,000 elements. Figure 4.6 illustrates a visual representation of the

domain for an inverter mechanism design.

Figure 4.6: Design domain for an inverter mechanism. Extracted from [49].

The structure is fixed in two segments, spanning from the coordinates (0,0) to (0.1,0) and from (0.9,0) to

(1,0) along the lower section. The loads are applied along the symmetry axis in both the lower and upper

regions of the structure. The magnitudes of these loads are as follows:
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• The structure is subjected to a concentrated input force, fin = 20N , associated to a positive sign as

shown in the vector of Figure 4.6.

• The adjoint load k is applied in the upper point, where the displacement of the structure is expected,

and has a values of k = 0.1 associated to a positive sign. In the lower part of the structure the value of

the adjoint load is omitted.

The expected direction of displacement for the mechanism is denoted as uout and is indicated in Figure 4.6.

It can be observed that uout is oriented in the opposite direction to the applied force, thus fulfilling the

intended function of an inverter mechanism.

The topology optimization problem is mathematically identical as the previous case, see Equation 4.1.

The computational domain utilized for the analysis has been generated using GID. The applied conditions

and the defined domain are visually depicted in Figure 4.7.

Figure 4.7: Inverter mechanism domain with the applied conditions.

The mesh, as depicted in Figure 4.8, has been also generated and computed employing GID software.
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Figure 4.8: Inverter mechanism mesh.

For the design of the inverter mechanism, a total of two simulations have been performed, each requiring a

search for different values of ’aJmax’ and ’aGmax’. The final values for these two variables in each simulation

are presented in Table 4.3 .

Table 4.3: Final values used in the inverter mechanism simulations for ’aJmax and ’aGmax’ variables.

Volume Fraction Density Level Set

aJmax aGmax aJmax aGmax

0.3 8 3.5 2.5 2

Finally, the results of the inverter mechanism simulation are presented in Table 4.4. The code was configured

to execute 1000 iterations, starting from an initial volume value of 1.

Table 4.4: Final results of the inverter mechanism simulations.

Volume Fraction Density Level Set

0.3

Based on the results obtained for the inverter mechanisms, several conclusions can be drawn. Initially, it was

planned to conduct eight simulations for these mechanisms, similar to the gripping mechanisms. However,
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both the simulations and existing literature have revealed a significant challenge in studying higher volumes,

such as 0.4 or 0.5. Figure 4.9 demonstrates that conducting a simulation for a volume fraction of 0.4 presents

substantial difficulties in adjusting the parameters aG and aJ, resulting in inaccurate and infeasible outcomes.

Figure 4.9: Inverter mechanism simulation for a 0.4 volume fraction.

In general, this design has posed greater difficulties, particularly in adjusting the values of the Null Space

optimizer and conducting simulations for volume fractions other than 0.3. The results obtained for the

Density design variable have posed a significant challenge in achieving outcomes without gray values, although

both obtained results are considered satisfactory.
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Chapter 5

Application example in aerospace

This section aims to provide a comprehensive exploration of the aerospace and aeronautic domain within

the context of compliant mechanisms and topology optimization. In line with this objective, a specific

implementation pertaining to the aeronautical field is proposed. By applying compliant mechanisms and

topology optimization techniques, this study seeks to address and contribute to the unique challenges and

requirements of the aerospace and aeronautic industry. Through this focused approach, the potential benefits

in this field can be better understood.

5.1 Practical application in the aeronautical field: Variable geom-

etry trailing edge flap

In the preceding sections, a comprehensive array of applications involving compliant mechanisms across

various domains, with a particular emphasis on the aerospace field, has been presented. Nevertheless, there

is a specific example that warrants further attention and will be thoroughly examined in this final chapter,

owing to its profound significance in shaping novel aircraft designs.

Hence, the subsequent discussion will focus on the specific application of compliant mechanisms and topology

optimization in the context of a variable geometry trailing edge flap.

The primary objective of incorporating the variable geometry trailing edge flap was to create a hingeless and

continuous flap mechanism capable of effectively adjusting the wing’s camber. This adjustment aimed to

minimize drag across various lift conditions. In contrast to conventional flap deflection methods, which often

result in flow separation and increased drag, the use of variable geometry compliant trailing edge flaps offers

mission adaptive wing capabilities without imposing substantial penalties in terms of weight, space, or power

requirements.

54



5.1. PRACTICAL APPLICATION IN THE AERONAUTICAL FIELD: VARIABLE GEOMETRY
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5.1.1 Design approach

Although this study does not involve the code developing of a compliant trailing edge flap design, it aims to

propose preliminary design specifications for this application. The primary objective is to design a variable

geometry trailing edge flap for a high altitude, long endurance air vehicle configuration. An important

requirement for the design is the capability to achieve differential deflection along the wing span to optimize

wing loading. The target shapes sought for the flap are those that exhibit the smoothest possible shape

change while effectively achieving the desired deflection.

It is worth mentioning that in the literature, a design with similar specifications has been proposed [34].

Furthermore, regarding the design presented in Figure 5.1 the literature study builds upon the previous work

by FlexSys Inc., which represents cutting-edge technology in the field of compliant trailing edge flap design

[50].

Figure 5.1: Variable geometry trailing edge wind tunnel model shown in -10 degrees and +10 degrees positions.
Extracted from [34].

5.1.2 Aerodynamic benefits

Because endurance aircraft experience weight variations as much as 50% or more during a typical mission,

minimizing wing drag over a wide lift range is critical for mission efficiency. The compliant variable geometry

trailing edge flap provides a distinct performance advantage over a conventional trailing edge flap. This point

is easily illustrated using experimental wind tunnel data. Figure 5.2 presents wind tunnel aerodynamic data

for a typical modern high altitude long endurance airfoil with a conventional 20% chord trailing edge flap.

The data shows conclusively that deflecting a conventional flap downward increases the airfoil lift coefficient;

however, for the two positive flap deflections shown, airfoil drag is simultaneously increased. This drag rise is

caused by flow separation in the pressure recovery region on the aft portion of the airfoil upper surface. This

region of flow separation is induced by the sharp increase in radius of curvature on the airfoil upper surface

as the conventional flap rotates downward [34].

Notice that airfoil drag performance is still acceptable when the trailing edge is deflected up. In this position

there is a decrease in radius of curvature on the upper surface, and while deflecting the flap trailing edge up

limits airfoil lift, the flow is still fully attached on both airfoil surfaces [34].
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Figure 5.2: Cl vs. Cd data for a modern long endurance airfoil with a conventional trailing edge flap.
Extracted from [34].

Data taken at the Ohio State University low speed wind tunnel is shown in Figure 5.3. Here, the adaptive

compliant flap shows much better drag control than is possible with a conventional flap design. When a

variable geometry compliant trailing edge flap is used, the process is such that the radius of curvature on the

airfoil upper surface can be contoured for maximum flow attachment in the pressure recovery region. Notice

that consistently low drag levels are maintained as the flap is deflected downward and the airfoil aft upper

surface is continually reshaped during the deflection process. Comparing these results with those presented in

Figure 5.2, and the aerodynamic advantage of using a variable geometry trailing edge for endurance aircraft

applications becomes quite obvious. [34]

Figure 5.3: Wind Tunnel results highlight the benefits of FlexSys variable geometry trailing edge flap. As the
flap angle is changed from -8 degrees to +8 degrees, the CL increases from 0.1 to 1.1 without increasing the
drag. Note the low drag envelop (CD = 0.0065) during the entire excursion. Extracted from [34].

Therefore, based on the evident advantages of incorporating a compliant trailing edge flap, it can be concluded

that topology optimization can be used in subsequent stages of the design process to identify an optimal

shape that meets all the aforementioned requirements.

56



Study of compliant mechanisms and flexible hinges in
topology optimization

Chapter 6

Budget summary and economic

feasibility study

The objective of this section is to provide an estimation of the overall hypothetical cost associated with the

development of a project similar to the one presented in this paper.

The financial assessment of this project, which justifies its initial investment, encompasses several categories

of expenses, namely Human Resources (Table 6.1), Software (Table 6.2), and other resource-related costs

(Table 6.3). These components collectively contribute to the comprehensive financial structure of the project,

ensuring sufficient allocation for personnel, requisite software applications, and other indispensable resources.

Table 6.1: Human Resources Plan

Human Resources Plan

ID Description Hours Cost/u (€) Total Cost (€)

1.1

Project Management.

Costs relative to

project development time.

600.00 20.00 12,000.00

Total 12,000.00 €

Table 6.2: Operating Expenses

Operating Expenses

ID Description Cost (€)

2.1 Permanent Licenses

2.1.1 Matlab & Simulink 2,000.00

2.1.2 GID Simulation 1,100.00

Total 3,100.00 €

57



Table 6.3: Resources Costs

Resources Costs

ID Description Hours Cost/u (€) Cost (€)

3.1 Overhead expenses

3.1.1 Computer 1,200.00 1,200.00

3.1.2 Office supplies 200.00 200.00

Total 1,400.00 €

3.2 Utilities expenses

3.2.1 Electricity 600.0 0.22 132.00

3.2.2 Internet 600.0 0.11 66.00

Total 198.00 €

Total Resources

Costs
1,598.00 €

Finally, Table 6.4 presents the comprehensive budget, incorporating all the aforementioned expenses, along

with the inclusion of contingency reserves. Contingency reserves serve as financial provisions that allow for

flexibility and mitigate the risks associated with budget overruns. In this particular project, a contingency

reserve of 10% of the total budget has been allocated, considering the nature of the project as a cutting-edge

technology initiative that often encounters time delays.

Table 6.4: Project Total Budget

PROJECT TOTAL BUDGET

Human Resources Plan

ID Description Hours Cost/u (€) Cost (€)

1.1

Project Management.

Cost relative to

project development

time

600.0 20.00 12,000.00

Total 12,000.00 €

Operating Expenses

ID Description Cost/u (€) Cost (€)

2.1 Permanent Licenses

2.1.1 Matlab & Simulink 2,000.00

2.1.2 GID Simulation 1,100.00

Total 3,100 €

Resources Costs

ID Description Hours Cost/u (€) Cost (€)

3.1 Overhead expenses

3.1.1 Computer 1,200.00 1,200.00
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3.1.2 Office supplies 200.00 200.00

Total 1,400.00 €

3.2 Utilities expenses

3.2.1 Electricity 600.0 0.22 132.00

3.2.2 Internet 600.0 0.11 66.00

Total 198.00 €

4.1 Contingency Reserves Value considered: 10% Total 1,669.80 €

Total Costs 18,367.80 €

6.1 Schedule

The Clean Code Development task was conducted in combination with the last semester of the Bachelor’s

program starting in September 2022.

In addition, since February 2023, a weekly meeting with the tutor and co-tutor has been held every Tuesday

to discuss the previous week’s work and set goals for the upcoming week. From February until now, the

literature review has been conducted. During the above meetings, the information and the working of the

CMs found during the week are explained.

Since March, the study on topology optimization concepts has been done. The goal for the next few weeks is

to start working on the code provided by the tutor and continue searching for literature and CMs of interest.

Finally, a Gantt chart is provided below with an approximate timeline of goals and tasks to be completed.
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Chapter 7

Analysis and assessment of

environmental implications

In this section, the environmental implications associated with the implementation of the mechanisms investi-

gated in this study within engineering projects will be examined. The principal focus will be on analyzing

the specific case of flexible trailing edge flaps and their potential contribution to fuel reduction in aviation.

Flexible trailing edge flaps (FTEFs) have emerged as a promising technology in the aviation industry, offering

significant fuel efficiency benefits compared to traditional deflecting flaps. By seamlessly modifying the shape

of the wing’s trailing edge, FTEFs provide enhanced control over lift and drag, resulting in reduced fuel

consumption and improved overall aircraft performance.

Numerous studies and experimental evidence have demonstrated the fuel efficiency benefits of FTEFs. Case

studies conducted on various aircraft configurations have shown significant reductions in fuel consumption

when employing FTEFs. These studies have utilized advanced computational simulations and wind tunnel

testing to assess the impact of FTEFs on aircraft performance parameters.

The European Union (EU) has long recognized the need for reducing fuel consumption and carbon emissions

in the aviation industry. As part of their commitment to sustainability and environmental protection, the

EU has set ambitious targets to improve the fuel efficiency of airplanes and minimize their impact on climate

change.

Thus, the EU has established regulations and standards to promote the development and deployment of

more fuel-efficient aircraft. For instance, the European Aviation Safety Agency (EASA) sets stringent

requirements for aircraft certification, including fuel efficiency criteria. This encourages manufacturers to

invest in innovative technologies and design solutions that maximize fuel economy while maintaining safety

standards.

In addition to regulatory measures, the EU actively supports research and development initiatives focused
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on improving aircraft fuel efficiency. Funding programs, such as Horizon 2020, provide financial support to

projects aimed at developing sustainable aviation technologies. These initiatives focus on various aspects,

including lightweight materials, aerodynamic improvements, and the integration of advanced propulsion

systems.

Flexible trailing edge flaps represent a promising avenue for enhancing aircraft fuel efficiency, thereby serving

as a potential advancement in the pursuit of sustainable aviation. Furthermore, the advancement of this

technology contributes significantly to the attainment of the Sustainable Development Goals (SDGs), see in

Figure 7.1. These goals encompass a comprehensive set of worldwide targets designed to tackle the most

critical challenges confronting our planet and the global community.

Figure 7.1: Sustainable Development Goals. Extracted from [51].

Many of these goals are aided in their achievement through the development of this technology, including the

number 9 (Innovation and infrastructure), the number 11 (sustainable cities and communities) or the number

13 (climate action).
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Conclusions

8.1 Project Conclusions

The current study has successfully achieved the primary objectives established at the beginning. The

feasibility of designing novel structures utilizing numerical topology optimization techniques has been

thoroughly investigated, resulting in positive outcomes for the development of lighter structures, specifically

applied for compliant mechanisms, due to its increased importance. In particular, the methodology employed

and the attained results have led to the following key findings:

The chosen programming environment for this project has proven to be instrumental at every stage, employ-

ing Object-Oriented Programming techniques to explore and embrace an enhanced programming approach.

In contrast to its conventional predecessor, the function-based programming paradigm, Object-Oriented

Programming offers greater reusability and dynamism, leading to optimized code development time. By

using this programming methodology, a more efficient and flexible code structure has been achieved, enabling

improved understanding and exploration of programming concepts.

Through an extensive review of the literature, a comprehensive understanding of the diverse range of compliant

mechanism designs and their significant contributions to space exploration and technology has been achieved.

By harnessing the benefits of compliant mechanisms, such as reduced mass, increased reliability, and enhanced

functionality, space missions can be conducted more efficiently and effectively, paving the way for future

exploration and scientific discoveries. Thus, by leveraging the knowledge and insights gained from the

diverse applications of compliant mechanisms, future space missions can benefit from improved performance,

increased adaptability, and enhanced mission success rates.

Moreover, through an in-depth examination of various methodologies, algorithms, and mathematical models,

a comprehensive understanding of the fundamental principles and key concepts of topology optimization has

been established. Throughout the section, some examples and case studies were presented to illustrate the
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practical implementation and effectiveness of topology optimization in the engineering field. These examples

demonstrated how topology optimization can significantly enhance the performance, efficiency, and reliability

of structures, leading to weight reduction, improved material utilization, and increased functional capabilities.

The obtained simulations results lead to certain conclusions. Initially, when the volume is close to 100%, the

design is not a compliant mechanism (CM). However, as the simulation progresses, hinges are introduced to

reverse the output displacements, resulting in a CM with a minimized negative cost function. Additionally,

for designs with the same optimal volume, the resulting CM is lighter but more complex and less robust.

Finally, when comparing the two design variables, it is observed that Density-based optimization struggles to

achieve purely white and black results, although it may yield more accurate results for the optimal volume.

Furthermore, this section has highlighted the concept of variable geometry trailing edge flaps and their

potential benefits in optimizing wing loading. Additionally, the influence of topology optimization in achieving

optimal flap shapes has been emphasized. While this study did not include the development of specific code

for the design, design specifications and references to existing designs have been presented as a starting point

for further research.

Overall, this project has emerged as a highly significant endeavor in the pursuit of novel lightweight structures,

leveraging the principles of topology optimization and compliant mechanisms. Through a comprehensive

assimilation of knowledge in this domain, it is evident that this area of study currently holds paramount

importance as a prominent avenue for future technological advancements, transcending the confines of the

aerospace sector. The compelling implementation of these mechanisms in diverse engineering disciplines and

cutting-edge technology domains underscores their indisputable relevance and positions them at the forefront

of ongoing research and development endeavors.

8.2 Further lines of research

The prediction of future directions of compliant mechanisms is discussed in this section for both theory and

application aspects.

Theoretically, dynamic synthesis and modeling that consider actuation position, nonlinear stiffness (including

negative stiffness), beam mass, and material damping can be the next-generation directions as opposed to

the current focus on static modeling. Developing the theory in stiffness-continuously-adjustable compliant

mechanisms to reconfigure the dynamic characteristic of motion stage (MS) can be another interesting topic

[16].

In practical applications, compliant mechanisms toward multi-material design and fabrication, programmable

materials, and deployable structures (particular emphasis on compliant origami structures for DNA or space

applications) should be the focus of future research [16].
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Benjamin; BRÜLS, Olivier. Experimental and numerical investigation of the nonlinear dynamics of

compliant mechanisms for deployable structures. Mechanical Systems and Signal Processing. 2018,

vol. 101, pp. 1–25. Available from doi: 10.1016/j.ymssp.2017.08.006.

20. KRAMER, H. J. Myriade/AstroSat-100 (CNES Microsatellite Program) [Eoportal.org; European Space

Agency]. 2012. Available also from: https://www.eoportal.org/satellite-missions/myriade.

21. SICRE, J.; GIVOIS, D.; EMERIT, E. Application of Maeva hinge to Myriade microsatellites deployments

needs. In: 11th European Space Mechanisms and Tribology Symposium (ESMATS) 2005. Lucerne, Suisse:

ESA/CNES, 2005.

22. DSS, D. K. Mars express. Acta Astronautica. 1999, vol. 45, no. 4–9, pp. 285–292. Available from doi:

10.1016/s0094-5765(99)00145-9.

23. MOBREM, M.; ADAMS, D. Deployment analysis of lenticular jointed antennas onboard the Mars

Express spacecraft. Journal of Spacecraft and Rockets. 2009, vol. 46, no. 2, pp. 394–402. Available from

doi: 10.2514/1.40485.

24. BLACK, J.T.; WHETZAL, J.A.; DEBLONK, B.J.; MASSARELLO, J.J. Deployment repeatability

testing of composite tape springs for space optics applications. In: Proceedings of the 47th AIAA/AS-

ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode

Island, USA, 2006.

25. COOK, A.J.; WALKER, S.J.I. Experimental research on tape spring supported space inflatable structures.

Acta Astronautica. 2016, vol. 118, pp. 316–328.

26. JOHNSON, L.; WHORTON, M.; HEATON, A.; PINSON, R.; LAUE, G.; ADAMS, C. NanoSail-D: a

solar sail demonstration mission. Acta Astronautica. 2011, vol. 68, pp. 571–575.

27. SICKINGER, C.; HERBECK, L. Deployment strategies, analyses and tests for the CFRP booms of a

solar sail. In: Proceedings of the European Conference on Spacecraft Structures, Materials & Mechanical

Testing. Toulouse, France, 2002.

28. YEE, J.C.; PELLEGRINO, S. Composite tube hinges. Journal of Aerospace Engineering. 2005, vol. 18,

no. 4, pp. 224–231.

65



BIBLIOGRAPHY

29. JEONG, Jin-Woo; YOO, Young Il; SHIN, Dong Keun; LIM, Jong Hwa; KIM, Kyung-Wook; LEE,

Jae-Jun. A novel tape spring hinge mechanism for quasi-static deployment of a satellite deployable using

shape memory alloy. The Review of Scientific Instruments. 2014, vol. 85, no. 2, p. 025001. Available

from doi: 10.1063/1.4862470.

30. KIM, D.-Y.; CHOI, H.-S.; LIM, J. H.; KIM, K.-W.; JEONG, J. Experimental and numerical investigation

of solar panels deployment with tape spring hinges having nonlinear hysteresis with friction compensation.

Applied Sciences (Basel, Switzerland). 2020, vol. 10, no. 21, p. 7902. Available from doi: 10.3390/

app10217902.

31. BUDZYŃ, D.; ZARE-BEHTASH, H.; COWLEY, A.; CAMMARANO, A. Implicit lunar dust mitigation

technology: Compliant mechanisms. Acta Astronautica. 2023, vol. 203, pp. 146–156. Available from doi:

10.1016/j.actaastro.2022.11.042.

32. GAIER, J.R. The Effects of Lunar Dust on EVA Systems during the Apollo Missions. 2007. Tech. rep.,

TM-2005-213610/Rev1. NASA.

33. ZIRBEL, Shannon Alisa. Compliant Mechanisms for Deployable Space Systems. 2014.

34. KOTA, S.; HETRICK, J. A.; OSBORN, R.; PAUL, D.; PENDLETON, E.; FLICK, P.; TILMANN, C.

Design and application of compliant mechanisms for morphing aircraft structures. In: ANDERSON, E. H.

(ed.). Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures

Technologies. SPIE, 2003.

35. ZHAO, Y.; HAO, G.; CHAI, L.; TIAN, Y.; XI, F. A compliant-mechanism-based lockable prismatic

joint for high-load morphing structures. Mechanism and Machine Theory. 2022, vol. 178, p. 105083.

Available from doi: 10.1016/j.mechmachtheory.2022.105083.

36. ZHAO, Y.; XI, F.; TIAN, Y.; WANG, W.; LI, L. Design of a planar hyper-redundant lockable mechanism

for shape morphing using a centralized actuation method. Mechanism and Machine Theory. 2021,

vol. 165, p. 104439. Available from doi: 10.1016/j.mechmachtheory.2021.104439.

37. IVCHENKO, Alexander V.; SHARONOV, Nikolay; ZIATDINOV, Rinat. New conceptual design of the

adaptive compliant aircraft wing frame. Engineering Science and Technology an International Journal.

2019, vol. 22, no. 5, pp. 1149–1154. Available from doi: 10.1016/j.jestch.2019.10.004.

38. MERRIAM, E. G.; JONES, J. E.; MAGLEBY, S. P.; HOWELL, L. L. Monolithic 2 DOF fully compliant

space pointing mechanism. Mechanical Sciences. 2013, vol. 4, no. 2, pp. 381–390. Available from doi:

10.5194/ms-4-381-2013.

39. VIJAYAN, V.; KARTHIKEYAN, T.; KARTHIKEYAN, M.; CHELLAMUTHU, K. Passive vibration

isolation by compliant mechanism using topology optimization. The International Journal of Acoustics

and Vibration. 2014, vol. 19, no. 4. Available from doi: 10.20855/ijav.2014.19.4359.

40. SUN, Xiaoqing; WANG, Zhilei; YANG, Yikun. Design and experimental investigation of a novel

compliant positioning stage with low-frequency vibration isolation capability. Available online 17 June

2019. 2019.

41. ZENG, Wen; GAO, Fei; JIANG, Hong; HUANG, Chaoliang; LIU, Jianhua; LI, Hui. Design and analysis

of a compliant variable-diameter mechanism used in variable-diameter wheels for lunar rover. Mechanism

66



BIBLIOGRAPHY

and Machine Theory. 2018, vol. 125, pp. 240–258. Available from doi: 10.1016/j.mechmachtheory.

2018.03.003.

42. JAGTAP, Sachin P.; DESHMUKH, Bhushan B.; PARDESHI, Snehal. Applications of compliant mecha-

nism in today’s world – A review. Journal of Physics. Conference Series. 2021, vol. 1969, no. 1, p. 012013.

Available from doi: 10.1088/1742-6596/1969/1/012013.

43. KOTA, Sridhar; LU, Kuo-Jen; KREINER, Karl; TREASE, Brian; ARENAS, Juan; GEIGER, Jeffrey.

Design and application of compliant mechanisms for surgical tools. Journal of Biomechanical Engineering.

2005, vol. 127, no. 6, pp. 981–989. Available from doi: 10.1115/1.2056561.

44. FERRER, Alex. Lessons in Topology Optimization [Website]. 2022. Available also from: https://sites.

google.com/view/alexferrer/teaching?authuser=0.
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Chapter 9

Appendix

9.1 Appendix A: Constrained problems and the dual problem

In the context of constrained optimization problems, as previously discussed, it is necessary to define the

Lagrangian and the dual function (which is the minimization of the Lagrangian with respect to the variable

x). In this formulation, the objective is to maximize the dual function. Consequently, the primal and dual

optimality conditions are expressed as the gradients of the Lagrangian with respect to x and λ, respectively.

It is particularly interesting to discuss the rationale behind maximizing the dual function. To illustrate this,

let us consider the scenario where the following optimization problem is formulated:

min J(x)

x .

s.t h(x) = 0
(9.1)

The optimization problem can be reformulated as

min
x

J(x) + δc(x), (9.2)

where δc is a function called indicator function which is defined as follows

δc(x) =

{
0 if h(x) = 0

∞ if h(x) ̸= 0
. (9.3)

This is interpreted such that if the value satisfies the constraint, indicating it is a feasible value, no additional

cost is incurred. However, if the value does not satisfy the constraint, an infinite value is added to the cost.
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Thus, it is designed to consider only feasible solutions as valid, while penalizing infeasible solutions. This

function can also be expressed using an alternative mathematical formulation:

max
λ

λ h(x). (9.4)

It can be observed that all values are infinite (for a maximized λ) except when the constraint function

h(x) equals zero. Therefore, in the optimization problem, we can replace the indicator function with this

alternative formulation, as

min
x

J(x) + δc(x) = min
x

J(x) +max
λ

λ h(x). (9.5)

Observe that since J(x) does not depend on λ, the aforementioned formulation can also be expressed as

min
x

max
λ

J(x) + λ h(x) (9.6)

where it can be observed that the expression J(x) + λ h(x) represents the Lagrangian, thereby implying that

the original problem formulation is equivalent to solving this problem

min
x

max
λ

L(x, λ). (9.7)

At this juncture, it is pertinent to define the dual function D(λ). The dual function can be perceived as a

problem that is contingent upon the parameter λ, wherein for each value of λ, it entails solving a minimization

problem to determine the corresponding optimal value, as

D(λ) = min
x

J(x) + λ h(x) = min
x

L(x, λ). (9.8)

Now, let us consider a feasible solution x̃, where the constraint h(x̃) evaluates to zero. In this case, the

Lagrangian reduces to the function J(x̃) alone. It can been observed that the minimum value of the Lagrangian

must always be less than or equal to the Lagrangian evaluated at the feasible solution, since the latter

represents a valid value and the minimization process seeks the smallest value among all possibilities, even if

are not feasible. Therefore, a specific feasible value will always be equal to or greater than the minimum

value obtained through the minimization process, as shown below

D(λ) = min
x

L(x, λ) ≤ L(x̃, λ) = J(x̃). (9.9)

Among all the feasible values, there exists a particular one denoted as x∗ that satisfies the condition min
x̃

J(x̃),

indicating that it is the minimum value among all feasible solutions. Thus, the following inequalities are

fulfilled
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D(λ) ≤ J(x∗) ≤ J(x̃),

min
x

L(x, λ) ≤ L(x∗, λ) ≤ L(x̃, λ). (9.10)

The aim is to determine the tightest lower bound of D(λ) among all possible values, one that is closest to

J(x∗). Hence, the objective is to maximize the dual function as

max
λ

D(λ) = D(λ∗). (9.11)

Again, the following inequalities are fulfilled

D(λ) ≤ D(λ∗) ≤ J(x∗) ≤ J(x̃),

min
x

L(x, λ) ≤ max
λ

min
x

L(x, λ) ≤ L(x∗, λ) ≤ L(x̃, λ). (9.12)

It is noteworthy that in the case of a convex problem, D(λ∗) is equal to J(x∗). Therefore, it is evident that

to obtain the minimum feasible solution, the dual problem needs to be maximized. Consequently, solving the

problem is equivalent to solving the following dual formulation

max
λ

min
x

L(x, λ). (9.13)

It is of significant interest to highlight that in optimization, specifically when dealing with convex problems,

utilizing the dual formulation can prove to be more advantageous compared to the primal formulation. This

stems from the fact that the dual problem involves only a single unknown variable, λ, while the primal

problem entails multiple unknowns. Consequently, opting for the dual formulation not only simplifies the

optimization procedure but also facilitates more efficient computations. So, if there is a large number of

variables but a few constrains it is better to opt for the dual formulation whereas if there is many constrains

and just a few variables it should stay at the primal. Therefore, in scenarios where the number of variables is

substantial while the number of constraints is relatively small, it is advisable to prefer the dual formulation.

On the other hand, if the problem exhibits a significant number of constraints but only a few variables, it is

more appropriate to adhere to the primal formulation. By considering the nature of the problem in terms of

variable-constraint proportions, the selection between the primal and dual formulations can be optimized to

enhance computational efficiency and problem-solving effectiveness.
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9.2. APPENDIX B: RESULT OBTAINED FOR A GRIPPING MECHANISM USING MMA OPTIMIZER

9.2 Appendix B: Result obtained for a gripping mechanism using

MMA optimizer

The MMA optimizer is particularly suitable for problems with a large number of design variables and

constraints. It is an iterative method that seeks to find the optimal solution by updating the design variables

based on a set of subproblems.

At each iteration, the MMA optimizer updates the design variables by solving a set of subproblems. These

subproblems involve minimizing a penalized objective function subject to the constraints, where the penalties

are adjusted based on the previous iteration’s design variables.

One of the advantages of the MMA optimizer is its ability to handle both inequality and equality constraints.

It employs a constraint aggregation technique that converts inequality constraints into a series of penalty

functions, allowing for a unified treatment of all constraints.

While the integration of the MMA optimizer was not initially included within the scope of this thesis, a series

of supplementary simulations were conducted to explore alternative perspectives of the optimization problem.

These simulations aimed not only to expedite the solution process compared to the computationally-intensive

Null Space optimizer but also to gain insights into the obtained results from different vantage points.

Thus, Figure 9.1 shows the result of a gripping mechanism simulation for a volume fraction of 0.3 and for the

design variable Density.

Figure 9.1: Result of the simulation using MMA optimizer.

It is evident that the solution obtained using the MMA optimizer exhibits notable similarities with the results

obtained using the Null Space optimizer. However, a distinct characteristic of the MMA optimizer is the

presence of significantly more holes and hinges in the obtained solution.
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