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A B S T R A C T   

Objective: Recorded electromyograms (EMG) of electrically stimulated muscles can contain both an exogenous- 
evoked potential (M-wave) and an endogenous, or volitional, component. This study evaluated the effective
ness of three filtering methods (i.e., high-pass, adaptive, and comb), commonly used in neurorehabilitation, in 
extracting the volitional component of simulated and experimental EMG during upper-limb tasks. 
Methods: Volitional EMG and M-wave were simulated through a physiological model of muscle recruitment, 
comprising of a motor neuron pool and associated muscle fibres, superimposed to a stimulation artefact. 
Experimental EMG data during different levels of volitional muscle contraction in isometric and dynamic tasks 
were recorded from five unimpaired individuals. Electrical stimulation artefact was removed with different 
techniques (i.e., none, removing samples, blanking, and interpolation) to assess filter performance across time 
and frequency domains, and information content (i.e., Kolmogorov-Smirnov D-value). 
Results: The experimental results agreed with the simulations, wherein the adaptive filter outperformed the other 
filters when using no artefact removal or removing artefact samples from the signal, while for the blanking and 
interpolation artefact removal methods, the adaptive and comb filters outperformed the high-pass filter. 
Conclusion: The adaptive and comb filters best estimated volitional muscle activity in electrically stimulated 
muscles. 
Significance: Results from this study will enable the enhanced design of real-time neuroprosthesis control.   

1. Introduction 

Insult to the nervous system, such as a spinal cord injury or stroke, 
results in a partial or even complete loss of motor function, impacting 
the ability of an individual to volitionally activate their muscles [1]. 
Functional electrical stimulation (FES) is a widely used neuro
rehabilitation approach, whereby electrical pulses stimulate target 
muscles to elicit a contraction and generate movement. Stimulation 
parameters (i.e., pulse-width and amplitude) can be manually modified 
by the operator (e.g., clinician) or automatically by a control system and 
affect the level of muscle activation. When some motor function is 
retained following neural injury, it might be possible to boost the re
sidual volitional muscle activity by using recorded electromyograms 
(EMG) as input to a control system, automatically initiating electrical 
stimulation of the same muscle [2]. Preliminary evidence suggested that 
enabling users to directly control their muscle stimulation may improve 

rehabilitation outcomes compared to non-EMG-based solutions [3–5]. 
However, EMG recordings of electrically stimulated muscles are 
contaminated by multiple sources and extracting the signal component 
associated with volitional muscle activation remains challenging. 

The signal immediately recorded by surface EMG electrodes after 
muscle stimulation (i.e., 0 to 25 ms from first pulse) contains three main 
components: the volitional EMG (vEMG), the M-wave, and the stimu
lation artefact. The vEMG measures the electrical potential associated 
with muscle contraction generated via endogenous processes [6], 
providing information regarding the recruitment of motor neurons 
[7,8]. The M-wave represents the electrical potential associated with 
muscle contraction generated via exogenous processes and is the sum
mation of the action potentials from the motor units being synchro
nously recruited by the electrical stimulus [6]. Finally, the stimulation 
artefact is the potential delivered by an electrical stimulation device to 
the muscle, which is an unwanted signal. During electrical stimulation of 
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muscles, these three signals partially overlap and must be appropriately 
filtered to enable vEMG or M-wave use in real-time neuroprosthesis 
control [9], and assessment of motor coordination and spasticity [10]. 

Several filtering methods have been proposed for real-time extrac
tion of vEMG, M-wave, and stimulation artefacts. Stimulation artefacts 
have been successfully removed via software-based detection and 
removal techniques, showing low computational demand and a high 
success rate (i.e., >95 % of removed stimulation pulses) [11], elimi
nating the need for specialised hardware. Typical artefact removal 
methods include zeroing (i.e., blanking) the data [12–15], removing the 
samples from the signal entirely, or using interpolating splines [16,17]. 
High-pass filtering with a 200 Hz [15] or 330 Hz [18] cut-off frequency, 
adaptive filtering [19–21], and comb filtering with a fundamental fre
quency set equal to the stimulation frequency [13,22–24] are common 
methods used to extract vEMG during FES, but their performance has 
never been extensively compared. Previous work has qualitatively 
investigated differences between unfiltered and filtered signals in the 
time domain [22] or similarities in the frequency domain between the 
EMG signal without stimulation and with superimposed electrical 
stimulation after filtering [25], but without quantitative reporting. A 
range of metrics have also been used to assess the filtering performance, 
including signal to noise ratio between the filtered signal during stim
ulation with and without any volitional contributions [13], and re
ductions in the extracted vEMG signal power, coherence, and muscle 
response index following adaptive filtering [20]. Only one study has 
previously compared high-pass and adaptive filters, assessing their 
ability to extract vEMG for different levels of stimulation [14]. More
over, previous work assessed the filter performance using simulated data 
[20,21] or only in either isometric [13,25] or dynamic [14,22] experi
mental conditions. As such, it remains unclear what filter best retains the 
information characteristics of the extracted vEMG signal across both 
isometric and dynamic conditions. 

This study assessed three of the most used methods to extract vEMG 
during FES: high-pass, adaptive, and comb filters. Our aim was to 
evaluate each filter’s performance combined with artefact removal, 
using first simulated EMG data and then experimental EMG recordings 
across isometric and dynamic upper-limb motor tasks. Performance was 
assessed in time and frequency domains by evaluating the similarity of 
the information content between EMG in the absence of stimulation and 

vEMG extracted by each of the filters during superimposed electrical 
stimulation. The potential time delay introduced by each M-wave filter 
was also considered to evaluate real-time suitability. 

2. Method 

2.1. Simulation of EMG data 

The performance of the proposed filters was first evaluated using 
simulated EMG data. To this end, we developed a physiological model of 
a motor neuron pool and associated muscle fibres combined with a 
model simulating the impedance of muscle, fat, skin, and electrodes 
[26,27] (Fig. 1). Our approach allowed the simulation of vEMG as well 
as M-wave following exogenous electrical stimulation [28]. Motor 
neurons were implemented using a leaky fire-and-integrate model [29]. 
Physiological firing behaviour of the motor neuron pool was achieved by 
controlling the common synaptic current to the motor neuron pool [30] 
and via the appropriate selection of neurons’ electrical characteristics 
[31]. Motor units were modelled by connecting each motor neuron to 
multiple muscle fibres, using parameters obtained from the literature 
[27,28,30,32] and reported in Table 1. Each muscle fibre intracellular 
action potential was generated at the neuromusculoskeletal junction as a 
function of motor neuron firing, and described by the following equation 
[33]: 

Vm(z) =
{

Az3e− z + B, z > 0
0, z ≤ 0 , (1)  

where A = 96mV.mm− 3, B = − 90mV, and z is the spatial direction 
along the muscle fibres. 

Action potentials were modelled to propagate along the length of the 
muscle fibres at constant velocity (Table 1) and to extinct at the tendon. 
Muscle fibres were spatially located within a cylinder of radius 21 mm 
(calculated from the cross-sectional area of the biceps brachii [34]) 
following a uniform distribution. The transfer function between the 
current density source within the muscle fibre and bipolar circular 
electrodes positioned on the skin accounted for the physical character
istics of the electrode detection system, including electrode shape and 
interelectrode distance, and the volume conductor properties of the skin, 
fat, and muscle layers [26]. The potential difference of each muscle fibre 

Fig. 1. Representation of the physiological elements included in the computational model for EMG simulation. Each motor unit comprised of a motor neuron 
innervating multiple muscle fibres. The common synaptic input current was provided to all neurons within the motor neuron pool, enabling orderly recruitment 
consistent with Henneman’s size principle [31]. Action potential was initiated at the neuromuscular junction of each muscle fibre as a function of motor neuron 
firing, propagating along the length of the fibre (z-axis). For each electrode, EMG potential at the skin level was modelled via a transfer function accounting for skin, 
fat, and muscle layers, and subtracted to simulate the bipolar configuration. 
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was calculated between two points on the skin surface along the fibre 
axis, representing a bipolar configuration of electrodes with an inter
electrode distance of 20 mm, placed at the centre of the muscle along the 
direction of the fibres. The compounded sum of these simulated mea
surements across all muscle fibres resulted in the generation of time- 
varying EMG data (Fig. 2). To simulate an M-wave, action potentials 
were synchronously generated across a percentage of muscle fibres 
selected as a function of the stimulation current. 

All simulations were conducted using a bipolar circular electrode 
configuration. To simulate vEMG, the common synaptic current to the 
motor neuron pool was set as a percentage (20 %, 40 %, 60 %, and 80 %) 
of the maximum input current (25 nA). To simulate the M-wave, a group 
of motor units were all activated synchronously at a stimulation fre
quency of 25 Hz, with the number of motor units being a percentage (20 
%, 40 %, 60 %, and 80 %) of the total motor units proportional to the 
desired level of stimulation (Fig. 2 (b)). The specific portion of motor 
units that were recruited at each stimulation level were selected in order 
of increasing conduction velocity and depth [28]. The stimulation level 
remained constant for the entire 2 s simulation for each increment. Each 

of the four vEMG and four M-wave trial conditions were then combined 
by summing the two signals together at each time point to create the M- 
wave contaminated vEMG signal, generating 16 trials in total. Addi
tionally, a vEMG signal with 100 % of the maximum neural input was 
generated as the maximum volitional contraction (MVC) for normal
isation in the processing steps. The stimulation artefact, which is present 
when recording experimental EMG during electrical stimulation, was 
modelled as a biphasic square pulse wave (each phase 500 µs wide) and 
added to the simulated EMG signals synchronously with the recruitment 
of motor units, using an amplitude of the pulse four times larger than the 
MVC [16]. 

2.2. Experimental data collection protocol 

A testing protocol was developed incorporating both isometric and 
dynamic biceps brachii contraction conditions, comprising different 
levels of electrical stimulation and volitional muscle activation. Five 
unimpaired participants (age 26.8 ± 3.6 years, body mass 78.2 ± 14.5 
kg, height 1.75 ± 0.06 m) took part in this study, and each provided 
informed consent. The Griffith University Human Research Ethics 
Committee approved the study (GU ethics no: 2021/298). 

For each participant, a single arm was prepared for data collection. 
Surface EMG of the biceps brachii was recorded at 2000 Hz (Atkos, 
Myon, Switzerland), with the site cleaned, prepared and Ag/AgCl bi
polar electrodes, having a 12.5 mm radius and 20 mm inter-electrode 
distance (Duotrode, Myotronics, USA) placed according to SENIAM 
guidelines [35]. Circular FES electrode pads with a radius of 16 mm 
(PALS Platinum, Axelgaard, USA) were placed proximally and distally to 
the EMG electrodes (Fig. 3(a)), following manufacturer guidelines [36], 
and connected to a programmable FES system (Rehastim2, Hasomed, 
Germany). The muscle’s MVC for each participant was identified at the 
beginning of each session by flexing the elbow to push maximally 
against a fixed resistance for 3 s, with three valid trials recorded, 
allowing for 30 s of rest between trials. The participants’ maximum 
stimulation current level was obtained via an iterative process, whereby 
the muscle was stimulated with the maximum pulse-width of 500 µs and 
increasing the current amplitude in steps of 2 mA. At each step, the 
participant was asked to assess their discomfort level and verbally 
confirm whether they desired to continue increasing the stimulation 

Table 1 
EMG simulation parameters used throughout the current study.  

Parameter Value 

Muscle radius 21 mm [34] 
Number of motor units 65 [28] 
Number of muscle fibres (uniform distribution) 50 – 450 [28] 
Muscle fibre length (normal distribution) 130 (±3) mm [28] 
Neuromuscular junction location (normal 

distribution) 
0 (±1) mm from centre [32] 

Conduction velocity (normal distribution) 4 (±0.3) m/s [28] 
Neuron resistance (uniform distribution) 0.5e6 – 4.1e6 Ω [30] 
Sampling frequency 2000 Hz 
Electrode radius 12.5 mm 
Interelectrode distance 20 mm 
Angle of inclination 0◦

Thickness of fat layer 3 mm [26,27] 
Thickness of skin layer 1 mm [26,27] 
Fat conductivity 0.05 S/m [27] 
Skin conductivity 1 S/m [27] 
Muscle conductivity longitudinal to fibre direction 0.5 S/m [27] 
Muscle conductivity transversal to fibre direction 0.1 S/m [27]  

Fig. 2. Example of the simulation of (a) volitional and (b) evoked EMG signals. For the vEMG, a neural input current is ramped from zero to the maximum, resulting 
in an increasing number of motor units firing and an increasing amplitude of generated vEMG signal. For the evoked activations, the motor units were recruited at the 
stimulation frequency (25 Hz), producing a synchronous M-wave. 
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level. The maximum current for the participant was selected to be the 
one below the self-perceived level of discomfort. The pulse-width and 
maximum current then informed the maximum stimulation charge 
applied to the muscle for each participant. The mean maximum stimu
lation current across the participants was 11.2 ± 2.3 mA. A stimulation 
frequency of 25 Hz was used throughout the experimental protocol. 
Motion capture data were recorded at 200 Hz using a Vicon 12-camera 
(MX T40-S) motion capture system (Vicon Motion Systems, Oxford, UK). 
Eight retroreflective markers were placed on the torso and arm to track 
their 3D motion. The recorded motion data was used to split the dy
namic trials into individual elbow flexion and extension cycles during 
the processing. 

The isometric tasks required the participants to sit flexing their 
elbow at 90◦, lower arm supinated, and shoulder held at 0◦ in all degrees 
of freedom (Fig. 3(b)), maintain a constant elbow angle throughout the 
trial, and hold a series of weights (1 kg, 3 kg, and 5 kg) or no weight. 
Each trial consisted of four 5 s repetitions without stimulation followed 
by 5 s with stimulation of the biceps brachii, with the stimulation charge 
starting at 20 % of the maximum stimulation charge previously identi
fied for the participant and reaching 80 %, incrementing by 20 % (Fig. 3 
(c)). The participant was instructed to maintain an elbow angle of 90◦

for the entire trial, which was visually monitored to maintain 
consistency. 

The dynamic tasks required the participant to flex and extend their 
elbow at a frequency of 0.5 Hz for 50 s, while the lower arm remained 
supinated (Fig. 3(d)). In the first 10 s of each trial, no stimulation was 
provided. Then, for the remaining 40 s, the biceps brachii was stimu
lated for a duration of 0.4 s every 1.6 s. A digital metronome operating at 
0.5 Hz was used to provide auditory feedback to the participants to assist 
with their timing and standardise the movements across trials. By off
setting the stimulation delivery and flexion cycle frequencies, the muscle 
was stimulated during different stages of activation, increasing the 
conditions to evaluate across. The stimulation charge was then incre
mented by 20 % of the maximum electrical stimulation charge for the 
participant every 10 s, starting at a baseline of 20 % and reaching 80 % 
(Fig. 3(d)). 

Each participant performed one trial per weight condition for both 
the isometric and dynamic tasks, with 60 s of rest between trials, starting 
with no weight and then consistently increasing within the series (1 kg, 
3 kg, and 5 kg). 

2.3. Data processing 

Marker data were labelled and gap filled in Vicon Nexus (Vicon 
Nexus 2.12, Oxford, UK) and exported into OpenSim (Version 4.1) [37]. 
A generic arm model [38] was scaled to each individual using markers 
positioned on the acromion process, lateral elbow condyle, and ulnar 

styloid process. Inverse kinematics was used to calculate the elbow angle 
for all dynamic trials and automatically segment the trials into indi
vidual elbow flexion–extension cycles, automatically identified via a 
peak finding method. The dynamic trials were divided into smaller 
segments of 2 s containing a single full elbow flexion and extension cycle 
and a different time region stimulated in each segment, producing be
tween 4 and 5 segments per trial depending on the timing of the 
movement. 

An offline EMG filtering pipeline was developed in MATLAB (2022b) 
to remove stimulation artefact and M-wave to extract the vEMG for 
evaluating the different filtering methods (Fig. 4). The pipeline first 
implemented a custom software-based artefact detection algorithm to 
identify and remove the regions contaminated by stimulation artefact. 
Similar to [11], the artefact detection method used mean and standard 
deviation of the EMG second derivative to identify artefacts, but the 
adaptive tuning parameter and buffering were removed to better suit 
suitable real-time applications. Here, mean and standard deviation were 
calculated using the entire data length, while in real-time the cumulative 
mean and standard deviation may be used. The thresholds used to 
identify the artefact were calculated as 

thupper =
d2x
dt2 + σ, (2)  

thlower =
d2x
dt2 − σ, (3) 

where thupper and thlower are the upper and lower thresholds, respec

tively, d2x
dt2 is the mean of the second derivative of the EMG signal and σ is 

the standard deviation of the EMG second derivative. The signal de
rivatives were calculated using backward numerical differentiation. If 
the amplitude of the second derivative of the input signal was greater 
than the upper threshold (thupper) or less than the lower threshold (thlower), 
the sample was marked as a stimulation artefact. A limit was introduced 
to restrict the potential for false artefact detection so that no artefact 
could be detected less than half a stimulation period after the previous. 
The artefact region length was related to the stimulation pulse-width 
and a tuning parameter n, represented by the equation 

lartefact = n⋅pw, (4) 

where lartefact is the artefact region, and pw is the stimulation pulse- 
width [16]. The value used for the tuning parameter n should lie 
within the range 12–20 [16], with a value of 16 used here based on 
initial testing that evaluated the root mean squared error (RMSE) and 
Pearson’s coefficient of determination (R2) between EMG with no 
stimulation and the EMG during stimulation after the artefact was 
removed with n values ranging from 1 to 50. Multiplying the artefact 

Fig. 3. (a) Placement of the EMG and FES electrodes on the biceps brachii. (b) Participant seated with the elbow flexed at 90◦. (c) Stimulation pattern for the 
isometric task. (d) Stimulation pattern and elbow flexion angle for the dynamic task. 
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region gain by the pulse-width allows for the region to be fully encap
sulated and removed at all stimulation charge levels while retaining as 
much of the original signal as possible at the lower pulse-width values 
where the stimulation artefact may not last as long as the higher charge 
values. For a comprehensive comparison, four separate output signals 
were obtained from the artefact detection: taking no action on the re
gion, removing the region entirely, replacing the region with zeroes (i.e., 
blanking) [12–15,21] or replacing the region with interpolation 
[16,17]. After removing the stimulation artefact, the signal was band- 
pass filtered between 10 and 300 Hz, and band-stop notch filtered at 
50 Hz using 3rd order Butterworth filters forwards and backwards in 
time (see [14] for filter design), removing noise and amplitude offset. 
Cut-off frequencies of 10 and 300 Hz were chosen for the band-pass filter 
as most vEMG spectral energy typically occurs within this range [14,39], 
while 50 Hz was used for the band-stop notch filter to remove powerline 
noise [40], with cut-off frequencies of 49 Hz and 51 Hz used to create a 
narrow notch centred at 50 Hz [41]. When stimulation was active, the 
EMG signal was separately passed through each filter being assessed, a 
high-pass [15], an adaptive [21], and a comb filter [13]; when the 
stimulation was inactive, no further processing was performed. These 
three filters were chosen for evaluation due to their relatively common 
use in previous studies. 

The high-pass filter was a 6th order elliptic filter with a cut-off fre
quency of 200 Hz, 3 dB of ripple in the passband and 80 dB of attenu
ation in the stopband, applied forwards and backwards in time. High- 
pass filtering has been used in previous studies to attenuate low fre
quencies associated with the M-wave. The comb filter had a funda
mental frequency the same as the stimulation frequency (25 Hz), 
represented by the difference equation 

y(i) =
x(i) − x(i − T)

̅̅̅
2

√ , (5) 

where y(i) is the filtered EMG signal, x(i) is the input EMG signal, and 
T is the number of samples in one stimulation period, which can be 
calculated as 

T =
femg

fstim
, (6) 

where femg is the EMG sampling frequency and fstim is the stimulation 
frequency. This type of comb filter minimises the noise introduced by 
the stimulation at the stimulation period and its harmonics through the 
repeating notch filter nature of the comb filter. Finally, the adaptive 
filter used EMG samples from the previous six stimulation periods to 
estimate the stationary noise, including the M-wave, which was then 
subtracted from the current EMG signal, as represented by the equation 

y(i) = x(i) −
∑M

j=1
bjx(i − jT), (7) 

where y(i) is the filtered EMG signal, x(i) is the input EMG signal, M 
is the number of previous stimulation periods used for the estimation 
(here M = 6), bj are the filter coefficients for each frame adapted at the 
stimulation frequency, and T is the number of samples in one stimula
tion period. For each new stimulation period, the optimal filtering co
efficients were recalculated using a least square algorithm minimising 
the energy output of the current frame with respect to the filter co
efficients to predict the stationary component of the signal considered as 
noise, importantly including the M-wave here, and subtracted from the 
EMG signal [21] (Fig. 5). When artefact samples were removed entirely, 
femg (equation (6)) for both the comb and adaptive filters was recalcu
lated considering the samples removed from the period. The high-pass 
and adaptive filters required a window of EMG samples to effectively 
perform filtering, therefore, the EMG signal was buffered to contain one 
stimulation period before passing through these two filters, with the 
previous six buffers stored in memory for use in the adaptive filter. The 
frequency response of the three M-wave filtering techniques was dis
played in Fig. 6, with an example of the adaptive filter frequency 
response obtained using the filter coefficients while filtering out M-wave 
during an isometric trial at different intervals (25 %, 50 %, 75 % and 
100 %) of the trial time. 

The filtered signals’ linear envelope and Fast Fourier transform were 
obtained for subsequent performance analyses. The linear envelope was 
calculated via rectification and low-pass filtering using a 4th order zero- 
lag Butterworth filter with a cut-off frequency of 5 Hz [24,42]. The 
signals were normalised to the participant-specific MVC, using a MAT
LAB script to identify peak values across all MVC trials. 

Fig. 4. (a) EMG signal processing procedure to extract the vEMG. Pulse-width (PW) and current amplitude (I) values were provided to stimulate the biceps brachii, 
while EMG activity was recorded. Stimulation artefact was then detected, and the samples were either unchanged, removed from the signal, replaced with zeros or 
interpolation. The proceeding processing steps were then completed separately on each of these four artefact removal methods. The signal was then band-pass and 
band-stop filtered. Finally, the volitional component of the EMG was extracted using high-pass, adaptive and comb filters. (b) The output EMG signals from each 
processing step under isometric conditions, with the shaded areas representing the time that stimulation was applied, with the output after the interpolation artefact 
method used as an example here. (c) An example of a raw surface EMG signal containing the stimulation artefact, M-wave, and volitional muscle activity. 
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2.4. Performance analysis 

For each filter and artefact removal method combination, the 
extracted vEMG was compared to the corresponding EMG data in the 
absence of stimulation. Filtering performance was assessed via three 
outcome measures applied to each trial: RMSE, R2, and the Kolmogorov- 
Smirnov statistic (D-value). RMSE was calculated between the time se
ries envelopes of the baseline and filtered signals to assess time domain 
similarities. R2 was calculated between the frequency spectrum of the 
baseline EMG signal and the extracted vEMG signals, assessing the 
similarities in the frequency domain. The D-value compared the infor
mation content of EMG and extracted vEMG signals and was calculated 
via a Kolmogorov-Smirnov test [43]. The probability density function 
(PDF) of each non-enveloped time domain signal was determined, and 
the empirical cumulative density function (eCDF) was found from the 
PDF. The D-value was calculated as the maximum difference between 
the eCDF of the baseline EMG and the extracted vEMG signals. A larger 
D-value suggests a greater difference between the information content of 
the two signals and, therefore, worse performance for the filter. 

2.5. Statistical analyses 

We combined performance metrics for all trials across weight and 
stimulation conditions for the simulated and experimental data to 
identify the best filter within each artefact removal method. As the data 
were not normally distributed, according to a Shapiro-Wilk test [44], a 
Kruskal-Wallis analysis of variance (ANOVA) test was used to determine 
significant differences between the filtering methods within each arte
fact removal technique and performance metric, with significance set to 
p < 0.05. 

3. Results 

A total of 16 simulated trials of length 2 s, 80 experimental isometric 
trials of length 5 s, and 348 dynamic trials of length 2 s per trial were 
recorded. Typical examples of data were reported for visual inspection, 
including raw and filtered simulated and experimental EMG data 
(Fig. 7), as well as normalised linear envelopes (Fig. 8(a)), frequency 
spectrums (Fig. 8(b)), and D-values from the PDF (Fig. 9(a)) and eCDF 
(Fig. 9(b)) for the dynamic elbow flexion–extension. 

Fig. 5. Schematic of the operation of the adaptive filter used in this study. A memory buffer stores the samples from the previous six stimulation periods (T) and 
multiplied by the corresponding filter coefficient (b), to represent stationary noise, and then subtracted from the current samples (x) to obtain the filtered signal (y). A 
least squares algorithm is used to adapt the filter coefficients at each stimulation period using the samples from the current stimulation period. 

Fig. 6. Frequency response of the (a) high-pass, (b) comb and (c) adaptive filters. The frequency response was calculated using frequencies up to the Nyquist 
frequency of 1000 Hz. As the frequency response of the adaptive filter changes with the update of coefficients, an example response at different time intervals (25 %, 
50 %, 75 % and 100 % of the maximum trial time) of a single M-wave filtering trial is displayed. 
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3.1. Simulation results 

For the simulated data (including stimulation artefact), the adaptive 

and comb filters produced significantly lower RMSE than the high-pass 
filter (Fig. 10(a)). The high-pass filter also provided R2 and D-value 
metrics significantly lower and significantly higher, respectively, than 

Fig. 7. Examples of the raw and filtered EMG signals (high-pass, adaptive and comb filtered) to be used in the analysis from the (a) simulated data with 80 % 
stimulation and 60 % maximum volitional activation, and experimental data from participant one with 80 % stimulation and 3 kg weight during the (b) isometric 
elbow task and (c) one of the elbow flexion and extension cycles of the dynamic task trial. The grey shaded areas in (b) and (c) represent the periods where 
stimulation is active and vEMG extraction occurs. For the dynamic task, multiple flexion and extension cycles are recorded with the region that stimulation is active 
being different for each cycle. 

Fig. 8. The EMG without any stimulation (clean) and the extracted vEMG signals from each of the three filters (high-pass, adaptive and comb) during one extension 
and flexion cycle from participant one with 80 % stimulation and 3 kg weight during the dynamic elbow task represented by (a) the linear envelope for the 
calculation of the RMSE and (b) the frequency domain for calculation of R2. The shaded grey area represents active stimulation, and the three filters were applied. 
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the other filters (Fig. 10(a)). When the artefact-contaminated samples 
were removed from the signal, the adaptive and comb filter produced 
significantly higher RMSE than the high-pass filter, while the high-pass 
filter produced significantly lower R2 than the other filters (Fig. 10(b)). 
For both the artefact blanking and interpolation methods, the adaptive 

and comb filters produced significantly lower RMSE and D-value and 
higher R2 than the high-pass filter (Fig. 10(c–d)). The comb filter also 
provided a significantly higher R2 than the adaptive filter when blanking 
or using linear interpolation (Fig. 10 (c–d)). 

Fig. 9. The EMG without any stimulation (clean) and the extracted vEMG signals displayed as their (a) PDF and (b) eCDF to calculate the D-value during one 
extension and flexion cycle from participant one with 80 % stimulation and 3 kg weight during the dynamic elbow task. 

Fig. 10. Box plots from simulated EMG data for the performance of the high-pass, adaptive and comb filters, with (a) no artefact removal, (b) removing the samples 
entirely, (c) blanking the samples and (d) linear interpolation. Data was combined across all volitional muscle activation and stimulation conditions. The horizontal 
bars represent a significant difference (p < 0.05) between filters. 

Fig. 11. Box plots from the isometric flexion experimental EMG data for the performance of the high-pass, adaptive and comb filters, with (a) no artefact removal, (b) 
removing the samples entirely, (c) blanking the samples and (d) linear interpolation. Data was combined across all volitional muscle activation and stimulation 
conditions. The horizontal bars represent a significant difference (p < 0.05) between filters. 
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3.2. Experimental results 

In isometric conditions, when not using any artefact removal, the 
adaptive filter showed significantly lower RMSE than the other filters, 
and significantly higher R2 than the high-pass filter. In contrast, the 
comb filter showed a significantly lower D-value than the high-pass and 
adaptive filters (Fig. 11(a)). When removing the artefact samples from 
the signal the high-pass and adaptive filters provided significantly lower 
RMSE than the comb filter, while the high-pass filter provided signifi
cantly lower R2 than the comb filter, and significantly higher D-value 
than both other filters (Fig. 11(b)). For the blanking method, the 
adaptive and comb filters both produced significantly greater R2 than 
the high-pass filter, while the comb filter produced a significantly lower 
D-value than both other filters (Fig. 11(c)). Similarly with the interpo
lation removal strategy, both the adaptive and comb filters provided 
significantly higher R2 than the high-pass filter, and the comb filter 
provided significantly lower D-value than the other filters, while the 
adaptive filter provided significantly lower RMSE than the high-pass 
filter (Fig. 11(d)). 

In dynamic conditions, when not using any artefact removal, the 
adaptive filter showed significantly lower RMSE and D-value than the 
high-pass and comb filters, while the adaptive and comb filters both 
produced significantly higher R2 than the high-pass filter (Fig. 12(a)). 
When removing the artefact samples entirely, the comb filter provided 
significantly higher RMSE and lower R2 than the high-pass and adaptive 
filters, however it also provided significantly lower D-value than the 
other filters (Fig. 12(b)). For the blanking method, the adaptive filter 
produced a significantly lower RMSE than the other filters, a signifi
cantly higher R2 than the comb filter, and both the adaptive and comb 
filters produced a lower D-value than the high-pass filter (Fig. 12(c)). 
The interpolation method also produced similar results, with the adap
tive filter providing significantly lower RMSE and D-value than the other 
two filters, while the high-pass and adaptive filters produced higher R2 

than the comb (Fig. 12(d)). 

4. Discussion 

We implemented and compared three filtering methods to extract 
vEMG during electrical stimulation of muscles. We developed a 
computational model of EMG generation driven by physiological muscle 
recruitment, which enabled the simulation of both vEMG and M-wave. 
The simulation results were then extended via in vivo testing across a 
range of muscle activation levels and electrical stimulation intensity. 
The adaptive and comb filters best performed across all conditions and 
performance metrics, suggesting they should be preferred when 
extracting vEMG signals during electrical stimulation of muscles. 

We developed a physiological computational model for generating 
vEMG and M-wave of electrically stimulated muscles. Specifically, a 

previously validated model of orderly motor neuron recruitment from a 
common synaptic current to the motor neuron pool [30] was combined 
with a validated model of EMG generation from intracellular muscle 
fibre action potential [26], enabling the exploration of filtering ap
proaches across different levels of muscle activation and electrical 
stimulation. Simulated vEMG data represented the ground truth, which 
was subsequently contaminated with M-wave and stimulation artefact, 
thus enabling faithful evaluation of filter performance. The simulated 
results demonstrated that overall, the adaptive and comb filters pro
vided the best vEMG estimates, other than the RMSE, when artefact 
samples were removed from the signal (Fig. 10). However, this strategy 
distorts the sampling frequency depending on the artefact detection and 
stimulation timing, requiring recalculation of all filter coefficients as a 
function of the number of removed samples. These results confirm those 
of previous simulation studies, which used an exponentially damped 
sinusoid to represent the M-wave combined with either additive band- 
limited Gaussian noise to represent the volitional activity [21] or 
experimental vEMG data [20]. Critically, the ability of our computa
tional model to simulate EMG using a physiological motor neuron 
recruitment strategy, accounting for the number and characteristics of 
motor units, and tuneable to accommodate soft tissue variations (e.g., 
skin and fat thickness, muscle size) has the unique potential to enable 
exploring the effect of filtering during FES in a variety of populations 
and conditions (e.g., alteration in recruitment following neural injury, 
muscle atrophy), beyond the analyses presented in this study. 

The results of our in silico experiments were verified in vivo, con
firming the performance of comb and adaptive filters. For both isometric 
and dynamic tasks, the adaptive filter was typically the best performing 
when used with the raw signal (i.e., no artefact removal), while the 
comb and adaptive filters best performed with artefact blanking and 
interpolation strategies (Fig. 11 and Fig. 12). Overall for all artefact 
removal techniques, and in agreement with our simulated data, the 
high-pass filter was the worst performer due to the removal of a sig
nificant amount of information from the vEMG signal typically occur
ring between 30 and 300 Hz [39] (Fig. 6). Our results extended previous 
studies showing improvement in the comb filter performance for 
extracting vEMG when including stimulation artefact blanking [13], the 
ability of adaptive filtering to removing the M-wave during dynamic 
movements [21], and overall improved vEMG during electrical stimu
lation compared to high-pass filtering [14]. Conversely, our compre
hensive assessment did not support previous investigations showing that 
high-pass filtering could perform well in extracting vEMG from 
contaminated signals [15]. 

Real-time vEMG can be used as feedback to improve existing reha
bilitation paradigms [3–5] and enhance neurally connected neuro
prostheses that combine stimulation and robotic assistance [9,45,46]. 
Critically, these applications require real-time processing of the ac
quired EMG signal with minimal time delay. While in this study all 

Fig. 12. Box plots from the dynamic flexion experimental EMG data for the performance of the high-pass, adaptive and comb filters, with (a) no artefact removal, (b) 
removing the samples entirely, (c) blanking the samples and (d) linear interpolation. Data was combined across all volitional muscle activation and stimulation 
conditions. The horizontal bars represent a significant difference (p < 0.05) between filters. 
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processing steps were performed offline, these same algorithms have 
been previously used in real-time [11,23]. Both the implemented high- 
pass and adaptive filters required buffering of the EMG signal to operate 
effectively, introducing a delay of up to one stimulation period (i.e., 40 
ms for 25 Hz stimulation), while the comb filter could be performed 
without any buffering, only requiring data from the latest EMG sample 
up until one stimulation period prior. A shorter buffer length could be 
used for the high-pass filter to reduce delay; however, the adaptive filter 
requires the buffer length to be a ratio of the EMG sampling frequency to 
the stimulation frequency (i.e., the number of samples in a stimulation 
period) so that the M-wave of each frame is aligned with previous 
stimulation period frames for removal [21]. The comb filter relied on 
samples up until one stimulation period before the current sample and, 
therefore, cannot filter data received during the first stimulation period. 
However, this would not affect real-time suitability. Additionally, the 
evaluated comb filter is a causal finite impulse response filter [13] with a 
delay equivalent to half the stimulation period [47,48]; however, this 
delay is less than the delay introduced by the buffering required for the 
high-pass and adaptive filtering methods. These time delays are unlikely 
to interfere with FES control systems, which operate at the same fre
quency of stimulation; however, applications involving robotic assis
tance [49] and biofeedback [50] are time critical and should be 
optimised for minimal delays. Consequently, time-sensitive applications 
should prefer a comb filter over other evaluated approaches. Finally, our 
data analyses employed non-causal bidirectional band-pass and band- 
stop filters for signal preconditioning prior to M-wave removal. For 
real-time applications, these filters should be replaced with their causal 
equivalent applied forwards in time only, with the filter order doubled 
to account for the change to unidirectional operation. A trade-off be
tween filter order and time delay should also be considered [51,52]. 

Additional artefact removal methods and filters that could further 
improve outcomes do exist, but were not assessed, as not commonly 
used in FES applications. Software-based artefact removal approaches 
reduce the dependence on specialised hardware for synchronisation or 
blanking with specific circuitry, increasing the adaptability of the 
approach to potentially be more easily used with a large variety of 
setups. Linear interpolation was selected as a simple alternative to the 
commonly used blanking method following reports of improved per
formance [16], yet it might be susceptible to noise. Other interpolation 
techniques, such as using specialised filtering and thresholding to 
identify the artefact and reconstruct the overlapping M-wave, have been 
proposed in the past for artefact removal [17], providing promising 
directions that could be explored in the future. The Gram–Schmidt 
filtering algorithm [25] is an alternative implementation of adaptive 
filtering techniques that has been proposed for M-wave removal, which 
showed the ability to extract vEMG in real-time. Additionally, empirical 
mode decomposition methods separate the signal into the stationary (i. 
e., artefact and M-wave) and non-stationary (i.e., vEMG) components for 
further processing [16,53]; however, they were not assessed in the 
current study due to the high computational costs, which might be un
suitable for future real-time applications [16]. 

Some limitations should be acknowledged. Five individuals with no 
neurological conditions participated in this study. While this is not the 
typical target population benefitting from FES interventions, the ability 
of participants to fully control the contraction of their upper-limb 
muscles was required to assess the performance of the filters in 
extracting vEMG, which was compared to EMG recorded during the 
absence of stimulation. To mitigate the lack of ground truth experi
mental data, we developed a computational model to simulate physio
logical EMG, enabling unbiased filter assessment. Another limitation is 
that only the biceps brachii was investigated, and it could be argued that 
findings may not be transferrable to lower-limb muscles. However, the 
smaller size of upper-limbs muscles, compared to lower-limbs, may 
result in increased crosstalk [54]; consequently, fewer challenges should 
be present when adapting the presented experiments to the lower-limbs. 
Finally, while this study focused on extracting the vEMG, future 

endeavours could extend the proposed methodology and analyses to M- 
wave extraction, e.g., assessment of fatigue during FES [10]. Specif
ically, improvements to the artefact removal strategy should be 
considered to ensure that the M-wave is not significantly altered [17]. 

5. Conclusion 

This study presents a comprehensive evaluation of commonly used 
vEMG extraction methods, first tested through data obtained via a 
physiological computational model of EMG generation and then 
experimentally verified. Among the tested methods, the adaptive filter 
was the most effective method across conditions when no artefact 
removal was used, however, it required a buffer for the length of one 
stimulation period, leading to time delays. The adaptive and comb filters 
were typically the most effective methods across conditions when using 
blanking or interpolation to replace artefacts, with the comb filter 
introducing less delay than the adaptive filter, making it more desirable 
for real-time applications. Overall, we suggest using the described comb 
filter when developing applications that require the real-time use of 
vEMG signals extracted from electrically stimulated muscles, while the 
adaptive filter would be preferred for offline processing or when not 
using any prior stimulation artefact removal method. 
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