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Abstract
Recent studies have pointed out the intrinsic dependence of figures of merit of thermodynamic
relevance—such as work, heat and entropy production—on the amount of quantum coherences
that is made available to a system. However, whether coherences hinder or enhance the value taken
by such quantifiers of thermodynamic performance is yet to be ascertained. We show that, when
considering entropy production generated in a process taking a finite-size bipartite quantum
system out of equilibrium through local non-unitary channels, no general monotonicity
relationship exists between the entropy production and degree of quantum coherence in the state
of the system. A direct correspondence between such quantities can be retrieved when considering
specific forms of open-system dynamics applied to suitably chosen initial states. Our results call for
a systematic study of the role of genuine quantum features in the non-equilibrium
thermodynamics of quantum processes.

1. Introduction

The growing interest towards quantum technologies has fostered a variety of different theoretical
considerations aiming at assessing the potential advantages of quantum resources with respect to classical
ones. Some of them fall into the domain of quantum thermodynamics, which provides a framework to
explore the validity of thermodynamics laws in the quantum regime, not only at a fundamental level, but also
in terms of their technological applications [1–4].

In this respect, this theoretical effort comes up against the impossibility of modelling quantum systems as
perfectly closed and isolated from their surroundings. Therefore, the theory of open quantum systems
appears to be a natural candidate to model and interpret a number of quantum thermodynamics problems
[5–7]. For instance, a long-standing problem is how to state and consistently interpret the second law of
thermodynamics in the quantum domain. While moving within the weak-coupling and memoryless
description of the dynamics, i.e. the so-called Born-Markov approximation, one can restate the second law of
thermodynamics by resorting to the formalism offered by the theory of open quantum systems. The
situation becomes more problematic in those regimes in which the Born-Markov approximation breaks
down, leading to memory or strong coupling effects [8–11]: even the definitions of work and heat need to be
carefully discussed.

Beside the Clausius and Kelvin-Planck’s statements, the second law of thermodynamics can be
formulated in terms of entropy, or, in non-equilibrium scenarios, in terms of entropy production rate, the
latter accounting for the rate with which the entropy is intrinsically produced by the physical processes taking
place within the system [12]. One can indeed show that, for classical systems, this quantity always needs to be
non-negative [13]. Upon a suitable identification of heat and work, this fundamental result can be recovered
in the quantum regime, provided that one considers the standard Born-Markov scenario, as first rigorously
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shown by Spohn [14]. In contrast, if the system’s dynamics is resolved on a timescale such that
non-Markovian effects cannot be completely washed out, there might be time intervals in which the entropy
production rate gets negative values [15–19]. As counter-intuitive as it might seem at first glance, this
occurrence can be framed in the picture of non-Markovianity as backflow of information: in the usual
system-environment scenario, the system can partially recover the information that was previously lost due
to its interaction with a much larger environment [20–22].

Entropy production plays a crucial role both in the classical and quantum domains: it is a crucial factor
in the determination of the efficiency of a thermal engine and, therefore, its minimisation is desirable to get
closer to the ideal Carnot bound. It is endowed with fundamental relevance, as it captures some of the
features witnessing the irreversibilty of physical phenomena. These aspects are particularly relevant in the
quantum domain, where great effort has been put into modelling, studying, and designing efficient engines,
whereas a general and consistent theory of entropy production would also contribute to a more quantitative
understanding of irreversibility, as embedded in the open quantum systems formalism [12, 23–25].

Given a standard open system scenario, how does the initial preparation of the system affect the entropy
production rate? There are indeed different ways to tackle this multifaceted issue. For instance, one can assess
the role of classical and/or non-classical correlations, either limited to those created within a composite
system, or those shared between the system and the environment. Specifically, in [26] some numerical and
analytical evidence has been gathered to prove that, whenever one considers bipartite systems, the initial
entanglement shared by the two subparties play a relevant role in the entropy production rate: the maximum
of the entropy production rate is algebraically dependent on the entanglement one inputs. Those results,
obtained both for Markovian and non-Markovian evolutions, are derived by considering Gaussian states
undergoing a Gaussian dynamics. Under these assumptions, one can always associate a well-defined
probability distribution over the phase space [27, 28]. This remarkable advantage carries over to the
thermodynamics of open systems—an analysis of the entropy production in terms of Wigner or,
equivalently, Rényi-2 entropies is indeed suitable to the study of this scenario [29]. The analysis of harmonic
systems in terms of the Wigner entropy production replaces the one based on the usual von-Neumann
relative entropy. One can thus also study the case of a zero-temperature thermal bath, where one observes the
so-called zero-temperature catastrophe: in such a case, the reservoir being in a pure state, the von-Neumann
relative entropy would diverge [30, 31]. This is just an inconsistency of the theory, as the zero-temperature
limit can be achieved in quantum optics settings, where the dynamical equations correctly reproduce
experimental data [32, 33]. However, a phase-space description of the quantum dynamics is not limited to
continuous variables systems; it can indeed be extended to spin systems, where, in order to obtain a
mathematically consistent theory, the Wigner function and entropy need to be replaced by the Husimi-Q
function and Wehrl entropy, respectively [34–37].

In this work, we employ a special class of states for which a space-phase description is available, namely
spin coherent states [38]. Specifically, we refer to the spin-space-phase entropy production framework put
forth in [39], which can be used to study the irreversibility of the Lindbladian dynamics undergone by spin
systems.

In this work, we give one more contribution to assess the role played by quantum coherence in
determining relevant thermodynamic quantities [40], such as entropy production. For example, in [41], it
has been shown that—for open systems undergoing a Lindbladian dynamics—a mathematical bound to the
entropy production can be found, giving a formal justification to the evidence that quantum coherence
induces additional dissipation compared to classical protocols. Coherence represents an essential resource for
quantum processes, setting classical and quantum phenomena apart [42]; in the context of quantum
thermodynamics, the aim is essentially to ascertain whether it is either resourceful or detrimental to certain
thermodynamic tasks. In particular, when dealing with nonequilibrium processes, coherence contributions
need to be included to extend fluctuations relations in the quantum domain [43–45]. Recently, in [46, 47], a
protocol has been introduced to experimentally quantify the contribution to nonequilibrium entropy
production stemming from the degree of quantum coherence contained in the initial state. The latter follows
from the possibility to separate, under rather general conditions, the overall entropy production rate into two
distinct contributions, one of which, directly related to coherence, is genuinely quantum [48]. In particular,
we will focus on the case of the so-called Davies-Lindblad dynamical maps, where the splitting between
classical and quantum contributions to the entropy production rate mirrors a similar separation at the level
of the dynamical equations. It is indeed known that the evolution of the populations is governed by a
classical Pauli master equation, whereas coherences obey a separate set of differential equations [5].

Our work is meant to corroborate this statement regarding the nature of the entropy production rate
with a systematic study of the interplay between the latter and quantum coherence. By considering relevant
examples of dynamical maps, i.e. dephasing and amplitude damping channels, we systematically assess how
different preparations of the initial state, namely different values of the initial coherence, affect the resulting
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spin-phase entropy production rate. More specifically, in similar spirit to the work reported in [26], we will
choose the case of a bipartite system, where the interaction between the two parts is always assumed to be
null. Such a bipartite structure might also be useful to discuss the role played by non-classical correlations
shared by the two parties of the system. More generally, we deliberately discard those elements that would
alter the transparency of the message that we would like to deliver, such as correlations dynamically created
by the process, as well as those shared by the system and the environment, or finite-bath effects [17, 49, 50].

The remainder of this paper is organised as follows. In section 2 we present the apparatus used to
quantify entropy production through a phase-space formalism. Section 3 addresses the quantification of
entropy production in a compound of two two-level systems exposed to bipartite quantum channels,
specifically an amplitude damping and a dephasing.

2. Coherent states andWehrl entropy

Let us consider the case of a single system, described in terms of the spin operators Jx, Jy and Jz, satisfying the
usual algebra [Jx, Jy] = iJz (we assume units such that ℏ= 1 throughout the paper). A coherent spin state is
defined as [38, 51, 52]

|Ω⟩= e−iϕJze−iθJy |J, J⟩ , (1)

where |J, J⟩ is the angular momentum state with the largest quantum number of Jz, while (ϕ,θ) are the Euler
angles. Given that a spin coherent state represents the closest quantum analog of a point in a sphere of radius
J, we can easily explain the rationale behind the definition above. Bearing in mind the role played by Euler
angles in the theory of rotations, equation (1) can be interpreted as follows: in order to reach an arbitrary
point on a unit sphere, we start with the z axis, then we perform a rotation around the y axis by an angle θ,
then a second one around z by ϕ. A straightforward calculation corroborates this analogy: one can easily
show that

(
⟨Jx⟩,⟨Jy⟩,⟨Jz⟩

)
= (Jcosϕ sinθ, J sinϕ sinθ, Jcosθ), where ⟨·⟩ ≡ ⟨Ω| · |Ω⟩, so that the expectation

values of the spin operators ⟨Jk⟩ (k= x,y,z) embody the coordinates of a point on the surface of a sphere of
radius J. From equation (1), we define the Husimi-Q function

Q(Ω)≡ ⟨Ω|ρ |Ω⟩ , (2)

where ρ is the density operator describing the system state. Let us assume that the system dynamics is
governed by the master equation

ρ̇=−i[H,ρ] +D(ρ), (3)

where H is the system Hamiltonian, while D(ρ) is the dissipator associated with the open dynamics, possibly
in Lindblad form [5, 53–55]. By using the Husimi-Q function, equation (3) in replaced by a Fokker-Planck
equation forQ, which reads as

∂tQ= U(Q)+D(Q), (4)

where U(Q) describes the unitary part of the evolution, whileD(Q) represents the dissipative part. Given a
master equation in the rather general form of equation (3), one can remap it in the form of equation (4) just
using a set of correspondence rules listed in appendix A.

The Husimi-Q function features the property of being positive-definite; the latter makes the definition of
the Wehrl entropy well-posed [36, 37]:

SQ =−
(
2J+ 1

4π

)2ˆ
dΩQ(Ω) lnQ(Ω), (5)

where the numerical prefactor is chosen for convenience, taking into account that in this work we will deal
with bipartite systems. Unlike von Neumann and Wigner entropies, the Wehrl entropy does not represent a
measure of the purity of the state; it is instead directly related to the uncertainty area of the Husimi function
in the phase-space [56, 57]. This different interpretation is also related to yet another property of the Wehrl
entropy: the latter, unlike the von Neumann entropy, is not invariant under unitary transformations [37].

If we take the time derivative of equation (5), together with the normalisation condition, and
equation (4), we obtain

dSQ
dt

∣∣∣∣
diss

=−
(
2J+ 1

4π

)2ˆ
dΩD(Q) lnQ, (6)
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where we consider the contribution coming from the dissipative part only. The aim is now to rewrite the
latter in the Prigogine form [12, 13, 58]:

dSQ
dt

∣∣∣∣
diss

=Π(t)−Φ(t), (7)

where we separate the entropy flux rate Φ(t) from the entropy intrinsically produced by the process, i.e. the
entropy production rate Π(t). Note that, working in the Born-Markov approximation leading to a Lindblad
master equation, one has Π⩾ 0, as required by the second law of thermodynamics. On the contrary, Φ can
be either positive or negative, meaning that there might be instances in which the overall entropy decreases.

3. Entropy production rate

In this work, we would like to study the entropy production rate in bipartite systems described in terms of
spin coherent states. We thus need to consider a specific kind of dynamics for our system: we will first
consider the case of dephasing channels, then we will also consider the physical situation in which
termalisation occurs, i.e. amplitude damping channels [59].

3.1. Dephasing channels
The first type of dynamics we would like to consider is represented by dephasing channels. We could, in
principle, start from a microscopic modelling of the system-environment interaction. For example, one
possibility would be to consider specific system-environment coupling in a spin-boson model so that the
Hamiltonian exhibits an explicit symmetry [5, 60]. In this case, because of the lack of a direct exchange of
energy between the system and the bosonic bath, one would anticipate a trivial thermodynamic behaviour.
However, this is not the case, as even pure decoherence processes features rich physics, as acknowledged
in [61]. Differently, if we restrict ourselves to the case of qubits, the same purely dephasing dynamics can
emerge from a different ab-initio derivation, e.g. the so-called shallow-pocket model [62–64], where the
open system is represented by the two polarisation degrees of freedom of a photon, while the environment is
identified with the frequency degrees of freedom. Since in such a model the environment is often assumed to
be in a pure state, an analysis in terms of von-Neumann entropy would be inconsistent.

However, regardless of the physical origin of the pure dephasing process, we will start directly from a
given dissipator. In other words, for a bipartite system made of two non-interacting systems, the dissipator
reads as

D(ρ) = Da(ρ)+Db(ρ) =−λa

2
[Jaz , [J

a
z ,ρ]]−

λb

2

[
Jbz ,

[
Jbz ,ρ

]]
, (8)

where Jaz = Jz ⊗1b and Jbz = 1a ⊗ Jz, where 1a and 1b are the identity operators defined over the Hilbert
spacesHa andHb, associated with the first and the second spin, respectively. Working along the same lines as
in [39], the phase-space operator correspondences given in appendix A yield the following phase-space
dissipator

D(Q) =−λa

2
J a
z (J a

z (Q))− λb

2
J b
z

(
J b
z (Q)

)
, (9)

where J j
z (Q) =−i∂ϕjQ ( j= a,b). By plugging equation (9) into equation (6), after integrating by parts, and

assuming that the integrand decreases sufficiently fast outside the integration volume, we can eventually
identify the expression of the entropy production rate, i.e.

Π≡ dS

dt

∣∣∣∣
diss

=Πa +Πb, (10)

where

Πj ≡
λj

2

(
2J+ 1

4π

)2ˆ
dΩ

∣∣∣J j
z (Q)

∣∣∣2
Q

, j= a,b. (11)

Since the two spin systems dissipate independently, equations (10) and (11) yield a similar expression for the
entropy production rate to the single channel case, given in [39], while correlations are encoded in the
Husimi-Q functionQ and in the integration volume dΩ= sinθa sinθbdθadθbdϕadϕb.

4
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3.2. Amplitude damping channels
Let us consider a more physical scenario, where the system-environment coupling leads the open system to
thermalisation. Under the usual weak coupling assumption, one expects that the undriven composite system
would relax towards the canonical Gibbs state given by ρeq = e−βHS/Z , where Z = Tre−βHS is the partition
function of the system, and HS is its free Hamiltonian [5, 65]. For instance, one can consider the case of an
amplitude damping dynamics, where the dynamical process adjusts the populations to values dictated by the
bath, while involving the incoherent excitations exchange between the system and the environment. The
latter can be microscopically derived assuming a standard weak-coupling and memoryless scenario of a spin
system interacting with a thermal bosonic reservoir, a scenario similar to the one yielding the standard
quantum optical master equation for a two-level system [5, 66].

In our study, we consider the case of two independent amplitude damping channels, where the dissipator
of the composite system reads as

D(ρ) = Da(ρ)+Db(ρ), (12)

with

Dj(ρ) = Γj

(
n̄j + 1

)[
J j−ρJ

j
+ − 1

2

{
J j+J

j
−,ρ

}]
+Γjn̄j

[
J j+ρJ

j
− − 1

2

{
J j−J

j
+,ρ

}]
, (13)

where j= a,b, while Γj and n̄j represent the damping rate and the average number of excitations of the local
reservoir, respectively. In addition, the raising/lowering spin operators for each of the two subsystems are
given by Ja± = J± ⊗1b and Jb± = 1a ⊗ J±, where J± ≡ Jx ± iJy. Alternatively, the dissipators can be brought to
the following form:

Dj(ρ) =
Γj

2

{[
J j−fj(ρ)

]
−
[
J j+, f

†
j (ρ)

]}
, (14)

where

fj(ρ) =
(
n̄j + 1

)
ρJ j+ − n̄jJ

j
+ρ. (15)

The phase-space representation of this dissipator is given by

D(Q) =Da(Q)+Db(Q), (16)

where

Dj(Q) =
Γj

2

{
J j
−

(
fj(Q)

)
−J j

+

(
f∗j (Q)

)}
, (17)

and

fj(Q) =
1

2

[
2JQ−J j

z (Q)
]
eiϕj sinθj +

1

2

[
cosθj −

(
2n̄j + 1

)]
J j
+(Q). (18)

Integration by parts of equation (6), leads to

dS

dt

∣∣∣∣
diss

=

(
2J+ 1

4π

)2 ∑
j=a,b

Γj

2

ˆ Fj(Q)

Q
dΩ (19)

with Fj(Q) = fj(Q)J j
− (Q)− f∗j (Q)J j

+ (Q). Since the operators of the two sub-(phase)-spaces do not mix,
we can split the two contributions in a similar way as in the case of a single channel, provided that the
Husimi functionQ and the integration measure dΩ refers to the whole composite system. Therefore, we can
resort to the splitting introduced in [39], where, following standard thermodynamic arguments, the entropy
production and the flux rates should be even and odd functions of the relevant currents, respectively.

5
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Extending the results presented in [39] to a bipartite spin system, on one hand we get the following
expression for the entropy production rate

Π=Πa +Πb, (20)

where

Πj =

(
2J+ 1
4π

)2

×
[
Γj

2

ˆ
dΩ
Q

{{
2JQ sinθj + [cosθj −

(
2n̄j + 1

)
]∂θjQ

}2(
2n̄j + 1

)
− cosθj

+
∣∣∣J j

z (Q)
∣∣∣2 [(2n̄j + 1)cosθj − 1

] cosθj

sin2 θj

}]
,

(21)

on the other hand, we identify the expression for the entropy flux rate, with witch each subsystem is
exchanging entropy with its local thermal bath, as Φ= Φa +Φb, where

Φj =
J(2J+1)2Γj

16π2

ˆ
dΩ

{
2JQ sin2 θj

(2n̄j + 1)−cosθj
− sinθj∂θjQ

}
,

with j= a,b. Similarly to the case of a single spin system [39], the phase-space expression of the entropy
production rate—equation (21) – essentially contains two contribution: one proportional to the dephasing

currents
∣∣∣J j

z (Q)
∣∣∣2, thus capturing the loss of coherence, the other related to the amplitude damping.

4. Analysis and results

Given the closed expression for the entropy production rate for both for the dephasing and amplitude
damping channels, now we can discuss in depth the influence of the initial coherence on the entropy
production rate. Let us suppose that at t= 0 the composite system’s density operator reads as ρ= ξ+χ,
where ξ is the diagonal part containing populations, whereas χ containing coherences. This splitting allows
us to compute the initial coherence in terms of the l1-norm C(ρ)≡

∑
i,j |χij| [67]. Moreover, for each

channel we can regroup coherences in different classes: the elements belonging to a given class obey the same
dynamical laws.

4.1. Two qubits: dephasing channels
Let us consider the case of two independent dephasing baths. We have Jaz ≡ σa

z/2 and Jbz ≡ σb
z/2, therefore the

dissipator equation (8) reads as

D(ρ) =−λ

8

(
[σa

z , [σ
a
z ,ρ]] +

[
σb
z ,
[
σb
z ,ρ

]])
, (22)

where we have assumed that the dephasing rate is equal for the two channels, i.e. λa = λb ≡ λ.
Let us denote as {|0⟩j , |1⟩j} the basis in each two-dimensional Hilbert spaceHj, with j= a,b. We can thus

work in the computational basis |mn⟩ ≡ |m⟩a ⊗ |n⟩b, wherem,n ∈ {0,1}. In order to clarify our notation, we
state explicitly the form of the general density matrix that we will be considering

ρ=


ρ11 ρ12 ρ13 ρ14
ρ∗12 ρ22 ρ23 ρ24
ρ∗13 ρ∗23 ρ33 ρ34
ρ∗14 ρ∗24 ρ∗34 ρ44

 (23)

with ρ44 = 1−
∑3

i=1 ρii to ensure normalization. We can then analytically solve the equation of motion
ρ̇= D(ρ) in the interaction picture with respect to the free Hamiltonian of the two-qubit system. For the
diagonal entries, we have

6



New J. Phys. 25 (2023) 013030 G Zicari et al

Figure 1. Comparison in terms of entropy production rate between X-state (solid line) and non X-states (dash-dotted line) for a
given value of coherence. The former is generated by preparing the system in an initial state such that α ̸= 0 and β= 0 in
equation (27), while the latter is characterised by α= 0 and β ̸= 0. The system, given by two uncoupled qubits, undergoes a
purely dephasing dynamics described by equation (22). We choose α and β such that the two initial states are characterised by the
same value of coherence, i.e. C(ρ) = 0.14 in the numerical simulation.

ρii(t) = ρii(0) (i= 1,2,3,4). (24)

For the anti-diagonal entries ρ14,ρ23 and their conjugate, we have instead

ρij(t) = ρij(0)e
−λt (i+ j= 5), (25)

while the remaining entries behave as

ρij(t) = ρij(0)e
−λ

2 t. (26)

It is indeed understood that purely dephasing dynamics leaves the populations of the two qubits
unchanged, while it modifies their coherences. This immediate integration of the equation of motion leads
us to distinguish two different classes of coherences, each of them obeying to a given dynamical law. In this
spirit, we express the density matrix of the two-qubit system in the following form

ρ=


ρ11 β β α
β ρ22 α β
β α ρ33 β
α β β ρ44

 , (27)

where we can either have the so-called X-states [68] when α ̸= 0 and β= 0, or non X-states when α= 0 and
β ̸= 0. In the former case, the local states of each qubit are diagonal density operators that depend only on
the diagonal entries of equation (27). This implies that—in the absence of any quantum coherence—the
local states of the qubits would remain stationary throughout the dynamics. In turn, this implies that in the
case of α ̸= 0, entropy production stems solely from the coherences in their global state. Each class of
coherence enter in a different way in the formula for the entropy production rate, whence the evidence we
can gather from figure 1: for a given value of coherence (in the numerical simulation we take C(ρ) = 0.14),
we obtain different curves for the entropy production rate, depending on the specific class of coherences we
are assuming to be non-zero. It is worth emphasising that, given a certain initial state, the details of each
curve Π=Π(t) are ultimately determined by the dynamics—cf equations (25) and (26). It is indeed clear
that the off-diagonal terms decrease exponentially towards zero with different rates, hence curves
corresponding to different classes can intersect at t> 0, like in the case featured in figure 1.

In order to study the role of initial coherence, one can prepare the composite system in one of the
aforementioned classes and see what happens to the entropy production rate. In the following cases, we
construct the density matrix by setting ρii = ξi/

∑
i ξi, where ξi (i= 1,2,3,4) is randomly chosen from the

uniform distribution defined over the interval [0,1]. The latter condition ensures the proper normalisation of
the density operator, i.e. Trρ= 1.

Let us prepare the system in an X-state, and let it evolve according to a purely dephasing dynamics given
by equation (22). It is immediate to quantify the initial coherence as Cα(ρ) = 4|α|. For our numerical

7
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Figure 2. Entropy production rate as a function of time for a system of two uncoupled qubits undergoing a purely dephasing
dynamics described by equation (22). In these plots, we consider initial states in the form of equation (27). In the Panel (a), we
take α ̸= 0 and β= 0, and we calculate the entropy production corresponding to different values of the initial coherence. The
initial value of α is randomly taken by the uniform distribution defined over [0,0.25], then we generate more initial states by
rescaling coherences as described in the main text. Analogously, in the Panels (b), we choose β ̸= 0 and α= 0. Finally, in the
Panels (c) and (d), we choose an initial state such that α ̸= 0 and β ̸= 0 simultaneously. Specifically, we choose α and β from the
uniform distribution on [0,0.5], then, in order to generate more curves, we rescale the coherences α,β of the initial state either by
the same or by different factors—see Panels (c) and (d), respectively.

simulations we extracted a random value of α from a uniform distribution on—for the sake of
definiteness—the interval [0,0.25]. Moreover, given that the density operator ρ is Hermitian and normalized
by construction, we need to check that it is positive semi-definite, i.e. its eigenvalues are all required to be
non-negative.

We can then keep the populations constant, while we rescale the coherences in such a way that α→ µα, µ
being a suitable scaling constant; under this hypothesis, it is not difficult to show that the entropy production
rate would scale asΠ→ |µ|2Π. Therefore, one would anticipate that, by increasing the coherence, one should
get a higher entropy production rate. We got evidence that this in the plots shown in the Panel (a) of figure 2,
where one can notice that a higher coherence in terms of l1-norm results in a higher entropy production rate.
For each time-step, the value of the entropy production rate is computed by performing a Monte-Carlo
integration of equation (11). Similarly, one can initialise the system in a non-X state, where the initial
coherence is given by Cβ(ρ) = 8|β|. By extracting β from the uniform distribution defined over [0,0.25], one
can rescale the coherences as in the previous case, so that we get an analogous scaling law for the entropy
production rate (cf figure 2(b)).

Finally, we can combine the two classes of initial states by taking α ̸= 0 and β ̸= 0 in equation (27), with
the initial coherence being given by Cαβ(ρ) = 4(|α|+ 2|β|). In other terms, we are mixing coherences whose
time-evolutions are governed by different dynamical laws—see equations (25) and (26). In this case, if we
rescale the two classes of coherences by the same factor µ, we would still recover the same scaling law as in the
previous cases, i.e. Π→ |µ|2Π. Numerically, this is shown in figure 2(c). In general, if we rescale them
differently, i.e. α→ µα and β → µ ′β, we would not obtain the same analytical result for the entropy
production rate. Nevertheless, we can still numerically assess that preparing the initial state with a higher
coherence will give a higher entropy production rate, as shown in figure 2(d). Note that, in the numerical
simulations of Panels (c) and (d), the values of α and β from the uniform distribution on the interval [0,0.5].

4.2. Two qubits: amplitude-damping channels
We can now consider the case of two independent qubits undergoing an amplitude damping dynamics. The
dissipator in equation (14) becomes

D(ρ) = Da(ρ)+Db(ρ), (28)

where

Dj(ρ) = Γ(n̄+ 1)

[
σ
j
−ρσ

j
+ − 1

2

{
σ
j
+σ

j
−,ρ

}]
+Γn̄

[
σ
j
+ρσ

j
− − 1

2

{
σ
j
−σ

j
+,ρ

}]
, (29)

with j= a,b. We have also assumed that the two channels are characterised by the same damping rate Γ and
average number of environmental excitations n̄.

Working in the computational basis, we can represent the generic density operator as in equation (23).
Given the dissipator in equation (28), one can analytically solve the set of coupled differential equations
coming from ρ̇= D(ρ) [cf appendix B for more details]. The explicit solution enables us to distinguish three
different classes of coherences—which we label as α,β,γ—appearing in the following density matrix
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Figure 3. Comparison between Wehrl and von Neumann entropy production rates, i.e. equation (21) or equation (32),
respectively. We prepare the bipartite system in the state given by equation (30), and evolve it through equation (28). We have
taken ρ11,33 = 0.1, ρ22 = 0.2, whereas α= γ = 0.02 and β= 0.15. The physical parameters of the dynamics are n̄= 1.5, ε= 1.
We have set Γ̄ = Γ(2n̄+ 1).

ρ=


ρ11 α α γ
α ρ22 γ β
α γ ρ33 β
γ β β ρ44

 . (30)

4.2.1. Von-Neumann vs Wehrl entropy
First, we would like to compare values for the entropy production using the traditional approach based on
von-Neumann relative entropy with the phase-space approach based on Wehrl entropy. To this end, we can
choose the same initial state, let it evolve through the channel given by equation (28), then compute the
entropy production rate either using equations (20) and (21), or the equivalent expression in terms of
von-Neumann entropy. To this end, it it useful to remind that, in the standard scenario, the entropy
production rate is computed using the von-Neumann relative entropy, defined as

SvN(ρ||ρeq)≡ Tr
(
ρ lnρ− ρ lnρeq

)
, (31)

where ρeq = e−βRHS/Z is the canonical equilibrium Gibbs state (βR is the thermal reservoir bath
temperature), the two-qubit free Hamiltonian reads as HS =

ϵa
2 (σz ⊗ 12)+

ϵb
2 (12 ⊗σz), and εj accounts for

the splitting between the two levels of each qubit ( j= a,b). Within this framework [14], the entropy
production rate is given by

ΠvN(t) =− d

dt
SvN(ρ||ρeq). (32)

In figure 3 we compare the two curves, one corresponding to the von Neumann entropy production given by
equation (32), the other corresponding to its phase-space counterpart—cf equation (21). The two
expressions qualitatively reproduce a similar behaviour: the entropy production rate starts from a non-null
value, then it monotonically decreases to zero until the steady state is reached. However, the Wehrl entropy
production rate given in equation (21) is process-specific, in the sense that its final expression bears
dependence on the specific form of the dissipator: as discussed in equation (3.2), one can distinguish
different phase-space currents corresponding to contributions coming from different physical processes
underlying the overall dynamics, i.e. dephasing and amplitude damping. However, the evaluation of the
spin-phase-space entropy production poses the additional technical difficulty embodied by the need to
integrate over the whole phase space. Details about the parameters used for the simulations are given in the
caption of figure 3.

4.2.2. Influence of the initial coherence
In analogy with the case of dephasing channels discussed in equation (4.1), the idea is to systematically
prepare the system in a state belonging to one of the aforementioned classes, checking how different
preparations of the initial state affect to the entropy production rate. Since the expression for the entropy
production rate is much more complicated than the one corresponding to the pure-dephasing dynamics—as
one can immediately deduce by comparing equations (21) and (11) – it is not possible to obtain an analytical
scaling law in such a case, but we need to proceed by numerical investigations only.

9
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Figure 4. Entropy production rate as a function of time for a system of two uncoupled qubits whose dynamics follows the
amplitude damping channel given by equation (28). In these plots, we consider initial states in the form of equation (30). In the
Panel (a), we take α ̸= 0 and β,γ = 0, and we calculate the entropy production corresponding to different values of the initial
coherence. Once we construct a physical state by randomly choosing α from the uniform distribution on the interval [0,0.25], we
can generate more states just by rescaling the initial coherence. Analogously, in the Panels (b) and (c), we consider the classes
corresponding to β ̸= 0 while α,γ = 0, and γ ̸= 0 while α,β, respectively. In Panel (d), the initial state is given by equation (30),
where all the entries are non-zero. Note that in all the numerical simulations α,β,γ are chosen from the uniform distribution on
[0,0.25], whereas the dynamics of the two-qubit system is simulated taking n̄= 0.5. As in the previous plots, we have introduced
the bath-temperature dependent rate Γ̄ = Γ(2n̄+ 1).

Let us consider the case in which the initial state is given by equation (30), with α ̸= 0, and β,γ = 0.
Using the l1-norm, we can quantify the coherence, i.e. Cα(ρ) = 4|α|. Analogously, one can choose the initial
state such that β ̸= 0 and α,γ = 0; therefore, Cβ(ρ) = 4|β|. If we take γ ̸= 0, while keeping both α and β
null, we obtain a X-shaped state, with the initial coherence being given by Cγ(ρ) = 4|γ|. Working along the
same lines as in equation (4.1), for each class, once generated a random initial state, we obtain more initial
states of the same class just by rescaling all the coherences by the same quantity µ, e.g. α→ µα. In all these
cases, as shown in the Panels (a)–(c) of figure 4, we can clearly see that the higher the initial coherence is, the
higher the corresponding entropy production rate. In principle one can push further this systematic analysis
by considering all the possible combinations of non-null entries in the preparation of the initial state. Since
all those cases bear similarity between them, in the Panel (d) of figure 4, we only consider the case in which
all the entries of the density matrix in equation (30) are different from zero, i.e. such that the initial
coherence is given by Cαβγ(ρ) = 4(|α|+ |β|+ |γ|). This general instance confirms that a higher amount of
initial coherence yields a higher entropy production rate. Note that in all the numerical simulations, we
extracted the entries α,β,γ from the uniform distribution defined over the interval [0,0.25].

4.3. Further remarks and counterexamples
The analysis presented in equations (4.1) and (4.2) relies on quantifying the degree of coherence contained in
the initial state through the l1-norm. However, our findings continue to hold also when we rely on entropic
quantifiers, such as the relative entropy of coherence [67], given by

Crel(ρ) = S(ξ)− S(ρ), (33)

where we refer to the decomposition ρ= ξ+χ of the initial density matrix, while S(ρ)≡−Trρ lnρ stands
for the von Neumann entropy. For the class of states introduced in equations (4.1) and (4.2), a monotonicity
relation between the two quantifiers C(ρ) and Crel(ρ) holds, therefore, although the two quantifiers take
different numerical values, the numerical hierarchy established in figures 2 and 4 is qualitatively preserved
regardless of the specific quantifier used.

Moreover, from the examples above, one might argue that initial states characterised by a higher initial
coherence are those yielding a higher entropy production rate. However, we get this evidence using a
relatively restrictive class of initial states. We have generated the hierarchy of states by following a procedure
where a state is randomly generated, then more states are generated by suitably rescaling coherences
according to a given scaling parameter. Differently, one can explore more systematically the space of physical
states by independently generating different random initial states, which can be labelled in terms of their
coherence, quantified by the l1-norm. In this more general scenario, when investigating the behaviour of
Π=Π(t), we cannot claim anymore that a higher value of the initial coherence would result in a higher
entropy production rate.

To corroborate this statement, we provide numerical evidence by considering some instances in figure 5.
The latter overall rule out the possibility to claim a general monotonicity relationship between degree of
intial coherence and entropy production rate for initial states more general than those scrutinised in
equations (4.1) and (4.2). In Panel (a) we consider the case of dephasing channels given by equation (22),
whereas in Panel (b) we consider amplitude damping channels of equation (28). In both cases, we randomly
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Figure 5. These plots show that a higher values of the initial coherence does not always correspond to a higher entropy production
rate. The two-qubit system is prepared in a state either in the form of equation (27) (Panel (a)) or that of equation (30) (Panel
(b)), then it undergoes a dissipative dynamics governed by equation (22) or equation (28), respectively. Different initial states are
considered by randomly choosing α,β,γ from the uniform distribution on the interval [0,0.25]. Moreover, in Panel
(b), Γ̄ = Γ(2n̄+ 1), and the dynamics of the two-qubit system is simulated taking n̄= 0.5.

generate the initial states, namely using equation (27) or equation (30), respectively; we then track the time
evolution ofΠ(t). The initial coherences are extracted from the uniform distribution on [0,0.25]. Besides, for
the amplitude damping channels, we extract the populations ρii of the density matrix from the uniform
distribution on [0,1], as described in equation (4.1). This suggests that the grouping the coherences according
to the dynamical equations that they obey throughout the dynamics introduces a monotonicity relationship
between the l1-norm and entropy production only when we fix the initial state and rescale the coherences.

5. Conclusions

We have considered a finite-size bipartite quantum system out of equilibrium through local non-unitary
channels, and—using the tool embodied by the Wehrl entropy, which remains to be well-defined in the
zero-temperature limit—showed that no general hierarchy exists between entropy production and the degree
of quantum coherence in the state of the system. A direct correspondence between such quantities can only
be retrieved when considering specific forms of open-system dynamics applied to suitably chosen initial
states, thus providing evidence of the need for a systematic study of the role of genuine quantum features in
the non-equilibrium thermodynamics of quantum processes.
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Appendix A. Phase-space correspondence rules

In analogy with the case of bosonic coherent states, one can establish a set of correspondence rules, which
enable to write down a Fokker-Planck equation for the Husimi-Q functionQ from the corresponding master
equation for the density operator ρ. In particular, we have [39]
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[J+,ρ]→J+(Q) = eiϕ (∂θ + icotθ ∂ϕ)Q (A1)

[J−,ρ]→J−(Q) =−e−iϕ (∂θ − icotθ ∂ϕ)Q, (A2)

[Jz,ρ]→Jz(Q) =−i∂ϕQ. (A3)

It is worth mentioning that the analogy between bosonic and spin coherent states can be pushed further
thanks to Schwinger’s theory of angular momentum, according to which spin operators are represented by a
pair of bosonic operators. As a result, once performed the so-called Takahashi-Shibata-Schwinger (TSS)
mapping, one can use the formalism of standard bosonic coherent states [69]. However, for the specific issue
we would like to address, the TSS approach would be quite cumbersome, as we would need to introduce four
bosonic operators, two for each sub-party of the bipartite system.

Appendix B. Amplitude damping channel

In this appendix, we give the explicit solution of the dynamics for a two-qubit system undergoing an
amplitude damping dynamics. In other words, assuming that the system’s dynamics is governed by the
dissipator given in equation (28), one can explicitly solve the dynamics ρ̇= D(ρ). As one would expect for
Davies-Lindlblad maps [5], the evolution of populations is decoupled from the one of coherences. Since the
grouping into three different classes put forward in equation (4.2) is based on the time evolution of
coherences, we just report here the dynamical laws involving coherences. The analytical solution shows that

ρ12(t) =
e−

3
2 Γ̄t

1+ 2n̄

{
(1+ n̄)ρ12(0)− n̄ρ34(0)+ n̄eΓ̄t (ρ12(0)+ ρ34(0))

}
(B1)

ρ34(t) =
e−

3
2 Γ̄t

1+ 2n̄

{
n̄ρ34(0)− (1+ n̄)ρ12(0)+ (n̄+ 1)eΓ̄t (ρ12(0)+ ρ34(0))

}
(B2)

where Γ̄ = Γ(2n̄+ 1). A similar set of equations govern the evolution of ρ13 and ρ24, provided that ρ12 → ρ13
and ρ34 → ρ24. The remaining coherences exponentially decrease over time as ρij(t) = e−Γ̄tρij(0). These
dynamical laws justify the classes introduced in equation (30).
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[35] Takahashi K and Saitô N 1985 Phys. Rev. Lett. 55 645–8
[36] Wehrl A 1978 Rev. Mod. Phys. 50 221–60
[37] Wehrl A 1979 Rep. Math. Phys. 16 353–8
[38] Radcliffe J M 1971 J. Phys. A: Gen. Phys. 4 313–23
[39] Santos J P, Céleri L C, Brito F, Landi G T and Paternostro M 2018 Phys. Rev. A 97 052123
[40] Francica G, Goold J and Plastina F 2019 Phys. Rev. E 99 042105
[41] Van Vu T and Saito K 2022 Phys. Rev. Lett. 128 010602
[42] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[43] Campisi M, Hänggi P and Talkner P 2011 Rev. Mod. Phys. 83 771–91
[44] Åberg J 2018 Phys. Rev. X 8 011019
[45] Kwon H and Kim M S 2019 Phys. Rev. X 9 031029
[46] Hernández-Gómez S, Gherardini S, Belenchia A, Trombettoni A, Paternostro M and Fabbri N 2022 arXiv:2208.01782 [quant-ph]
[47] Gherardini S, Belenchia A, Paternostro M and Trombettoni A 2021 Phys. Rev. A 104 L050203
[48] Santos J P, Céleri L C, Landi G T and Paternostro M 2019 npj Quantum. Inf. 5 23
[49] Esposito M, Lindenberg K and den Broeck C V 2010 New J. Phys. 12 013013
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