

DEGREE FINAL PROJECT

TITLE: Drone control and monitoring by means of a web application

DEGREE: Bachelor’s degree in Telecommunications Systems

AUTHOR: Jaskirat Singh Atwal

ADVISOR: Miguel Valero García

DATE: September 8th , 2023

Title: Drone control and monitoring by means of a web application

Author: Jaskirat Singh Atwal

Advisor: Miguel Valero Garcia

Date: September 8th, 2023

Overview

This document is a report of my final degree project, which aims to design and

implement a software framework for controlling and monitoring drones through

a web application, built using the Vue.js framework. With this, I offer a

contribution to the Drone Engineering Ecosystem (DEE) , an ecosystem

dedicated to the control and monitoring of drones through different technologies

in which students of the EETAC, a university that belongs to the UPC, can

contribute and enhance the ecosystem while doing their bachelor or master’s

degree final project.

Currently, there is a desktop application in the ecosystem that does the tasks

of drone monitoring, control and mission planning. However, as the technology

evolves, there is a need for web app as the advantages of a web platform for

drone control and monitoring are numerous and compelling. The main benefit

is the enhanced accessibility as the only needs are Internet connection and a

browser, that no matter whether it is in the laptop, tablet or on a smartphone.

As technology continues to evolve, web applications undoubtedly stand at the

forefront of innovation in all domains. So, the focus of this project is to provide

a web platform for drone controlling and monitoring.

The culmination emerges as a remarkably professional and contemporary web

application that empowers the user with countless levels of control over drone

operations. Notably, users have the freedom to decide the drone's movements

and actions, ensuring a seamless and intuitive interface that facilitates

effortless navigation. The capabilities extend beyond mere control, as users

can devise a diverse range of missions. One standout attribute is the ability to

create geofences, a vital tool for ensuring safe and responsible drone

operations. Moreover, the web app enables users to fine tune drone's flying

parameters. This level of customization guarantees that the drone's

performance aligns precisely with the intended goals.

The outcome of the efforts yield a high level of satisfaction as the web platform

has been successfully built, enhancing the basic functionalities of the desktop

application while introducing additional features. This achievement holds

personal significance as well, contributing to my growth by deepening my

proficiency in new programming languages. On the other hand, the broader

implication is that the Drone Engineering Ecosystem now boasts a new platform

for drone control and monitoring.

This achievement marks both, a personal milestone and a significant stride

forward for the DEE.

Títol: Control i monitoratge de drons mitjançant una aplicació web

Autor: Jaskirat Singh Atwal

Director: Miguel Valero Garcia

Data: 8 de setembre de 2023

Resum

En el present document s’exposa la memòria del treball final de grau que té

com a objectiu dissenyar i implementar una arquitectura software per al control

i monitorització de drones mitjançant una aplicació web creada amb el

framework Vue.js. Això suposa una contribució al Drone Engineering

Ecosystem (DEE), un ecosistema dedicat al control i monitoratge de drones a

través de diferents tecnologies on els estudiants de l'EETAC, una universitat

pertanyent a la UPC, poden contribuir i millorar l'ecosistema mentre realitzen

el seu treball final de grau o màster.

Actualment, a l'ecosistema hi ha una aplicació d'escriptori que compleix les

funcions del control de drones i la planificació de missions. No obstant això, a

mesura que la tecnologia avança, sorgeix la necessitat d'una aplicació web a

causa dels nombrosos i convincents avantatges d'una plataforma web per al

control i monitorització de drones. El principal benefici és l’accessibilitat, ja que

només es necessita d’una connexió a Internet i un navegador, sense importar

si es troba en un ordinador portàtil, tauleta o en un smartphone. A mesura que

la tecnologia segueix evolucionant, les aplicacions web sens dubte es situen a

l'avantguarda de la innovació en tots els àmbits. Per tant, l’enfocament

d’aquest projecte és proporcionar una plataforma web pel control i monitoratge

de drones.

La culminació d’això es presenta com una aplicació web sumament

professional i contemporània que otorga a l'usuari un control sense límits sobre

les operacions dels drones. Destacablement, els usuaris tenen la llibertat de

decidir els moviments i les accions del dron, assegurant una interfície fluida i

intuïtiva que facilita una navegació sense esforç. Les capacitats van més enllà

del simple control, ja que els usuaris poden realitzar una àmplia gamma de

missions. Un tret destacat és la capacitat de crear geofences, una eina vital

per garantir operacions de drones segures i responsables. A més, l’aplicació

web permet als usuaris ajustar amb precisió els paràmetres de vol del dron.

Aquest nivell de personalització garanteix que el rendiment del dron s'alineï

amb precisió amb els objectius previstos.

El resultat dels esforços genera un nivell alt de satisfacció, ja que s'ha construït

amb èxit una plataforma web que millora les funcionalitats bàsiques de

l'aplicació d'escriptori i alhora introdueix unes característiques addicionals.

Aquest èxit té una importància personal també, ja que contribueix al meu

creixement en aprofundir la meva habilitat en nous llenguatges de

programació. D'altra banda, la implicació més àmplia és que el Drone

Engineering Ecosystem ara compta amb una nova plataforma per al control i

monitoratge de drones.

Aquesta fita marca un pas endavant tant personalment com pel DEE.

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my parents who have been by my

side through thick and thin. Thank you for being the pillars of support during

moments of doubt and the cheerleaders during moments of triumph. Your

encouragement and belief in me have been fundamental in overcoming obstacles

and reaching this milestone.

A special note of thanks goes to my friends and classmates too, the true

companions of this educational voyage. Your companionship, friendship, the

shared challenges and joyous moments over these years have transformed the

pursuit of knowledge into an unforgettable experience. The laughter, the study

sessions, and the collaborative spirit have made the path to this achievement all

more enjoyable.

Also, I would like to give a special mention to Miguel Valero Garcia, the advisor

and supervisor of my final project, who has been an outstanding guide throughout

the journey of this project, offering me his time and guidance.

INDEX

INTRODUCTION .. 1

CHAPTER 1: DRONE ENGINEERING ECOSYSTEM (DEE) 5

1.1 DEE Structure .. 5

1.1.1 Software on-board .. 6

1.1.2 Ground station software .. 7

1.2 Contribution to the DEE structure .. 8

1.3 Hardware: real UAV used in Drone Lab for tests 8

CHAPTER 2: OBJECTIVES AND WORK METHODOLOGY 10

2.1 Main goals .. 10

2.2 Work plan and methodology ... 12

2.2.1 Work plan ... 12

2.2.2 Methodology ... 13

2.2.3 Relation with the supervisor ... 14

CHAPTER 3: TECHNOLOGIES INVOLVED ... 15

3.1 Vue.js : JavaScript, HTML and CSS ... 15

3.1.1 Template .. 17

3.1.2 Script .. 18

3.1.3 Styles ... 19

3.2 Python & Dronekit ... 21

3.3 MQTT & Mosquitto : messaging protocol .. 21

3.3.1 MQTT communication example in the DEE 22

3.4 MAVLink protocol .. 24

3.5 Mission Planner .. 24

3.6 Summary: the complete workflow .. 24

CHAPTER 4: DASHAPP, FUNDAMENTAL FUNCTIONALITIES 26

4.1 Basic functionalities .. 26

4.1.1 Drone control and monitoring page .. 28

4.1.2 Mission planning page .. 33

CHAPTER 5: DASHAPP, ADDITIONAL FUNCTIONALITIES 35

5.1 Enhanced interface ... 35

5.2 Geofence creation .. 36

5.2.1 Map Card ... 37

5.2.2 Fence’s parameters configuration card .. 38

5.2.3 Buttons’ card .. 38

5.3 Drone’s parameters settings ... 39

CHAPTER 6: DASHAPP’S VUE CODE STRUCTURE 40

6.1 Code organization and basic files ... 40

6.2 DashApp’s entrance pages ... 43

6.2.1 ConnectPage ... 43

6.2.2 EntrancePage .. 44

6.3 DashApp’s components .. 46

6.3.1 Drone Free Guiding .. 47

6.3.2 Rest of the DashApp’s components ... 49

CHAPTER 7: AUTOPILOT’S ON-BOARD MODULE 51

7.1 Autopilot’s code structure .. 51

7.2 Contribution to the autopilot module: geofence creation and drone’s

parameter settings .. 55

7.2.1 Drone’s parameters configuration .. 56

7.2.2 Geofence functionality .. 59

CHAPTER 8: SIMULATION AND DRONE LAB TESTS 62

8.1 Simulation tests in Mission Planner .. 62

8.1.1 Configuring the scenario .. 62

8.1.2 Testing DashApp functionalities ... 64

8.2 Drone Lab tests .. 69

CHAPTER 9: DASHAPP’S INTEGRATION TO THE DEE’S GITHUB

REPOSITORY .. 72

9.1 Uploading the code ... 72

9.2 Documenting the repository .. 72

9.3 Tutorial videos .. 72

CHAPTER 10: CONCLUSIONS .. 74

10.1 Objectives accomplished .. 74

10.2 Possible future improvements in DashApp ... 74

10.3 Personal conclusions .. 75

REFERENCES ... 77

ANNEX A: CONNECT PAGE CODE ... 78

ANNEX B: ENTRANCE PAGE CODE ... 83

ANNEX C: DRONE FREE GUIDING’S COMPONENT CODE 88

ANNEX D: AUTOPILOT’S GEOFENCE CREATION CODE 98

ABBREVIATIONS

AI Artificial intelligence

CBLL Campus Baix Llobregat

DEE Drone Engineering Ecosystem

DOM Document Object Model

ESC Electronic Speed Controller

LED Light Emitting Diode

MAVLink Micro Air Vehicle Link

MQTT Messaging Queue Telemetry Transport

TCP/IP Transmission Control Protocol / Internet Protocol

UAV Unmanned Aerial Vehicle

UPC Universitat Politècnica de Catalunya

Introduction 1

INTRODUCTION

In an era defined by technological breakthroughs, drones have emerged as one

of the most important innovations in the past decades. These devices, that

previously belonged to the military personnel only, now being available to the

general public, have unlocked a realm of possibilities that promise to reshape

how we perceive and interact with the world around us in the present and will

perceive in the future. From the simple filming purposes to navigating hazardous

environments for search and rescue operations, drones’ applications know no

bounds.

The following document is also based on them, the drones. Concretely, by this
project I will contribute to the Drone Engineering Ecosystem, from now on
referring to it by DEE. As his own name indicates, DEE is an ecosystem that
grants us the possibility to control a drone and perform various tasks with it
through different technologies and applications. Like said, the ecosystem has
various applications, some with more serious and mission planning purposes like
the Dashboard and other with more gaming and joy purposes like the Drone
Circus. It has to be taken into account that, DEE is an active ecosystem that has
been and is being developed and updated frequently, mainly by students of the
EETAC, an engineering school that belongs to the UPC, who seek to contribute
to the ecosystem while doing their bachelor or master’s degree final project.

Students participating in the DEE have consistently showcased an impressive
array of technologies that they have studied as part of their degree program, as
well as those they have explored independently on themselves. This rich diversity
of technological influences has enriched the DEE with a collection of innovation
that covers the entire spectrum of modern engineering. From aerodynamics and
control systems to software development, students have tapped into a myriad of
disciplines, each contributing a distinct facet to the evolution of the ecosystem.
As we gaze toward the future, the potential for student contributions to the DEE
becomes even more interesting. The rise of Artificial Intelligence (AI) is a reality,
and it could change drone technology a lot. Students could use AI algorithms to
enable autonomous navigation, adaptive learning, and real-time data analysis.
By embracing AI driven solutions, the DEE stands to elevate its capabilities to
another level, navigating complex environments and tasks with incredible
precision.

The ecosystem is published and is available in a GitHub repository, so it is
publicly accessible and every student who desires to participate and contribute
can do it easily while doing their degree’s final project.

Moreover, the inauguration of the Drone Lab, an outdoor drone laboratory within
the CBLL campus of the UPC, designed for testing drones and conducting
experiments for the Drone Engineering Ecosystem (DEE) among other purposes,
has sparked a notable surge of interest among the local community. This
newfound curiosity surrounding drones has taken a positive turn, particularly
within the local citizens.

2 Drone control and monitoring by means of a web application

One prominent manifestation of this enthusiasm can be seen in the neighbouring
primary schools, which have expressed a keen desire to engage their students
with drones. The establishment of the Drone Lab has provided an exciting
opportunity for these schools to showcase drones as engaging educational tools,
facilitating interaction and learning beyond the confines of traditional classrooms.
The synergy between the Drone Lab and nearby primary schools underscores
the DEE's broader impact on education and community engagement.

As a telecommunication engineering student myself, throughout the career we
have dealt with each and every aspect that has to do with nowadays
telecommunication systems. That is to say, delving deep from the hardware
electronics to the software creating a combination of hardware and software that
powers our interconnected world. Without any doubt software engineering has
been one of my favourite subjects in my career as it is a realm of constant
evolution and boundless creativity. The skills you acquire in software engineering
can be used and applied across countless sectors. That is the main reason why
I chose to contribute to the DEE, as this provided me to not only practice and
improve my skills in programming languages already taught in my degree but
also gave me the opportunity to learn new programming languages like Vue.js
and Python or messaging protocols like MQTT and MAVLink that I could not learn
in the formal degree’s academic plan for a Telecommunications Systems’
engineer.

By this project, I contributed to the DEE with the main objective of designing a
software architecture for the control and monitoring of drones through a web
application. This web application includes some additional functionalities while
maintaining the actual ones from the already built desktop application in Python
named as Dashboard, available in the DEE GitHub. So, the core purpose of
this project is to shift the existing Python and Tkinter based Dashboard into
a web application (web app) version naming it DashApp. This conversion
responds to the contemporary demand for web accessibility, given the
widespread utility and advantages associated with web apps in the present digital
landscape.

Web apps provide a seamless and convenient user experience, as they can be

accessed directly from web browsers without requiring users to download or

install any software. This accessibility transcends device and operating system

limitations, making it easier for a broader audience to interact with the Dashboard.

Moreover, web apps enable real-time updates, facilitating efficient

communication and data sharing among users. Furthermore, the transition to a

web app format allows for scalability and adaptability. In addition to conveying

the Dashboard to a web app , I have also incorporated several significant

enhancements to the Dashboard.

In order to achieve this, I approached the project by dividing it into two distinct

sections. The first section centers around the conversion of the existing

Dashboard into its web app version. I refer to this aspect as the "Conveying the

fundamental Dashboard functionalities."

Introduction 3

This segment involves the meticulous migration of the Dashboard's core features

and functionalities to a web-based platform. The second section encompasses

the strategic augmentation of the Dashboard's capabilities through the integration

of additional functionalities.

By approaching the project with a clear division into these two sections, I am able

to tackle the dual objective of conveying the Dashboard to its web version while

simultaneously fortifying it with features that enhance its value. This strategic

approach ensures that the resulting web app not only upholds the original

functionalities of the Dashboard but also offers an enriched experience that

supports more effective control over the drone.

Concretely the functionalities to develop are:

1. Conveying the fundamental Dashboard functionalities

i. Free guiding the drone. The final user must be able to send basic
commands to the drone. For instance, to arm, take off, land, etc.

ii. Live picture/video stream. The user must be able to see live video
of everything that the drone camera is capturing.

iii. Simple flight planning. The user must be able to design a flight
plan. For example, set a series of waypoints where the drone
should go and take a picture if the user desires.

iv. Showing telemetry data of the drone in real time. The user must
be able to see the telemetry data of the drone while controlling it.

2. Additional functionalities

i. Inclusion Geofence creation. The user must be able to create an
inclusion geofence, whether it is a circular or polygonal one,
wherever in the map of the Drone Lab so that the drone only can fly
in that area. Additionally the user is able to set Geofence
parameters like the maximum altitude, circular fence radius…

ii. Setting drone parameters. The user must be able to configure the
drone's basic parameters like take off altitude, ground speed, RTL
altitude, etc.

iii. User interface functionalities: the web app made takes the user
experience to the next level. The app designed in this project has a
modern makeover with a host of exciting new functionalities. This
means that the web app has got a contemporary interface, for
instance with the bright and dark mode functionality among others,
with which the user can personalize its viewing experience
according to its preference.

4 Drone control and monitoring by means of a web application

The present document is structured in 10 chapters in the pages that follow.
Concretely, in the opening chapter, Drone Engineering Ecosystem (DEE),
explains in detail the ecosystem. That is to say, how it is organized, which
technologies are implemented on the different modules, how these modules
communicate with each other and in which state the ecosystem stands currently.

Straight next, the second chapter focuses on both, the goals set and the work
plan followed in order to accomplish the objectives settled prior elaborating the
project. Moving on, the third chapter continues diving into theoretical architecture,
in this case we will talk about the technologies and programming languages used
to bring forth results.

The report takes a turn in the fourth and fifth chapter, where the focus finally shifts
from the theoretical section to the practical one, explaining the web application
itself. That means, describing what each and every functionality of the web-app
does and how it was done. As we progress, it comes up the chapters where the
tests done in both, the Mission Planner simulator and the Drone Lab of EETAC
alongside with their results are explained. The practical section finishes with the
code and tutorial videos’ description.

Finally, there is the conclusions chapter alongside with bibliography and annex
to conclude the project.

Drone Engineering Ecosystem (DEE) 5

CHAPTER 1: DRONE ENGINEERING ECOSYSTEM (DEE)

With this first chapter, we start the theoretical section of the project. In this case,

the following chapter talks in detail about the Drone Engineering Ecosystem

where firstly it describes how the architecture of the ecosystem was when I first

started working with it and how it stands now, after my contribution. In addition

the real drone in question is also described in this chapter.

As introduced before, DEE is an active ecosystem published in a GitHub

repository whose main objective is to control and monitor drones via different

applications and technologies. This ecosystem is publically accessible in the

GitHub repository (see [1]).

1.1 DEE Structure

The ecosystem’s architecture when I first started to work with, it is the given in

the following figure:

Fig. 1.1 Drone Engineering Ecosystem’s architecture in February 2023

As shown in the figure above, the architecture of the ecosystem is divided into

two big blocks: Software on-board and the Ground station software which

includes modules of numerous front-end applications developed in different

technologies. The on-board and ground station blocks communicate with each

other through MQTT brokers (Message Queuing Telemetry Transport), a

Mosquitto messaging protocol that is based on TCP/IP protocol.

6 Drone control and monitoring by means of a web application

It operates on a publish-subscribe model, where devices can publish messages

to specific “topics” and other devices can subscribe to these topics to receive

relevant messages.

1.1.1 Software on-board

The Software on-board block is the red box shown in the general architecture of

the ecosystem.

Fig. 1.2 Software on board’s architecture in February 2023

This block represents, as his own name indicates, each and every module coded

in Python that is present within the drone’s Raspberry Pi. The main objective of

these modules is to control the different tasks of the drone.

Concretely, this block is formed by 4 modules:

1. Autopilot service: this is the fundamental module, as it is responsible for
executing the commands sent by the ground station such as arm the
drone, take off, create a geofence, etc. The autopilot module is built in
Python using the Dronekit library.

2. Camera service: camera module whose objective is to control the camera
configured on the drone and send live video stream or take pictures with it
among other things.

3. LEDs service: module that controls the LEDs of the drone and executes
the orders of switch ON or switch OFF.

4. Monitor: a module that records on board drone data for future analysis.

The internal broker establishes the communication among all the on-board
modules using the MQTT protocol alongside Mosquitto.

Furthermore, the drone’s functionalities are simulated by Mission Planner , a flight

simulation application that in our case works as a ground station for a real drone.

Mission Planner offers countless advantages for simulating drones, making it a

very valuable tool for professionals. Its user-friendly interface facilitates easy

mission planning and execution. Users can graphically design complex flight

plans, waypoints, all while visualizing the simulated drone’s movements in real

time. Mission Planner offers a perfect solution for pre testing drones before real

world trials due to its advanced simulation capabilities.

Drone Engineering Ecosystem (DEE) 7

By providing a realistic environment and accurate hardware emulation, it allows

users to assess drone performance under various conditions, reducing risks and

potential damages associated with physical testing, while also saving time.

1.1.2 Ground station software

Once described the on-board software, let’s shift our attention now to the ground

station software.

Fig. 1.3 Ground station’s software architecture in February 2023

The modules available in the ground station are front-end applications that allow

the user to control the drone in every way. Specifically, this possesses:

1. Dashboard: a desktop application made with Python and Tkinter (a

package used to build a graphic interface in Python) that employs and

uses all the services provided by the on-board modules (autopilot, camera,

LEDs, etc).

2. DashApp (to build): the web application to create in the project in

question. Made with Vue, and that will undertake most of the Dashboard

functionalities plus adding some additional ones like the creation of the

geofences or the settings of the parameters. In contrast with the

conventional Dashboard, as this is a web app, it can be operated from any

laptop, tablet or smartphone that has a browser connected to the Internet.

3. DroneCircus: another desktop application made with Python and Tkinter

that allows the user to interact with the drone platform in a funny and joyful

way. For example you can control the drone through making different faces

such as a smiling face, sad face, etc.

4. Mobile App: a mobile web application made with Vue and Ionic that allows

the user to employ a limited set of functionalities from a smartphone

connected to the Internet.

8 Drone control and monitoring by means of a web application

1.2 Contribution to the DEE structure

In my role within the DEE, my contributions have encompassed two pivotal

aspects of our project's evolution.

First and foremost, I headed the creation of DashApp, an innovative web

application that extends the functionalities of our existing Dashboard.

Simultaneously, my involvement extended to the on-board module: the autopilot's

module. Here, I meticulously integrated code to accommodate the novel features

introduced by the DashApp that will be explained in detail later on.

Lastly, completing my involvement in the ecosystem, I took charge in scripting

the DashApp’s segment within the Drone Engineering Ecosystem’s Github

repository. By documenting my contribution, I ensured transparency and the

continuity of our project's development.

1.3 Hardware: real UAV used in Drone Lab for tests

A real Unmanned Aerial Vehicle, from now on UAV, is used for the real world

tests in the Drone Lab. The drone is shown in the following figure:

Fig. 1.4 Drone used for DEE’s tests in the Drone Lab

His main physical characteristics are:

- Formed by 4 motors, model HS2216 920KV

- 4 helices, model T-MOTOR T2045II

Drone Engineering Ecosystem (DEE) 9

- 4 ESCs (Electronic Speed Controller) used for controlling the motors'

speed, model Hexsoon 20ª.

- Drone’s body

- Energy distributing plaque

- Battery

- Orange Cube Pixhawk flight controller (autopilot).

- GPS receiver

- Radio waves receiver

- Raspberry Pi microcontroller

- Camera used for taking pictures or recording the video stream.

- LED lights

- Altimer

10 Drone control and monitoring by means of a web application

CHAPTER 2: OBJECTIVES AND WORK

METHODOLOGY

Moving on, the second chapter revolves around the goals set prior to the

elaboration of the DashApp and the work methodology followed so as to

accomplish these objectives.

As previously stated, there was no web app in the ecosystem that fulfilled the

Dashboard functionalities in its whole. So there was no web app that had the right

to be called the Dashboard Web App (DashApp).

2.1 Main goals

First and foremost, this project had as its main objective the design of a software

architecture for drone control and monitoring through a web application. In simple

words, building a web app that had every or most of the Tkinter made desktop

Dashboard functionalities.

The reason behind creating a web app is that using a web app for drone control

and monitoring offers several advantages compared to a desktop application.

One of the key advantages is accessibility. A web application can be accessed

from any device with a browser, enabling seamless control and monitoring from

smartphones, tablets, and computers, regardless of the operating system.

As a life law, nothing is perfect, so either it is a web app for drone control and

monitoring and has its own disadvantages that will be discussed in his respective

chapter.

So as to get the work done I established some targets for myself:

1. First and the most important goal is to build a web app user interface that

does the same functions as the current Dashboard. In simple terms to

convey the functionalities of the Dashboard to a web app. Specifically

these functionalities are:

- Enabling autonomous drone control: The final user should

possess the capability to issue fundamental instructions to the

drone, such as arming, initiating take-off, or commanding the

directions to go.

- Streaming live video: Users should have the capability to observe

real-time video feed captured by the drone's onboard camera,

granting them a dynamic perspective of the drone's surroundings.

- Mission and route planning: Users should have the ability to

formulate flight paths for the drone to follow.

Objectives and work methodology 11

That is to say defining a sequence of waypoints that guide its

trajectory and even specifying actions like capturing photos at

specific points.

- Displaying real-time telemetry information: Users should be

able to monitor the drone's essential data in real-time as they

actively control its movements. This telemetry data encompasses

critical flight statistics and information that contribute to informed

decision-making during drone operation.

2. Expanding the functionalities of the web app. That is to say add some extra

functionalities to the DashApp that the actual Dashboard does not have.

In my case, talking with the supervisor, we concluded that adding the

geofence functionality to the web app would fit perfectly.

Additionally I personally aimed to add some more extra functionalities as I

was progressing with the app. Introducing some important supplementary

functionalities to the web app beyond its desktop counterpart holds

paramount importance in elevating user engagement and enhancing the

overall user experience. By introducing additional features like the

geofence one, I am not only differentiating my web app from the existing

desktop version but also tapping into the full potential of web technologies.

3. Another important objective of this project focuses on the augmentation

of the on-board autopilot module, making it compatible with the

additional capabilities of the DashApp. The intention is to empower the

autopilot module with the ability to not only create geofences but also

configure them according to specific parameters.

Additionally, the aim is to enhance the autopilot module by integrating

parameter configuration functions. This means enabling the module to

receive commands from the DashApp that would trigger changes in

various drone parameters. Such adjustments could encompass ground

speed, return-to-launch altitude, and return-to-launch speed, among

others. This functionality empowers users to fine-tune the drone's

behaviour and performance based on their specific needs.

4. The final goal is to integrate the DashApp into the DEE’s GitHub

repository. This entails an approach that involves uploading the DashApp's

source code to the GitHub repository. In addition, the integration process

extends to creating informative tutorial videos. These videos will serve as

user-friendly guides, walking through various aspects of the DashApp's

functionalities and providing step-by-step instructions.

Furthermore, an important aspect of this integration involves documenting

comprehensively the DashApp’s repository. The goal is to write clear and

concise guides that elucidate how students can navigate and use the

DashApp.

12 Drone control and monitoring by means of a web application

Looking forward, the integration also paves the way for potential

enhancements and refinements. As the app becomes an integral part of

the ecosystem, it opens the door for future contributions and

developments. Students can collaborate to enhance features, fix bugs,

and introduce innovative functionalities, thereby fostering a dynamic

environment of continuous improvement.

Leaving aside these fundamental objectives for the project itself, my personal

goal is to learn new programming languages. As a student that loved

programming, my aspiration is to continuously expand my repertoire of

programming languages and skills. By delving into new languages, I aim to

broaden my problem solving capabilities and unlock innovative ways to approach

challenges. This pursuit not only enriches my expertise but also equips me with

the adaptability needed to thrive in the ever evolving landscape of technology.

2.2 Work plan and methodology

Next, I would like to take this opportunity to walk you through my work plan and

the methodology I have put into action to ensure the efficient and timely execution

of all tasks at hand.

2.2.1 Work plan

As shown in the Fig. 2.1, I elucidate my work plan using a Gantt diagram. This

visual representation will provide a clear overview of the project timeline, task

dependencies, and milestones, offering a comprehensive understanding of how

I intend to manage and accomplish the ongoing responsibilities.

Fig. 2.1 Gantt diagram of the initial approach

Objectives and work methodology 13

2.2.2 Methodology

As illustrated on the Gantt diagram, practically the entire month of March was

dedicated to delve deep into the Drone Engineering Ecosystem. Since the goal

was to know in first hand the ecosystem’s work plan so that I could finally decide

my contribution and objectives. These first weeks also were to check if all the

modules in the DEE were correctly working.

Moving on, over the first three April weeks, I have dedicated myself to an

intensive learning endeavour, focusing on two distinct programming languages:

Vue.js and Python. Vue.js will be harnessed for crafting the web application,

capitalizing on its capabilities for seamless user interface design. In tandem,

Python will serve a pivotal role in enhancing the drone's autopilot module,

leveraging the already implemented dronekit library to facilitate autonomous flight

operations. The investment of these three weeks has been instrumental in

gaining a comprehensive understanding of Vue.js's frontend capabilities and

Python's implementation as these newfound skills will be crucial in my

contribution to the DEE.

As advancing in the timeline reflected in the provided Gantt diagram, it illustrates

the progression of my efforts in building the web application. The bulk of May and

the initial weeks of June were meticulously directed toward the development of

the fundamental functionalities of the DashApp, a Vue and JavaScript based

counterpart mirroring the functionalities of the Tkinter & Python desktop

Dashboard. Subsequently, from mid-July through August, my focus shifted to a

strategic expansion of the web app's capabilities. This period was marked for

conceiving and implementing additional features, a decision proven astute for

enhancing the app's utility.

This strategic allocation of time and effort has empowered the web app to

transcend its initial scope, promising a more comprehensive and versatile user

experience.

Finally we shifted gears in August as this was a month marked by focused

activities, as indicated by the Gantt diagram. It was during this time that I directed

my attention towards key tasks. First and foremost, a substantial portion of the

month was dedicated to meticulously documenting the project, ensuring that the

culmination of my work is conveyed with clarity and precision. Additionally, a

significant effort was invested in conducting thorough tests within DroneLab,

validating the robustness and reliability of the developed solutions. Lastly, in a

bid to facilitate seamless user understanding and engagement of the DashApp

done, I endeavoured to create tutorial videos and document the DEE’s DashApp

section.

This compilation of efforts underscores the culmination of this project, combining

documentation, practical validation, and user friendly guidance to encapsulate

the comprehensive scope of my work.

14 Drone control and monitoring by means of a web application

2.2.3 Relation with the supervisor

My relationship with the supervisor of my final degree project, Miguel Valero, has

been fundamental in shaping the success of the project.

While the Gantt diagram may not explicitly reflect it, our collaboration was

characterized by consistent and constructive interactions. Approximately every

two weeks, I had meetings with Miguel to provide updates on my progress during

that time frame. These meetings served as checkpoints, allowing me to showcase

the advancements I had made and engage in productive discussions about the

forthcoming tasks.

Technologies involved 15

 CHAPTER 3: TECHNOLOGIES INVOLVED

Transitioning to the third chapter, our focus now shifts to the technologies that

underpin the development of the DashApp. This chapter delves into the heart of

the project, exploring the essential tools and platforms that empower the creation

and functionality of this innovative application.

At the forefront of these technologies is Vue.js (see [2]), a dynamic framework

that serves as our web development partner.

Python also stands as a vital player in this project, driving the autopilot's core

intelligence by integrating the Dronekit library. The synergy between Python and

Dronekit facilitates the realization of a great autopilot.

At the heart of this ecosystem, effective communication takes an important role,

where MQTT assumes the role of a crucial connector, harmonizing the

conversation between the Vue.js created web application and the Python driven

autopilot. This resilient communication protocol is the backbone of dependable

information interchange, crucial for real time drone control and monitoring.

Integral to our technological arsenal are the MAVlink messages, which pave the

way for drone’s geofence configuration. These messages, acting as the language

of communication, establish a clear channel for configuring the drone's geofence

behaviour and characteristics.

Amidst these building blocks, the Mission Planner emerges as a significant asset.

Serving as a simulator, the Mission Planner extends a platform to test and

validate the drone's functionalities, ensuring a smooth transition from conception

to real-world implementation.

In the subsequent chapter, we will witness these technologies culminating into

the creation of a web application that not only controls and monitors a drone but

also exemplifies the synergistic potential of modern software and hardware

integration.

3.1 Vue.js : JavaScript, HTML and CSS

As introduced before, Vue.js (from now on referring it to simply as Vue) is a

progressive JavaScript framework built to create interactive and dynamic user

interfaces. Vue is known for its simplicity, flexibility, and ease of integration. In

our case we use the Composition API instead of the Options API to develop the

code in Vue. Composition API is a feature introduced in Vue 3 to provide a more

flexible and organized way of creating and managing the logic within Vue

components. That is to say, the Composition API is an alternative approach to

structuring Vue components that aims to provide better organization, reusability,

and manageability of component logic, especially in complex scenarios.

16 Drone control and monitoring by means of a web application

Vue is based on components, in other words in the idea of breaking down the

user interface into smaller, self contained building blocks. These components

encapsulate both the visual elements and the associated functionality of a

particular part of a web application. A Vue component is like a mini web page with

its own HTML, JavaScript, and even CSS code. It's a self contained unit that can

be reused throughout the project. Components are formed by three main

elements, the template, script and styles :

- Template: This is where you define the structure and layout of your

component using HTML syntax. It's like creating a blueprint for how your

component should look.

- Script: The script part is where you add the behaviour and functionality of

your component using JavaScript. This is where you define functions,

variables, and even data that your component needs to work properly.

- Styles: Just like regular web pages, components can also have their own

styles. You can write CSS specific to your component to make it look

unique (<styles scoped>). These styles won't affect other parts of your

application.

Next, we will delve into the fundamental elements of Vue.js through a hands-on

example of our very own web application as it is always better to understand the

concepts by means of an example rather than mere descriptions. Through this

example, you will witness firsthand how Vue's building blocks, like components,

templates, scripts, and styles, come together to form a dynamic interface.

For instance, the following figure is the Dashboard.vue component of my app:

Fig. 3.1 Cropped Dashboard.vue component from the DashApp

Technologies involved 17

In the realm of the DashApp development, the Dashboard.vue component serves

as a hub of functionality, housing child components like FreeGuiding.vue

Geofence.vue, MissionPlanning.vue and more as illustrated in Fig 3.2.

This approach embraces componentization, breaking down the dashboard into

manageable parts. The Dashboard.vue component orchestrates a range of visual

and interactive elements, while its internal structure reveals five other

subcomponents: FreeGuiding.vue, Geofence.vue, MissionPlanning.vue,

Settings.vue and Help.vue.

This component driven design showcases the power of modular development,

where distinct features are encapsulated for seamless integration. The result is a

user friendly and feature rich dashboard that aligns with principles of modularity

and reusability, highlighting the efficiency of component based architecture in

modern web development.

Fig. 3.2 Component distribution from the Dashboard.vue component

Next, by means of the Settings.vue component we will explain the Vue’s

fundamental three elements: template, script and styles.

3.1.1 Template

As introduced before Vue's template element is a fundamental part of Vue's

syntax that allows you to define the structure of the user interface. It serves as a

placeholder for HTML content, where we describe the layout, structure, and

content of our component without worrying about JavaScript logic. The content

within the template element is used to render the component's HTML whenever

the component is used.

18 Drone control and monitoring by means of a web application

For instance, in the Fig.3.3 it is shown the template element of the DashApp.

Where the template creates a clean and organized user interface for configuring

different parameters related to a drone's flying configuration. The use of classes,

styling, and Vue directives ensures an interactive and visually appealing

experience for users interacting with the configuration form as shown in Fig.3.6.

Fig. 3.3 Template element from the Settings.vue component

3.1.2 Script

Vue's script element is used to define the JavaScript logic for a Vue component.

It contains the data, methods, lifecycle hooks, and other functionality that define

the behaviour of the component. The code within the script element is written in

JavaScript or in some cases in TypeScript and interacts with the template and

other parts of the component.

In our case it is of the utmost importance to understand the JavaScript code

shown in Fig.3.5 in order to know Vue's working principle. Firstly, The “import”

statement brings in necessary functions and libraries, such as “ref” for creating

reactive variables, “inject” for accessing injected values, and “Swal” for using

SweetAlert2 for pop-up notifications.

Next, the “setup()” function is the entry point for the Composition API logic. Inside

this function, various data variables are created using the “ref” function to make

them reactive. The variables in it like the “takeOffMaxAltitude” represent different

configuration settings for a drone.

Technologies involved 19

The “emitter” is injected using “inject('emitter')”, which allows the component to

communicate with the parent component or other components of the application

in order to pass variable values between them.

Moving on, the script defines several functions: takeOffSubmitted,

groundSpeedSubmitted, RTLAltitudeSubmitted, and RTLSpeedSubmitted.

These functions handle user input for configuring drone parameters and emit

values to the parent component through the emitter.

Finally, the “return” statement at the end of the “setup()” function specifies the

functions that will be exposed and accessible in the template for handling user

interactions.

Fig. 3.4 Script element from the Settings.vue component

3.1.3 Styles

Eventually, the component elements are closed with the <style> element. The

<style> element is used to define the CSS styles for a component. It allows us to

apply visual styling to the components' HTML elements, ensuring a consistent

and visually appealing user interface.

20 Drone control and monitoring by means of a web application

Fig. 3.5 Style element from the Settings.vue component

Together, these three elements merge into the interactive user experience

captured in the following figure.

Fig. 3.6 Settings.vue component displayed on the browser

Technologies involved 21

3.2 Python & Dronekit

Earlier on it was mentioned that all the on board modules were programmed using

Python. Python is a versatile and widely used programming language known for

its simplicity and readability. One of Python's key strengths is its extensive

standard library, offering modules and packages that cover a wide range of tasks.

Precisely, Dronekit is the library that it is used in the on board modules. Dronekit

is a powerful open source toolkit designed to facilitate the development of

applications and tools for UAVs. It provides a comprehensive set of tools, APIs,

and resources that allow developers to interact with and control drones using the

Python programming language. Some of the key features of this library are:

- Communication with drones

- Flight control

- Telemetry and monitoring

- Automation

- Mission planning

- Integration with external services

I dedicated my time to learn Python and Dronekit as all the on board modules

were coded with them. Furthermore, the understanding of Python and Dronekit

helped me to enhance and add some extra functionalities of the DashApp I was

working on. As I integrated new features and capabilities into the DashApp, I had

to integrate them on the autopilot module too as one of our goals was expanding

the Dashboard's capabilities.

3.3 MQTT & Mosquitto : messaging protocol

On the one hand, the Message Queuing Telemetry Transport, usually referred as

MQTT, is a lightweight and efficient communication protocol designed for

exchanging messages between devices in a publish-subscribe pattern. MQTT is

the most used messaging protocol among the Internet of Things as it operates

on top of the TCP/IP protocol and is designed to minimize the overhead

associated with traditional messaging protocols, making it suitable for resource

constrained environments.

Mosquitto, on the other hand, is an open source MQTT broker implementation.

An MQTT broker is a central server that acts as an intermediary for messages

exchanged between MQTT clients (devices or applications). When an MQTT

client wants to publish a message or subscribe to a topic, it communicates with

the broker. The broker then handles the routing and delivery of messages

between clients based on the topics they are interested in.

In summary, the relationship between MQTT and Mosquitto is that Mosquitto is a

specific software implementation of an MQTT broker. It provides the infrastructure

for MQTT communication, allowing devices and applications to send and receive

messages using the MQTT protocol. Mosquitto enables seamless

communication, message handling, and data exchange between MQTT clients in

an IoT or messaging scenario.

22 Drone control and monitoring by means of a web application

The following is a workflow example of the publish-subscribe pattern:

Fig. 3.7 Publish-Subscribe mechanism illustration (source: Google)

To understand the pattern, imagine a temperature sensor deployed in a room.

This sensor measures the temperature and uses MQTT to communicate its data

to both, the laptop and the mobile device. The laptop and the mobile device are

both subscribers to the topic related to temperature data so they will receive the

published messages.

To put it all together, the temperature sensor doesn't need to know who its

specific receivers are. It just publishes data to a topic. The laptop and smartphone

don't need to know where the data comes from; they just subscribe to topics

they're interested in. The MQTT broker handles the matchmaking, making sure

that data from the sensor reaches the devices that are subscribed to the relevant

topic.

3.3.1 MQTT communication example in the DEE

To better understand, a more specific case is the one used in our ecosystem. In

the DEE we use Mosquitto Brokers to facilitate the communication among the

different modules. An example is shown in the Fig.3.8 where the DashApp may

subscribe to the topic “dashboard/autopilotService/telemetryInfo” in order to

receive the telemetry information of the drone. Then if the autopilot module

publishes a message in the broker with exactly this topic

(“autopilotService/dashboard/telemetryInfo”), the Mosquitto Broker will occupy to

send the message to the subscribed device, that in our case is the DashApp.

Technologies involved 23

Fig. 3.8 DEE’s publish-subscribe mechanism illustration

The topic convention used in the ecosystem for the publish-subscribe pattern is

the following:

name_of_the_origin_module/name_of_the_destination_module/command

To fully understand all the parameters utilized in the MQTT workflow, you need

to grasp the following aspects: Topic Definition, Subscribing, Publishing, and

Delivering MQTT messages.

3.3.1.1 Topic Definition

A topic is a string identifier that represents a category or type of data. In this case,

you might define a topic like “dashboard/autopilotService/telemetryInfo” to

indicate that it's related to temperature readings from your home.

3.3.1.2 Subscribing

In the given example the DashApp wants to receive the telemetry data update

from the autopilot module so it subscribes to the following topic:

dashboard/autopilotService/telemetryInfo

By subscribing, the web application tells the broker that he is interested in any

messages published under the given topic.

3.3.1.3 Publishing

The autopilot module sends telemetry data periodically, concretely every 250 ms,

so every 250 ms the modules “publishes” a message to the Mosquitto Broker.

The message contains the telemetry information and is tagged with the topic:

autopilotService/dashboard/telemetryInfo

24 Drone control and monitoring by means of a web application

The MQTT broker receives the message and then forwards it to all subscribers

who have expressed interest in the topic.

3.3.1.4 Delivery

Each time the autopilot publishes a new telemetry data reading with the topic,

the MQTT broker forwards this message to the DashApp. The app receives the

message, extracts the telemetry values, and displays it to the user.

3.4 MAVLink protocol

Micro Air Vehicle Link, better known as MAVLink, is a lightweight communication

protocol that is widely used in the field of drone systems, particularly in the context

of drones and ground based robotic vehicles. It's designed to facilitate

communication between different components of a robotic system, enabling them

to exchange commands, telemetry data, and other information. MAVLink is

commonly used in drone simulations to simulate the interactions and

communications that occur between various parts of a drone system. MAVLink

serves as a communication bridge between the different components of a drone

system, enabling them to exchange data and commands. In the context of drone

simulation, MAVLink ensures that the communication patterns and interactions

among components are accurately replicated, allowing for realistic testing and

development without the need for physical hardware.

Particularly, in our case it has been used to create and receive Geofence

messages from the autopilot module to the Mission Planner.

3.5 Mission Planner

Mission Planner has been the fundamental drone testing buddy throughout the

whole DashApp implementation. Mission Planner is an open source ground

control station software specifically designed for drone systems that adhere to

the MAVLink communication protocol. Its versatility lies in its ability to bridge the

gap between real world drone hardware and virtual environments, offering a

range of functionalities tailored to simulation and testing.

3.6 Summary: the complete workflow

In summarizing this chapter, the ensuing illustration vividly demonstrates the

interplay of the technologies outlined and explored throughout the discussion.

Vue takes center stage as it was used to develop the dynamic web app, serving

as the conductor of user interaction with the drone system. MQTT, represented

as the intricate network of communication pathways, links the DashApp with the

drone's on-board autopilot module, which was created using the Python

programming language.

The communication and control culminates in the simulation realm, brought to life

through the Mission Planner platform.

Technologies involved 25

Fig. 3.9 Complete workflow of the technologies involved

26 Drone control and monitoring by means of a web application

CHAPTER 4: DASHAPP, FUNDAMENTAL

FUNCTIONALITIES

In this chapter, we finally shift the gears from the theory section to the practical

one as we eventually illustrate our DashApp’s fundamental functionalities in their

entirety. This entails delving into the core functionalities that define the existing

Dashboard and their seamless adaptation into the web version.

So, this chapter immerses in the realm of the fundamental functionalities that form

the core of the DashApp. These functionalities, pre-existing within the Python and

Tkinter made Dashboard, have a bunch of interesting and essential features.

From the freedom to guide the drone, streaming live video of what the drone sees,

and designing simple flight plans, to the display of real-time telemetry data.

4.1 Basic functionalities

When first launching the DashApp the opening page that the user sees is the

“entrance portal” to the app as shown in Fig.4.1. In other words, it presents an

introductory page housing solely the "Connect" button, enabling users to access

the Drone Engineering Ecosystem.

Fig. 4.1 Entrance portal to the Drone Engineering Ecosystem

Upon clicking the "Connect" button, a process is set into motion. The DashApp

tries to establish a connection with the MQTT broker, an intermediary that

facilitates communication between the app and the various DEE on-board

modules. This connection is the bridge that allows your commands and requests

to travel to the hardware, and the module's responses to find their way back to

your screen. The outcome of the connection is displayed through SweetAlert pop-

ups, which informs the user about either the failure or the success of the

connection.

DashApp, fundamental functionalities 27

Fig. 4.2 SweetAlert pop-ups in case of connection failure

Once the connection has succeeded, the app unveils an additional preliminary

component. This new element houses a series of interactive slides, each one

presents the user with a distinct web app option among the available in the Drone

Engineering Ecosystem to explore. Within these slides, the user is empowered

to make a choice, selecting their desired destination within the ecosystem.

Whether it is navigating with the Dashboard or delving into the captivating and

funny world of the Drone Circus, these slides serve as a gateway, allowing users

to direct their journey through the app's diverse offerings.

This approach holds a promising objective: to integrate all the DEE’s apps in

their web edition into a unified platform. This consolidation would provide a

singular entry point to the entirety of the DEE's assortment of apps. As a hub for

innovation and learning, this integrated platform will allow the future contributors

to add their web apps on this unified platform.

Nevertheless we have to take into account that these slides represent an

additional functionality within the app's interface. However, it is important to note

that, currently, the only active app available within this web interface is the

DashApp. While the other exciting applications like the Drone Circus are in the

pipeline for development, so they are not accessible in their web edition yet.

28 Drone control and monitoring by means of a web application

Fig. 4.3 Web app selection page

4.1.1 Drone control and monitoring page

In essence, the component above was another preliminary page featuring solely

the entry point to the different apps, in our particular case affording the user

access to the DashApp. And now, finally, we step into the DashApp itself as

depicted in the figure below:

Fig. 4.4 DashApp’s Dashboard window

As shown in the figure above, a prominent navigation bar graces the left side of

the interface. This navigation bar serves as a menu gateway to a myriad of

components, providing easy access to the diverse functions that the Dashboard

offers to the user, such as:

- Drone Free Guidining: Unleash the drone's potential by assuming

manual control, allowing you to guide it with precision and finesse.

DashApp, fundamental functionalities 29

-

- Geofence Creation: Define virtual boundaries, ensuring the drone's

operations remain within designated areas for safety and compliance.

-

- Mission Planning: Craft intricate flight paths, orchestrating the drone's

trajectory with a strategic layout that corresponds to your objectives.

-

- Settings: where the user has the ability to configure the drone's

parameters precisely to the user’s liking. The user is able to set essential

parameters such as takeoff altitude, groundspeed, and more.

Fig. 4.5 Dashboard’s navigation bar

Undoubtedly, the current page stands as the principal and central page of this

web application, bearing paramount significance. Here, within the drone's control

and monitoring domain, the user holds the reins of command. In this singular

space, the user has granted the privilege of free guiding the drone, orchestrating

its movements with precision. As the drone navigates, the telemetry data shows

all the information in his respective card, keeping the user informed about the

drone's vital metrics. Furthermore, a live video stream can be brought forth,

providing the user with a window into the drone's perspective.

An important point to note is that prior to free guiding the drone, there exists the

possibility to set the drone’s parameters in the Settings' page. Here, you wield

the power to configure some important parameters, from the initial takeoff altitude

to the ground speed among others.In the same way the user is able to create an

inclusion geofence in the "Geofence Creation" page.

30 Drone control and monitoring by means of a web application

By creating these restricted areas, the user ensures the drone's adherence to

designated spaces, fostering both safety and compliance.

In essence, this page encapsulates a symphony of control, information, and

strategic planning. It perfectly defines the Drone Engineering Ecosystem's control

and monitoring interface, allowing the user to not just fly a drone, but to command

an entire experience.

Moving forward, our focus shifts to the exploration of each individual section

within the current page. Screenshots of the page will guide us through this

comprehensive journey, unveiling every facet. My approach will involve a

systematic progression, where the screenshots will illustrate each section from

the top to the bottom and from the left to the right. By adhering to this layout, I

aim to provide you with a clear and intuitive understanding of the individual

“cards” that constitute the essence of this interface. From the map shown to the

drone’s commanding buttons, each segment will be unveiled in a comprehensive

manner.

4.1.1.1 Video Stream

Displayed below is the Video Stream’s card, within which, a monitor image takes

center stage, ready to host the dynamic visual feed captured from the drone's

perspective. Upon selecting the "Start VideoStream" button, the monitor will come

to life, displaying the drone's live video stream.

Fig. 4.6 Video Stream card inside the Drone Free Guiding component

A single click initiates this immersive experience, enabling the user to witness

real time scenes as the drone navigates its surroundings. Conversely, the option

to conclude the live stream lies in the "Stop VideoStream" button. With a mere

tap, you can bring the broadcast to an end, relinquishing the visual connection

between the drone and the user.

DashApp, fundamental functionalities 31

4.1.1.2 Map

Now, we shift our attention to the Map’s card. Within it the user will encounter a

drone and a home icon, both thoughtfully positioned on the Drone Lab's map.

The home icon refers to the geographical point from which the drone will take off

and in case of Return To Launch, will land. This card is designed to provide the

user with a comprehensive visual representation of the drone's navigation

journey.

Fig. 4.7 Map card inside the Drone Free Guiding component

Upon this section of the Drone Free Guiding component, the user will be

presented with a display as the drone icon starts its virtual flight. The drone will

navigate through the map, moving with a ground speed configured to match the

user’s preferences. As the user guides the UAV, its icon will smoothly sail across

the map, tracing a path that the user directed it to follow. By integrating this

feature, I aim to enhance the user’s understanding of the drone's geographical

positioning and its interactions with the environment.

4.1.1.3 Telemetry information

Next up is the "Telemetry Info" card. This card serves as a hub for real time

telemetry data, offering a comprehensive snapshot of the drone's crucial metrics

as it navigates through the Map's card. This card is shown in Fig.4.8.

Within this section, the user will find a live stream of the drone's essential

information, including the drone's latitude, longitude, altitude, ground speed, and

more. As the drone takes its course across the map, these data points will be

updated in real time, allowing you to stay attuned to its movements and current

state.

32 Drone control and monitoring by means of a web application

Fig. 4.8 Telemetry Information card inside the Drone Free Guiding component

4.1.1.4 Drone states

Alike to the Telemetry Information card, is the "Drone State" card as a parallel

feature in the interface. This card serves as a visual representation of the drone's

operational status, encapsulating its various states through a set of buttons. Each

button, initially displayed in red, symbolizes a distinct state of the drone's journey.

These states include "Armed," "Taking Off," "Flying," "Returning Home,"

"Landing," and "On Earth."

Fig. 4.9 Drone State card inside the Drone Free Guiding component

As the drone progresses through its flight, these buttons undergo a colour
transformation, shifting from red to green, to signify the drone's successful
transition into the corresponding state. This feature grants the user immediate
insight into the drone's real time progress, allowing the user to track its movement
and actions.

DashApp, fundamental functionalities 33

By offering this clear visual representation, I aim to provide the user with a
simplified and accessible means of staying informed about the drone's activities.

4.1.1.5 Drone’s controller

At last comes the most important card, the Drone’s Controller card. This card

holds a central role, as it serves as the command hub for orchestrating the drone's

actions. Notably, this card plays a vital role in initiating actions that trigger

subsequent responses within other cards, such as the Map, Telemetry Info and

the Drone State cards.

The "Drone's Controller’ card main objective is to send direct commands to the

drone's on-board autopilot module. This card empowers the user with a range of

commands at their disposal, each with its distinct purpose. These commands

include essential actions such as:

- Arm Drone: Initiate the readiness of the drone, preparing it for operation.

- Take Off: Elevate the drone into the skies, starting its flight.

- Return to Launch (RTL): Command the drone to navigate back to its
designated launch point.

- Stop: Terminate the drone's motion instantaneously.

- Go North, North-East, South, etc: specify directional commands to guide

the drone's movement in the desired compass direction.

Fig. 4.10 Drone’s Controller card inside the Drone Free Guiding component

4.1.2 Mission planning page

After exploring the drone’s drone control and monitoring page in detail, the

Mission Planning page operates in a similar manner but with a distinct objective.

This component comprises four cards, each serving a specific purpose.

34 Drone control and monitoring by means of a web application

The first card features a map leaflet, which facilitates the design of a mission.

Users can draw waypoints on the map, establishing a route for the drone to follow,

with the added functionality of capturing pictures at selected waypoints.

Additionally, a telemetry information card is included to display real-time data

about the drone's status as it follows the planned route.

Another card showcases the selected waypoints, and users can utilize radio

buttons to determine whether the drone should take pictures at specific

waypoints.

Concluding the page, a button card contains two buttons. The first button clears

the waypoints drawn on the map, allowing users to refine their mission plan. The

second button triggers the transmission of the mission plan to the autopilot

module for execution. This design ensures that the Mission Planning component

efficiently aids users in crafting and executing drone missions with enhanced

precision.

Fig. 4.11 DashApp’s Mission Planning window

DashApp, additional functionalities 35

CHAPTER 5: DASHAPP, ADDITIONAL

FUNCTIONALITIES

Moving on, the second phase of the DashApp’s development was to implement

the significant additional functionalities. For this purpose, this chapter unveils the

interesting range of additional functionalities integrated into DashApp. These

enhancements stem from meticulous development efforts, enhancing every facet

of the user interaction with the dashboard. Among the numerous innovations, the

user will be able to create inclusion geofences to establish virtual boundaries,

a configuration pathway to set drone parameters, and a list of other intuitive

user interface functionalities that make DashApp an evolved and updated

Dashboard.

So, once having familiarized ourselves with the fundamental capabilities of the

DashApp, it's now time to delve into its supplementary features, meticulously

designed to elevate the Dashboard's utility and appeal. These additional

functionalities extend the app's versatility, enriching the user’s experience in

many ways. Among the additional features, lie the following:

- Enhanced interface look

- Geofence creation

- Drone’s critical parameters configuration

5.1 Enhanced interface

To initiate, let’s first start with our focus set on the enhanced interface features.

As mentioned many times before, the DashApp is designed to align with the latest

trends in web application development, incorporating contemporary elements to

elevate the user’s experience. Among many features, one that has gained

widespread popularity in modern web apps is the bright and dark mode feature.

This versatile feature allows users to toggle between two distinct visual themes:

bright mode, which presents a clean and well lit interface, and dark mode, which

employs a darker colour scheme, reducing strain on the eyes in low light

conditions.

The DashApp proudly incorporates the dark and bright mode feature. As you

explore the interface, you will notice the presence of a top bar that houses

essential elements, including the menu button and a toggle button in the middle

dedicated to switching between bright and dark modes. This button serves as a

dynamic switch, allowing users to seamlessly alternate between the two modes

with a simple click.

Fig. 5.1 DashApp’s top bar

36 Drone control and monitoring by means of a web application

This innovative functionality grants users the autonomy to align the app’s
appearance with their preferences. When this toggle button is activated, the app's
appearance transforms seamlessly between dark and bright modes. This
empowers users to select the mode that resonates most with their preferences
and complements their work environment, ultimately fostering a personalized and
comfortable interaction with the DashApp. The following figure illustrates the
DashApp’s when it is used in bright mode:

Fig. 5.2 DashApp’s appearance in bright mode

5.2 Geofence creation

Moving on, the most important additional functionality that the app has is

undoubtedly the inclusion geofence creation feature.

Fig. 5.3 Geofence creation component window

DashApp, additional functionalities 37

The Geofence Creation page is thoughtfully structured into three distinct cards,

each serving a specific purpose. Let's walk through this systematic arrangement:

5.2.1 Map Card

At the forefront is the Map Leaflet card, designed to facilitate the creation of

geofences. Within this card, you will find an interactive map interface where the

user can outline the shape of the geofence. Whether you're defining a polygonal

or circular geofence, this is where the groundwork is laid.

Fig. 5.4 Polygonal geofence

Fig. 5.5 Circular geofence

38 Drone control and monitoring by means of a web application

5.2.2 Fence’s parameters configuration card

Following the map leaflet, the Fence Parameters Configuration card takes center

stage. This card empowers the user to configure their geofence's behaviour.

Here, you can set a range of parameters such as the fence type, be it circular or

polygonal, in case it is circular, define its maximum radius, the maximum altitude

the drone is allowed to reach within the fence, and the action you want the drone

to take if it breaches the fence.

Fig. 5.6 Geofence settings

5.2.3 Buttons’ card

The final cards introduce some key elements. Firstly, a toggle button grants you

the ability to activate or deactivate the geofence as needed. Secondly, a distinct

button empowers you to transmit the finalized geofence settings to the on-board

autopilot module. Whereas there is also a button to clean the geofence drawn in

the map in case the user wants to modify it.

Fig. 5.7 Geofence’s buttons’ card

DashApp, additional functionalities 39

Collectively, these three cards within the Geofence Creation page create an

intuitive process for defining and configuring geofences. From drawing shapes to

parameter settings and practical implementation, this comprehensive structure

aims to empower the user with a robust geofencing solution tailored to your

specific operational requirements.

5.3 Drone’s parameters settings

In the subsequent component we will explore the Drone’s flight parameters

settings. Within this section, users are granted the capability to set critical flight

parameters, ensuring a desired flight experience. Here, the focus centers on

configuring parameters that shape the drone's behaviour throughout its flight:

1. Take Off Altitude: This parameter dictates the height at which the drone

will ascend when initiating takeoff. It plays a pivotal role in determining the

drone's initial flight altitude.

2. Drone's Ground Speed: Ground speed refers to the drone's horizontal

speed as it moves across the terrain. By adjusting this parameter, users

can set the drone's desired pace during flight.

3. Return to Launch (RTL) Maximum Altitude: In the context of Return to

Launch, this parameter sets the maximum altitude the drone can reach

while executing its return journey to the launch point.

4. Return to Launch (RTL) Ground Speed: This parameter controls the

drone's speed during its Return to Launch operation, determining the pace

at which it retraces its flight path back to its starting point.

It's important to note that users possess the flexibility to select which parameters

to configure. There's no obligation to set all the available parameters, as users

can choose to adjust only those that align with their flight requirements. The

remaining parameters will retain default values, ensuring a seamless flight

experience even when certain configurations are left untouched.

Fig. 5.8 . Settings component window

40 Drone control and monitoring by means of a web application

CHAPTER 6: DASHAPP’S VUE CODE STRUCTURE

Proceeding into the sixth chapter of the project, the focus turns toward an

exploration of Vue's code structure and organizational framework. So, this

chapter is dedicated to unravelling the intricate layers that compose the

architecture of the DashApp, making clear on how its code components are

structured, linked together, and meticulously organized to create an efficient

application. We will navigate the various layers of Dashapp's codebase,

examining the arrangement of files, directories, and modules that collectively

contribute to its functionality.

In essence, this serves as a comprehensive guide to the inner workings of

Dashapp's codebase, providing a clear understanding of how its structure and

organization contribute to the overall functionality and robustness of the web

application.

6.1 Code organization and basic files

As mentioned before, the DashApp is built using the Vue.js framework. Vue

follows a specific file structure that helps organize the project into distinct parts,

making development more manageable. The following figure shows how

DashApp’s directories and files are organized:

Fig. 6.1 File tree of the web application

DashApp’s Vue code structure 41

The file structure of a Vue.js project is designed to keep the code organized and

modular. Concretely, the "src" directory contains most of the application's logic,

with subdirectories for assets and components. The "public" directory holds static

assets and the main HTML file. The "node_modules" directory manages the

project's dependencies. This separation of concerns makes it easier to maintain,

develop, and scale a Vue.js application. Specifically the key directories and files

are:

1. node_modules: This directory contains all the dependencies and libraries

that the project relies on. It's usually generated and managed by a

package manager like npm or Yarn.

2. public: The "public" directory is where you place static assets that you

want to be publicly accessible, such as images, fonts, and the main HTML

file (index.html).

3. src: The "src" directory is where most of the application code resides. It

includes several important files and subdirectories, such as:

- assets: This is where we place our static assets that need to be

processed, like stylesheets, images, and fonts. Like shown on

Fig.6.1, in the “assets” is where we have the images and videos

used in the app.

- components: In the "components" directory, we find Vue

component files. Vue components are reusable building blocks that

can be combined to create complex interfaces.

- App.vue: This is the root Vue component of the application. It

serves as a container for all other components and defines the

overall layout and structure of your app. It usually contains the

layout structure and potentially the navigation elements that persist

across all pages. In our case this is not used.

- main.ts : This is the entry point of the application. It initializes the

Vue app by creating an instance of the Vue constructor and

mounting it to an HTML element in the "index.html" file.

4. index.html: This is the main HTML file of your application. It serves as a

template for your app and includes the mount point where your Vue app is

rendered.

The diagram in Fig.6.2 illustrates the hierarchical structure of the components

within my web app. It outlines the relationship between parent and child

components, providing a clear overview of the app's architecture.

42 Drone control and monitoring by means of a web application

Fig. 6.2 Component tree of the web application

- ConnectPage.vue: serving as the initial entry point, this page establishes

a connection with the MQTT Broker. If the connection is successful, users

proceed to the next stage, otherwise they remain on this page.

- EntrancePage.vue: upon successful connection with the MQTT Broker,

users are directed to the EntrancePage. Here, they have access to various

available web apps, with Dashboard.vue being the current sole option.

- Dashboard.vue (DashApp): this is the core of the web app, the

Dashboard itself, presenting users with a wide range of functionalities over

drone control and monitoring. Within Dashboard.vue, various child

components are integrated, each one forms a different window in the app:

- FreeGuiding.vue: this component enables manual drone control

and monitoring alongside with the live video stream from the

drone’s perspective. It further consists of two sub-components:

- VideoStream.vue: displays live video streaming from the

drone's perspective.

- DroneController.vue: empowers users to send commands

to the drone's autopilot module.

- Geofence.vue: enables users to create virtual boundaries for the

drone's operations.

- MissionPlanning.vue: component that gives to the user the ability

to design mission routes.

DashApp’s Vue code structure 43

- Settings.vue: within this component, users are granted the ability

to configure significant flight parameters. Here, the focus centers

on setting parameters that shape the drone's behaviour throughout

its flight.

- Help.vue: a component that includes DashApp’s basic help

information for the user

6.2 DashApp’s entrance pages

As previously described, our web app presents users with an entry sequence,

featuring the ConnectPage and EntrancePage as its preliminary stages. These

pages serve as the gateway to the experience that lies within the app's core

functionalities. Through this thoughtfully designed entry process, users are

guided seamlessly from establishing a connection with the MQTT broker to

having access to the web Dashboard itself.

Continuing along, we'll now provide an overview of how the codebase for these

entry pages is structured and what specific functions they encompass.

6.2.1 ConnectPage

The template, script and styles element codes for the ConnectPage are attached

to Annex A.

6.2.1.1 Template

Overall, this ConnectPage template sets up the visual layout for the initial page

of the web app. It provides a background video, a navigation UPC logo, a title,

and a "Connect" button. If the connection is successful, users are directed to the

EntrancePage component; otherwise, they remain on the ConnectPage to retry

the connection.

6.2.1.2 Script

The script element begins by importing various functionalities and components.

These include utilities from Vue 3 like defineComponent, ref, and onMounted,

which help in defining and managing components and their reactivity. The provide

and inject functions allow data sharing between components, while

EntrancePage is another component used within this script. Additionally, Swal

from the SweetAlert2 library is employed for displaying visually appealing pop-up

messages, and the mqtt library provides MQTT related functionalities.

Moving on, the script defines the component behaviour within a setup function.

Here, several reactive variables and functions are set up for use within the

component's scope. Among these is the definition of a critical function named

"toggle”. This function is tied to the interaction triggered by clicking the "Connect"

button within the app. This function dynamically switches the state of a variable,

determining access to the "EntrancePage" component.

44 Drone control and monitoring by means of a web application

When the MQTT connection succeeds, the function toggles the variable, granting

access. In case of a failed connection, it advises users, through a SweetAlert

pop-up, to refresh the page for another attempt. This interaction strategy ensures

seamless user engagement, enabling access to the "EntrancePage" upon

successful MQTT connection or prompting a practical retry approach for

unresolved connections.

6.2.1.2 Styles

The styles element within a Vue app is where the visual design and presentation

aspects of a specific component are defined. It serves as the creative canvas for

customizing how a particular component appears to users. Through CSS rules,

properties, and styles, we can shape the component's layout, colors, typography,

and overall aesthetic appeal.

For more detailed insights into how styles are utilized and defined in the

ConnectPage, you can refer to the code provided in Annex A. The following figure

illustrates ConnectPage’s window applying all three elements:

Fig. 6.3 ConnectPage’s window view

6.2.2 EntrancePage

For better comprehension of the descriptions please check the template, script

and styles elements code that is attached to Annex B.

6.2.2.1 Template

At the forefront, the template integrates the Dashboard component, displayed

only when the openDash variable holds a truthy value. The "header" section

introduces the app's identity, showcasing a brand name ("Drone Engineering

Ecosystem") as a clickable link. A menu button and navigation menu follow,

offering links to "Home," "About," "Explore," "Gallery," and "Contact".

DashApp’s Vue code structure 45

Then, a section encompasses a dynamic display that cycles through video slides.

Each slide is accompanied by corresponding content. The content includes titles

and descriptions related to distinct features of the app's functionality. For

instance, it describes the "Dashboard" component's features, such as camera

streaming, drone control, flight planning, telemetry data display, and LED

sequencing. Buttons are interspersed within the content. The template also

includes navigation controls for the video slides, permitting users to navigate

between different sections.

The concluding touch incorporates social media icons for GitHub, YouTube, and

Twitter at the right of the page. These icons serve as direct links to relevant

profiles and channels. In summary, this template not only presents information

about the app's offerings but also facilitates user interaction through buttons and

navigation controls.

6.2.2.2 Script

Progressing to the script element, it starts by importing essential dependencies

like the MQTT library, Vue components and utilities. These are integral for

enabling MQTT communication, defining components, and managing reactivity

in the app.

The script defines the core component, including the Dashboard component as

a nested part of the structure. The script then defines a couple of methods to

handle user interactions. The menuBTNClicked function toggles the app's

navigation menu's visibility. The navBTNClicked function orchestrates the visual

navigation between different sections of the app based on user interaction with

navigation buttons.

In the setup function, the script sets up reactive variables:

- dashAccess: Tracks whether access to the Dashboard is granted or not.

- openDash: Controls whether the Dashboard component is displayed or

not.

The function dashAccessPermission is intended to be triggered upon user

interaction. When invoked, it toggles the dashAccess and openDash variables,

thereby allowing the Dashboard component to be accessed and displayed.

Together, these three elements merge into the interactive user experience

captured in the next figure.

46 Drone control and monitoring by means of a web application

Fig. 6.4 EntrancePage’s window view

6.3 DashApp’s components

After exploring the preliminary entrance components that pave the way for

accessing the heart of the application, the focus now shifts to the component

known as the Dashboard. This component embodies the core functionality and

features of the application, encapsulating a range of advanced tools and

capabilities.

Unlike the previous components that served as introductions and provided

glimpses into the DashApp itself, the Dashboard opens the door to drone control

and monitoring. However, in this context, we will refrain from delving into an

exhaustive code breakdown, as the intricacies of the Dashboard component's

implementation are extensive. Rather than dissecting each line of code, we will

focus on the broader essence and significance of the DashApp. For that reason,

the styles applied to these components will not be described, as they are

considered standard CSS code and adhere to the individual design specifications

of each component. As such, these styles are not extensively detailed here, as

they primarily determine the visual aesthetics and layout of the components.

The Dashboard component acts as a centralized component where users can

wield a multitude of functionalities, including controlling drones, viewing live

camera feeds, strategizing flight plans, accessing telemetry data. All this

accessing Dashboard’s child components. In the figure below, a vibrant red line

outlines the window designated for the Dashboard component. This red-bordered

area symbolizes the central hub where users select which DashApp functionality

they want to use through the menu options on the left.

Adjacent to this red zone, a bold green line encircles another window. This red-

bordered space signifies the area where child components will emerge. Child

components, internally linked to the Dashboard, pop up within the green-

bordered region, showcasing specific Dashboard functionalities such as:

DashApp’s Vue code structure 47

- Drone Free Guiding

- Geofence Creation

- Mission Planning

- Settings

- Help

Fig. 6.5 Child components window within the parent component: Dashboard

6.3.1 Drone Free Guiding

For better comprehension of the descriptions please check the template and

script elements code that is attached to Annex C.

6.3.1.1 Template

The template of the Drone Free Guiding component is designed with a clear and

organized layout that partitions the screen into five distinct sections, each

corresponding to a specific card. This deliberate segmentation ensures a

structured and user-friendly display of information and functionalities. Within

these sections, several key elements come into play, each contributing to the

comprehensive user experience:

1. Video Stream and Drone Controller card: The Drone Free Guiding

component incorporates dedicated spaces for both the Video Stream and

the Drone Controller. These two cards operate as independent

components, each fulfilling a unique role. The Video Stream card displays

live video content, providing users with a visual feed from the drone's

camera while the Drone Controller card offers controls for manoeuvring

the drone, allowing users to interact with the drone's movements in real-

time. The synergy between these components is evident as they

seamlessly communicate with the on-board autopilot module via the

MQTT broker, facilitating effective command transmission and video

stream data reception.

48 Drone control and monitoring by means of a web application

2. Map Card: Another distinctive card within the component in question

features a dynamic map display using Leaflet. This map card provides

users with a geographical overview of the drone's location, enhancing

situational awareness and aiding in navigation.

3. Telemetry Info card: The Telemetry Info card is designed to present real-

time data to users. It comprises textual information that dynamically

updates as data is received. This card serves as a valuable resource for

users to monitor and track the drone's essential telemetry details.

4. Drone State card: The Drone State card introduces a set of buttons that

are not only informative but also interactive. These buttons change colour

in correspondence with the drone's state transitions. This allows users to

quickly grasp the current state of the drone, contributing to a more intuitive

and streamlined user experience.

As demonstrated in the visual representation in Fig 6.5, the red line highlights the

area occupied by the parent component, the Drone Free Guiding. Within this

space we have integrated the two of his child components: the green dotted card

showcases the VideoStream component's display, while the adjacent blue dotted

card hosts the DroneController component's functionality.

Fig. 6.6 Child components window within the parent component: Drone Free

Guiding

6.3.1.2 Script

The script section of the current component is crucial for drone control as it

houses a multitude of important functions and variables that significantly enhance

its functionality.

DashApp’s Vue code structure 49

At its core, the script leverages the onMounted function provided by the Vue

framework. This function is a lifecycle hook that runs automatically when a

component is mounted (added to the DOM). It's a convenient way to perform

tasks, such as data initialization or setting up event listeners, once the component

is ready to interact with.

The onMounted function enables the component to actively receive data from the

MQTT broker, particularly when the data pertains to the "telemetryInfo" topic. By

employing this function, the component promptly reacts to incoming messages

and updates the reactive values tied to drone parameters. This real-time update

ensures that telemetry information is instantaneously showcased in the

Telemetry Info card, offering users an instant glimpse of drone data. Moreover,

the data is used to pinpoint and reflect the drone's precise location on the map

card. The function also undertakes the task of creating a dynamic map using

Leaflet. This is pivotal in providing users with a visually engaging representation

of the drone's geographical location.

As we progress in the script element, two fundamental functions, named

“changeState” and “drawGeofence”, further augment the component's

capabilities. The “changeState” function plays an important role in modifying the

appearance of the buttons within the Drone State card. It receives the current

drone state as a parameter and based on this information, alters the colour of the

buttons, visually signifying the drone's state to users.

On the other hand, the “drawGeofence” function holds the responsibility of

rendering the geofence on the map. This becomes particularly relevant when the

geofence is created and submitted through the Geofence Creation component.

By receiving the necessary settings from the Geofence component through an

emitter, this function seamlessly translates the geofence creation into a tangible

visual representation on the map. An emitter is a mechanism for sending and

receiving data between components. It allows components to communicate with

each other by emitting events with data that other components can listen for and

react to.

Summarising, the script section serves as the engine that drives the core

functionalities of the component. By employing sophisticated interactions with

MQTT data, dynamic map creation, and the execution of essential functions, this

script empowers users to monitor, control, and visualise drone related data and

actions in a seamless and intuitive manner.

6.3.2 Rest of the DashApp’s components

The remaining components of the DashApp, including Drone Free Guiding,

Geofence Creation, Mission Planning, and Settings, follow a similar structural

pattern as discussed earlier. While each component has a unique purpose, the

template, script, and styles of these components align with the fundamental

framework established in the previous component descriptions. However, in the

interest of avoiding redundancy and keeping this chapter concise, a detailed

breakdown of these components will not be provided.

50 Drone control and monitoring by means of a web application

It's worth noting that these components adopt a similar organization and

development approach, leveraging templates for user interface layout, scripts for

functionalities, and styles for visual design. Each component addresses distinct

aspects of the application, addressing specific functionalities and user

interactions. By maintaining a consistent architecture across components, the

DashApp ensures a cohesive user understanding of the code while

accommodating diverse use cases.

The intention behind this approach is to present a comprehensive overview of the

application's structure, allowing readers to grasp the design principles without

delving into excessive detail. This way, the narrative maintains a dynamic pace

and avoids overwhelming readers with repetitive information.

Autopilot’s on-board module 51

CHAPTER 7: AUTOPILOT’S ON-BOARD MODULE

Continuing with our work, the forthcoming chapter delves into the autopilot on-

board module. This module, programmed in Python, serves as the heart of the

drone's software infrastructure. In essence, the drone autopilot orchestrates and

controls the drone's flight operations, ensuring stability and adherence to

predefined flight paths.

In this context, the autopilot module has undergone many enhancements in order

to work with DashApp. Specifically, I have undertaken modifications into the

autopilot module to integrate the geofence functionality alongside the

feature of configuring various drone parameters. Geofence functionality

holds immense importance as it was first implemented in the DashApp in question

and it establishes virtual boundaries, restricting the drone's flight within

predefined areas for safety and regulatory compliance.

The autopilot's codebase is meticulously crafted using the DroneKit library, a

Python toolkit tailored for drone communication and control. Through this library,

our autopilot communicates with the drone, facilitates mission planning, and

monitors telemetry data for precise navigation.

While the DEE encompasses other on-board modules like the Camera Service

and LEDs' Service, our focus within this chapter remains firmly on the autopilot

module. This choice stems from the important role it plays in implementing the

geofence functionalities and expanding the drone's operational capabilities. The

geofence feature's integration within the autopilot marks a significant milestone

in achieving controlled and secure flight operations.

7.1 Autopilot’s code structure

In order to better comprehend the subsequent functionalities integrated into this

module, it's essential to first grasp the basic code structure of the autopilot. This

will provide a crucial understanding to later explore the additional enhancements

added to the module. By familiarizing ourselves with the core structure of the

autopilot's codebase, we establish a clear starting point from which we can delve

into the intricacies of the newly incorporated features.

At first, the autopilot module initiates its operation by importing several essential

libraries. Among these, two libraries stand out: DroneKit and PahoMQTT. The

inclusion of these libraries is significant, as they facilitate seamless

communication between the autopilot and the local broker. DroneKit equips the

module with the tools required for effective drone communication and control,

enabling dynamic interaction with the drone's functionalities.

On the other hand, PahoMQTT empowers the module to establish

communication with the local broker, enhancing the autopilot's ability to exchange

information in real-time.

52 Drone control and monitoring by means of a web application

To establish a communication channel between the DashApp and the autopilot,

a well-orchestrated sequence of actions takes place. This enables the autopilot

to accurately interpret and execute commands received from the DashApp.

Firstly, upon initialization, the autopilot employs the "AutopilotService" function,

exemplified by Fig.7.1.

Fig. 7.1 Autopilot module’s AutopilotService function

Autopilot’s on-board module 53

This function serves as the one that sets the stage for receiving and responding

to commands received by the DashApp. As part of its initialization, the function

establishes connections and configurations based on specified parameters such

as "connection_mode," "operation_mode," "external_broker," "username," and

"password." These parameters are set on the script when running the autopilot

module. In our case are the shown in the figure below:

Fig. 7.2 Autopilot module’s running configuration

In our case as we use the “broker.hivemq.com” as an external broker the

“username” and “password” parameters are set to none. In the case we choose

the “classpip.upc.edu” as an external broker then we must provide these

additional parameters, the “username” and “password”.

Moving on, the function's journey begins by defining global variables and

determining the "operation_mode". The "external_broker_address" is configured

based on the connection mode, whether "global" or "local" (in our case global).

The function then creates both an external and an internal MQTT client. The

external client, named "Autopilot_external," is tailored to connect via websockets,

with optional authentication if the external broker's address requires it. This client

is equipped to handle incoming messages and is connected to the external broker

using the specified address and port.

Simultaneously, the internal client, named "Autopilot_internal," is configured to

handle messages in a similar way. It connects to the internal broker at the defined

address and port. Upon establishment, both clients are primed to listen for

incoming messages, initiating their respective functions, "on_external_message"

and "on_internal_message," as highlighted in Fig.7.3. These functions, designed

to process incoming messages, are fundamental in the execution of commands.

Fig. 7.3 Autopilot module’s listening functions

Finally, the "AutopilotService" function subscribes to MQTT topics using both

internal and external clients, allowing the autopilot to receive all the messages

whose receiver is him.

54 Drone control and monitoring by means of a web application

Subsequently, as outlined in the previous figure, the incoming message is passed

to the "process_message" function. This function, which stands as the

coordinator, efficiently delegates the task to the relevant client (be it the internal

or external client). This is achieved through the use of global variables, ensuring

that the intended message recipient is properly identified.

Once the message's destination is established, the "process_message" function

proceeds to solve the specifics of the message. As exemplified in the figure

below, the function parses the message's content to determine the command's

nature, such as "takeOff" or "returnToLaunch." Based on the command's

identification, the function takes decisive action. For instance, if the command is

"takeOff," the autopilot's response is immediate and calculated. The altitude data

embedded within the message is extracted, and a designated thread initiates the

takeoff procedure, leveraging the "take_off" function. This thread-based

approach ensures parallel execution, optimizing the drone's responsiveness.

Fig. 7.4 Function that processes the message received from the DashApp

Below is given a comprehensive table detailing the complete list of commands

that the Dashboard had the capability to send to the autopilot module before my

contributions. These commands provide instructions to the drone, shaping its

behaviour and actions.

Autopilot’s on-board module 55

Command Description Payload

connect Connect with the simulator or
the flight controller depending
on the operation mode

No

disconnect Disconnect from the simulator
or the flight controller
depending on the operation
mode

No

armDrone Arms the drone No

takeOff

Get the drone take off to reach
the default altitude

No

returnToLaunch Go to launch position No

land Land the drone No

disarmDrone Disarm the drone No

go

Move in certain direction

“North", "South",
"East", "West",
"NorthWest",
"NorthEast",
"SouthWest",
"SouthEast"

executeFlightPlan

Execute the flight plan

A json object
specifying the flight

plan.

Table 7.1. Commands that the autopilot had before my contribution.

In essence, this meticulously orchestrated interplay of these functions establishes

a robust framework for command reception, interpretation, and execution.

7.2 Contribution to the autopilot module: geofence creation and
drone’s parameter settings

Once seen the working methodology of the autopilot module, let’s now delve into

the functionalities that I added to this specific on-board module in order to

enhance and make it compatible with the DashApp additional features.

56 Drone control and monitoring by means of a web application

With my contribution, these are the new commands and functionalities that the

autopilot can manoeuvre with :

Command Description Payload

circularGeofence

Create a circular geofence
with the center point on the
home location and radius
sent in the payload.

A json object

specifying the circular
fence and his
configurations.

polygonalGeofence

Create a polygonal geofence
with the json object sent in
the payload. This object
carries the vertices of the
fence alongside the fence
settings as: fence maximum
altitude, what to do when
breaching the fence, etc.

A json object
specifying the

polygonal fence and
his configurations.

fenceEnable

Enable or disable the fence
functionality

“0” or “1” (0 is fence

disabled and 1 is
fence enabled)

setGroundSpeed

Configure drone’s ground

speed

The ground speed

value

setRTLAltitude Configure RTL’s altitude The RTL altitude

setRTLSpeed Configure drone’s RTL
ground speed

The RTL’s ground
speed value

takeOff Take off the drone to the
altitude given in the payload

Altitude to reach

Table 7.2. Additional commands that the autopilot has after my contribution.

7.2.1 Drone’s parameters configuration

Let's begin with the simple functionalities first, starting with the drone's parameter

configuration functions within the autopilot module. This will provide us with an

understanding of how drone's parameters can be configured and managed within

the autopilot system.

Autopilot’s on-board module 57

As explained before, the “process_message” function is the one assigned to treat

the incoming command from the DashApp and call the specified function once it

has been clarified the received command. An example of the command sent by

the DashApp could be:

Fig. 7.5 Parameter configuring command sent by the DashApp

Here we see a MQTT protocol message being sent by defining the:

- Transmitter module: dashBoard (DashApp)

- Receiver module: autopilotService (Autopilot on-board module)

- Command: setGroundSpeed

- Message payload: groundSpeed.value (the number to set)

The following snippet of this function shows how are being processed the

commands of drone’s parameters settings sent by the DashApp.

Fig. 7.6 Drone’s parameters configuration message being processed

Certainly, let's dive into the code snippet provided. As mentioned, this code is

nested within the “process_message” function, which is responsible for handling

incoming messages and triggering relevant actions within the autopilot module.

If the received command is "setGroundSpeed," the code extracts the payload of

the message to obtain the desired ground speed value. This value is then

converted to an integer using “int(message.payload.decode("utf-8"))”. The

ground speed represents the speed at which the drone moves along the ground.

The extracted value is printed for verification purposes.

58 Drone control and monitoring by means of a web application

Subsequently, a new thread “w” is created to execute the “set_ground_speed”

function, passing the extracted ground speed as an argument. This function is

designed to set the drone's ground speed to the specified value:

Fig. 7.7 Function to set the drone’s ground speed

Similarly, if the command received is "setRTLAltitude," the payload of the

message is extracted to retrieve the desired return-to-launch (RTL) altitude. The

extracted value is converted to an integer. The RTL altitude refers to the height

above the takeoff point where the drone will return in case of a "Return to Launch"

command. The extracted value is printed, and a thread (w) is created to execute

the “set_RTL_Altitude” function, passing the RTL altitude as an argument. This

function is responsible for configuring the RTL altitude of the drone:

Fig. 7.8 Function to set the drone’s RTL añtitude

Lastly, with the same modus operandi, if the command received is

"setRTLSpeed," the code follows a similar pattern. The payload is extracted to

obtain the desired RTL speed. The extracted value, representing the speed at

which the drone returns to its launch point, is printed. The same thread is initiated

to execute the “set_RTL_Speed” function, with the RTL speed value as an

argument. The “set_RTL_Speed” function adjusts the RTL speed configuration

of the drone:

Fig. 7.9 Function to set the drone’s RTL ground speed

In essence, this code snippet enables the autopilot module to respond to specific

commands from the DashApp by configuring various parameters of the drone.

Autopilot’s on-board module 59

The utilization of threading allows these configuration changes to occur

asynchronously, ensuring smooth and efficient execution without disrupting other

processes.

7.2.2 Geofence functionality

In a similar way, the autopilot module handles geofence commands that are

received and processed based on the type of specified geofence. This

differentiation occurs between circular and polygonal geofences, as illustrated in

the code below:

Fig. 7.10 Geofence commands processing

In the particular case of the geofence messages, when the autopilot module

receives the command "circularGeofence," the payload of the message is

extracted, containing JSON-encoded data that defines the configuration of the

circular geofence. This information is converted to a string using

“str(message.payload.decode("utf-8"))”. Subsequently, a new thread (x) is

initiated to execute the “create_circular_geofence” function. This function is

designed to create a circular geofence based on the provided configuration

JSON. The same process happens with the polygonal geofence type.

By segregating geofence commands into "circularGeofence" and

"polygonalGeofence," the autopilot module can distinguish between the two types

of geofences and initiate the respective functions to create the appropriate

geofence shape. This approach allows the autopilot to dynamically respond to

commands from the DashApp and implement geofences of different shapes to

ensure safe drone operations within designated areas. Threading facilitates the

concurrent execution of geofence creation processes, contributing to the

efficiency of the autopilot's operations.

7.2.2.1 Geofence functionality’s code structure

For better comprehension, please check the geofence’s code that is attached to

Annex D.

The geofence functionality offered in the autopilot module is designed to create

an inclusion geofence. This type of geofence defines a virtual boundary within

which the drone is allowed to operate.

60 Drone control and monitoring by means of a web application

If the drone crosses this boundary, predefined actions such as returning to the

launch point (RTL) can be triggered. In essence, the inclusion geofence confines

the drone's movements within a specified area to ensure its safe operation and

prevent it from venturing into restricted zones. For example, in the following figure

the drone only can fly in the green area:

Fig. 7.11 Inclusion geofence

While the current implementation focuses on the inclusion geofence, the initial

intention was to also include an exclusion geofence functionality too. An exclusion

geofence would work in the opposite manner (it would define areas where the

drone is explicitly prohibited from entering). This is particularly useful for marking

off areas such as no-fly zones or sensitive locations.

Regrettably, due to certain constraints or challenges, the implementation of the

exclusion geofence wasn't achievable within the current scope of the project.

However, this presents an exciting opportunity for future contributors to the Drone

Engineering Ecosystem. One potential proposal is the development and

integration of the exclusion geofence functionality. This enhancement would

further enhance the drone's safety and versatility, enabling it to avoid specific

zones that should be off-limits for its operations. Such a contribution would be

valuable for expanding the capabilities of the drone.

Now let’s delve into the methodology behind the inclusion geofence creation.

Remember that the code is attached to the Annex D.

The code attached, is responsible for processing and implementing the creation

of a polygonal inclusion geofence within the autopilot module. Here's an overview

of how the code works:

1. Initialization and data parsing : The function

“create_polygonal_geofence” receives a JSON string containing

information about the polygonal geofence. This information includes fence

type, action, maximum altitude, radius, and a list of vertices of the

geofence polygon created by the user in the DashApp.

Autopilot’s on-board module 61

2. Setting geofence parameters: The code extracts relevant information

from the JSON data and sets various geofence parameters within the

vehicle's autopilot. These parameters include fence type, action (e.g.,

Return To Launch), maximum altitude, etc.

3. Vertex Processing: Subsequently the function processes the list of

vertices received in the JSON data. It iterates through each vertex,

extracting latitude and longitude values, and adds them to a “fence_list”

that will define the geofence boundary.

4. Closing the Geofence: To close the polygon, the code adds the

coordinates of the first vertex to the “fence_list” as this is the home

location..

5. MAVLink Messaging: The code uses MAVLink messaging to

communicate with the drone's autopilot. It sends a series of MAVLink

messages to set and retrieve parameter values associated with the

geofence.

6. Looping and Conditions: The function uses a series of loops to wait for

specific conditions to be met before proceeding. It listens for incoming

parameter value messages related to the geofence configuration and uses

these messages to verify and confirm the settings.

7. Uploading Fence Points: The code iterates through each vertex in the

“fence_list”. For each vertex, it creates MAVLink messages to upload

fence point information to the drone's autopilot.

8. Finalization: After all fence points are uploaded successfully, the

geofence configuration is completed, and a confirmation message is

printed.

Overall, this function demonstrates how the autopilot module processes incoming

geofence commands from the DashApp, sets geofence parameters, uploads the

geofence polygon's vertices, and verifies the configuration to ensure proper

functionality.

62 Drone control and monitoring by means of a web application

CHAPTER 8: SIMULATION AND DRONE LAB TESTS

Now that we've explored the structure and construction of the DashApp, the next

step is to put it to the test. We'll be conducting tests in two environments:

simulation using the Mission Planner and in real-life scenarios within EETAC's

Drone Lab. This comprehensive testing will ensure that the DashApp functions

seamlessly across different contexts.

In addition to the testing process, we'll provide a set of step-by-step instructions

to verify the proper functionality of the DashApp. It's important to note that the

modules within the DEE ecosystem are subject to ongoing updates and

improvements. By establishing these verification steps, we aim to offer future

users and developers a reliable way to assess whether all the app's features are

functioning correctly. This ensures that the DashApp remains a valuable tool for

drone control and monitoring, both now and in the future.

8.1 Simulation tests in Mission Planner

Our first step in this process is to prepare the scenario. This involves ensuring

that all modules, both on-board and ground station software, are set up in sync

and ready to go.

In our scenario, this encompasses the on-board modules, such as the Autopilot

and the Camera Service, as well as the ground station software applications,

primarily the DashApp itself. This synchronization extends to the

communicational broker, MQTT, which facilitates communication between these

modules, and the Mission Planner, a critical tool for the test simulation.

This meticulous preparation sets the stage for comprehensive testing and

ensures that all elements of the system are in sync and ready for evaluation.

8.1.1 Configuring the scenario

To configure the scenario for testing, several key steps must be followed. These

steps are crucial to ensure that all components work seamlessly together. Here

are the steps of the configuration process:

1. MQTT Broker: The first step is to launch the MQTT broker, specifically on

port 1884. This broker will act as the communication hub for all the

modules involved.

Fig. 8.1 External broker running on port 1884

Simulation and Drone Lab tests 63

2. Mission Planner Simulator: As the test operates in simulation mode, the

Mission Planner simulator is initiated in simulation mode with the

multirotor. This provides a virtual environment for testing the drone's

behavior and interactions

.

Fig. 8.2 Mission Planner in simulation mode with a multirotor

3. Initialize On-Board Modules: The next critical step is to initialize both the

camera and autopilot modules. These modules are set to operate in global

and simulation modes. Importantly, they are configured to use the public

broker "broker.hivemq.com" as an external broker. This external broker

serves as a bridge to connect the on-board modules to the broader

network.

Fig. 8.3 On-board modules’ running script configuration

4. Start the DashApp: Finally, the DashApp is started. This web application

acts as the user interface for controlling and monitoring the drone's

behavior. It connects to the MQTT broker, enabling users to send

commands and receive. If an error message like the one given below

appears, the user must check the broker which the DashApp is trying to

connect to.

Fig. 8.4 DashApp’s error message on connecting to the MQTT Broker

64 Drone control and monitoring by means of a web application

By following these steps, the scenario is fully configured and ready for testing.

Each component plays a crucial role in ensuring the system's functionality and

effectiveness during simulation testing.

8.1.2 Testing DashApp functionalities

With the scenario correctly configured, the next phase in the testing process is to

thoroughly evaluate every functionality of the DashApp. This comprehensive

testing ensures that all the app's features and modules are operational and

responsive.

8.1.2.1 Drone Free Guiding component validation process

To grasp the validation process more effectively, it's crucial to recall the

component's visual structure:

Fig. 8.5 Drone Free Guiding component’s window

The following is the validation process that the user must follow to ensure the

correct functioning of the Drone Free Guiding component.

1. Basic commands: Functions like arming, taking off, and landing the

drone should execute smoothly without glitches. Users should be able to

interact with the drone effortlessly through the DashApp.

2. Telemetry data: Telemetry information, including altitude, speed, and

drone’s coordinates data, should be displayed accurately on its

corresponded card. This data ensures users have instant information

about the drone's status.

3. Drone movement on the map: When users send commands for the

drone to follow a specific path, it's essential to verify that the drone indeed

moves as instructed on the map displayed in the DashApp.

Simulation and Drone Lab tests 65

This confirms that the navigation commands are accurately communicated

to the drone.

4. Drone state buttons: The colour changes in the drone state buttons

should accurately reflect the drone's actual state. For example, if the drone

is in a "Taking Off" state, the corresponding button should be displayed in

the green colour. Similarly, when the drone reaches other states like

"Flying" or "OnEarth," the buttons should update accordingly. This visual

feedback is crucial for users to monitor the drone's status.

5. Live video streaming: The DashApp should provide a real-time video

stream from the drone's camera.

8.1.2.2 Geofencing

In order to better understand the further validation process, let’s first take a look

at how the Geofence’s component is structured:

Fig. 8.6 Geofence component’s window

Here is the prescribed validation procedure users should adhere to in order to

confirm the proper operation of the Geofence component.

1. Geofence Creation: Begin by accessing the Geofence Creation

component within the DashApp. Here's a step-by-step validation process:

- Circular or Polygonal Geofence Selection: Depending on the

desired geofence type (circular or polygonal), ensure that the

appropriate option is selected.

- Drawing the Geofence**: Use the provided tools to draw the

geofence boundary on the map. Validate that:

66 Drone control and monitoring by means of a web application

- The geofence can be created by accurately marking the area

of interest.

- In the case of a circular geofence, ensure it has the correct

radius.

- For a polygonal geofence, confirm that the vertices

accurately define the boundary.

- Submission of Geofence Configuration: Once the geofence is

drawn, submit the configuration. Verify that the configuration is

correctly processed and sent to the autopilot service for geofence

creation.

2. Geofence Visibility: After submitting the geofence configuration, users

should check if the geofence is correctly displayed on the Free Guiding

component’s map. Validate that:

- The geofence boundary is visible on the map card.

- The geofence shape (circular or polygonal) matches the intended

design.

3. Fence Enabled Button: It's important to check the "Fence Enabled"

button, which should be enabled (ON) if the user intends to use the

geofence functionality during drone operations. Validate that:

- Enabling the geofence does not interfere with other drone functions.

- Disabling the geofence does not affect other mission parameters.

4. Geofence Functionality in Mission: During a planned mission, validate

the geofence's effectiveness:

- Ensure that the drone respects the geofence boundaries. If the

drone approaches or breaches the geofence, it should respond

according to the predefined action (e.g., Return To Launch).

- Verify that the geofence triggers the appropriate actions, such as

RTL (Return To Launch), as expected.

5. Geofence configuration editing: If the user needs to modify the

geofence, access the editing tools in the Geofence Creation component.

Validate that:

- Changes to the geofence shape, size, or location can be made.

- Submitting edited configurations updates the geofence effectively.

6. Clear Geofence: Test the "Clear" button to ensure it removes the

geofence from the map and deactivates its functionality.

Simulation and Drone Lab tests 67

By following these steps, users can thoroughly validate the Geofence

component's functionality within the DashApp, ensuring that geofences are

created accurately and enabled as needed.

8.1.2.3 Mission Planning

To facilitate a clearer understanding of the upcoming validation process, let's

begin by observing the architecture of the Mission Planning component:

Fig. 8.7 Mission Planning component’s window

The subsequent steps outline the validation protocol that users must undertake

to ensure the Mission Planning’s component functions correctly.

1. Map Leaflet Card: Begin by inspecting the map leaflet card, which serves

for designing the drone's mission. Users should:

- Ensure that waypoints, representing specific locations the drone will

visit, are accurately placed on the map.

- Confirm that the waypoints are arranged in the desired order of

visitation.

2. Telemetry Info Card: Check the telemetry info card, where real-time data

about the drone's status is displayed. Validate that:

- The telemetry data is continuously updated as the drone follows the

planned route.

- Key parameters such as altitude, speed, and coordinates of the

drone are being correctly reported.

3. Selected Waypoints Card: In this card, the waypoints selected by the

user for actions (e.g., taking a picture) should be reviewed:

- Ensure that the correct waypoints are marked for special actions.

- Verify that the action (e.g., taking a picture) is set as intended for

each selected waypoint.

68 Drone control and monitoring by means of a web application

4. Mission Planning Buttons Card: Examine the button card containing

options for clearing the mission plan and sending it to the autopilot:

- Confirm that the "Clear" button clears the map of any previously

drawn waypoints.

- Verify that the "Execute Flight Plan" or similar button sends the

current mission plan to the autopilot for execution. Observe that the

autopilot acknowledges receipt and starts executing the mission.

5. Monitoring Execution: As the drone follows the planned route, closely

monitor its progress on the map leaflet card and the telemetry info card.

Ensure that it adheres to the defined waypoints and performs any specified

actions accurately.

By systematically reviewing these components and conducting real-time

monitoring, users can validate the accuracy and functionality of their flight

planning within the DashApp, ensuring that the drone follows the intended

mission path and performs actions as desired.

8.1.2.4 Drone’s parameter settings

Following the same explanation structure as the other sections, let’s first see the

component’s structure:

Fig. 8.8 Settings component’s window

Before arming and flying the drone, users should verify that the parameters

they've set and submitted are accurately configured when the drone is in flight.

However if the user does not correctly define the parameters, an error message

should appear.

These parameters play a significant role in defining how the drone behaves

during its flight, including its flight characteristics, speed, altitude, and other

essential parameters.

Simulation and Drone Lab tests 69

By confirming the parameter settings align with the intended flight plan

requirements, users can maintain precise control over the drone's actions and

ensure that it operates in accordance with their preferences and objectives.

8.2 Drone Lab tests

Having tested the DashApp in the simulated environment using Mission Planner,

the next step involves conducting real world tests with a real drone in the Drone

Lab.

Fig. 8.9 Drone ready to go for the execution of the tests in the Drone Lab

So, in this section, we will delve into the tests performed in the Drone Lab and

present the outcomes and observations of it. Before conducting drone lab tests

with the drone shown above, several previous steps need to be taken to ensure

safe tests in production mode. Below I outline the key preparatory measures

undertaken to operate in production mode, with a focus on our specific case

working in global mode.

To prepare for the Drone Lab tests, we began by transitioning from simulation

mode to production mode. This mode is essential for running the on-board

services on the drone's computer, ensuring that the DashApp functions optimally

during real-world operations.

In production mode, all on-board services (autopilot service, camera service and

LEDs service) must be downloaded and installed on the drone's on-board

computer, that is to say on the Raspberry Pi. This step guarantees that the

services are available for execution during drone missions.

70 Drone control and monitoring by means of a web application

Moving on, the boot.py file, which plays a critical role in initializing the drone's

software components, was executed to suit the requirements of production mode.

In our specific case, we worked in global mode, which meant configuring the

DashApp to communicate with a broker. In our case “classpip.upc.edu” broker

was used instead of the “broker.hivemq.com” that was employed in the simulation

mode. This choice was made to suit the specific requirements and network

settings of our Drone Lab environment as the “broker.hivemq.com” was very

slow.

Before taking off for the drone lab tests, we conducted thorough check-ups to

verify that all systems were functioning correctly:

1. CameraService Testing: We confirmed the proper operation of the

CameraService, ensuring that the DashApp could capture and process

images and video streams from the drone's camera system.

2. Drone Parameters Settings: All drone parameters were meticulously

reviewed and adjusted as needed. This included fine-tuning flight

parameters, calibrating sensors, and configuring the drone's behavior

according to the specific mission requirements.

3. Communication Checks: We verified that communication between the

DashApp and the drone's flight controller was stable and responsive. Any

latency or connection issues were addressed before the actual flight tests.

By following these preparatory steps, we ensured that the drone and the

DashApp were ready for rigorous testing in the Drone Lab environment. These

measures not only enhance the safety of the tests but also set the stage for

successful real-world drone missions.

Once configured and prepared everything, in the Drone Lab, we conducted a

series of tests to assess the drone's control commands using our DashApp.

These tests aimed to evaluate the drone's response to various commands,

including arming, taking off, directional movements (such as north, east, north-

east, etc), and returning to the launch point.

I am pleased to report that these tests were executed successfully, with the drone

performing flawlessly in response to the commands sent through our DashApp.

The precision and reliability of the drone's execution of these commands were

highly promising, highlighting the effectiveness of our control system and the

seamless integration between the DashApp and the drone's flight controller.

The following figure shows the drone flying during the execution of the tests:

Simulation and Drone Lab tests 71

Fig. 8.10 Drone taking off during the execution of the flying commands

The ability to command the drone accurately and have it respond as intended is

a significant achievement. These successful tests represent a critical milestone

in the development and validation of our drone control system, bringing us one

step closer to deploying this technology in practical real-world scenarios with

confidence and precision.

72 Drone control and monitoring by means of a web application

CHAPTER 9: DASHAPP’S INTEGRATION TO THE DEE’S

GITHUB REPOSITORY

This chapter marks the culmination of the project as it outlines the integration of

the DashApp into the DEE's GitHub repository.

This process involves uploading the DashApp's code, meticulously documenting

the DashApp's section within the repository, and creating tutorial videos. These

resources are aimed at helping future students interested in enhancing the

application or simply utilizing its features effectively.

9.1 Uploading the code

One of the primary objectives of our project was to integrate the DashApp into

the DEE's GitHub repository. Uploading the code signifies the commitment to

open-source collaboration and the willingness to share our work with other people

that are interested in enhancing the ecosystem. By doing so, we have made the

DashApp easily accessible to everyone interested in using or building upon it.

9.2 Documenting the repository

Proper documentation is the backbone of any successful open-source project. I

successfully documented the DashApp's section in the DEE's GitHub repository.

This documentation serves as a comprehensive guide, enabling developers,

oftenly students, and users to understand the project's architecture,

functionalities, and how to contribute effectively. The aim was to make it easier

for anyone to navigate and utilize DashApp's capabilities.

9.3 Tutorial videos

Recognizing the importance of accessible learning resources, I have created

tutorial videos to accompany the DashApp. These videos are designed to help

the future students who wish to enhance the application or simply make use of

its features. These tutorials provide step-by-step instructions for working with the

DashApp.

Specifically, two distinct videos has been recorded to address different aspects

of the application:

1. DashApp’s functionalities showcase

In this video, we delve into the core functionalities of the DashApp. We

offer a detailed walkthrough, demonstrating how to effectively utilize the

various features and tools that the application has to offer. From

connecting to the MQTT Broker to the use of different functionalities, this

video provides a comprehensive overview of what the DashApp can do.

DashApp’s integration to the DEE’s GitHub repository 73

Whether you are a student eager to just explore the application's

capabilities or a possible contributor looking to enhance the application,

this video is for understanding the DashApp’s workflow.

2. Code navigation:

The second video created focuses on the inner workings of the DashApp

by providing a guide on how to navigate the codebase. This tutorial video

is designed for students and aspiring contributors interested in

understanding the code structure, architecture, and the logic behind the

DashApp. We take you through the different sections of the code and

explain key components Whether you aim to contribute to the project or

simply gain insights into the codebase, this video will be an invaluable

resource to help you get started.

These two videos, together, provide a learning experience for anyone interested

in the DashApp. They not only showcase its capabilities but also empower users

with the knowledge they need to engage with the application.

I encourage you to explore these tutorial videos to deepen your understanding of

the DashApp's functionality and codebase. They are available for your

convenience in the DronsEETAC Youtube channel that you can find on the DEE’s

GitHub repository (see [1]).

This chapter signifies the successful conclusion of our project. We have not only

integrated the DashApp into DEE's GitHub repository but also contributed to its

continued growth and improvement. The code is now available for collaboration,

the documentation is comprehensive, and the tutorial videos are ready to guide

the way for future students.

74 Drone control and monitoring by means of a web application

CHAPTER 10: CONCLUSIONS

In this concluding chapter, I will present the final conclusions of my project. We'll

begin by revisiting the initial objectives we set out to achieve and the ones we

successfully accomplished. Next, we'll explore potential improvements for future

contributors that can enhance the DashApp. Lastly, I will share my personal final

opinion on the overall project.

10.1 Objectives accomplished

As explained in detail in the second chapter of this document, the principle goals

of this project was to:

1. Shift the fundamental desktop Dashboard functionalities to a web app.

2. Add extra functionalities to the DashApp.

3. Make the autopilot module compatible with the additional functionalities

inserted in the DashApp.

4. Integration of the DashApp within DEE’s GitHub repository.

Our first primary goal was to transition the fundamental functionalities of the

desktop Dashboard into a web app, which we successfully accomplished. We

created a user-friendly interface that replicated the core functions of the Python

made Dashboard and ensured that they were equally accessible and efficient in

the DashApp.

In addition to migrating existing functionalities, we aimed to enhance the

DashApp by adding new features. We successfully achieved this goal by

introducing new capabilities, such as the inclusion of geofence functionality and

the ability to set drone flight parameters, alongside significant improvements to

the user interface.

Our next objective was to augment the autopilot module's capabilities to ensure

compatibility with the newly added features in the DashApp. Through meticulous

development and testing, we have successfully expanded the autopilot module's

functionalities to make it functional with the DashApp's enhanced capabilities.

The final goal was to integrate the DashApp into DEE's GitHub repository. I am

pleased to report that this crucial milestone has been accomplished, making the

DashApp readily accessible to the future users and contributors.

10.2 Possible future improvements in DashApp

While we have met the objectives initially set, we have to acknowledge that there

is always room for improvement:

1. Addition of an exclusion geofence. One promising avenue for

improvement is the incorporation of an exclusion geofence feature.

Conclusions 75

This addition would empower users to choose between inclusion and

exclusion geofences or even employ both simultaneously. This added

flexibility in defining geographical boundaries can significantly enhance the

DashApp's versatility, making it even more adaptable to various use cases

and mission plans to test in the Drone Lab.

2. Integration of all DEE's web apps into a unified platform. Imagine a

consolidated platform that provides a singular entry point to access all of

DEE's web applications. This integration effort can unify the diverse range

of DEE's web apps into a cohesive ecosystem.

The web app developed in this project, can serve as the foundation for this

unified platform as we provide a platform to it, accommodating other web

apps like the Drone Circus in its web edition. This consolidation not only

facilitates user access but also empowers the ease of navigation.

3. Enhancement of Mission Planning functionalities. Mission planning is

at the heart of any drone-related application. Future contributors to the

DashApp can focus on expanding and refining the Mission Planning

functionalities. The vast landscape of possibilities for creating mission

plans presents an exciting challenge. By providing more robust and

customizable mission planning tools, the DashApp can serve a wide

variety of scenarios and mission requirements.

In summary, the future of the DashApp could be very impressive if the right

enhancements are made. By adding an exclusion geofence, integrating DEE's

web apps into a unified platform, and enhancing mission planning functionalities,

we can continue to build upon the strong application established in this project.

These improvements will not only make the DashApp more powerful and versatile

but also contribute to the growth and efficiency of the ecosystem’s applications.

10.3 Personal conclusions

Developing the DashApp and contributing to the DEE has been an immensely
rewarding journey, and it has left me with a profound sense of personal
accomplishment. This project has not only allowed me to make a meaningful
contribution to the DEE but has also been an incredible learning experience. One
of the most significant benefits of this project has been the opportunity to gain
practice and experience in programming languages that were not covered in my
formal education. Languages like Vue.js and Python were beyond the scope of
my degree program, but through this project, I had the chance to learn them.

Beyond programming languages, I delved into the workflows of communication
protocols like MQTT and MAVLink. Understanding how these protocols facilitate
the exchange of data and commands between the web app, autopilot module,
and the drone itself was a fascinating and educational journey.

What truly stands out is how all these diverse technologies came together to bring
the project to life. We successfully created a system where commands initiated
from a web app were transmitted through a messaging protocol to the autopilot

76 Drone control and monitoring by means of a web application

module, which then communicated with the drone. Witnessing the integration of
these technologies to achieve a common goal was not only intellectually
satisfying but also a testament to the power of collaboration and innovation.

The final product, now integrated into the DEE, brings me immense satisfaction,
knowing that the DashApp serves as a valuable tool within DEE, enhancing its
capabilities and reach, fills me with pride and happiness.

References 77

REFERENCES

[1] Valero, M. Drone Engineering Ecosystem’s GitHub repository. Available on:

 https://github.com/dronsEETAC/DroneEngineeringEcosystemDEE

[2] Vue.js. Documentation available on :

 https://vuejs.org/

[3] W3Schools. JavaScript tutorial. Available on:

 https://www.w3schools.com/js/

[4] Valero, M. Vue tutorial adapted to the DEE. Available on:

 https://youtu.be/XCn9stPZ4iY?si=4zThn1giLpLG9BsH

[5] SweetAlert2. Available on:

 https://sweetalert2.github.io/

[6] MAVLink. Common MAVLink messages. Available on::

 https://mavlink.io/en/messages/common.html

[7] DroneKit. Documentation available on::

 https://dronekit.io/

[8] MQTT. Documentation available on:

 https://mqtt.org/

[9] W3Schools. Python tutorial. Available on:

 https://www.w3schools.com/python/

[10] W3Schools. CSS tutorial. Available on:

 https://www.w3schools.com/css/

[11] ArduPilot. PyMavlink’s geofence discussion. Available on:

 https://discuss.ardupilot.org/t/pymavlink-geofence/90526

[12] StackOverflow. Geofence with DroneKit and PyMavlink. Available on:

https://stackoverflow.com/questions/47364392/geofence-with-pymavlink-or-

dronekit-python

https://github.com/dronsEETAC/DroneEngineeringEcosystemDEE
https://vuejs.org/
https://www.w3schools.com/js/
https://youtu.be/XCn9stPZ4iY?si=4zThn1giLpLG9BsH
https://sweetalert2.github.io/
https://mavlink.io/en/messages/common.html
https://dronekit.io/
https://mqtt.org/
https://www.w3schools.com/python/
https://www.w3schools.com/css/
https://discuss.ardupilot.org/t/pymavlink-geofence/90526
https://stackoverflow.com/questions/47364392/geofence-with-pymavlink-or-dronekit-python
https://stackoverflow.com/questions/47364392/geofence-with-pymavlink-or-dronekit-python

78 Drone control and monitoring by means of a web application

ANNEX A: CONNECT PAGE CODE

A.1 Template

<template>

 <EntrancePage v-if="open"></EntrancePage>

 <div v-if="!open">

 <div class="hero">

 <video class="back-video" src="@/assets/2_BCN.mp4" autoplay muted
 loop></video>

 <nav>

 </nav>

 <div class="contenido">

 <h1>Drone Engineering Ecosystem</h1>

 <a v-if="!connected" @click="toggle"> Connect

 </div>

 </div>

 </div>

</template>

A.2 Script

<script>

import { defineComponent, ref, onMounted, provide, inject } from "vue";

import EntrancePage from "./EntrancePage.vue";

import Swal from "sweetalert2"; // npm i -S vue-sweetalert2

import mqtt, { MqttClient } from "mqtt"; // npm install mqtt --save

import mitt from "mitt"; // npm i mitt

export default defineComponent({

 components: {

 EntrancePage,

 },

Annex A: Connect Page code 79

 setup() {

 let connected = ref(false);

 let open = ref(false);

 const client = inject('mqttClient');

 const mqttConnect = inject('mqttConnected');

 console.log("mqttConnect in ConnectPage.vue", mqttConnect);

 async function toggle() {

 try {

 Swal.fire({

 title: "Connecting.",

 didOpen: () => {

 Swal.showLoading();

 }

 },);

 await new Promise(resolve => setTimeout(resolve, 1000));

 if (mqttConnect == true) {

 Swal.hideLoading();

 Swal.close();

 client.publish("dashboard/autopilotService/connect", "");

 connected.value = !connected.value;

 open.value = true;

 }

 else {

 Swal.hideLoading();

 Swal.close();

 //console.log("esto se ejecuta primero");

 throw new Error("");

 }

 }

 catch (error) {

 connected.value = false;

 open.value = false;

80 Drone control and monitoring by means of a web application

 console.log("Error connecting to MQTT broker");

 Swal.fire({

 icon: "error",

 title: "There was an error while connecting to the MQTT
 Broker.",

 text: "Please check if the broker is running and try again
 REFRESHING this page.",

 });

 }

 }

 return {

 toggle,

 connected,

 open,

 };

 },

});

</script>

A.3 Styles

<style scoped>

.hero {

 width: 100%;

 height: 100vh;

 background-image: linear-gradient(rgba(12, 3, 51, 0.3), rgba(12, 3, 51,
0.3));

 position: relative;

 padding: 0 5%;

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

}

.logo {

Annex A: Connect Page code 81

 width: 377px;

}

.contenido {

 text-align: center;

}

.contenido h1 {

 font-size: 130px;

 color: #fff;

 font-weight: 600;

 margin-bottom: 10%;

 transition: 0.5s;

}

.contenido h1:hover {

 -webkit-text-stroke: 5px #fff;

 color: transparent;

}

.contenido a {

 text-decoration: none;

 display: inline-block;

 color: #fff;

 font-size: 37px;

 border: 2px solid #fff;

 padding: 14px 70px;

 border-radius: 50px;

 margin-top: 50;

 cursor: pointer;

}

.contenido a:hover {

 -webkit-text-stroke: 1px #fff;

82 Drone control and monitoring by means of a web application

 background: rgb(12, 197, 12);

 color: #fff;

}

.back-video {

 position: absolute;

 width: 100%;

 right: 0;

 bottom: 0;

 z-index: -1;

}

@media (min-aspect-ratio: 16/9) {

 .back-video {

 width: 100%;

 height: auto;

 }

}

@media (max-aspect-ratio: 16/9) {

 .back-video {

 width: auto;

 height: 100%;

 }

}

</style>

Annex B: Entrance Page Code 83

ANNEX B: ENTRANCE PAGE CODE

B.1 Template

<template>

 <Dashboard v-if = "openDash"></Dashboard>

 <header>

 Drone Engineering Ecosystem

 <div class="menu-btn" @click="menuBTNClicked"></div>

 <div class="navigation">

 <div class="navigation-items">

 Home

 About

 Explore

 Gallery

 Contact

 </div>

 </div>

 </header>

 <section class="home">

 <video class="video-slide active" src= "@/assets/3_BCN.mp4"
 autoplay muted loop></video>

 <video class="video-slide" src="@/assets/2_BCN.mp4" autoplay muted
 loop></video>

 <video class="video-slide" src="@/assets/1_BCN.mp4" autoplay muted
 loop></video>

 <video class="video-slide" src="@/assets/3_BCN.mp4" autoplay muted
 loop></video>

 <video class="video-slide" src="@/assets/2_BCN.mp4" autoplay muted
 loop></video>

 <div class="content active">

 <h1> Option one.

84 Drone control and monitoring by means of a web application

 DASHBOARD

 </h1>

 The Dashboard is a front-end desktop application which allows
 the user to do a bunch of things, including:

 <ul style="list-style-type: disc; margin-left: 20px;">

 Showing the picture/video stream sent by the camera
 service

 Free guiding the drone

 Simple flight planning

 Showing telemetry data

 Starting/Stopping a LED sequence in the drone

 <button @click = "dashAccessPermission"> PLAY WITH IT </button>

 </div>

 <div class="content">

 <h1> slide two.
Drone Circus</h1>

 <p> Write description here.

 </p>

 <button> PLAY WITH IT</button>

 </div>

 <div class="content">

 <h1> Slide Three.
All time Record</h1>

 <p> Write description here.

 </p>

 <button> SHOW RECORD LIST</button>

 </div>

 <div class="content">

 <h1> Slide Four.
Gallery</h1>

 <p> Write description here.

 </p>

 <button> READ MORE</button>

Annex B: Entrance Page Code 85

 </div>

 <div class="content">

 <h1> Slide Five.
Contact</h1>

 <p> Write description here.

 </p>

 <button> READ MORE</button>

 </div>

 <div class="media-icons">

 <a href="github.com/dronsEETAC/DroneEngineeringEcosystemDEE"
 target="_blank"><i class="fab fa-github"></i>

 <i
 class="fab fa-youtube"></i>

 <i class="fab fa-twitter"></i>

 </div>

 <div class="slider-navigation">

 <div class="nav-btn active" @click="navBTNClicked(0)"></div>

 <div class="nav-btn" @click="navBTNClicked(1)"></div>

 <div class="nav-btn" @click="navBTNClicked(2)"></div>

 <div class="nav-btn" @click="navBTNClicked(3)"></div>

 <div class="nav-btn" @click="navBTNClicked(4)"></div>

 </div>

 </section>

 </template>

B.2 Script

 <script>

 import mqtt, {MqttClient} from 'mqtt';

 import { defineComponent, inject, ref } from 'vue';

 import Dashboard from "./Dashboard.vue";

 export default defineComponent({

 name: 'App',

 components: {

 Dashboard,

86 Drone control and monitoring by means of a web application

 },

 methods: {

 menuBTNClicked(){

 const menuBtn = document.querySelector(".menu-btn")

 const navigation = document.querySelector(".navigation")

 menuBtn.classList.toggle("active");

 navigation.classList.toggle("active");

 },

 navBTNClicked(i){

 const btns = document.querySelectorAll(".nav-btn");

 const slides = document.querySelectorAll(".video-slide");

 const contents = document.querySelectorAll(".content");

 btns.forEach((btn)=> {

 btn.classList.remove("active");

 });

 slides.forEach((slide)=> {

 slide.classList.remove("active");

 });

 contents.forEach((content)=> {

 content.classList.remove("active");

 });

 btns[i].classList.add("active");

 slides[i].classList.add("active");

 contents[i].classList.add("active");

 },

 },

 setup () {

 let dashAccess = ref (false);

 let openDash = ref(false);

Annex B: Entrance Page Code 87

 const client = inject('mqttClient');

 function dashAccessPermission(){

 client.publish("dashBoard/autopilotService/getHome", "");

 dashAccess.value = true;

 openDash.value = true;

 console.log("Set to true");

 }

 return {

 dashAccessPermission,

 dashAccess,

 openDash,

 }

 }

 });

 </script>

88 Drone control and monitoring by means of a web application

ANNEX C: DRONE FREE GUIDING’S COMPONENT

CODE

C.1 Template

<template>

 <div style="display:flex; height:63%;width:100%;">

 <div class="videoStreamStyle">

 <VideoStream></VideoStream>

 </div>

 <div class="mapStyle" id="map">

 </div>

 </div>

 <div style="display:flex;height:30%; width:100%">

 <div style="width: 30%;" class="telemetryInfoStyle">

 <div style="width: 50%; margin: 5%;">

 <p class="pTitleStyle"> LATITUDE </p>

 <p class="pValueStyle"> {{ droneLatitude }} </p>

 <p class="pTitleStyle" style="margin-top: 8%;"> ALTITUDE </p>

 <p class="pValueStyle"> {{ droneAltitude }} m </p>

 <p class="pTitleStyle" style="margin-top: 8%;"> DRONE STATE </p>

 <p class="pValueStyle"> {{ droneState }} </p>

 </div>

 <div style="width: 50%; margin: 5%;">

 <p class="pTitleStyle"> LONGITUDE </p>

 <p class="pValueStyle"> {{ droneLongitude }}</p>

 <p class="pTitleStyle" style="margin-top: 8%;"> GROUND SPEED </p>

 <p class="pValueStyle"> {{ droneGroundSpeed }} m/s</p>

 <p class="pTitleStyle" style="margin-top: 8%;"> BATTERY LEVEL</p>

 <p class="pValueStyle"> {{ droneBattery }}</p>

 </div>

 </div>

Annex C: Drone Free Guiding’s component code 89

 <div style="width: 25%;" class="droneStateStyle">

 <div style="margin:1%">

 <p class="pTitleStyle"> DRONE STATE</p>

 </div>

 <div style="display: flex;">

 <div style="width: 50%; margin: 5%;">

 <button class="stateButton" id="armedDisarmed"> DISARMED
 </button>

 <button class="stateButton" id="flying"> FLYING </button>

 <button class="stateButton" id="landing"> LANDING </button>

 </div>

 <div style="width: 50%; margin: 5%;">

 <button class="stateButton" id="takingOff"> TAKING OFF
 </button>

 <button class="stateButton" id="returningHome"> RETURNING HOME
 </button>

 <button class="stateButton" id="onHearth"> ON EARTH </button>

 </div>

 </div>

 </div>

 <div style="width: 39.33%;" class="Controller">

 <DroneController></DroneController>

 </div>

 </div>

</template>

C.2 Script

<script>

import { ref, inject, onMounted } from "vue";

import leaflet from 'leaflet'

import "leaflet/dist/leaflet.css";

import VideoStream from './VideoStream.vue';

import DroneController from './DroneController.vue';

import droneImage from "@/assets/Drone2.png"

import markerImageGreen from "@/assets/greenMarker.png"

90 Drone control and monitoring by means of a web application

import markerImageRed from "@/assets/marker.png";

import homeImage from "@/assets/home.png";

export default {

 components: {

 VideoStream,

 DroneController

 },

 setup() {

 const client = inject('mqttClient');

 const emitter = inject('emitter');

 let map;

 let telemetryInfo = ref(undefined);

 let droneLatitude = ref(41.276486);

 let droneLongitude = ref(1.9886);

 let droneGroundSpeed = ref(undefined);

 let droneAltitude = ref(undefined);

 let droneBattery = ref(undefined);

 let droneState = ref(undefined);

 let homeLatitude = ref(undefined);

 let homeLongitude = ref(undefined);

 let homePosReceived = ref(false);

 let armedDisarmedButton = undefined;

 let flyingButton = undefined;

 let takingOffButton = undefined;

 let returningHomeButton = undefined;

 let landingButton = undefined;

 let onEarthButton = undefined;

 let armed = ref(false);

 let flying = ref(false);

 let fencePoints = ref([]);

 let circleCP = ref(undefined);

 let fenceType = ref(undefined);

 let fenceRadius = ref(undefined);

Annex C: Drone Free Guiding’s component code 91

 emitter.on('armedBool', (armedBool) => {

 armed.value = armedBool;

 });

 emitter.on('fencePoints', (fPoints) => {

 fencePoints.value = fPoints;

 drawGeofence();

 });

 emitter.on('circleCP', (circleCenterPoint) => {

 circleCP.value = circleCenterPoint;

 drawGeofence();

 });

 emitter.on('fenceType', (fType) => {

 fenceType.value = fType;

 });

 emitter.on('fenceRadius', (fRadius) => {

 fenceRadius.value = fRadius;

 });

 var iconOptions = {

 iconUrl: droneImage,

 iconSize: [30, 50]

 }

 var droneIcon = leaflet.icon(iconOptions);

 var markerOptions = {

 icon: droneIcon,

 draggable: true,

 }

 var iconOptionsRed = {

 iconUrl: markerImageRed,

 iconSize: [25, 40]

 }

 var markerIconRed = leaflet.icon(iconOptionsRed);

92 Drone control and monitoring by means of a web application

 var markerOptionsRed = {

 icon: markerIconRed,

 draggable: true,

 }

 var iconOptionsGreen = {

 iconUrl: markerImageGreen,

 iconSize: [25, 40]

 }

 var markerIconGreen = leaflet.icon(iconOptionsGreen);

 var markerOptionsGreen = {

 icon: markerIconGreen,

 draggable: true,

 }

 var iconOptionsHome = {

 iconUrl: homeImage,

 iconSize: [25, 40]

 }

 var markerIconHome = leaflet.icon(iconOptionsHome);

 var markerOptionsHome = {

 icon: markerIconHome,

 draggable: false,

 }

 onMounted(() => {

 armedDisarmedButton = document.getElementById('armedDisarmed');

 flyingButton = document.getElementById('flying');

 takingOffButton = document.getElementById('takingOff');

 returningHomeButton = document.getElementById('returningHome');

 landingButton = document.getElementById('landing');

 onEarthButton = document.getElementById('onHearth');

 client.subscribe("autopilotService/dashBoard/telemetryInfo")

 client.on("message", function (topic, message) {

Annex C: Drone Free Guiding’s component code 93

 if (topic == "autopilotService/dashBoard/telemetryInfo") {

 telemetryInfo.value = message;

 let telemetryInfoString = ref(undefined);

 telemetryInfoString.value = new TextDecoder("utf-
8").decode(telemetryInfo.value);

 var telemetryInfoJSON = JSON.parse(telemetryInfoString.value);

 droneLatitude.value = telemetryInfoJSON["lat"];

 emitter.emit('droneLatitude', droneLatitude.value);

 droneLongitude.value = telemetryInfoJSON["lon"];

 emitter.emit('droneLongitude', droneLongitude.value);

 if (homePosReceived.value == false) {

 homeLatitude.value = droneLatitude.value;

 emitter.emit('homeLatitude', homeLatitude.value);

 homeLongitude.value = droneLongitude.value;

 emitter.emit('homeLongitude', homeLongitude.value);

 homePosReceived.value = true;

 }

 let cut = telemetryInfoJSON["groundSpeed"].toString();

 droneGroundSpeed.value = cut.slice(0, 5);

 emitter.emit('droneGroundSpeed', droneGroundSpeed.value);

 droneAltitude.value = telemetryInfoJSON["altitude"];

 emitter.emit('droneAltitude', droneAltitude.value);

 droneBattery.value = telemetryInfoJSON["battery"];

 droneState.value = telemetryInfoJSON["state"];

 changeState(droneState.value);

 markerPosUpdate();

 }

 })

 let token =
"pk.eyJ1IjoiamFza2llIiwiYSI6ImNsZmdueGMyMzA1YnozdnJzY2pneHR5ODUifQ.6TxzGO
ureYxRZITNJPVQFw"

94 Drone control and monitoring by means of a web application

 map = leaflet.map('map').setView([41.276486, 1.9886], 18);

leaflet.tileLayer('https://api.mapbox.com/v4/mapbox.satellite/{z}/{x}/{y}
@2x.png?access_token=' + token, {

 maxZoom: 23,

 attribution: 'Mapbox'

 }).addTo(map);

 let marker = null;

 let markerPosUpdate = () => {

 if (marker) {

 marker.remove();

 }

 marker = leaflet.marker([droneLatitude.value,
droneLongitude.value], markerOptions).addTo(map);

 let homeMarker = leaflet.marker([homeLatitude.value,
homeLongitude.value], markerOptionsHome).addTo(map);

 };

 })

 function changeState(state) {

 if (state == "armed") {

 armed.value = true;

 emitter.emit('armedBool', armed.value);

 armedDisarmedButton.innerHTML = 'ARMED';

 armedDisarmedButton.classList.remove('disarmed', 'arming');

 armedDisarmedButton.classList.add('armed');

 }

 if (state == "arming") {

 armedDisarmedButton.innerHTML = 'ARMING';

 armedDisarmedButton.classList.remove('disarmed', 'armed');

 armedDisarmedButton.classList.add('arming');

 }

 if (state == "disarmed") {

 armedDisarmedButton.innerHTML = 'DISARMED';

 armedDisarmedButton.classList.remove('armed', 'arming');

Annex C: Drone Free Guiding’s component code 95

 armedDisarmedButton.classList.add('disarmed');

 }

 if (state == 'takingOff') {

 onEarthButton.classList.remove('Green');

 landingButton.classList.remove('Green');

 takingOffButton.classList.add('Green');

 }

 if (state == 'flying') {

 flying.value = true;

 emitter.emit('flyingBool', flying.value);

 onEarthButton.classList.remove('Green');

 takingOffButton.classList.remove('Green');

 flyingButton.classList.add('Green');

 }

 if (state == 'landing') {

 flying.value = false;

 emitter.emit('flyingBool', flying.value);

 onEarthButton.classList.remove('Green');

 landingButton.classList.add('Green');

 }

 if (state == 'returningHome') {

 flying.value = false;

 emitter.emit('flyingBool', flying.value);

 onEarthButton.classList.remove('Green');

 returningHomeButton.classList.add('Green');

 }

 if (state == 'onHearth') {

 armed.value = false;

 flying.value = false;

 emitter.emit('armedBool', armed.value);

 emitter.emit('flyingBool', flying.value);

96 Drone control and monitoring by means of a web application

 onEarthButton.classList.add('Green');

 returningHomeButton.classList.remove('Green');

 landingButton.classList.remove('Green');

 flyingButton.classList.remove('Green');

 takingOffButton.classList.remove('Green');

 armedDisarmedButton.classList.remove('armed');

 armedDisarmedButton.classList.add('disarmed');

 }

 }

 function drawGeofence() {

 console.log("ENTRA DRAW GEOFENCE")

 map.eachLayer((layer) => {

 if (layer['_latlng'] != undefined)

 layer.remove();

 if (layer['_path'] != undefined)

 layer.remove();

 });

 if (fenceType.value == '5') {

 for (let i = 0; i < fencePoints.value.length; i++) {

 console.log("Entra dentro el FOR de DrawGeofence");

 console.log("Fence point: ", fencePoints.value[i]);

 leaflet.marker(fencePoints.value[i],
markerOptionsGreen).addTo(map);

 }

 let last = fencePoints.value[fencePoints.value.length - 1];

 let first = fencePoints.value[0];

 leaflet.polyline([last, first], { color: 'green' }).addTo(map);

 leaflet.polyline(fencePoints.value, { color: 'green'
}).addTo(map);

 let polygon = leaflet.polygon(fencePoints.value, { color: 'green',
fillColor: 'green', fillOpacity: 0.2 }).addTo(map);

 }

 if (fenceType.value == '7') {

 console.log("Entraaa")

Annex C: Drone Free Guiding’s component code 97

 console.log(circleCP.value)

 let circle = leaflet.circle(circleCP.value, {

 color: 'blue',

 fillColor: 'blue',

 fillOpacity: 0.2,

 radius: fenceRadius.value

 }).addTo(map);

 }

 }

 return {

 map,

 droneAltitude,

 droneBattery,

 droneGroundSpeed,

 droneLatitude,

 droneLongitude,

 droneState,

 homeLatitude,

 homeLongitude,

 homePosReceived,

 changeState,

 drawGeofence,

 }

 }

}

</script>

98 Drone control and monitoring by means of a web application

ANNEX D: AUTOPILOT’S GEOFENCE CREATION CODE

Annex D: Autopilot’s geofence creation code 99

100 Drone control and monitoring by means of a web application

