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Subspace Leakage in Conventional and
Dimensionally Spread Null-Space Communications
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Abstract—This letter evaluates the impact of subspace leakage
in conventional (single-dimension) and dimensionally spread
null-space precoding schemes. This phenomenon arises when
the null-space inference procedure lacks precision and suffers
subspace detection errors. The analysis relies on the signal-to-
interference-per-dimension ratio (SIDR) metric, which jointly
measures the transmitted power efficiency and the interference-
mitigation robustness of the adopted transmission scheme. Based
on theoretical and numerical analyses of the SIDR, this letter
provides the explicit SIDR performance gain of dimension
spreading-based null-space precoding schemes as an interference
mitigation strategy in front of conventional approaches.

Index Terms—Null-space precoding, opportunistic interference
alignment, subspace leakage, interference networks.

I. INTRODUCTION

NULL-SPACE PRECODING is a class of transmission
formats that permit mitigating –ideally avoiding– in-

terferences by steering the transmitted symbols through the
null space of other users [1–12]. The precoder design relies
on the inference of the null space, which typically involves
a subspace detection scheme on an estimated statistic; thus,
the null-space inference procedure almost surely suffers from
subspace detection errors. Specifically, some of the signal-
space dimensions used/occupied by other users are erroneously
detected as unused or available. This phenomenon, known as
subspace leakage [13], decreases the interference-mitigation
efficiency of null-space precoding techniques, inducing harm-
ful interferences on other users. Motivated by the lack of
robustness exhibited by conventional or single-dimension (SD)
null-space precoding schemes, the authors studied in [14]
a generalized approach based on dimension spreading (DS),
giving birth to a class of 𝜋-waveforms (Projection-Invariant
waveforms), that minimizes the impact of subspace leakage.

Complementing [14], this letter analyzes the critical impact
of subspace leakage on both SD and DS null-space precoding
strategies. While related works on this topic focus the analysis
on modeling the estimation errors of the statistic for sub-
space detection [1], [8] or on the pessimistic null-space swap
[15], the reported analysis relies on the so-called signal-to-
interference-per-dimension ratio (SIDR) metric. This metric,
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which was previously used by the authors in [14], measures
the ratio between the transmitted non-interfering power and
the transmitted interference power per erroneously sensed null-
space dimension or degree of freedom (DoF). Since this metric
is measured at the transmitter output, the analysis is indepen-
dent of both small-scale and large-scale fading coefficients, the
wireless network topology, and the coded-modulation formats
adopted by coexisting users. Note that, by definition, the SIDR
permits jointly evaluating the robustness of the adopted null-
space precoding scheme to the two main effects of subspace
leakage: the undesired interferences induced on non-intended
receivers and the power loss in the intended communication.

Based on the adopted framework, this letter theoretically
and numerically quantifies the impact of subspace leakage on
SD and DS null-space precoding schemes as a function of the
given operating conditions; thus, providing a general enough
framework to evaluate the worst-case operating regimes. In
particular, the derived closed-form expressions permit eval-
uating the influence of the total number of signal-space di-
mensions or DoF 𝑁 , the null-space detection inaccuracy 𝜖 ,
the detected DoF availability `, and the null-space utilization
factor ^ on the worst-case performance. Moreover, this letter
also provides the performance superiority of DS in front of
SD strategies. In this sense, it is found that the average
SIDR exhibited by DS schemes is 𝑁`𝜖 times larger than the
average SIDR of SD strategies; under worst-case conditions,
this performance gain enlarges to 𝑁`𝜖 1−𝜖

^−𝜖 , highlighting the
expected superiority of DS schemes under subspace leakage.

II. MODEL

Without loss of generality, consider the scenario depicted
in Figure 1, where a vector of 𝐾 zero-mean and unit-variance
independent symbols s ∈ C𝐾 has to be transmitted through
the channel H . To mitigate –ideally, avoid– the interference
induced on the non-intended receiver(s), a null-space pre-
coding format is employed such that the transmitted signal1

yields x = 𝚽s, where 𝚽 , [φ0, . . . ,φ𝐾−1] is the null-space
precoding matrix, satisfying the interference-free condition:

W 𝐻G𝚽 = 0, (1)

being G the interference-channel matrix and W the combining
matrix used by the non-intended receiver(s)2. (·)𝐻 denotes the

1Additional processing can be employed to deal with the intended channel
H and improve the spectral efficiency, yet omitted in this letter for simplicity.

2Despite only one non-intended receiver is depicted in Figure 1, the
extension to the case of 𝑄 non-intended receivers is implicit by defining
G , [G𝐻

1 · · ·G𝐻
𝑄
]𝐻 and W , [W𝐻

1 · · ·W𝐻
𝑄

]𝐻 , being G𝑞 the
interference-channel matrix between TX #1 and the non-intended receiver
𝑞 and W𝑞 the combining matrix at the 𝑞-th non-intended receiver.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works. DOI 10.1109/LCOMM.2023.3306432



2

Non-intended

Receiver(s)

TX #1 RX #1

G

H

Fig. 1. Generic system model for null space-based communication. The
dimensions of the channel matrices H and G are not given for the sake
of generality, as this formulation is valid for both single- and multi-antenna
scenarios under both narrowband and wideband conditions.

transpose conjugate (Hermitian) operator. Note that (1) can
be satisfied when the null-space precoding matrix 𝚽 lies in
the null space of the interference-channel matrix G, given by
N(G) , {z : Gz = 0, z ≠ 0}, which is the operating prin-
ciple of zero-forcing precoding [1–7]. A more sophisticated
strategy consists in designing the null-space precoding matrix
𝚽 to lie in the null space of the matrix Geff = W 𝐻G. The
latter is the operating principle of the so-called OIA schemes
[8–11]. Note that the former case can be seen as a particular
case of the latter; nevertheless, the OIA approach tends to
exploit a larger null space, as N(G) ⊆ N (Geff).

Either way, satisfying (1) requires TX #1 to know the
interference-channel matrix G, which can be learned through
a channel estimation scheme, and/or the combining matrix
W , which can be conveyed through feedback from the non-
intended receiver(s). Under channel reciprocity, it is also
possible to directly estimate the effective interference-channel
matrix Geff. In both cases, the considered statistic for inferring
the null space is sensitive to the time variability of the channel
and the network conditions. This sensitivity also hinders the
required feedback to convey the needed side information.

Another alternative, which is robust to the time variability
and does not rely on cooperative feedback, is to estimate the
second-order statistics of the interference that TX #1 sees from
the interference channel G. Without loss of generality3, we
consider in the sequel that the null space is inferred from the
autocorrelation matrix.

A. Generalized Null-Space Error Model

In practice, the interference autocorrelation matrix has to be
estimated from a set of measurements M = {s𝑞}0≤𝑞≤𝑄−1. The
conventional sample estimate R̂ = 1/𝑄∑

𝑞 s𝑞s
𝐻
𝑞 ∈ C𝑁×𝑁 is

a sufficient statistic for finding the signal (or null) subspace in
the least-squares sense. The magnitude 𝑁 refers to the total
number of signal-space dimensions, and it is commonly known
as degrees of freedom (DoF) [16]. It is worth noting that, in
single-antenna scenarios, the total number of complex DoF is
approximated by the time-bandwidth product, i.e., 𝑁 ≈ 𝑇𝑊 .
The use of 𝐿 > 1 antennas can increase the total number of
complex DoF to 𝑁 ≈ [𝑇𝑊 , where [ ≤ 𝐿 and the equality
holds if the 𝐿 antennas are statistically independent. As in
[14], the case 𝐿 = 1 is considered in the sequel.

3The approach based on the autocorrelation matrix adopted in this letter is
general enough for the subsequent technical discussion. If the null space is
inferred from the interference channel matrix G (or Geff), a unitary basis of
the null space can be obtained from the right-singular vectors matrix, which
corresponds to the eigenvectors’ matrix of G𝐻G (or G𝐻

effGeff).

Consider the eigendecomposition of the sample estimate
interference autocorrelation matrix R̂ = ÛD̂Û𝐻 , where
Û ∈ C𝑁×𝑁 is a unitary matrix containing the eigenvectors
and D̂ ∈ C𝑁×𝑁 is a positive semidefinite diagonal matrix
encompassing the eigenvalues sorted in non-increasing order.
The null space is spanned by the 𝑀 eigenvectors associated
with the 𝑀 least significant eigenvalues. Thus, a unitary4 basis
of the estimated null space, namely ÛN , can be obtained
by partitioning matrix Û as Û =

[
ÛS ÛN

]
, where

ÛS ∈ C𝑁×(𝑁−𝑀 ) spans the estimated signal subspace and
ÛN∈C𝑁×𝑀 constitutes a basis of the estimated null space,
which is the basis of interest for designing the precoding
matrix 𝚽, being 𝑀 the dimension of the estimated null space.

The partitioning of Û , which is known as subspace es-
timation or model order selection, is highly critical. If the
dimension of the null space 𝑀 is underestimated, TX #1
loses transmission opportunities. Although the latter incurs an
information-rate loss, it is not critical in terms of inducing
interference. Nevertheless, if 𝑀 is overestimated, TX #1 will
cause interference on the non-intended receiver(s), which is
critical in interference-limited applications.

For the purpose of characterizing the critical null-space
inference errors, let us write the unitary basis ÛN as

ÛN =
[
ŨN EN

]
, (2)

where ŨN ∈ C𝑁×(𝑀−𝑁𝐸 ) contains the correctly detected
null-space eigenvectors, whereas EN ∈ C𝑁×𝑁𝐸 models the
𝑁𝐸 signal-subspace DoF that are erroneously included in the
estimated null space. The model in (2) is transparent to TX
#1, and only employed in the sequel for the technical analysis.

B. Null Space-based Precoding

Using a basis of the estimated null space, the null-space
precoding matrix 𝚽 = [φ0, . . . ,φ𝐾−1] can be designed as

φ𝑘 = ÛNλ𝑘 =
[
ŨN EN

]
λ𝑘 , for 𝑘 = 0, . . . , 𝐾 − 1, (3)

where λ𝑘 ∈ C𝑀 is the linear combination coefficient vector
that describes each column φ𝑘 of the precoding matrix 𝚽.

Depending on how the coefficient vectors λ𝑘 , for 𝑘 =
0, . . . , 𝐾 − 1, are designed, we can essentially distinguish two
null-space precoding approaches:

1) Conventional or Single-Dimension (SD) Null-Space Pre-
coding: This approach consists in arbitrarily selecting 𝐾 null-
space eigenvectors from ÛN as a precoding matrix; thus the
coefficient vectors are given by

λSD
𝑘 = [0𝑇𝑚(𝑘)−1 1 0𝑇𝑀−𝑚(𝑘) ]𝑇 , for 𝑘 = 0, . . . , 𝐾 − 1, (4)

with 𝑚(𝑘) ∈ {1, . . . , 𝑀} \ {𝑚(0), . . . , 𝑚(𝑘 − 1)}.

4Even though this letter considers unitary null-space basis, the discussion
is still valid if TX #1 obtains a non-unitary basis spanning the null space, a
unitary basis can be obtained from its singular value decomposition, the QR
decomposition, or the canonical transformation.
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2) Dimension Spreading (DS) Approach: A more general
strategy consists in letting the vectors λ𝑘 be generic unitary
full-vectors and sequentially forcing them to be orthogonal,
i.e., λ𝐻𝑘′λ𝑘 = 0, 𝑘 ≠ 𝑘 ′, in order to fully exploit the available
DoF. In this sense, the 𝜋-waveforms found in [14] justify the
optimality of the DS approach in terms of minimum worst-
case null-space inference errors. As for in [14], the coefficient
vectors defining the 𝜋-waveforms are given by

λ𝜋𝑘 = 𝛾𝑘Û
𝐻
N

[
I𝑁 −

∑︁𝑘−1

𝑖=0
ÛNλ𝜋𝑖 (λ𝜋𝑖 )𝐻 Û𝐻

N
]
e𝑛(𝑘) , (5)

where 𝛾𝑘 is scaling factor such that ‖λ𝜋𝑘 ‖ = 1, being ‖ · ‖
the vector 𝐿2-norm, and e𝑛(𝑘) = [0𝑇

𝑛(𝑘)−1 1 0𝑇
𝑁−𝑛(𝑘) ]𝑇 , with

𝑛(𝑘) ∈ {1, . . . , 𝑁}, where the position 𝑛(𝑘) of the non-zero
entry is chosen to satisfy the minimum worst-case interference
criterion and corresponds to the index of the minimum diago-
nal element of P̂𝑘 = ÛNÛ𝐻

N
[
I𝑁 −∑𝑘−1

𝑖=0 ÛNλ𝜋𝑖 (λ𝜋𝑖 )𝐻 Û𝐻
N
]
,

that is, the projector onto a subset of the estimated null space.
This generalized approach spreads each transmitted sym-

bol within all 𝑀 dimensions of the estimated null space
while keeping the orthogonality between the columns of 𝚽,
thus denoted as Dimension Spreading (DS). This spreading,
which reduces the induced (average) interference level per
dimension, does not imply losing effective dimensions as each
𝜋-waveform is rank-one. Thus, the DS approach keeps the
achieved efficiency by SD solutions in asynchronous scenarios.

III. SIGNAL-TO-INTERFERENCE-PER-DIMENSION RATIO
(SIDR) ANALYSIS

This section compares the interference mitigation capability
of both null-space precoding approaches described in Section
II. For this purpose, we define the Signal-to-Interference-per-
Dimension Ratio (SIDR) metric as

SIDR,
𝑆𝑇 − 𝐼𝑇
𝐼DoF

=
1
𝑁

∑𝐾−1
𝑘=0 ‖φ𝑘 ‖2 − 1

𝑁

∑𝐾−1
𝑘=0

E𝐻
Nφ𝑘

2

𝐼DoF
, (6)

where 𝑆𝑇 , 𝐼𝑇 , and 𝐼DoF refer to the total time-average transmit-
ted power, the total time-average induced interference level,
and the time-average induced interference level per erro-
neously identified dimension, respectively. Since (6) measures
the ratio between the non-interfering transmitted power and the
interference level per dimension, the SIDR quantifies not only
the robustness to subspace leakage exhibited by a transmission
scheme but also the power or energy efficiency, in the sense
that the SIDR indicates the ratio between the total useful power
and power lost per wrongly identified dimension.

Assuming 𝚽𝐻𝚽 = I𝐾 without loss of generality, 𝑆𝑇 =
𝐾/𝑁 . The magnitudes 𝐼𝑇 and 𝐼DoF depend on the considered
null-space precoding approach and are studied in the sequel.

A. Conventional or Single-Dimension Null-Space Precoding

The precoding matrix 𝚽 under the SD approach is a column
subset of the basis of the estimated null space.

Accordingly, since each column of matrix 𝚽 spans the same
dimension as the corresponding column of ÛN , we have that
𝐼SD
𝑇 = 𝐼SD

DoF. Particularizing 𝐼𝑇 in (6), 𝐼SD
𝑇 reads as

𝐼SD
𝑇 =

1
𝑁

∑︁𝐾−1

𝑘=0
‖φ𝑘 ‖21𝑘 , (7)

where 1𝑘 is the conventional indicator function, that is, 1𝑘 = 1
if φ𝑘 ∈ 〈EN〉; otherwise, 1𝑘 = 0.

Note that the choice in 1𝑘 depends on the column selection,
which is typically arbitrary. To remove the column selection
uncertainty, recall that the mathematical expectation of 1𝑘 is
𝑁𝐸/𝑀 , which leads to an average SIDR of

SIDRavg
SD =

𝐾/𝑁 − 𝐾/𝑁 · 𝑁𝐸/𝑀
𝐾/𝑁 · 𝑁𝐸/𝑀 =

1 − 𝜖
𝜖

, (8)

which is independent of the number of exploited null-space
dimensions 𝐾 and only depends on the null-space detection
inaccuracy 𝜖 , 𝑁𝐸/𝑀 .

Even though (8) provides the average performance of SD
in terms of SIDR, we shall now discuss the worst-case SIDR
achievable by SD schemes. To this end, we have to assume that
𝑁𝐸 ≤ 𝐾 ≤ 𝑀 , implying that at least all the 𝑁𝐸 erroneously
identified null-space dimensions are selected for transmission.
Under these conditions, we note that the time-average induced
interference level equals 𝐼SD

𝑇 ,worst-case = 𝑁𝐸/𝑁 , leading to an
achievable SIDR of

SIDRworst-case
SD =

𝐾/𝑁 − 𝑁𝐸/𝑁
𝑁𝐸/𝑁 =

^ − 𝜖
𝜖

, (9)

which is only valid for 𝑁𝐸 ≤ 𝐾 ≤ 𝑀 . Note that (9)
depends on the fraction of exploited null-space dimensions
^ , 𝐾/𝑀 , which emphasizes the lack of robustness to null-
space inference errors exhibited by SD schemes.

B. Dimension Spreading-based Null-Space Precoding

In the DS scheme case, we will focus on the 𝜋-waveforms
approach. As per [14], the DS-based precoding scheme sat-
isfies a minimum worst-case induced interference criterion;
thus, the SIDR achievable by the 𝜋-waveforms approach
corresponds to the worst-case SIDR. Moreover, thanks to the
dimension-spreading property, we have that 𝐼 𝜋DoF = 𝐼 𝜋𝑇 /𝑁𝐸 ,
where 𝑁𝐸 is a consequence of spreading the interference over
all erroneously inferred null-space dimensions.

As studied in Appendix, the total time-average induced
interference level for the 𝜋-waveforms case is given by

𝐼 𝜋𝑇 =
1
𝑁

𝐾−1∑︁
𝑘=0

e𝑇
𝑛(𝑘)P̂Ee𝑛(𝑘) + 𝛿𝑘
e𝑇
𝑛(𝑘)P̂0e𝑛(𝑘) + b𝑘

, (10)

where P̂0 = ÛNÛ𝐻
N is the orthogonal projector onto the

inferred null space 〈ÛN〉, P̂E = ENE𝐻
N is the orthogonal

projector onto the erroneous null space 〈EN〉, and 𝛿𝑘 and
b𝑘 are second-order terms containing combinations of off-
diagonal elements of projectors P̂0 and/or P̂E .

Even though it is not possible to derive a closed-form
expression for 𝐼 𝜋𝑇 , this quantity can be asymptotically char-
acterized. When 𝑁 is sufficiently large and 𝑀 � 1, off-
diagonal elements of spectral projectors become irrelevant in
comparison with diagonal elements [17]. Thus, under these
conditions, 𝛿𝑘 , b𝑘 → 0 leading to

𝐼 𝜋𝑇 ≈ 1
𝑁

𝐾−1∑︁
𝑘=0

e𝑇𝑛(𝑘)P̂Ee𝑛(𝑘)
(
e𝑇𝑛(𝑘)P̂0e𝑛(𝑘)

)−1
. (11)
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Fig. 2. Empirical complementary CDF of the SIDR exhibited by SD for
different 𝜖 and ^ evaluated over 106 Monte Carlo runs.

Note that (11) depends only on diagonal elements of projectors
P̂0 and P̂E . Under wide sense stationary (WSS) conditions,
when 𝑁 is sufficiently large, a consequence of the Szegö’s
Theorem [18] states that the eigenvectors’ matrix of any
𝑁 × 𝑁 autocorrelation matrix converge to the normalized
𝑁-size Fourier matrix, implying that P̂0 and P̂E will have
constant diagonal elements given by e𝑇

𝑛(𝑘)P̂Ee𝑛(𝑘) = 𝑁𝐸/𝑁
and e𝑇

𝑛(𝑘)P̂0e𝑛(𝑘) = 𝑀/𝑁 . Consequently, the worst-case
SIDR for the 𝜋-waveforms approach equals its average SIDR
performance and can be approximated by

SIDRworst-case
DS = SIDRavg

DS ≈
𝐾 − 𝐾 𝑁𝐸/𝑁

𝑀/𝑁
1
𝑁𝐸
𝐾 𝑁𝐸/𝑁
𝑀/𝑁

= 𝑁` (1 − 𝜖) , (12)

which depends on the total number of system DoF 𝑁 , the
relative dimension of the estimated null space ` , 𝑀/𝑁 , and
the null-space detection inaccuracy 𝜖 .

IV. NUMERICAL ANALYSIS AND DISCUSSION

This section provides a simulation study of the SIDR metric
exhibited by both SD and DS approaches discussed so far.

The SIDR performance of SD schemes (4) depends on the
arbitrariness of the considered column selection criterion. In
order to illustrate the performance from a general viewpoint,
the complementary cumulative distribution function (CDF) has
been empirically evaluated in Figure 2. In this simulation,
we have considered different null-space detection inaccura-
cies 𝜖 = {0.1, 0.25, 0.5} and different null-space exploitation
levels ^ = {0.25, 0.5, 0.75}. Even though different numbers
of total signal-space dimensions or DoF 𝑁 and different
relative dimensionality of the null-space ` have been tested,
no significant differences were observed. As predicted by
(8), the parameter 𝜖 introduces a worsening in the average
performance. Concerning the parameter ^, which somehow
controls the achievable information rate, as it increases the
achievable SIDR converges to the average behavior.

The worst case discussed in Section III-A, which implies
that 𝐾 ≥ 𝑁𝐸 and that the 𝑁𝐸 erroneous dimensions are
exploited for transmission, is evaluated in Figure 3. The
numerical evaluation confirms that the average SIDR is inde-
pendent of the null-space exploitation level ^, and that, under
worst-case conditions, the null space must be fully exploited
to achieve the average performance.
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a function of ^ for different 𝜖 .
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and DS approaches for 𝑁 = 210 and different values of 𝜖 .

Since the SIDR of the DS-based null-space precoding does
not depend on any arbitrary criteria as all dimensions of
the estimated null space are optimally combined to minimize
the interference induced by null-space inference errors, we
compare in Figures 4 and 5 the simulated and theoretical SIDR
exhibited by SD and 𝜋-waveforms schemes as a function of
𝜖 and `, respectively. Note that the 𝜋-waveforms approach,
which provides the minimum worst-case induced interferences
in the DS case, clearly outperforms SD schemes in terms of
SIDR. In fact, it follows from (8) and (12) that

SIDRavg
SD

SIDRavg
DS

=
1
𝑁`𝜖

. (13)

Since 𝑁`𝜖 = 𝑁𝐸 , this factor can be seen as a performance gain
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e𝑇𝑛(𝑘)P̂𝑘P̂EP̂𝑘e𝑛(𝑘) = e𝑇𝑛(𝑘)P̂0

(
I𝑁−

∑︁𝑘−1

𝑖=0
φ𝜋𝑖 (φ𝜋𝑖 )𝐻

)
P̂EP̂0

(
I𝑁−

∑︁𝑘−1

𝑖=0
φ𝜋𝑖 (φ𝜋𝑖 )𝐻

)
e𝑛(𝑘)

= e𝑇𝑛(𝑘)P̂0P̂EP̂0e𝑛(𝑘)−2e𝑇𝑛(𝑘)P̂0P̂EP̂0
∑︁𝑘−1

𝑖=0
φ𝜋𝑖 (φ𝜋𝑖 )𝐻e𝑛(𝑘) + e𝑇𝑛(𝑘)P̂0

∑︁𝑘−1

𝑖=0
φ𝜋𝑖 (φ𝜋𝑖 )𝐻 P̂EP̂0

∑︁𝑘−1

𝑖=0
φ𝜋𝑖 (φ𝜋𝑖 )𝐻e𝑛(𝑘) (16)

in terms of SIDR introduced by spreading the interferences
over all wrongly inferred null-space dimensions. Moreover, as
we can see in Figure 5, this term provides the 𝜋-waveforms
with robustness to subspace leakage, minimizing the impact
of null-space detection errors. Comparing now (9) and (12),
we have that

SIDRworst-case
SD

SIDRworst-case
DS

=
1
𝑁`𝜖

^ − 𝜖
1 − 𝜖 , (14)

which further remarks the robustness of DS schemes under the
same worst-case conditions. Actually, as depicted in Figure 5
for a fixed 𝜖 , the average SIDR achievable by SD schemes
lower-bounds the worst-case SIDR exhibited by DS.

As a final discussion, in the multi-antenna case, the au-
tocorrelation matrix is block-Toeplitz under WSS conditions.
Thus, an extension of the Szegö’s Theorem for block-Toeplitz
matrices [19] confirms that the derived expressions are still
valid with the particularity that 𝑁 ≈ 𝑇𝑊 should be replaced by
𝑁 ≈ [𝑇𝑊 , being [ the number of active or effective antennas.

V. CONCLUSION

This letter has studied the impact of subspace leakage on
two families of null-space precoding schemes through the
SIDR metric. We have derived theoretical expressions to assess
the impact of different model parameters on the average and
worst-case SIDR exhibited by SD and DS null-space precoding
schemes. Supported by numerical results, the letter has also
provided the explicit SIDR performance gain of DS in front of
SD schemes as an interference mitigation strategy. The latter
emphasizes the potential interest in considering DS-based null-
space approaches in practical scenarios sensitive to null-space
inference errors and/or with low-rate feedback requirements.

APPENDIX

Recalling the definition of P̂𝑘 in Section II-B and plug-
ging (5) into (3), note that φ𝜋𝑘 = 𝛾𝑘P̂𝑘e𝑛(𝑘) , with 𝛾𝑘 =
(e𝑇
𝑛(𝑘)P̂𝑘e𝑛(𝑘) )−1/2. Then, particularizing 𝐼T in (6), 𝐼 𝜋T yields

𝐼 𝜋T =
1
𝑁

∑︁𝐾−1

𝑘=0
e𝑇𝑛(𝑘)P̂𝑘P̂EP̂𝑘e𝑛(𝑘)

(
e𝑇𝑛(𝑘)P̂𝑘e𝑛(𝑘)

)−1
. (15)

Using the definition of P̂𝑘 in the numerator, it reads as in
(16) on the top of the page. In the second line of (16),
since 〈P̂E〉 ⊂ 〈P̂0〉 we have that e𝑇

𝑛(𝑘)P̂0P̂EP̂0e𝑛(𝑘) =

e𝑇
𝑛(𝑘)P̂Ee𝑛(𝑘) , that is, the 𝑘-th diagonal element of the

projector P̂E . The remaining terms in (16) combine off-
diagonal elements of projectors P̂0 and P̂E , constituting
the second-order term 𝛿𝑘 . The denominator in (15) can
be written as e𝑇

𝑛(𝑘)P̂0e𝑛(𝑘)−e𝑇𝑛(𝑘)
∑𝑘−1
𝑖=0 φ𝜋𝑖 (φ𝜋𝑖 )𝐻e𝑛(𝑘) =

e𝑇
𝑛(𝑘)P̂0e𝑛(𝑘)−b𝑘 , where the first term is the 𝑘-th diagonal

element of P̂0, and b𝑘 is a second-order term combining off-
diagonal elements of P̂0.
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