
Study of machine learning
techniques for accelerating
finite element simulations
of Stokes flows

Document: Report

Author:

Ferran de Miguel Blasco

Director/Co-director:

Joaqúın Alberto Hernández Ortega
Anastasios Drougkas

Degree:

Bachelor in Aerospace Technology Engineering

Examination session:

Spring

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Acknowledgements

First and foremost I want to thank my advisor Joaqúın Hernández for always being available to answer my

doubts. His guidance and his patience have been crucial for the development of this thesis.

Secondly, I want to thank my family for their unconditional support and for listening to me (or at least

pretending to) think out loud whenever I get stuck trying to get some result, which happens more often than

I would like to admit.

I

”Oh! I have slipped the surly bonds of Earth

And danced the skies on laughter-silvered wings;

Sunward I’ve climbed, and joined the tumbling mirth

of sun-split clouds,—and done a hundred things

You have not dreamed of—wheeled and soared and swung

High in the sunlit silence. Hov’ring there,

I’ve chased the shouting wind along, and flung

My eager craft through footless halls of air.”

- John Gillespie Magee Jr.

Letter to parents (September 3, 1941) ([1])

II

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Contents

List of Figures VI

List of Tables VIII

List of algorithms IX

Abbreviations X

Nomenclature XI

Abstract 1

1 Introduction 2

1.1 Objective . 2

1.2 Scope . 2

1.3 Requirements . 3

1.4 Justification . 3

1.5 Schedule . 3

1.6 State of the art . 4

1.6.1 Finite Element Method . 4

1.6.2 Machine learning techniques . 5

2 Finite Element Method for incompressible steady state Navier-Stokes equations 6

2.1 Strong form . 6

2.2 Weak form . 7

2.3 Finite element formulation . 8

2.4 Matrix problem . 10

2.4.1 Solvability conditions . 14

2.5 Element point of view . 16

2.5.1 Elemental matrices calculations . 17

2.6 Picard Iteration . 21

3 Vectorization and code optimization 23

III

CONTENTS CONTENTS

3.1 Naive assembly . 23

3.2 Vectorization . 25

3.3 Time savings . 26

3.4 Profiling . 27

4 Reduced order modeling 28

4.1 Parametric problem . 28

4.2 Solution space . 29

4.3 Training stage . 30

4.4 Dimensionality reduction . 30

4.5 Angle between subspaces . 31

4.6 Projection onto the reduced space . 31

5 Results 33

5.1 Stokes flow simulations . 33

5.1.1 Lid driven cavity . 33

5.1.2 Flow around a cylinder . 35

5.2 Navier-Stokes simulations . 36

5.2.1 Lid driven cavity . 37

5.2.2 Flow around a cylinder . 43

5.2.3 NACA 0012 . 46

5.3 Reduced order modeling results . 49

5.3.1 Lid driven cavity . 50

5.3.2 Flow around a cylinder . 51

5.3.3 NACA 0012 . 53

6 Environmental impact 56

7 Conclusions 57

Bibliography 58

A Profiling results 60

B Matlab code 69

C Meshing process 70

D Kratos simulations 73

E Principal angles combinations 75

E.1 Lid driven cavity . 75

E.2 Cylinder . 77

IV

CONTENTS CONTENTS

E.3 NACA0012 . 77

V

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

List of Figures

1.1 Gantt chart . 4

1.2 CFD examples . 5

2.1 Domain discretization . 9

2.2 2D velocity and pressure interpolations . 15

2.3 Coordinate transformation . 19

3.1 Assembly visualization . 25

5.1 Lid driven cavity case description . 33

5.2 Lid driven Stokes comparison . 34

5.3 Lid driven Stokes results . 34

5.4 Flow around cylinder case description . 35

5.5 Cylinder Stokes comparison . 35

5.6 Cylinder Stokes results . 36

5.7 Lid driven Navier-Stokes comparison Re=100 . 37

5.8 Lid driven Navier-Stokes comparison Re=100 pressure . 38

5.9 Lid driven Navier-Stokes results Re=100 . 38

5.10 Lid driven Navier-Stokes comparison Re=400 . 39

5.11 Lid driven Navier-Stokes comparison Re=400 pressure . 40

5.12 Lid driven Navier-Stokes results Re=400 . 40

5.13 Lid driven Navier-Stokes comparison Re=1000 . 41

5.14 Lid driven Navier-Stokes comparison Re=1000 pressure . 41

5.15 Lid driven Navier-Stokes results Re=1000 . 42

5.16 Lid driven Navier-Stokes results Re=1000 Pressure . 42

5.17 Cylinder Navier-Stokes comparison Re=50 . 43

5.18 Cylinder Navier-Stokes comparison Re=50 pressure . 44

5.19 Cylinder Navier-Stokes results Re=50 . 45

5.20 Cylinder Navier-Stokes results Re=50 pressure . 46

5.21 NACA 0012 case definition . 47

5.22 NACA 0012 results Re=200 . 47

VI

LIST OF FIGURES LIST OF FIGURES

5.23 NACA 0012 results Re=500 . 48

5.24 NACA 0012 results Re=500 zoomed . 49

5.25 Lid driven velocity modes . 50

5.26 Singular values lid driven . 51

5.27 Cylinder velocity modes . 52

5.28 Singular values cylinder . 53

5.29 Airfoil NACA0012 velocity modes . 54

5.30 Singular values NACA 0012 . 55

C.1 NURBS surface . 70

C.2 Example mesh . 71

D.1 Kratos gui . 73

D.2 Kratos guide results . 74

VII

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

List of Tables

3.1 Performance improvements . 26

6.1 CO2 emissions . 56

VIII

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

List of Algorithms

1 Picard iteration method . 22

2 Assembly process . 24

3 Principal angles calculation . 31

IX

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

List of abbreviations

Abbreviation Meaning

CFD Computer Fluid Dynamics

DNS Direct Numerical Simulation

DOF Degrees of Freedom

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

LBB Ladyzhenskaya Babuška Brezzi

NS Navier-Stokes

PDE Partial Differential Equation

POD Proper Orthogonal Decomposition

SVD Singular Value Decomposition

VMS Variational MultiScale

X

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Nomenclature

x Physical coordinates x, y

X Set of all nodal coordinates

ξ Elemental coordinates: ξ, η

Γ Boundary of the problem Γ = Γσ
⋃
Γu

Γσ Domain with Von Neumann boundary conditions

Γu Domain with Dirichlet boundary conditions

Ω̄e Domain of element e

Ω Domain of the problem

n̂el Total number of pressure elements

n̂nodE Number of pressure nodes per element

nsd Number of dimensions of the problem, generally 2

nm Number of Gauss points

nnod Total number of velocity nodes

n̂nod Total number of pressure nodes

nstp Number of steps

nel Total number of velocity elements

nnodE Number of velocity nodes per element

n̂ Unit outward normal vector

∇ Nabla operator

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
J Jacobian matrix

DX

Dt
Material derivative:

∂X

∂t
+ u ·∇X

∇sX Symmetric gradient operator:∇X+(∇X)T

2

XI

NOMENCLATURE NOMENCLATURE

I Identity matrix

∇2 Laplacian operator

Lp Lebesgue function space of order p

Hp Sobolev vector space of functions of order p

b Volumetric forces

t̄ Tractions t̄ = σn̂

λ Volume viscosity

µ Dynamic viscosity

ν Fluid kinematic viscosity, ν = µ
ρ

ρ Fluid density

σ Stress tensor

u Fluid velocity (u1, u2, u3)

p Fluid absolute pressure

NA Shape function at point A for velocity nodes

l Set of unconstrained degrees of freedom

r Set of constrained degrees of freedom

N̂A Shape function at point A for pressure nodes

ū Vector of prescribed velocities

C Global convection matrix

F Global external force vector

G Global gradient operator matrix

K Global viscosity matrix

M Global mass matrix

δ Convergence tolerance

ψ Relaxation factor

α(ζ) Matrix containing the coefficients for Θ

Au Snapshot matrix

Ψ Basis matrix approximating the solution space for pressure

Φ Basis matrix approximating the solution space for velocity

XII

NOMENCLATURE NOMENCLATURE

χ Matrix of coefficients for the approximation of pressure

Θ Matrix containing columns representing spatial patterns of the external force vector F

ζ Vector of input parameters

κ Matrix of coefficients for the approximation of velocity

Du Matrix containing columns representing spatial patterns of the prescribed displacement ū

βu(ζ) Matrix containing the coefficients for Du

Be Elemental velocity shape functions derivatives matrix

B̂e Elemental pressure shape functions derivatives matrix

N̂ e Elemental pressure shape functions matrix

N e Elemental velocity shape functions matrix

B Stacked B matrix

C Global matrix of viscosity

I Global matrix of the mapping from pressure to velocity

N Stacked N matrix

U Stacked velocities matrix

W Matrix of Jacobians and Gauss weights.

cA Vector of variations

d Global velocity vector

v Test functions for velocity

uh Finite dimensional space of velocity trial functions

vh Finite dimensional space of velocity test functions

ph Finite dimensional space of pressure trial functions

q Test functions for pressure

qh Finite dimensional space of pressure test functions

XIII

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Abstract

[EN] This project starts by studying the finite element method for the steady state Navier-Stokes equations,

afterwards it is implemented in Matlab and optimized via Vectorization achieving up to 5000x speed-up in some

calculations. Then a reduced order model is studied to decrease the computational time of performing different

simulations with slight modifications to the input parameters. Finally, the results obtained are compared

against an already tested FEM code, Kratos Multiphysics, and against literature, and the performance of

the developed solver for the equations is analyzed. It has been observed that the results obtained with the

present work’s solver are almost equal to those made by the reference alternatives.

Keywords: Finite element method, Computational fluid dynamics, Reduced Order Modelling, Coding, Fluid

mechanics, Machine learning, Partial differential equations

[CA] Aquest projecte s’inicia estudiant el mètode dels elements finits per les equacions de Navier-Stokes en

règim estacionari. Després s’implementa en Matlab i mitjançant Vectorització s’accelera el codi. Més endavant

s’estudia la implementació d’un model d’ordre redüıt per disminuir el cost computacional de realitzar diverses

simulacions amb lleugers canvis als paràmetres d’entrada. Finalment, els resultats es comparen contra un

codi validat d’elements finits, Kratos Multiphysics, contra resultats de la literatura i s’analitza el rendiment

del solver. S’ha observat que els resultats del programa desenvolupat són gairebé iguals als de les altres

alternatives.

Paraules clau: Mètode dels elements finits, Dinàmica de fluids computacional, Modelització d’ordre redüıt,

Programació, Mecànica de fluids, Aprenentage de màquina, Equacions diiferencials en derivades parcials

1

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Chapter 1

Introduction

1.1 Objective

The aim of this thesis is twofold, firstly to develop a Matlab Finite Element code able to solve steady state

Navier-Stokes flows given some initial boundary conditions. Secondly, calculate different training cases and

compare them to later develop a reduced order model and increase the simulation’s performance.

1.2 Scope

This project will include:

• Derivation of Navier-Stokes’ equations weak form.

• Finite element matrix formulation of Stokes equations.

• Development of a steady state Navier-Stokes Finite Element Matlab code.

• Validation and verification of the solver against available data.

• Generation of comparison data with Kratos, if needed.

• Optimization of the code via vectorization of the assembly process.

• Pre and post-processing functions to generate meshes and view the results in GiD.

• Development of machine learning training sets.

• Development of a reduced order model from the training data.

• Study of the feasibility of these techniques for accelerating Computational Fluid Dynamics.

The project will not include:

• The use of meshes with elements different than Q2Q1.

• The use of the variational multiscale method.

2

1.3. REQUIREMENTS CHAPTER 1. INTRODUCTION

• The study of different stabilization schemes for solving finite elements CFD for elements that do not

satisfy the LBB condition.

• The implementation for solving transient flows.

• The implementation of the code in a high performing programming language such as C.

1.3 Requirements

The restrictions and initial requirements are:

• The FEM code must be able to solve Stokes flow problems.

• The solutions must be verified against trusted data.

• The code must be accelerated by statistical techniques.

• Computer with Matlab, GiD and python installed.

• Knowledge on Mixed FEM, machine learning and statistics.

• The code must be well structured so that future users can use it or improve it with ease.

1.4 Justification

CFD studies are of utmost importance in the aeronautical industry as it is a quick and cheap method to

gather data compared to experimental methods. Different approaches are available, such as Finite Difference

Method, Finite Volume Method and Finite Element Method (FEM). It has been chosen to perform a FEM

simulation because it gives more flexibility when meshing irregular geometries, although its mathematical

formulation is more complex. Also it is well suited to analyze interfaces between different materials, for

instance liquid-solid or liquid-liquid. The motivation behind accelerating FEM with machine learning and

other statistical techniques is that finding the solution is computationally expensive in terms of both computer

memory and execution time. Having the capacity of finding solutions faster with enough precision is critical

for rapid prototyping in the aerospace industry.

1.5 Schedule

The tasks to be done are:

3

1.6. STATE OF THE ART CHAPTER 1. INTRODUCTION

Task ID Description

1.1 Research about FEM, specially for fluids.

1.2 Research about machine learning for accelerating simulations.

2.1 Create a Matlab code capable of solving Stokes flow.

2.2 Optimize the code and make it compliant to ISO 5055.

2.3
Generate the meshes and modify the code to import and export meshes

to and from GiD.

2.4
Validate the code against some typical example cases,

such as lid-driven cavity or flow around a cylinder.

3.1 Implement machine learning techniques for accelerating simulations.

3.2
Validate these techniques against some typical example cases,

such as lid-driven cavity or flow around a cylinder.

3.3 Compare the results obtained by direct simulation and machine learning.

4.1 Elaborate the project charter.

4.2 Elaborate the report.

4.3 Elaborate the budget.

Figure 1.1: Gantt chart

1.6 State of the art

In this section some of the techniques for dealing with FEM and machine learning applied to CFD will be

studied.

1.6.1 Finite Element Method

There are many variations to the FEM each one with its pros and cons. Some examples of the variations

are: the discontinuous Galerkin method, mixed element methods, spectral methods and the variational

multiscale approach. Only the latter will be studied, as the advantages it provides are of particular interest

to incompressible fluids, the object of this thesis.

Since its introduction in the 90s the variational multiscale (VMS) framework has been applied to design

stabilized finite element methods in problems where the standard Galerkin method stability is not ensured.

4

1.6. STATE OF THE ART CHAPTER 1. INTRODUCTION

This can be caused by two main reasons. First, there are problems that require extremely fine meshes so the

computational cost is unaffordable. The best example of this is a convection dominated problem. Second, in

mixed problems such as Stokes flow, where compatibility conditions (LBB condition) must arise to stabilize

the solution [2]. The VMS method decomposes the problem into resolvable and subgrid scales. The latter

can be approximated to end up with a stable finite element problem that can deal with convective dominated

flows and the use of the same pressure-velocity interpolations [3]. Although the VMS method explored here

is thought mainly for fluids it can deal with any particular problem such as the Helmholtz equation, of

particular interest in acoustics and electromagnetics [4]. A relevant example of a code that uses VMS is

Kratos which uses the VMS method to solve fluid problems [5], [6], [7].

1.6.2 Machine learning techniques

The main drawback of CFD is the computational cost. A method to reduce the cost is to use machine learning

to compress the data and obtain a reduced model which is cheaper and faster to simulate yet represents the

original large-scale simulation [8].

The first example of such techniques that will be analyzed is the aeroelastic study of an F-16 fighter jet.

Flutter prediction is essential to develop high performance and safe aircraft designs. To compute flutter at

transonic regimes where the flow is nonlinear, CFD studies must be performed and coupled with the plane’s

structure, thus resulting in very costly simulations. However, to analyze the jet’s performance at varying input

parameters, a reduced order model can be used so as not to perform the whole CFD study of all the possible

configurations. One method to obtain a reduced order model is to use a proper orthogonal decomposition on

the solution, which gives a basis matrix into which the governing equations can be projected. Then, as this

approach is limited by the variation of the free-stream Mach number, an interpolation of the angles between

two POD subspaces is performed [9].

(a) Flowfield for an X-31 aircraft. (b) Flowfield for an F18 aircraft at
different instants.

Figure 1.2: Examples of CFD over two different aircraft from [10].

5

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Chapter 2

Finite Element Method for

incompressible steady state

Navier-Stokes equations

This chapter will begin with the strong form of the steady Navier-Stokes equations, then the weak form

will be derived. Afterwards, the equations will be discretized and formulated in terms of the FEM, where

the matrix problem of the NS equations will be found. Subsequently, the solvability of the equations will

be discussed, as well as the obtention of said matrices. Finally, as the system of equations to be solved is

nonlinear, a method based on Picard iteration will be presented to solve it.

2.1 Strong form

The starting point are the Navier-Stokes equations formulated in differential form which govern fluid motion:

Mass conservation (or continuity):
∂ρ

∂t
+ ρ∇ · u = 0 (2.1)

Momentum conservation:

∇ · σ + b = ρ
Du

Dt
(2.2)

Constitutive equation for a newtonian fluid:

σ = −pI + λ∇ · uI + 2µ∇su (2.3)

Where:

• ρ is the fluid’s density

• u is the fluid’s velocity

6

2.2. WEAK FORM CHAPTER 2. FEM FOR NS EQUATIONS

• σ is the fluid’s stress tensor

• p is the fluid’s pressure

• λ is the fluid’s volume viscosity

• µ is the fluid’s dynamic viscosity

Assuming steady state and incompressibility and given proper boundary conditions the problem can be

written formally as [11]:

Strong Form



Given b : Ω→R3, ū : Γu→R3, t̄ : Γσ→R3, find u, p : Ω̄→R such that

−∇p+ ν∇2u− (u ·∇)u+ b = 0 in Ω

∇ · u = 0 in Ω

u = ū on Γu

−pn+ ν(n̂ ·∇)u = t̄ on Γσ

(2.4)

where we have introduced the fluid’s kinematic viscosity ν.

2.2 Weak form

To obtain the weak form of the NS equations, the proper test and trial functions are introduced for velocity

and pressure. The trial solution space S that contains the approximating functions for the velocity is:

S :=
{
u ∈H1 (Ω) | u = ū on Γu

}
(2.5)

Then the test functions for the velocity are introduced:

V := H1
Γu

(Ω) =
{
v ∈H1(Ω) | v = 0 on Γu

}
(2.6)

Finally, a suitable space for pressure test functions is defined:

Q := {q ∈ L2(Ω)} (2.7)

Taking the momentum equation from Eq.(2.4), multiplying by test functions v and integrating over the

domain, Ω, we arrive at:

∫
Ω

−∇p · v dΩ+

∫
Ω

ν∇2u · v dΩ+

∫
Ω

b · v dΩ−
∫
Ω

(u ·∇)u · v dΩ = 0 (2.8)

7

2.3. FINITE ELEMENT FORMULATION CHAPTER 2. FEM FOR NS EQUATIONS

By using Gauss theorem, which states that:

∫
Ω

(∇ · F) dΩ =

∫
Γ

(F · n̂) dΓ

in the first and second terms of Eq.(2.8) and using integration by parts, we get:

∫
Ω

p∇ · v dΩ = −
∫
Ω

∇p · v dΩ+

∫
Γ

pv · n̂ dΓ (2.9)

∫
Ω

ν∇u ·∇v dΩ = −
∫
Ω

ν∇2u · v dΩ−
∫
Γ

ν
∂u

∂n̂
· v dΓ (2.10)

Considering the above definitions of test functions, Eq.(2.6), that vanishes on the Dirichlet boundary, the

integrals on the boundary of Eq.(2.9) and Eq.(2.10) can be rewritten as:

∫
Γ

(
ν
∂u

∂n̂
− pn̂

)
· v dΓ =

∫
Γu

(
ν
∂u

∂n̂
− pn̂

)
· v dΓu︸ ︷︷ ︸

v=0 on Γu

+

∫
Γσ

(
ν
∂u

∂n̂
− pn̂

)
·︸ ︷︷ ︸

=t̄ on Γσ

v dΓσ =

∫
Γσ

t̄ · v dΓσ (2.11)

As for the continuity equation, using Eq.(2.4), multiplying by the pressure test functions q and integrating

over the domain, we get: ∫
Ω

q∇ · u dΩ = 0 (2.12)

Substituting equations (2.9), (2.10) and (2.11) into Eq.(2.8) the weak form of the problem follows [12]:

W.F.



Given b : Ω→R3, t̄ : Γσ→R3, find u ∈ S, p ∈ Q such that∫
Ω

ν∇u ·∇v dΩ+

∫
Ω

(u ·∇)u · v dΩ−
∫
Ω

p∇ · v dΩ =

∫
Ω

b · v dΩ+

∫
Γσ

t̄ · v dΓσ ∀v ∈ V∫
Ω

q∇ · u dΩ = 0 ∀q ∈ Q

(2.13)

2.3 Finite element formulation

Now that the weak form is obtained, the next step to obtain the finite element formulation is to discretize

the domain, Ω̄ which is divided into element domains Ω̄e for e = 1, 2, ..., nel

Ω̄ = Ω̄1 ∪ Ω̄2 · · · ∪ Ω̄nel =

nel⋃
e=1

Ω̄e (2.14)

8

2.3. FINITE ELEMENT FORMULATION CHAPTER 2. FEM FOR NS EQUATIONS

Nodes

Discretization

Figure 2.1: Discretization of the domain into nel elements with corresponding nodes

Then, we define r as the set of velocity nodes pertaining to the Dirichlet boundary Γu and l as the set of

remaining velocities so that:

r ∪ l = {1, 2, . . . , nnod} (2.15)

where nnod is the total number of velocity nodes.

The vector of prescribed velocity ū contains the prescribed velocity in each direction at each Dirichlet point.

Finally, the velocity shape functions are defined as NA : Ω̄→R (A = 1, 2, . . . , nnod).

NA(xB) = δAB (2.16)

where δAB is the Kronecker delta, so they have a value of 1 when A=B and 0 in the other nodes. In the rest

of the domain the interpolation function can be chosen. Typically it is assumed linear or quadratic, as higher

orders decrease performance and similar results can be obtained through mesh refinement.

Now, the finite dimensional space of velocity test functions Vh ⊂ V can be defined as:

vh =

nnod∑
A=1

NAcA, with cA = 0 if A ∈ r (2.17)

In matrix notation:

vh :=


vh1

vh2

 , NA := NAI =

NA 0

0 NA

 , cA :=


c1A

c2A

 (2.18)

Similarly, finite dimensional space of velocity trial functions Sh ⊂ S is the space of all functions of the form:

uh =

nnod∑
A=1

NAdA, with dA = ū(xA) if A ∈ r (2.19)

Notice how it is enforced that dA = ū(xA) to meet the Dirichlet condition, and cA = 0 if A ∈ r to ensure

the test functions vanish on the Dirichlet conditions.

For the pressure, an almost identical definition is used, the shape functions are defined as: N̂A : Ω̄→R(A =

9

2.4. MATRIX PROBLEM CHAPTER 2. FEM FOR NS EQUATIONS

1, 2, . . . , n̂nod)

N̂A(x̂B) = δAB (2.20)

As done for the velocity, the finite dimensional space of trial functions for the pressure Qh ⊂ Q is the space

of all functions of the form:

ph =

n̂nod∑
A=1

N̂ApA (2.21)

The same can be done for the test functions:

qh =

n̂nod∑
A=1

N̂AqA (2.22)

Hence, equation Eq.(2.13) can be rewritten in terms of these new finite dimensional test and trial functions

[13].

W.F.



Given b : Ω→R3, t̄ : Γσ→R3, find uh ∈ Sh, ph ∈ Qh such that∫
Ω

ν∇uh ·∇vh dΩ+

∫
Ω

(
uh ·∇

)
uh · vh dΩ−

∫
Ω

p∇ · vh dΩ =

=

∫
Ω

b · vh dΩ+

∫
Γσ

t̄ · vh dΓσ ∀vh ∈ Vh

∫
Ω

qh∇ · uh dΩ = 0 ∀qh ∈ Qh

(2.23)

2.4 Matrix problem

Now, we need to derive a matrix formulation for the current problem. To arrive at the matrix problem,

equations Eq.(2.17), Eq.(2.19) and Eq.(2.22) are substituted into equation Eq.(2.23), but firstly, the following

linear forms will be introduced for the sake of clarity:

a (w, v) :=

∫
Ω

∇w · ν∇v dΩ (2.24)

ā (v, q) := −
∫
Ω

q∇ · v dΩ (2.25)

c (χ;w, v) :=

∫
Ω

w · (χ ·∇) v dΩ (2.26)

⟨v, b⟩ :=
∫
Ω

vT b dΩ (2.27)

⟨v, b⟩Γσ
:=

∫
Γσ

vbdΓ (2.28)

10

2.4. MATRIX PROBLEM CHAPTER 2. FEM FOR NS EQUATIONS

With these definitions at hand, the substitution can be made. For the momentum equation:

a

(
nnod∑
l=1

Nlcl,
nnod∑
J=1

NJdJ

)
+ c

(
nnod∑
J=1

NJdJ ;
nnod∑
l=1

Nlcl,
nnod∑
J=1

NJdJ

)
+ ā

(
nnod∑
l=1

Nlcl,
n̂nod∑
K=1

N̂KpK

)
=

〈
nnod∑
l=1

Nlcl, b

〉
+

〈
nnod∑
l=1

Nlcl, t̄

〉
Γσ

(2.29)

As for the continuity equation:

ā

(
n̂nod∑
K=1

N̂KqK ,

nnod∑
l=1

Nldl

)
= 0 (2.30)

Simplifying, the momentum equation becomes:

nnod∑
l=1

cl


nnod∑
J=1

= KlJ︷ ︸︸ ︷
a(Nl,NJ)dJ +

= ClJ︷ ︸︸ ︷
nnod∑
J=1

c (NJdJ ;Nl,NJ)dJ +

= GlK︷ ︸︸ ︷
n̂nod∑
K=1

ā(Nl, N̂K) pK −

= Fl︷ ︸︸ ︷
(⟨Nl, b⟩+ ⟨Nl, t̄⟩Γσ)

 = 0

(2.31)

As for the pressure equation:

n̂nod∑
K=1

qK


= [GT]KI︷ ︸︸ ︷

nnod∑
I=1

ā(NI , N̂K)dI

 = 0 (2.32)

Next, we define the matrices appearing in the preceding equation:

Global viscosity matrix : The block matrix KlJ ∈ Rnsd×nsd of the global viscosity matrix K ∈

Rnsdnnod×nsdnnod corresponding to velocity nodes l, J is defined by

KlJ := a(Nl,NJ) (2.33)

Global external force vector (body force + boundary tractions). The block vector Fl ∈ Rnsd of the global

external force vector F ∈ Rnsdnnod×1 corresponding to velocity node l is defined by

Fl := ⟨Nl, b⟩+ ⟨Nl, t̄⟩Γσ (2.34)

Global gradient operator : The block matrix GlK ∈ Rnsd×1 of the global gradient operator G ∈

Rnsdnnod×n̂nod corresponding to velocity node l and pressure node K is defined by

GlK := ā(Nl, N̂K) (2.35)

Global convection matrix: The block matrix ClJ ∈ Rnsd×nsd of the global convection matrix

11

2.4. MATRIX PROBLEM CHAPTER 2. FEM FOR NS EQUATIONS

C ∈ Rnsdnnod×nsdnnod corresponding to velocity nodes l, J is defined by

ClJ := c (NJdJ ;Nl,NJ) (2.36)

which depends on the unknowns dJ . This will make it so that a nonlinear equation will need to be solved.

From now onward, the assumption that the problem is 2D will be made. The extension to 3D can be found

in [11] or [13].

Then, defining

• Global vectors of velocities (d ∈ Rnsdnnod) and variations (c ∈ Rnsdnnod)

d :=



d1

d2

...

dnnod


, c :=



c1

c2

...

cnnod


(2.37)

• Set of constrained degrees of freedom global degrees of freedom along which velocity is known)

r :=

2r
1 − 1

2r2

 (2.38)

Likewise, we define the set of unconstrained degrees of freedom for velocity (global degrees of freedom

along which velocity is unknown) as

l :=

2l
1 − 1

2l2

 (2.39)

Note that l ∪ r = {1, 2, . . . , nsdnnod} and these definitions extend those of 2.15 for multiple degrees of

freedom, i. e. when the field is a vector field and has nsd solutions for each node. So for a node A, the

corresponding DOF are:

DOFA =

2A− 1

2A

 (2.40)

• Global vector of prescribed velocities (constructed by arranging in a single vector the vectors defined in

Eq.(2.41))

12

2.4. MATRIX PROBLEM CHAPTER 2. FEM FOR NS EQUATIONS

ū :=

ū
1

ū2

 (2.41)

• Global vector of nodal pressures (p ∈ Rn̂nod) and variations (q ∈ Rn̂nod)

p :=



p1

p2

...

pn̂nod


, q :=



q1

q2

...

qn̂nod


(2.42)

With these definitions, equation Eq.(2.31) becomes:

cT ((K +C(d))d+Gp− F) = 0, ∀cl (2.43)

where cr = 0 and dr = ū.

Making the decomposition into block matrices, the preceding equation can be expressed:

[
cTl cTr

]
Kll +Cll Klr +Clr

Krl +Crl Krr +Crr


dl

dr

+

Gl

Gr

p−

Fl

Fr


 = 0 ∀cl

⇒ cTl ((Kll +Cll)dl + (Klr +Clr)

ū︷︸︸︷
dr +Glp− Fl)+

0︷︸︸︷
cTr ((Krl +Crl)dl + (Krr +Crr)dr +Grp− Fr) = 0

⇒ cTl ((Kll +Cll)dl + (Klr +Clr)ū+Glp− Fl) = 0.

(2.44)

For the incompressibility equation:

qT
(
GT

l dl +GT
r dr

)
= 0 ∀q (2.45)

Hence, these equations are fulfilled for all cTl and q if and only if the terms multiplying cTl and q vanish. So

the equations in compact form can be rewritten as:

Kll +Cll(dl) Gl

GT
l 0


dl

p

 =

Fl − (Klr +Clr(dl))ū

−GT
r ū

 (2.46)

13

2.4. MATRIX PROBLEM CHAPTER 2. FEM FOR NS EQUATIONS

Note that the coefficient matrix C depends on the unknowns dl. This makes it a nonlinear system of equations

that can be solved via Newton-Raphson method or via Picard iteration as described in section 2.6.

To obtain Stokes flow, the hypothesis that the convective term is much smaller than the viscous term is made

(u ·∇)u << ν∇2u. Thus, Stokes flow arises when viscosity is the only effect on the flow. Then it is trivial

to see that the system of equations 2.46 becomes:Kll Gl

GT
l 0


dl

p

 =

Fl −Klrū

−GT
r ū

 (2.47)

which is a linear system.

Notice that pressure acts as a Lagrangian multiplier of the incompressibility constraint, this means that the

solution will exhibit a saddle point [11]. Practically this means that the pressure on some node must be fixed

to some reference value to establish a base for the pressure on the other nodes.

2.4.1 Solvability conditions

In Eq.(2.46) and Eq.(2.47) the null submatrix in the diagonal poses an interesting question: Under which

conditions is the system solvable? The condition that must be satisfied is that the kernel of Gl is zero,

so then dl and p are uniquely defined.To satisfy that ker(Gl) = 0, the LBB condition must be satisfied

(Ladyzhenskaya (1969), Babuška (1970/71) and Brezzi (1974)). This condition is also called the inf sup

condition for its formal mathematical description. This enforces a different discretization for the velocity and

pressure, which makes the meshing process rather tedious [11].

As seen on figure 2.2, there are multiple elements that satisfy the LBB condition. In this report, the Q2Q1

element has been chosen as it has quadratic convergence for the velocity and is easy to implement.

14

2.4. MATRIX PROBLEM CHAPTER 2. FEM FOR NS EQUATIONS

Q1P0 element:
Continuous bilinear velocity,
Discontinuous constant pressure,
Does not satisfy LBB condition.

Q1Q1 element:
Continuous bilinear velocity,
Continuous bilinear pressure,
Does not satisfy LBB condition.

Q2Q1 element:
(Taylor-Hood element)
Continuous biquadratic velocity,
Continuous bilinear pressure,
Satis�es LBB condition.
Quadratic convergence.

Crouzeix-Raviart element:
Velocity: continuous quadratic
& Cubic bubble function,
Pressure: discontinuous linear,
Satis�es LBB condition
Quadratic convergence.

Velocity node

Pressure node

Mini element:
Velocity: continuous linear
& Cubic bubble function,
Pressure: continuous linear,
Satis�es LBB condition
Linear convergence.

Figure 2.2: Types of mixed elements and whether they satisfy the LBB condition [11]

15

2.5. ELEMENT POINT OF VIEW CHAPTER 2. FEM FOR NS EQUATIONS

2.5 Element point of view

It has been seen that matrices K, C and G and the vector F need to be constructed to be able to solve

Eq.(2.46) and obtain the global velocity and pressure. In this section the global matrices will be obtained

through the elemental matrices.

The velocity within an element is:

uh
∣∣
Ωe = ue =

ne∑
a=1

Ne
ad

e
a =

[
Ne

1 Ne
2 · · · Ne

ne

]


de1

de2

...

dene


⇒ ue = N ede

(2.48)

where ne is the number of nodes of the e− th element, and N e ∈ R1×ne

and de ∈ Rne

are defined by

N e :=

[
Ne

1 Ne
2 · · · Ne

ne

]
(2.49)

and

de :=



de1

de2

...

dene


(2.50)

respectively. Similarly, for the gradient of velocities:

∇ue = Bede (2.51)

With this definitions at hand, the following element matrices can be known:

Element viscosity matrix:

Ke :=

∫
Ωe

BeT νBe dΩ (2.52)

Element gradient operator:

Ge := −
∫
Ωe

N̂ eT [1 0 0 1]Be dΩ (2.53)

Notice the appearance of the vector [1 0 0 1]. This is due to the gradient operator and the difference in nodes

per element between pressure and velocity interpolation.

16

2.5. ELEMENT POINT OF VIEW CHAPTER 2. FEM FOR NS EQUATIONS

Element convection matrix:

Ce :=

∫
Ωe

N eTueBe dΩ (2.54)

The elemental body force:

F e
b =

∫
Ωe

N eT b dΩ =

∫
Ωe

N eT (N ebe) dΩ

⇒ F e
b =

∫
Ωe

N eT (N ebe) dΩ

(2.55)

where

be :=



b(xe
1)

b(xe
2)

...

b(xe
ne)


(2.56)

is the vector containing the values of function b at each node of element e. Finally the traction forces:

F e
dis =

∫
Γe
σ

N̄ e T t̄ dΓσ =

∫
Γe
σ

N̄ e T (N̄ et̄e,) dΓσ (2.57)

And

F e = F e
b + F e

dis (2.58)

These vectors and matrices are assembled by their corresponding assembly operator
nel

A
e=1

that assigns each

local degree of freedom to the corresponding global DOF. For more details see section 3.1

2.5.1 Elemental matrices calculations

Now, the last step to compute Eq.(2.46) is to calculate each elemental matrix, equations (2.52), (2.53) and

(2.54) and the elemental vector (2.55). First, some definitions are needed in order to compute them.

Physical domain : x ∈ Ω̄e

x =

x
y

 (2.59)

x is termed the vector of global or physical coordinates.

Parent or element domain: ξ ∈ Ω̄ξ

ξ =

ξ
η

 (2.60)

ξ is termed the vector of local or element coordinates.

17

2.5. ELEMENT POINT OF VIEW CHAPTER 2. FEM FOR NS EQUATIONS

Isoparametric elements: The mapping from the parent domain Ω̄ξ to the physical domain Ω̄e:

x : Ω̄ξ→Ω̄e (2.61)

is constructed using the same shape functions employed in the interpolation of uh, that is:

x = Ñ e(ξ)xe =

:= Ñ e︷ ︸︸ ︷[
Ne

1 Ne
2 · · · Ne

ne

]


xe1

xe2

...

xene


(2.62)

y = Ñ e(ξ)ye =

[
Ne

1 Ne
2 · · · Ne

ne

]


ye1

ye2

...

yene


(2.63)

[
x y

]
= xT = Ñ e

= XeT︷ ︸︸ ︷

xe1 ye1

xe2 ye2

...
...

xene yene


= Ñ eXeT

⇒ x(ξ) = XeÑ e T (ξ)

(2.64)

where

Xe :=

x
e
1 xe2 · · · xene

ye1 ye2 · · · yene

 (2.65)

18

2.5. ELEMENT POINT OF VIEW CHAPTER 2. FEM FOR NS EQUATIONS

1 2

34

(-1,1)

(-1,-1)

(1,1)

(1,-1)

Figure 2.3: Transformation from the parent domain to the coordinate domain.

There are 2 matrices for shape functions, as Ñ e is the matrix of shape functions for scalar based functions,

and N e is the matrix of shape functions for vector based functions. They are defined respectively as:

Ñ e :=

[
Ne

1 Ne
2 · · · Ne

ne

]
(2.66)

N e :=


N

e
1 0

0 Ne
1


N

e
2 0

0 Ne
2

 · · ·

N
e
ne 0

0 Ne
ne


 (2.67)

To go from one domain to another, the Jacobian matrix to change the basis is introduced:

dx
dy

 =

:= Je︷ ︸︸ ︷
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η


dξ
dη

 ⇒ dx = Jedξ
(2.68)

19

2.5. ELEMENT POINT OF VIEW CHAPTER 2. FEM FOR NS EQUATIONS

The inverse of Je is the Jabobian matrix of the inverse mapping ξ : Ω̄e→Ω̄ξ

dξ
dη

 =

:= Je−1︷ ︸︸ ︷
∂ξ

∂x

∂ξ

∂y

∂η

∂x

∂η

∂y


dx
dy

 ⇒ dξ = Je−1dx
(2.69)

The determinant of the Jacobian matrix is called the Jacobian:

|Je| := det(Je) (2.70)

It can be shown that:

Je = XeB̃e
ξ

T
(2.71)

where:

B̃e
ξ := ∇̃ξÑ

e =


∂Ñ e

∂ξ

∂Ñ e

∂η

 =


∂Ne

1

∂ξ

∂Ne
2

∂ξ
· · · ∂Ne

ne

∂ξ

∂Ne
1

∂η

∂Ne
2

∂η
· · · ∂Ne

ne

∂η

 (2.72)

With the above definitions it’s easy to prove that

B̃e = Je−T B̃e
ξ (2.73)

Similar to Ñ e and N e, we define the matrix of symmetric gradient Be as:

Be :=



∂Ne
1

∂x
0

∂Ne
2

∂x
0 · · · ∂Ne

ne

∂x
0

0
∂Ne

1

∂x
0

∂Ne
2

∂x
0 · · · ∂Ne

ne

∂x

∂Ne
1

∂y
0

∂Ne
2

∂y
0 · · · ∂Ne

ne

∂y
0

0
∂Ne

1

∂y
0

∂Ne
2

∂y
0 · · · ∂Ne

ne

∂y


(2.74)

Moreover, the mapping from B̃e to Be is defined as:

Be(ξg) = Q̃(B̃e(ξg)) (2.75)

Then to calculate, Eq.(2.52) and similar integrals, Gauss quadrature will be used, which is a method to

approximate integrals by evaluating the integrand at certain points (Gauss points). Afterwards, a weighted

sum of these values is computed, multiplying each by an appropriate weight (Gauss weight), which gives the

20

2.6. PICARD ITERATION CHAPTER 2. FEM FOR NS EQUATIONS

approximation to the integral [14, p. 58-65].

I =

∫
Ωe

f dΩ =

∫
Ωξ

|Je|(ξ)f(ξ) dΩξ ≈
nm∑
g=1

wg|Je|(ξg)f(ξg) (2.76)

Finally, Ke is computed as:

Ke =

∫
Ωe

BeT νBe dΩ =

∫
Ωξ

|Je|BeT νBe dΩξ

⇒ Ke =

nm∑
g=1

wg

(
|Je|BeT νBe

)
ξ=ξg

(2.77)

where |Je|(ξg) and Be(ξg) are given by

Be(ξg) = Q̃(B̃e(ξg)) (2.78)

B̃e(ξg) = Je−T (ξg)B̃
e
ξ(ξg) (2.79)

Je(ξg) = XeB̃e
ξ

T
(ξg) (2.80)

To calculate Ge, Ce and F e an identical procedure is followed, the only difference is that to compute N̂ e the

pressure shape functions and nodes will be used.

2.6 Picard Iteration

To solve the nonlinear system of equations in (2.46) Picard iteration will be used. This algorithm to solve

nonlinear systems is based on Banach’s fixed point theorem.

Definition. Let (X, d) be a complete metric space. Then a map T : X → X is called a contraction mapping

on X if there exists q ∈ [0, 1) such that for all x, y ∈ X

d(T (x), T (y)) ≤ qd(x, y)

Banach’s fixed point theorem. Let (X, d) be a non-empty complete metric space with a contraction

mapping T : X → X. Then T admits a unique fixed-point x∗ in X (i.e. T (x∗) = x∗). Furthermore, x∗ can be

found as follows: start with an arbitrary element x0 ∈ X and define a sequence (xn)n∈N by xn = T (xn−1) for

n ≥ 1. Then lim
n→∞

xn = x∗. [15]

The idea behind Picard’s algorithm is that T is a contraction mapping induced by Eq.(2.46), and the point x∗

is the desired solution of the nonlinear system. With this in mind, the algorithm adopts the following form:

21

2.6. PICARD ITERATION CHAPTER 2. FEM FOR NS EQUATIONS

Algorithm 1: Picard iteration for system Eq.(2.46)

1 Function [dl, p]← Picard(Kll,Klr,Gl,Gr,Fl, ū, δ,N ,B,W , ψ):

Data: Kll ∈ RnDOFl×nDOFl , Gl ∈ RnDOFl×n̂DOFl , Klr ∈ RnDOFl×nDOFr ,

Gr ∈ RnDOFr×n̂DOFl , ū ∈ RnDOFr×1, convergence tolerance δ, Stacked matrices N ,B and

global Gauss and Jacobians matrix W , relaxation factor ψ

Result: dl and p which are the velocity field and the pressure field respectively

2 dl ← 0

3 ξ ← 1

4 while δ < ξ do

5 U ← assembly(dl) // See 3.2 for more details

6 C ←N TUWB

7 Cll ← C(DOFlv, DOFlv)

8 Clr ← C(DOFlv, DOFrv)

9 A← [Kll +CllGl;G
T
l 0]

10 B ← [Fl − ū(Klr +Clr);−GT
r ū]

11 (dnewl , p)← sol(Ax = B)

12 ξ ← max(||dnewl − dl||)

13 dl ← (1− ψ)dl + ψdnew
l

14 end

22

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Chapter 3

Vectorization and code optimization

In the previous chapter, it has been seen how to assemble the different matrices required to solve the steady

state Navier-Stokes equations from a theoretical point of view. In this chapter, the Matlab implementation

will be explained, which traditionally loops over all elements. As there can be on the order of 105 or even

higher number of elements, it results in poor performance, especially as Matlab is an interpreted language.

For this reason in the second part of the chapter a different approach will be taken to compute the FEM

matrices, and the subsequent time saves will be analyzed.

3.1 Naive assembly

The typical assembly algorithm is performed as follows:

23

3.1. NAIVE ASSEMBLY CHAPTER 3. VECTORIZATION AND CODE OPTIMIZATION

Algorithm 2: Assembly process for matrix K

1 Function K ← AssemblyK(COORv, CNv):
Data: COORv nnod × nsd Velocity nodal coordinates matrix, CNv nel × nnodE Velocity element

connectivity matrix

Result: K Global viscosity matrix

2 K← 0 // Allocate memory for matrix K

3 for e=1; e ≤ nel do

4 Nodes← CNv(e, :)

5 Xe ← COORv(Nodes,:)T

6 Ke← ComputeKe(Xe,TypeElement) // See section 2.5.1 for more details on how to

calculate the elemental matrix

7 for a=1; a ≤ nnod do

8 for b=1; b ≤ nnod do

9 A←Nod2DOF(CNv(e, a))// Function Nod2DOF transforms the node number to a

global DOF according to (2.40).

10 B←Nod2DOF(CNv(e, b))

11 a1←Nod2DOF(a)

12 b1←Nod2DOF(b)

13 K(A,B)←K(A,B) + Ke(a1,b1)

14 end

15 end

16 end

This assembly process has many nested loops, which are specially slow in an interpreted language such as

Matlab. With the exterior for looping over the total number of elements, the computation time is really high.

24

3.2. VECTORIZATION CHAPTER 3. VECTORIZATION AND CODE OPTIMIZATION

[1] [2]

[1]

[2]

[2] [3]

[1] [4]

[4] [2]

[2]

[3]

[1]

[4]

[4]

[2]

[1] [2] [3] [4]

[1]

[2]

[3]

[4]

Figure 3.1: Visualization of the assembly process from the elemental matrices to the global extracted from
[16]. 1

3.2 Vectorization

To speed up the code, vectorization will be used. This process consists in assembling the FEM matrices as

the product of different matrices. The derivation for this method can be found in [14], but it mainly consists

in finding N and B, which are the N-stacked and B-stacked matrices respectively. They are defined as:

N := diag
(
N1

1 ,N
1
2 , . . . ,N

e
1 ,N

e
2 , . . . ,N

nel
m−1,N

nel
m

)
L (3.1)

and similarly:

B := diag
(
B1

1 ,B
1
2 , . . . ,B

e
1,B

e
2, . . . ,B

nel
m−1,B

nel
m

)
L (3.2)

where N e
m and Be

m are the shape functions and derivatives of shape functions matrices respectively, at

element e at Gauss point m. L is the global boolean connectivity matrix (see [14] for more details). Matrices

N̂ and B̂ have the same definitions but with pressure points and shape functions.

In this report, the viscosity will be assumed to be the same everywhere in the domain, but it can be generalized

to different values for different elements like this:

C := diag
(
ν11 , ν

1
2 , . . . , ν

e
1 , ν

e
2 , . . . , ν

nel
m−1, ν

nel
m

)
(3.3)

The product of all Jacobians and Gauss weights at each point is defined as:

W := diag
(
w1

1|J |11, w1
2|J |12, . . . , we

1|J |e1, we
2|J |e2, . . . , w

nel
m−1|J |

nel
m−1, w

nel
m |J |nel

m

)
(3.4)

1In my particular case, as there are 9 nodes per element and it is a 2D problem, elemental matrices are 18×18. This is a
simplification for small unidimensional problems.

25

3.3. TIME SAVINGS CHAPTER 3. VECTORIZATION AND CODE OPTIMIZATION

The matrix U containing the velocity of each element at each point is defined as:

U := diag
(
u1
1,u

1
2, . . . ,u

e
1,u

e
2, . . . ,u

nel
m−1,u

nel
m

)
(3.5)

where u follows the mapping:

u1
1 = S̃(u1

1) =

u
1
1,x 0 u11,y 0

0 u11,x 0 u11,y

 (3.6)

The matrix I that relates pressure shape functions to velocity derivatives of shape functions is defined as:

I := diag

 nm×nel︷ ︸︸ ︷
[1 0 0 1], . . . , [1 0 0 1]

 (3.7)

Finally the different global matrices can be calculated as the products of the corresponding stacked matrices,

instead of the slow assembly process:

K = BTCWB (3.8)

G = N̂
T
IWB (3.9)

C = N TUWB (3.10)

3.3 Time savings

Now the performance of the code will be evaluated. Profiling is made in order to know the time saved to

calculate the global FEM matrices as described in the previous section, 3.2.

Total DOF

velocity & pressure
Assembly K [s] Assembly G [s] Assembly C [s]

Vect. Naive 2 Vect. Naive Vect.

3803 0.004 1.129 0.006 0.935 0.005

8450 0.021 4.677 0.005 4.03 0.01

18500 0.017 49.4 0.011 45.5 0.022

51378 0.030 451 0.027 392 0.086

73000 0.22 1179 0.037 1050 0.134

255000 0.96 - 0.121 - 0.398

Table 3.1: Performance difference of the naive assembly process versus the vectorized process.

First of all, an astonishing time difference of up to 5000x can be observed. This is, in part, because Matlab

2There is only one time for the assembly of K and G in the naive implementation because the loop over elements is the same
in both cases, so to maximize performance the two assemblies are done together.

26

3.4. PROFILING CHAPTER 3. VECTORIZATION AND CODE OPTIMIZATION

is an interpreted language so matrix multiplications are particularly fast while loops are particularly slow.

Table 3.1 also shows how if the problem is too big and has too many DOF, it is not feasible to solve it by the

standard approach. This speedup is important when solving Stokes flow, where matrices K and G only need

to be computed once. However, it is crucial in Navier-Stokes flow where matrix C needs to be computed at

each iteration, because it becomes unreasonable to proceed with the standard assembly. For example, the

case with 73000 DOF, needed 150 iterations. This means that matrix C has to be assembled 150 times, thus

it would take 157500 s or 1 day and 19h, without taking into account the rest of the program. It can be

concluded that the only way to solve the Navier-Stokes equations in Matlab is with vectorization or else the

performance would be too slow to do any meaningful simulation.

3.4 Profiling

To evaluate the performance of the code to know where it could be further optimized, one simulation is

profiled. The case chosen is the lid driven cavity shown in sections 5.1.1 and 5.2.1, in particular this is the

case with 51378 DOF that appears in table 3.1. Using Matlab’s built in profiler tool, the results are obtained

and attached in appendix A.

The results provide some interesting information:

• The total runtime is 96s.

• Most of the time, 84.78s or around 88% of the runtime, is spent solving the linear system of equations

described in line 11 of Picard’s algorithm, 1.

• The time spent assembling K and G matrices is negligible.

• The time spent assembling C is around 8.4s.

• A considerable time, around 1s, is spent reading and writing data.

With these results it becomes obvious that the function that needs to be optimized is the linear solver. As

this thesis focuses on the FEM, the function will not be optimized, nor will the rest of the code as it has an

acceptable level of performance.

27

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Chapter 4

Reduced order modeling

Imagine that an analysis of an airfoil needs to be computed at different velocities, let us say from 1 to 20

m/s. If a resolution of 0.5 m/s is wanted, 38 different simulations must be performed, 1m/s, 1.5m/s, ...,

19.5m/s and 20m/s. If the Reynolds number is high, this becomes quite a challenge as the computational

cost increases with the Reynolds number, so a considerable time is needed. In this chapter a method for

reducing this time by compressing the simulations is presented. First a velocity basis matrix is generated in

the training stage, then from this velocity basis matrix subsequent simulations can be performed with much

less computational cost. Returning to the above example, let’s say only 3 simulations are performed at 1 m/s,

10 m/s and 20 m/s. A model is obtained with the results from the 3 simulations. Then, the intermediate

values can be computed from the model, not having to interpolate the results directly which gives a worse

result.

The main idea of this chapter is to assume a solution of the NS equations where space and time are independent

so that:

u(x, t) = a(t)Φ(x) (4.1)

where the variable a(t) includes all the time dependence of the equations and Φ(x) characterizes the spatial

dependence. The objective of this chapter will be to find Φ(x) [17], [18].

4.1 Parametric problem

First, the supposition is made that different simulations must be performed varying the input parameters, a

typical case when analysing aircraft. Let us suppose that the geometry and fluid properties remain constant,

so the only variations are on the prescribed velocities ū and tractions t̄ which affect the external force vector

F . Thus the following can be written, F = F (ζ) and ū = ū(ζ), where ζ is the vector of input parameters,

ζ ∈ Rmζ

28

4.2. SOLUTION SPACE CHAPTER 4. REDUCED ORDER MODELING

The intrinsic dimension of the input vectors F and ζ can be inferred by introducing the decompositions:

F (ζ) = Θ1α1(ζ) +Θ2α2(ζ) + . . .+Θnαn(ζ) = Θα(ζ) (4.2)

ū(ζ) = Du
1β

u
1 (ζ) +Du

2β
u
2 (ζ) + . . .+Du

nβ
u
n(ζ) = Duβu(ζ) (4.3)

where Θ and Du are matrices whose columns represent (nodal) spatial patterns and βu(ζ) and α(ζ) represent

the coefficients of the patterns at an input ζ. Hence, F (ζ) and ū(ζ) must belong in the linear subspace

spanned by the columns of these matrices. Therefore the dimensionality of the force and displacement input

spaces is rank(Θ) and rank(Du), respectively.

4.2 Solution space

Generally, it would be expected that n = O(mζ) > mζ (at least for moderate Reynolds), that is, the dimension

of the solution space is expected to be of the same order of magnitude as the dimension of the input space.

However, from this point onwards it will be assumed that the dimension of the input space is much smaller

than the dimension of the finite element space:

mζ << n (4.4)

The dependence of the nodal velocities d with respect to the inputs F and ū is in general nonlinear. It

can be shown that the set of all solutions dl = dl(ζ) is, in general, a manifold of dimension mζ . Finding

this manifold is not a trivial problem and is left outside the scope of this thesis. Rather, a vector space of

dimension n containing the above mentioned manifold will be determined [18].

The higher the degree of nonlinearity, the larger the difference between both dimensions. Notice that in the

case of a linear problem n = mζ . This leaves Stokes flow outside of the analysis as it is a linear problem thus

it will not benefit from this approach as the dimensions of the reduced model are the same as the dimensions

of the input space, so no reduction is possible.

The idea now is to find a basis matrix that represents the solution space and, hopefully, it is smaller than the

full solution space so less data is needed and the problem can be compressed.

The solution space will be represented in what follows by a basis matrix Φ ∈ Rn×n:

Φ =

[
Φ1 Φ2 · · · Φn

]
(4.5)

Some assumptions that will be made going forward: ΦTMΦ = I, where M is some symmetric positive

definite matrix. Also, M = I so ΦTΦ = I. Nevertheless, it would be more accurate to use the geometric

mass matrix M = N TWρN , specially for irregular meshes.

Finally, the determination of the basis matrix is done in two subsequent stages:

29

4.3. TRAINING STAGE CHAPTER 4. REDUCED ORDER MODELING

1. Training

2. Dimensionality reduction

4.3 Training stage

Firstly, algorithm 1 must be modified. As the problem is a steady state case, a fictional time will be

introduced. Instead of solving the whole problem at once, a loading parameter t ∈ [0, T], that can be thought

of as time, is introduced. Then, the interval [0, T] is divided into nstp subintervals:

[0, T] = [0, t1] ∪ [t1, t2] ∪ · · · ∪ [tn, tn+1] ∪ · · · ∪ [tnstp−1, T] (4.6)

Following, (2.46) will be solved at each step with ū(t) = ū
nstp

t and the velocity results will be stored in the

snapshot matrix, Au. Pressure will not be studied as it is the same procedure than velocity so it does not

provide new meaningful results.

The snapshot matrix is defined as:

Au = [dl(ζ
1, t1),dl(ζ

1, t2), · · ·,dl(ζ
2, t1),dl(ζ

2, t2), · · ·,dl(ζ
P , tnstp−1),dl(ζ

P , T)] (4.7)

So for each input vector ζ, that is to say for each simulation with different boundary conditions, the

information at several time steps will be stored. Once sufficient data is gathered and stored into the snapshot

matrix, the next step can be performed.

4.4 Dimensionality reduction

To obtain the velocity basis matrix Φ, it is computed as a linear combination of the columns of Au, so the

column space of Φ is a subspace of the column space of Au

span(Φ) ⊂ span(Au) (4.8)

The idea being that the number of columns of Φ is as small as possible while retaining all relevant information.

Some error threshold is defined as 0 ≤ ϵu < 1 such that

∥Au −ΦΦTAu∥ ≤ ϵu∥Au∥ (4.9)

where || • || denotes a suitable matrix norm, such as the Frobenius norm defined as:

∥A∥F =

√√√√ m∑
i

n∑
j

|aij |2 =
√
trace (ATT) =

√√√√min{m,n}∑
i=1

σ2
i (A)

where σi are the singular values of A.

30

4.5. ANGLE BETWEEN SUBSPACES CHAPTER 4. REDUCED ORDER MODELING

To obtain these basis functions, the truncated singular value decomposition will be used. It must satisfy:

Ãu = YhΣhZh (4.10)

where Ãu is an approximation of Au with only the h singular values calculated such that it satisfies (4.9).

Matrices Y , Σ and Z are the standard left singular vectors, singular values and right singular vectors

respectively. Then it can be proven that the basis matrix is Φ = Yh [17].

4.5 Angle between subspaces

Now that the basis matrix is known for each case (different input parameters), we wish to compare basis

matrices to know if, for example, the information for a low Reynolds number simulation is contained within a

high Reynolds simulation. Thus only requiring one basis matrix instead of two. The first idea that comes to

mind to compare 2 different matrices is to subtract one from another and check whether the result is 0. As

the comparison is actually between the 2 subspaces represented by the matrices, this procedure makes no

sense, so the principal angles, a generalization of the notion of angles between straight lines, will be computed

instead. The following definitions and algorithm are based on [19].

Let Λ and Ξ be subspaces in Rm whose dimensions satisfy

p = dim(Λ) ≥ dim(Ξ) = q ≥ 1 (4.11)

The principal angles {θi}qi=1 between these two subspaces and the associated principal vectors {λi, ξi}qi=1 are

defined recursively by

cos θk = λT
k ξk = max

λ∈Λ,||λ||2=1
λT [λ1,...,λk−1]=0

max
ξ∈Ξ,||ξ||2=1

ξT [ξ1,...,ξk−1]=0

λT ξ (4.12)

The algorithm to calculate the principal angles between two subspaces is:

Algorithm 3: Algorithm for computing the principal angles between subspaces.

1 Function cos θk ← (Λ,Ξ):

Data: (Λ,Ξ) two subspaces with Λ ∈ Rm×p and Ξ ∈ Rn×p

Result: cos θk cosines of principal angles

2 [Q1, R1]← Thin QR decomposition(Λ)

3 [Q2, R2]← Thin QR decomposition(Ξ)

4 C ← Q1TQ2

5 [Y ,Σ,Z]← svd(C)

6 cos θk ← diag(Σ)

4.6 Projection onto the reduced space

In this section the procedure for constructing the reduced order model will be explained from a theoretical

point of view, the Matlab implementation is left for future projects.

31

4.6. PROJECTION ONTO THE REDUCED SPACE CHAPTER 4. REDUCED ORDER MODELING

The construction of the reduced order model consists in projecting the vectors dl and cl onto the basis

functions subspace Φ with the goal of using the reduced space, not the larger finite dimensional space.

Remember that d admits the decomposition:

d =

dl

dr

 =

 dl

Duβu(t)

 (4.13)

From the previous sections:

dl = Φκ = Φ1κ1 +Φ2κ2 + . . .+Φnκn (4.14)

Similarly introducing a decomposition for the pressure:

p = Ψχ = Ψ1χ1 +Ψ2χ2 + . . .+Ψmχm (4.15)

Then, it follows that:

d =

 Φκ

Duβu

 =

= Φ̄︷ ︸︸ ︷Φ 0

0 Du


κ︷ ︸︸ ︷ κ

βu

 = Φ̄κ (4.16)

Following the same procedure as in [18], the reduced matrices can be found:

B∗ := BΦ̄ (4.17)

N ∗ := N Φ̄ (4.18)

B̂
∗
:= B̂Ψ (4.19)

N̂
∗
:= N̂Ψ (4.20)

And the external force vector:

F ∗ = Θ∗α = Φ̄
T
Θα (4.21)

Note that these matrices will have the dimensions of the projection space which should be much smaller than

the finite element space, thus reducing the computing power needed. So now it is a matter of constructing

the reduced matrices K∗, G∗ and C∗ and the vector F ∗ and solving equation (2.46) in the reduced space.

32

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Chapter 5

Results

In this chapter the results of this thesis will be presented. The main result is the code per se, which can be

found in appendix B. Here, some simulations performed with the code developed in the present work will be

presented and compared against the same simulations using Kratos Multiphysics. Afterwards, the results of

chapter 4 will be presented and the dimensionality of some problems will be analyzed.

5.1 Stokes flow simulations

First of all, Stokes flow will be studied, as represented by Eq.(2.47). Two different problems will be analyzed,

the lid driven cavity and the flow around a cylinder.

5.1.1 Lid driven cavity

The first case that will be studied is the lid driven cavity which is a famous benchmark for fluid codes [11].

The definition of the case is given in figure 5.1.

Figure 5.1: Definition of the lid driven problem

33

5.1. STOKES FLOW SIMULATIONS CHAPTER 5. RESULTS

The boundary conditions in the two upper corners are discontinuous, so two options arise when deciding what

to do with these nodes. They can belong either to the fixed vertical walls (non-leaky), or to the prescribed

velocity top (leaky) [11, p. 319]. In this report the later condition is chosen.

Once the simulation is done, the x velocity component is compared against [11, Figure 6.11] as it is the only

component available. The data has been extracted using WebPlotDigitalizer and the same simulation using

Kratos. The results are:

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Velocity X component [m/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

c
e

 a
lo

n
g

 t
h

e
 y

 a
x
is

 [
m

]

Velocity profile at the vertical centerline for Stokes flow

Present work

Kratos

Huerta

Figure 5.2: Comparison of the velocity x component at the vertical centerline between Kratos, Huerta [11]
and the present work for stokes flow.

As for the plot of the velocity:

(a) Present work results (b) Kratos results

Figure 5.3: Comparisons of the x velocity results for Kratos and the present work’s FEM fluid solvers

34

https://apps.automeris.io/wpd/

5.1. STOKES FLOW SIMULATIONS CHAPTER 5. RESULTS

It can be seen on both figures the present results obtained are almost identical to those of Huerta [11], and

Kratos.

5.1.2 Flow around a cylinder

In this section, the flow around a cylinder will be studied. Only results against Kratos will be compared.

The definition for this flow is:

Figure 5.4: Definition of the case of flow around a cylinder. No slip condition assigned at the upper and
lower walls and the cylinder.

As it can be seen, the upper and lower walls have imposed a zero velocity condition. This could represent the

walls of a wind tunnel.

0 5 10 15 20 25

Distance along the x axis [m]

0

0.5

1

1.5

V
e

lo
c
it
y
 m

o
d

u
lu

s
 [

m
/s

]

Velocity profile at the horizontal centerline for Stokes flow

Present work

Kratos

Figure 5.5: Comparison of the velocity modulus along the horizontal centerline for Stokes flow.

35

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

(a) Present work results

(b) Kratos results

Figure 5.6: Velocity modulus plot for Stokes flow around a cylinder

Contrary to the lid driven cavity, there is a slight deviation from the results obtained by the present work’s

code to those obtained by Kratos. This deviation can occur because Kratos uses a different FEM formulation

as described in 1.6, because the mesh is too coarse or because as Kratos does not have a Stokes flow option so

the simulation has been performed with a high viscosity, as in the limit where the viscosity tends to infinity

NS flow is equal to Stokes flow.

5.2 Navier-Stokes simulations

In this section, Eq.(2.46) will be solved to obtain the full Navier-Stokes steady state solution, then it will be

compared against professional codes and literature to perform the validation. Different Reynolds numbers will

be analyzed, as the difficulty of the simulation increases with the Reynolds numbers because of turbulence.

As the code is a DNS code, not too high of a Reynolds will be tested as the computational time increases

because all the fluid’s scales must be represented, including Kolmogorov’s scale. This means that element

sizes must be very small, so the mesh gets very large very fast, and the problem can not be solved in a

reasonable time by this report’s code and on the author’s computer [17].

36

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

On all these simulations the velocity imposed is of 1m/s and to change the Reynolds number the viscosity

has been changed.

5.2.1 Lid driven cavity

The simulation is defined as in 5.1.1, only that now the nonlinear convective term will be calculated. Three

different Reynolds numbers will be studied, 100, 400 and 1000.

Reynolds 100

First the velocity profile at the centerline is compared:

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Velocity X component [m/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n
c
e
 a

lo
n
g
 t
h
e
 y

 a
x
is

 [
m

]

Velocity profile at the vertical centerline for Navier-Stokes with Re=100

Present work

Kratos

Huerta

Figure 5.7: Comparison of the velocity X component at the vertical line between Kratos, Huerta [11] and the
present work for Navier-stokes flow for a Reynolds number of 100.

Now, the pressure is compared:

37

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Pressure [Pa]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n
c
e
 a

lo
n
g
 t
h
e
 y

 a
x
is

 [
m

]

Pressure profile at the vertical centerline for Navier-Stokes with Re=100

Present work

Kratos

Figure 5.8: Comparison of the pressure at the vertical line between Kratos, and the present work for
Navier-stokes flow for a Reynolds number of 100.

Finally the velocity can be plotted and compared against that obtained with Kratos.

(a) Present work results (b) Kratos results

Figure 5.9: Comparisons of the X velocity results for Kratos and the present work’s FEM fluid solvers

It can be seen that the velocity profiles match very well the literature and the Kratos simulation. However,

the pressure does have some slight deviation that can be due to the size of the mesh, the FEM formulation

used, or some other unknown factor.

38

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

Reynolds 400

As always, first the velocity comparisons:

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Velocity X component [m/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n
c
e
 a

lo
n
g
 t
h
e
 y

 a
x
is

 [
m

]

Velocity profile at the vertical centerline for Navier-Stokes with Re=400

Present work

Kratos

Huerta

Figure 5.10: Comparison of the velocity X component at the vertical line between Kratos, Huerta [11] and
the present work for Navier-stokes flow for a Reynolds number of 400.

Then the pressure profile is compared:

39

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Pressure [Pa]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n
c
e
 a

lo
n
g
 t
h
e
 y

 a
x
is

 [
m

]

Pressure profile at the vertical centerline for Navier-Stokes with Re=400

Present work

Kratos

Figure 5.11: Comparison of the pressure at the vertical line between Kratos, and the present work for
Navier-stokes flow for a Reynolds number of 400.

Finally, the modulus of the velocity can be visualized both for Kratos and for the code developed.

(a) Present work results (b) Kratos results

Figure 5.12: Comparisons of the velocity modulus results for Kratos and the present work’s FEM fluid solvers

Once again the velocity profiles match quite well, but there is a deviation on the pressure. As the simulation

is the same varying only the input parameters the reason for this deviation is the same as in section 5.2.1.

40

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

Reynolds 1000

For this Reynolds number, the velocity profile and the pressure will be compared against literature and

Kratos, and the Y velocity component and the pressure will be plotted.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Velocity X component [m/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n
c
e
 a

lo
n
g
 t
h
e
 y

 a
x
is

 [
m

]
Velocity profile at the vertical centerline for Navier-Stokes with Re=1000

Present work

Kratos

Huerta

Figure 5.13: Comparison of the velocity X component at the vertical line between Kratos, Huerta [11] and
the present work for Navier-stokes flow for a Reynolds number of 1000.

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Pressure [Pa]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

c
e

 a
lo

n
g

 t
h

e
 y

 a
x
is

 [
m

]

Pressure profile at the vertical centerline for Navier-Stokes with Re=1000

Present work

Kratos

Figure 5.14: Comparison of the pressure at the vertical line between Kratos, and the present work for
Navier-stokes flow for a Reynolds number of 1000.

The plots for the Y component of the velocity are:

41

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

(a) Present work results (b) Kratos results

Figure 5.15: Comparisons of the velocity Y component results for Kratos and the present work’s FEM fluid
solvers

Finally, the plot for the pressure is:

(a) Present work results (b) Kratos results

Figure 5.16: Comparisons of the pressure for Kratos and the present work’s FEM fluid solvers

In this plots, several things can be observed:

• There is a singularity in the upper right corner, this is because as described in 5.1.1 the leaky cavity

has been chosen.

• The value of this singularity is notably higher in my simulation than on Kratos’. This is because the

mesh is finer in my case so the ”jump” from ux = 1 to ux = 0 is done in a shorter space. In turn this

means that a higher pressure gradient must occur to make this possible, explaining the difference in the

peak pressure.

42

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

• The colour is very uniform except in the corner. This is because the spike in pressure in the corner

”smoothens” the pressure in the rest of the domain. Then the postprocessor, GiD, assigns uniform

colours. If the corner were removed, more detailed information could be seen.

5.2.2 Flow around a cylinder

Now the cylinder case will be revisited as described in 5.1.2 but with the full steady state Navier-Stokes

equations. Only one Reynolds number has been represented as the higher Reynolds simulations do not give

more insight into the code’s performance.

Reynolds 50

Firstly, the velocity and pressure profiles have been plotted along the distance in the horizontal centerline

and compared to those of Kratos

0 5 10 15 20 25

Distance along the x axis [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
e
lo

c
it
y
 m

o
d
u
lu

s
 [
m

/s
]

Velocity profile at the horizontal centerline for Navier-Stokes flow with Reynolds=25

Present work

Kratos

Figure 5.17: Comparison of the velocity modulus along the horizontal centerline for Navier-Stokes for a
Reynodls number of 50.

43

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

0 5 10 15 20 25

Distance along the x axis [m]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
re

s
s
u

re
 [

P
a

]

Pressure profile at the horizontal centerline for Navier-Stokes flow with Reynolds=25

Present work

Kratos

Figure 5.18: Comparison of the pressure profile along the horizontal centerline for Navier-Stokes for a
Reynodls number of 50.

It can be observed that the velocity profile matches almost perfectly to that of Kratos. However, pressure

does have some differences as in the lid driven cavity. The explanation for this difference is the same as in

the lid driven cavity: the different meshes and the different formulations as Kratos uses VMS elements.

Secondly, plots of the velocity and pressure are represented:

44

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

(a) Present work results

(b) Kratos results

Figure 5.19: Velocity profiles of the x velocity component for Navier-Stokes with a Reynolds number of 50.

45

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

(a) Present work results

(b) Kratos results

Figure 5.20: Pressure plot for Navier-Stokes with a Reynolds number of 50.

First of all, it can be observed on the pressure plots that there is a singularity on the left corners, this is the

same case as in the leaky cavity where there is a discontinuity in the boundary. Secondly, observe that the

profiles are almost identical.

As both this case and the lid driven case obtain good results when compared to literature and to professional

codes, the code can be considered validated.

5.2.3 NACA 0012

Once the code has been validated with the above results, simulations with utility can be performed. To

illustrate this, the flow around a NACA 0012 airfoil will be computed. Two Reynolds numbers have been

46

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

tested: 200 and 500. No higher Reynolds were tested because the computational time increase is too high.

An angle of attack of 5◦ has been chosen arbitrarily. The definition for this case is in figure 5.21.

Figure 5.21: Case definition for the NACA 0012 simulation.

Reynolds 200

The results for this Reynolds number are:

(a) Pressure contour fill

(b) Velocity x component

Figure 5.22: Pressure and velocity plots for a Reynolds number of 200.

47

5.2. NAVIER-STOKES SIMULATIONS CHAPTER 5. RESULTS

Reynolds 500

(a) Pressure contour fill

(b) Velocity x component

Figure 5.23: Pressure and velocity plots for a Reynolds number of 500.

Zooming in on the airfoil:

48

5.3. REDUCED ORDER MODELING RESULTS CHAPTER 5. RESULTS

(a) Pressure contour fill

(b) Velocity x component

Figure 5.24: Pressure and velocity plots zoomed in on the airfoil.

Note that some singularities appear on the leading edge of the airfoil. This is due to how the mesh is done as

it has high skewness and aspect ratio because of the curvature of the airfoil.

In both of these simulations a plausible solution is obtained. Now CFD studies of different airfoils could be

made to maximize efficiency and study aerodynamics.

5.3 Reduced order modeling results

In this section, the results obtained for chapter 4 will be presented. Basis functions Φ will be visualized.

Afterwards, the principal angles between different simulations will be studied to know if there is potential

for compressing the data and reducing computational costs. The problems will be solved as described in

49

5.3. REDUCED ORDER MODELING RESULTS CHAPTER 5. RESULTS

4.3, with discrete steps and solving the system at each step. It is important to mention that by varying the

number of steps the span of Φ varies. Such effect will also be discussed. Finally, note that the full reduced

model is not present as the time spent coding Navier-Stokes left no more time for the machine learning part.

Nonetheless, with the matrix basis Φ it should be straightforward.

5.3.1 Lid driven cavity

For the case described in 5.1.1, some of the modes, where a mode is a column of Φ, obtained for a Reynolds

number of 1000 with 20 steps are:

(a) First mode. (b) Second mode.

(c) Fourth mode. (d) Eighth mode.

Figure 5.25: Different modes of the velocity modulus for a Reynolds number of 1000.

Although these modes do not have an intrinsic physical meaning, the patterns that arise in this case look like

vibrations in a membrane.

The relevance of each mode decreases exponentially, as can be seen in the following plot:

50

5.3. REDUCED ORDER MODELING RESULTS CHAPTER 5. RESULTS

1 2 3 4 5 6 7 8 9 10

Mode

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

S
in

g
u
la

r
v
a
lu

e

Figure 5.26: Plot of the singular value for each mode.

It is easy to see that the importance of the last values is negligible, so the basis matrix could be truncated

and be a good approximation.

Principal angles analysis

Between all the Reynolds numbers (100, 400 and 1000) and the number of steps used to perform the simulation

(10 and 20), there are
(
6
2

)
= 15 combinations possible. All the combinations and their respective angles can

be found in appendix E.1. The most notable results are:

• Between two Reynolds numbers, varying the number of steps does not alter the subspace in a significant

manner.

• The closer the Reynolds number, the more similar are the angles.

5.3.2 Flow around a cylinder

In the case of flow around a cylinder, see 5.1.2, the Reynolds number chosen to represent the modes is 200,

and the number of steps to perform the simulation is 20.

51

5.3. REDUCED ORDER MODELING RESULTS CHAPTER 5. RESULTS

(a) First mode.

(b) Fifth mode.

(c) Ninth mode.

(d) Tenth mode.

Figure 5.27: Different modes of the velocity modulus for a Reynolds number of 200.

Note that on the ninth and tenth modes there is an asymmetry along the horizontal centerline. When viewing

52

5.3. REDUCED ORDER MODELING RESULTS CHAPTER 5. RESULTS

the complete flow, figure 5.19a, no asymmetry can be observed, at least visually. The explanation for the

asymmetry might be that this is the beginning of vortex shedding and, if the simulation were transient,

vortices would start forming.

1 2 3 4 5 6 7 8 9 10

Mode

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

S
in

g
u
la

r
v
a
lu

e

Figure 5.28: Plot of the singular value for each mode for the cylinder case.

The singular values decay even faster than on the lid driven case indicating that the last modes can almost

be completely ignored.

Principal angles analysis

Once again, the values for the principal angles can be found in appendix E.2. In this case the results found

are identical to those for the lid driven cavity.

5.3.3 NACA 0012

Finally, the flow around the NACA 0012 airfoil is studied. A Reynolds of 500 and 20 steps have been chosen

for this results.

53

5.3. REDUCED ORDER MODELING RESULTS CHAPTER 5. RESULTS

(a) First mode.

(b) Third mode.

(c) Fifth mode.

(d) Seventh mode.

Figure 5.29: Different modes of the velocity modulus for a Reynolds number of 500.

The singular values are:

54

5.3. REDUCED ORDER MODELING RESULTS CHAPTER 5. RESULTS

1 2 3 4 5 6 7 8

Mode

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

S
in

g
u
la

r
v
a
lu

e

Figure 5.30: Plot of the singular value for each mode.

This particular case does not provide more insight, the results are what would be expected after visualizing

the lid driven cavity and cylinder.

Principal angles analysis

The principal angles can be found in appendix E.3. The results show that more steps provide the same basis,

as the other cases, but it also shows something new. In this particular case, as the Reynolds numbers are

closer together, performing the simulation with Re=200 or Re=500 give closer angles than when the Reynolds

are varied in the lid driven case or the cylinder. It can be explained as the only modification between two

Reynolds is in the wake of the airfoil leaving a bigger part of the computational domain the same. This might

lead to closer bases.

Finally, regarding the potential for compressing data, it seems that there is potential for using the same basis

for different Reynolds numbers, as there are a few angles that are 0. Nonetheless information and precision

will be lost, as no 2 different simulations are perfectly contained within each other.

55

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Chapter 6

Environmental impact

The environmental impact analysis aims to provide insight into how this project affects the environment and

to provide possible solutions if deemed necessary.

First of all, the project only has one major aspect affecting the environment, that is energy consumption. As

CFD simulations take a lot of computing power, the electricity consumption is huge, going as far as some

Mega Watts in some super computers [20]. Thus the consumption of the computer used to make this project

will be studied. On average, the consumption is of 200W (including screens). The total CO2 emissions will

be:

Table 6.1: Total CO2 emissions in kg.

Time [h] Power [kW]

Total

consumption

[kWh]

Impact

Factor [21]

[kg CO2/kWh]

CO2 [kg]

250 0.2 50 0.259 13

To reduce the emissions renewable energy must be used. Then, other aspects like the materials used to build

the computer could be looked at, but currently it is a negligible problem compared to the CO2 emissions.

56

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Chapter 7

Conclusions

In conclusion, the implementation of the finite element method for the Navier-Stokes equations has been

a success and it is able to solve the governing equations of a newtonian incompressible fluid. It is able to

capture the essential features of the flow field, such as velocity and pressure distributions. Moreover, the

code has been successfully accelerated via the implementation of vectorization providing several orders of

magnitude of speed-up. Afterwards, three different cases have been studied, both for Stokes flow and for

Navier-Stokes flow, all with excellent results. The project proves that the finite element method is a suitable

choice for performing CFD simulations, but the LBB condition must be circumvented or the meshing process

becomes too tedious.

Furthermore, the ground work for increasing the computational efficiency with a reduced order model has

been laid out, and the comparison between principal angles has provided us with useful information.

Analyzing the objectives of this project it can be seen that the first one is completed, as it solves the NS

equations. However the second has not been met completely, which is: Accelerate the code by statistical

techniques. This is because most of the time has been spent implementing the Navier-Stokes equations which

originally was not planned. So although not every requirement has been met, one of them has been far

exceeded, as the code solves NS, not only Stokes.

In summary, this project has built a Finite Element solver for the Navier-Stokes equations, and laid the

foundation for implementing a reduced order model. In the future a transient solver can be implemented

and there is much to do on the machine learning part, such as the implementation of the proper orthogonal

decomposition.

57

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Bibliography

1. FOUNDATION, Poetry. High flight [https://www.poetryfoundation.org/poems/157986/high-

flight-627d3cfb1e9b7]. 2023. [Online; accessed 11-June-2023].

2. CODINA, Ramon; BADIA, Santiago; BAIGES, Joan; PRINCIPE, Javier. Variational multiscale methods

in computational fluid dynamics. Encyclopedia of computational mechanics. 2018, pp. 1–28.

3. CODINA, Ramon. Stabilized finite element approximation of transient incompressible flows using

orthogonal subscales. Computer methods in applied mechanics and engineering. 2002, vol. 191, no. 39-40,

pp. 4295–4321.

4. HUGHES, Thomas JR; FEIJÓO, Gonzalo R; MAZZEI, Luca; QUINCY, Jean-Baptiste. The variational

multiscale method—a paradigm for computational mechanics. Computer methods in applied mechanics

and engineering. 1998, vol. 166, no. 1-2, pp. 3–24.

5. DADVAND, Pooyan; ROSSI, Riccardo; OÑATE, Eugenio. An object-oriented environment for developing

finite element codes for multi-disciplinary applications. Archives of computational methods in engineering.

2010, vol. 17, pp. 253–297.

6. DADVAND, Pooyan; ROSSI, Riccardo; GIL, Marisa; MARTORELL, Xavier; COTELA, Jordi; JUAN-

PERE, Edgar; IDELSOHN, Sergio R; OÑATE, Eugenio. Migration of a generic multi-physics framework

to HPC environments. Computers & Fluids. 2013, vol. 80, pp. 301–309.

7. FERRÁNDIZ, Vicente Mataix; BUCHER, Philipp; ZORRILLA, Rubén; ROSSI, Riccardo; CORNEJO,

Alejandro; JCOTELA; CELIGUETA, Miguel Angel; MARIA, Josep; TTESCHEMACHER; ROIG, Car-

los; MASÓ, Miguel; WARNAKULASURIYA, Suneth; CASAS, Guillermo; NÚÑEZ, Marc; DADVAND,

Pooyan; LATORRE, Salva; POUPLANA, Ignasi de; GONZÁLEZ, Joaqúın Irazábal; ARRUFAT, Fer-

ran; RICCARDOTOSI; AFRANCI; GHANTASALA, Aditya; WILSON, Peter; DBAUMGAERTNER;

CHANDRA, Bodhinanda; GEISER, Armin; SAUTTER, Klaus Bernd; LOPEZ, Inigo; LLUÍS; GÁRATE,

Javi. KratosMultiphysics/Kratos: Release 9.3. 2023. Available from doi: 10.5281/zenodo.7681287.

8. BENNER, Peter; GUGERCIN, Serkan; WILLCOX, Karen. A survey of projection-based model reduction

methods for parametric dynamical systems. SIAM review. 2015, vol. 57, no. 4, pp. 483–531.

9. LIEU, Thuan; FARHAT, Charbel; LESOINNE, Michel. Reduced-order fluid/structure modeling of a

complete aircraft configuration. Computer methods in applied mechanics and engineering. 2006, vol. 195,

no. 41-43, pp. 5730–5742.

10. RIZZI, Arthur; LUCKRING, James M. Historical development and use of CFD for separated flow

simulations relevant to military aircraft. Aerospace Science and Technology. 2021, vol. 117, p. 106940.

58

https://www.poetryfoundation.org/poems/157986/high-flight-627d3cfb1e9b7
https://www.poetryfoundation.org/poems/157986/high-flight-627d3cfb1e9b7
https://doi.org/10.5281/zenodo.7681287

BIBLIOGRAPHY BIBLIOGRAPHY

11. DONEA, Jean; HUERTA, Antonio. Finite element methods for flow problems. John Wiley & Sons, 2003.

12. WIKIPEDIA CONTRIBUTORS. Navier–Stokes equations — Wikipedia, The Free Encyclopedia [https:

/ / en . wikipedia . org / w / index . php ? title = Navier % E2 % 80 % 93Stokes _ equations & oldid =

1149572892]. 2023. [Online; accessed 7-May-2023].

13. ORTEGA, Joaqúın Hernández. Stokes Flow. 2023. Technical report.

14. ORTEGA, Joaqúın Hernández. Finite element method. 2023. Technical report.

15. WIKIPEDIA CONTRIBUTORS. Banach fixed-point theorem — Wikipedia, The Free Encyclopedia

[https : / / en . wikipedia . org / w / index . php ? title = Banach _ fixed - point _ theorem & oldid =

1147555595]. 2023. [Online; accessed 28-May-2023].

16. CANTE, Juan Carlos. Structural theory. 2022. Technical report.

17. BRUNTON, Steven L; KUTZ, J Nathan. Data-driven science and engineering: Machine learning,

dynamical systems, and control. Cambridge University Press, 2022.

18. ORTEGA, Joaqúın Hernández. Geometrically nonlinear elastostatics. 2023. Technical report.

19. GOLUB, Gene H; VAN LOAN, Charles F. Matrix computations. JHU press, 2013.

20. STROHMAIER, Erich; DONGARRA, Jack; SIMON, Horst; MEUER, Martin. Top 500 [https://www.

top500.org/]. 2023. [Online; accessed 11-June-2023].

21. GENCAT. Factor de emisión de la enerǵıa eléctrica: el mix eléctrico. Cambio climático [https :

//canviclimatic.gencat.cat/es/actua/factors_demissio_associats_a_lenergia/]. 2023.

[Online; accessed 11-June-2023].

59

https://en.wikipedia.org/w/index.php?title=Navier%E2%80%93Stokes_equations&oldid=1149572892
https://en.wikipedia.org/w/index.php?title=Navier%E2%80%93Stokes_equations&oldid=1149572892
https://en.wikipedia.org/w/index.php?title=Navier%E2%80%93Stokes_equations&oldid=1149572892
https://en.wikipedia.org/w/index.php?title=Banach_fixed-point_theorem&oldid=1147555595
https://en.wikipedia.org/w/index.php?title=Banach_fixed-point_theorem&oldid=1147555595
https://www.top500.org/
https://www.top500.org/
https://canviclimatic.gencat.cat/es/actua/factors_demissio_associats_a_lenergia/
https://canviclimatic.gencat.cat/es/actua/factors_demissio_associats_a_lenergia/

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Appendix A

Profiling results

The profiled results as mentioned in 3.4 for the code’s main are:

60

APPENDIX A. PROFILING RESULTS

As for the SolverNavierStokes function:

65

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Appendix B

Matlab code

The code developed for Matlab can be found on https://github.com/Ferraan/TFG NS FEM There is a file

called Tutorial.mlx that explains how to use it. The scripts used for postprocessing can also be found there,

as well as some meshes ready to run.

The code was adapted from an elastostatics code for the subject Enginyeria Aeroespacial Computacional.

Some functions are the same such as the naive assembly of K or the vector F , but the assembly of G and C

had to be built from scratch. Moreover all the vectorization part is new, as well as the Picard iteration code.

The preprocessing and postprocessing to and from GiD have been adapted from the subject’s code. Finally,

the building of snapshot matrix as well as finding the basis as well as the angles calculation are new.

69

https://github.com/Ferraan/TFG_NS_FEM

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Appendix C

Meshing process

To obtain the meshes the program GiD has been used. To generate a new velocity mesh the following steps

must be followed:

1. Create the desired geometry and make a NURBS surface.

Figure C.1: Some random geometry with its NURBS surface

2. Load the problem type PROBLEM TYPE simple.gid 1

3. Assign a material to all surfaces. The properties (viscosity, density) can be changed in the code.

4. Assign conditions to each line, go to Data − > condition − > line icon. Then in the Matlab code each

1Can be found in the GitHub repository found in section B

70

APPENDIX C. MESHING PROCESS

line will be assigned the Dirichlet or Von Neumann boundary conditions. For example for the lid driven

case:

1 % 3 . D i r i c h l e t boundary cond i t i on s (p r e s c r i b ed v e l o c i t y)

2 % −−−

3 icond = 1 ; % Number o f cond i t i on

4 DIRICHLET(icond) .NUMBER LINE = 1 ; % Number o f l i n e

5 DIRICHLET(icond) .PRESCRIBED Ux = 0 ; % (constant along the l i n e)

6 DIRICHLET(icond) .PRESCRIBED Uy = 0 ;

7 icond = 2 ; % Number o f cond i t i on

8 DIRICHLET(icond) .NUMBER LINE = 2 ;

9 DIRICHLET(icond) .PRESCRIBED Ux = Ux ;

10 DIRICHLET(icond) .PRESCRIBED Uy = 0 ;

5. Go to Mesh − > Element type − > Quadrilateral

6. Go to Mesh − > Quadratic type − > Quadratic9

7. Go to Mesh − > Structured − > Surfaces − > Assign number of divisions to surface lines

8. Go to Mesh − > Generate mesh

Figure C.2: Mesh in the geometry, note how there are 9 nodes per element as it is the velocity mesh.

9. Go to Mesh − > Create boundary mesh

10. Go to Files − > Export − > GiD Mesh

11. Go to Files − > Export − > Calculation files

12. Finally change the mesh input in the Matlab code.

1 NameMeshP=’ LidDriven75 ’ ; %Cylinder10 ,20 ,40 ,75 LidDriven75 %NACA0012 AoA 5

71

APPENDIX C. MESHING PROCESS

To build the mesh for pressure repeat the same steps but ignore line 6, by default GiD uses the correct

elements for pressure which have four nodes in the vertices.

72

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Appendix D

Kratos simulations

This appendix is a brief introduction on how to use Kratos for fluid problems. It assumes a python installation

is already installed correctly on the computer.

1. Go to Kratos Multiphysics and follow the instructions for installing Kratos.

2. Go to GiD − > Data − > Problem type − > Internet retrieve and pick the latest version of Kratos.

3. Select Kratos as the problem type, then a pop up screen appears. In this screen choose fluid − > 2D.

The following should be seen:

Figure D.1: GiD screen at the current step.

4. Now, an example with the mesh described in appendix C will be followed. Once the geometry is done

73

https://github.com/KratosMultiphysics/Kratos

APPENDIX D. KRATOS SIMULATIONS

go to Mesh − > Element type − > Triangle

5. Go to Mesh − > Quadratic type and make sure it is on normal.

6. Go to Parts − > Group and assign a new group to the fluid.

7. Go to Conditions and assign some boundary conditions. For this example the left and right walls will

be set to a no slip condition, the lower wall will be set with an Automatic inlet velocity on the y axis of

1 and the upper wall will have an Outlet pressure condition of 0.

8. Go to Time parameters and adjust the desired end time.

9. Go to Mesh − > Generate mesh

10. Click on Run the simulation

11. When the simulation is done click on View results. The results for this case are:

Figure D.2: GiD screen with the simulation output.

74

Study of machine learning techniques for accelerating
finite element simulations of Stokes flows

Appendix E

Principal angles combinations

All the combinations are generated automatically by Matlab, as well as these tables with the functions

PostProcSVDNameOfCase.

In the following tables each column represents the 2 cases that have been compared, and the cosines of the

angles can be seen.

E.1 Lid driven cavity

Re=1000 nstp=20 Re=1000 nstp=10 Re=400 nstp=20 Re=1000 nstp=10

Re=1000 nstp=10 Re=400 nstp=10 Re=1000 nstp=10 Re=100 nstp=10

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 0.9997

1.0000 1.0000 1.0000 0.9052

1.0000 1.0000 1.0000 0.3461

1.0000 0.9997 0.9998 0.2043

1.0000 0.9207 0.9592 0.0154

1.0000 0.2630 0.4187 0.0054

0.9974 0.1090 0.1180 -

75

E.1. LID DRIVEN CAVITY APPENDIX E. PRINCIPAL ANGLES COMBINATIONS

Re=1000 nstp=10 Re=1000 nstp=20 Re=1000 nstp=20

Re=100 nstp=20 Re=400 nstp=10 Re=400 nstp=20

1.0000 1.0000 1.0000

0.9996 1.0000 1.0000

0.8845 1.0000 1.0000

0.3051 1.0000 1.0000

0.2018 1.0000 1.0000

0.0163 1.0000 1.0000

0.0041 0.9995 0.9996

- 0.7425 0.8862

- - 0.2516

- - 0.0159

Re=1000 nstp=20 Re=1000 nstp=20 Re=400 nstp=20

Re=100 nstp=10 Re=100 nstp=20 Re=400 nstp=10

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

0.9999 0.9999 1.0000

0.9787 0.9722 1.0000

0.5386 0.4623 1.0000

0.0394 0.0355 1.0000

0.0186 0.0153 1.0000

- - 0.9998

Re=400 nstp=10 Re=400 nstp=10 Re=400 nstp=20

Re=100 nstp=10 Re=100 nstp=20 Re=100 nstp=10

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

0.9983 0.9974 1.0000

0.7386 0.6699 0.9999

0.1997 0.1804 0.9326

0.0240 0.0202 0.2285

76

E.2. CYLINDER APPENDIX E. PRINCIPAL ANGLES COMBINATIONS

E.2 Cylinder

Re=200 nstp=20 Re=200 nstp=10 Re=50 nstp=20

Re=200 nstp=10 Re=50 nstp=10 Re=200 nstp=10

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 0.9902 0.9959

1.0000 0.4993 0.6328

1.0000 0.2007 0.3131

1.0000 0.0151 0.1785

0.9976 - 0.1404

Re=200 nstp=20 Re=200 nstp=20 Re=50 nstp=20

Re=50 nstp=10 Re=50 nstp=20 Re=50 nstp=10

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

0.9988 0.9995 1.0000

0.7316 0.8782 1.0000

0.2312 0.3394 0.9999

- 0.2439 -

- 0.1483 -

E.3 NACA0012

Re=500 nstp=20 Re=500 nstp=10 Re=200 nstp=20

Re=500 nstp=10 Re=200 nstp=10 Re=500 nstp=10

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 0.9999

1.0000 0.9754 0.9520

1.0000 0.3988 0.3260

0.9611 0.0418 0.0327

77

E.3. NACA0012 APPENDIX E. PRINCIPAL ANGLES COMBINATIONS

Re=500 nstp=20 Re=500 nstp=20 Re=200 nstp=20

Re=200 nstp=10 Re=200 nstp=20 Re=200 nstp=10

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

0.9880 0.9689 1.0000

0.4439 0.3574 0.9580

- 0.0024 -

78

	Table of Contents
	List of Figures
	List of Tables
	List of algorithms
	Abbreviations
	Nomenclature
	Abstract
	1 Introduction
	1.1 Objective
	1.2 Scope
	1.3 Requirements
	1.4 Justification
	1.5 Schedule
	1.6 State of the art
	1.6.1 Finite Element Method
	1.6.2 Machine learning techniques

	2 Finite Element Method for incompressible steady state Navier-Stokes equations
	2.1 Strong form
	2.2 Weak form
	2.3 Finite element formulation
	2.4 Matrix problem
	2.4.1 Solvability conditions

	2.5 Element point of view
	2.5.1 Elemental matrices calculations

	2.6 Picard Iteration

	3 Vectorization and code optimization
	3.1 Naive assembly
	3.2 Vectorization
	3.3 Time savings
	3.4 Profiling

	4 Reduced order modeling
	4.1 Parametric problem
	4.2 Solution space
	4.3 Training stage
	4.4 Dimensionality reduction
	4.5 Angle between subspaces
	4.6 Projection onto the reduced space

	5 Results
	5.1 Stokes flow simulations
	5.1.1 Lid driven cavity
	5.1.2 Flow around a cylinder

	5.2 Navier-Stokes simulations
	5.2.1 Lid driven cavity
	5.2.2 Flow around a cylinder
	5.2.3 NACA 0012

	5.3 Reduced order modeling results
	5.3.1 Lid driven cavity
	5.3.2 Flow around a cylinder
	5.3.3 NACA 0012

	6 Environmental impact
	7 Conclusions
	Bibliography
	A Profiling results
	B Matlab code
	C Meshing process
	D Kratos simulations
	E Principal angles combinations
	E.1 Lid driven cavity
	E.2 Cylinder
	E.3 NACA0012

