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Toyota Mirai: powertrain model and assessment of
the energy management

Mauro Carignano and Ramon Costa-Castelló,

Abstract—Toyota Mirai is a widely known fuel cell hybrid
vehicle and its powertrain represents a benchmark for engineers
and researchers. This work presents a lumped-parameter low-
order model of Toyota Mirai powertrain and an assessment of
the energy management focused on fuel economy and battery
and fuel cell degradation. In addition, a rule-based strategy
is proposed to reproduce the behavior of Toyota Mirai energy
management strategy. The powertrain model and the proposed
strategy are validated against experimental data. The assessment
of the energy management is performed by comparing the Toyota
Mirai strategy with optimal strategies obtained offline via dy-
namic programming. Different optimal strategies are computed
by including the demand of the fuel cell and the battery in the cost
function. Simulation results show a high correlation between the
proposed model and strategy compared to the experimental data.
Comparison of Toyota Mirai strategy with the optimal strategies
reveals a small margin for improvement in fuel economy and
higher margins in terms of demand of the fuel cell and battery.

Index Terms—Keywords: Hybrid vehicle, Fuel cell vehicle,
Energy management, Optimal strategy, Toyota Mirai

I. INTRODUCTION

Fuel Cell Hybrid Vehicles (FCHV) represents an alternative
with great potential to deal with pollution problems asso-
ciated with land transport. Among the best known FCHV
are Toyota Mirai, Honda Clarit, Hyundai Tucson and Nexo,
Chevrolet Equinox and Volkswagen Passat Lingyu. Despite the
promising results in terms of energy efficiency and operational
emissions, this technology still has some aspects that need
to be improved to make this technology more affordable and
profitable. These aspects are related to lifespan and cost of the
components and to the storage, distribution and production
of hydrogen (H2). A comprehensive review of the current
challenges for H2-based technologies and FCHV is presented
in [1].

Fuel Cells (FC) offer zero emission during vehicle operation
and a higher efficiency compared to internal combustion
engines. However, FC present some limitations such as idle
periods and slow-transient response. Due to the latter the FC
must be operated with certain restrictions to avoid premature
degradation. Evidence shows that certain damage mechanisms
in FC are promoted by fast power variations [2]–[4].

Energy Management Strategy (EMS) in FCHV has an
impact both on the H2 consumption and lifetime of the power

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Mauro Carignano is with Capgemini Engineering Belgium. E-mail: mau-
roguido.carignano@capgemini.com
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sources. Generally, lower fuel consumption in FCHV comes
at the expense of high demand on power sources and vice
versa. As a consequence, the EMS faces a trade-off between
fuel economy and the care of power sources. An example of
this trade-off is presented in [5]. Although fuel consumption
accounts for the largest percentage of all costs over the lifetime
of a hybrid vehicle [6], premature degradation of power
sources could lead to early component replacement which
is undesirable and should be minimized. The replacement
of components such as the FC or the battery represents a
significant percentage of the total cost and emissions of the
vehicle [7].

Toyota began the development of FC systems in 1992.
In 2014, after more than 20 years of R&D, they launched
the Toyota Mirai first generation, Japan’s first mass-produced
FCHV. In this way, Toyota became a pioneer in FCHV and
Toyota Mirai powertrain represents a benchmark for engi-
neers and researchers. Although many articles present detailed
descriptions about Toyota Mirai technology [8]–[11], to the
best of our knowledge, none of them so far presented a
comprehensive study of its energy management or a simple
model to perform powertrain system level simulations. As for
energy management, this work aims to reveal the margin for
improvement currently available.

This paper presents i) a lumped-parameter low-order model
of the powertrain used in Toyota Mirai first generation, ii) an
assessment of the energy management focused on both fuel
economy and battery and FC degradation, and iii) a rule-based
strategy that aims to reproduce the behavior of the Toyota
Mirai energy management strategy. The proposed model and
strategy are parameterized and validated using experimental
data from a chassis dynamometer in a controlled laboratory
environment [12]. The assessment of the energy management
is complemented by comparing Toyota Mirai against optimal
strategies computed offline via dynamic programming.

Next, Section II describes the Toyota Mirai and presents the
mathematical models, Section III analyzes the Toyota Mirai
EMS and presents the proposed rule-based strategy. Finally,
simulation results and conclusions are presented in Section
IV and V, respectively.

II. POWERTRAIN MODEL AND EXPERIMENTAL DATA

An overview of the Toyota Mirai first generation and a
schematic representation of the powertrain are shown in Fig.1.
Detailed information about technological aspects can be found
in [8]–[11].

The powertrain model proposed in this work is a power-flow
oriented low-order non-linear model. It focuses on component
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Figure 1. Upper: Toyota Mirai first generation overview (image from [13]).
Lower: powertrain schematic.

efficiencies and neglects fast dynamics. In the following sec-
tions the experimental data is described and the models of the
powertrain components are presented.

A. Experimental Data

This work uses data obtained from real tests conducted
by Argonne National Laboratory [12]. This data is from the
Downloadable Dynamometer Database and was generated at
the Advanced Mobility Technology Laboratory (AMTL) at
Argonne National Laboratory under the funding and guidance
of the U.S. Department of Energy (DOE). On a chassis
dynamometer under a controlled environment, the laboratory
performed multiple tests of Toyota Mirai (model year 2017).
Results include different driving cycles at different tempera-
tures. The data collected during these tests and a technical
report are available free-of-charge in the laboratory website
[14]. Data includes measurements from original CAN channels
and sensors added by the laboratory. All experimental data is
available at a sampling rate of 10Hz.

The tests listed in Table I were used to calibrate and validate
the models presented in this work. These tests were performed
at room temperature (22 °C). The first six tests are called Set
1 and were used for parametrization, while the last two tests
were used for validation and analysis.

B. Battery model

The dynamic behavior of the battery is reproduced by a
model presented by Tremblay [15] and Cabello [16]. In this
model, the battery voltage at time k is given by,

UBAT (k) = UBAT,oc(k)−RBAT IBAT (k), (1)

Table I
LIST OF TESTS USED IN THIS WORK. SET 1: ABOVE DASHED LINE

Test ID [14] Cycle
61712010 UDDS
61712045 WLTP
61712012 HWFET
61712042 JC08
61712043 NEDC
61712018 US06
61712053 UDDS
61712046 WLTP

where UBAT,oc is the open-circuit voltage, IBAT is the current
and RBAT is the internal resistance. Then, UBAT,oc depends
on the filtered current (I∗BAT ) and on the battery state of charge
(SOC) as follows:

UBAT,oc(k) = UBAT,0 −K1(1− SOC(k))−K2 I
∗
BAT (k),

(2)
where UBAT,0, K1 and K2 are tuning parameters. The SOC
dynamics is calculated as follows [17],

SOC(k + 1) = SOC(k)− IBAT (k) ηsign(IBAT (k)) ts
QBAT,0

, (3)

where η is the coulomb efficiency, QBAT,0 the battery capacity
and ts the time step. Note that the current is considered
negative for charging and positive for discharging. The battery
current is computed from the power demand (PBAT ),

IBAT (k) =
UBAT,oc(k)− (U2

BAT,oc(k)− 4PBAT (k)RBAT )0.5

2 RBAT
.

(4)
and the filtered current I∗BAT through a low-pass first-order
filter,

I∗BAT (k) =
I∗BAT (k − 1) τBAT + IBAT (k) ts

τBAT + ts
, (5)

where τBAT is a tuning parameter known as battery time
constant.

Toyota Mirai battery is composed of 204 Nikel-Metal Hy-
dride cells connected in series. From the experimental data
it was observed that this battery is able to deliver/receive
a maximum power of 30kW. Each cell has a capacity of
6Ah (QBAT,0) and 1.2V of nominal voltage. The rest of
the parameters are obtained using the experimental data. First,
UBAT,0 and K1 are computed using the open-circuit voltages
in steady conditions for different SOCs. Then, with current
and voltage profiles in transient conditions, K2, τBAT and
RBAT were calculated using the least squares criterion. In the
available experiments, the vehicle operates most of the time
with SOC between 50% to 65%, and therefore the tuning
focuses on this range.

The following parameters were obtained using data from
UDDS cycle (test ID 61712053): UBAT,0 = 316.7V , K1 =
101V , RBAT = 0.3629 Ω, K2 = 0.4458 Ω, τBAT = 40 s
and η = 0.98. Fig. 2 compares the battery voltage and the
SOC reproduced by the model with the measured values. The
voltage differences between the measurement and the model
are presented on the right of the Fig. 2. This histogram shows
that in 99 % of the computed values, the voltage difference
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Figure 2. Left side: Behavior of battery voltage under dynamic conditions, comparison measurements vs. model. Right side: Histogram of voltage differences
between measurement and model. Measurements and inputs for simulation are taken from Test ID 61712053 (UDDS cycle), Table I.

between measurement and model is lower than 2V . The model
with these parameters was validated using experimental data
from WLTP cycle (test ID 61712046) and the results are
presented in Fig. 3. As can be seen, the differences between
the model and measurements in terms of SOC and voltage
are as low as in the UDDS cycle (Fig. 2).

C. Battery aging

For the purpose of this work it is useful to estimate the
battery degradation under dynamic conditions. This section
describes the model used to estimate battery lifetime from
a given current profile. The model uses the concept of Ah-
throughput, stating that the battery reaches its end of life
after a certain amount of charge circulates through it [18]–
[21]. Variables such as discharge/charge rate (Crate), Depth of
Discharge (DOD) and operating temperature are considered
by this model.

The index Crate is the ratio between the current IBAT in
Amperes and the nominal capacity of the battery QBAT in
Ah:

Crate =
|IBAT |
QBAT

. (6)

Crate is used by battery manufacturers to express the speed
of discharge or charge of the battery. In battery data sheets,
the information regarding lifespan refers to durability tests
normally performed with Crate equals or lower than 1.

In this aging model, the effective Ah-throughput for a given
current profile is computed as follows,

Aheff (t) =

∫ t

0

|IBAT (τ)| σ(τ) dτ, (7)

where σ is a variable named severity factor that depends
on the DOD, battery temperature and Crate. The severity
factor increases when the Crate and DOD increase and is
always greater than 1. Operating temperatures above certain
limits also increase the severity factor value. The maximum

Crate computed from the experimental data (cycles UDDS and
WLTP) was 14h−1 which corresponds to a severity factor
of 2 according to [22]. As will be seen in the results, the
SOC varies in a narrow strip (between 50 % and 65 %), and
therefore the dependency of σ on the DOD can be neglected.
The effect of the DOD is relevant when the SOC shows
deep charge/discharge cycles, as in the case of battery electric
vehicles. Finally, the battery temperature observed from the
experimental data is relatively low and shows small variations
(between 32 °C and 36 °C). In this condition, the effect of
the temperature has a low impact in this model and therefore
is neglected. According to the previous statements, for this
application the severity factor only depends on the Crate and
is calculated as described in [22].

Once the effective Ah-throughput is computed, the fraction
of battery life consumed is estimated as:

BATlife(t) =
Aheff (t)

Ahnom
. (8)

The degradation is cumulative and the battery reaches its end
of life when BATlife equals 1. Therefore, minimizing the
Aheff extends the battery lifetime. The degradation model
described in this section was used for NiMH and Li-ion
batteries in [20], [21] and [18], [19], respectively.

D. Fuel Cell Model

The Toyota Mirai is equipped with a proton exchange
membrane (PEM) FC composed by 370 cells, able to reach a
maximum power of 114 kW . Detailed information about the
development of this FC can be found in [11]. The FC model
required for this work consists of a quasistatic model capable
of calculating H2 consumption as a function of FC power. The
FC performance of Toyota Mirai in different driving cycles
and the fitting proposed are shown in Figure 4. Note that in
all figures the plotted values were calculated using original
data provided by Argonne National Laboratory. Part of the
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Figure 3. Left side: Behavior of battery voltage under dynamic conditions, comparison measurements vs. model. Right side: Histogram of voltage differences
between measurement and model. Measurements and inputs for simulation are taken from Test ID 61712046 (WLTP cycle), Table I.

dispersion observed in the figures presented in this section
may be related to measurement and synchronization errors of
the experimental data.

In Figure 4-b the behavior of current versus power shows
a low scatter of points around a quadratic fit. This means that
the FC current can be obtained as a function of FC power
using an algebraic equation.The maximum power demand of
the FC in UDDS and WTLC cycles is below 55kW and only in
cycle US06 the FC power demand exceeds 55kW. On the other
hand, the maximum power demand of the motor in UDDS and
WTLC cycles is also below 55kW. Then, the fitting proposed
for the FC is up to 80kW, providing a power range wide
enough to cover the simulations of this work.

A curve fitting for the FC voltage is presented in Figure
4-a. The first part of the expression in 4-a represents the open
circuit voltage and the second part the voltage drop due to the
internal resistance. The parameters A = 0.0474 and N = 370
are known constants, while I0 = 40.91 A, E0 = 0.9759 V
and R1 = 0.05317 Ω were fitted from experimental data. As
can be seen, the expression proposed fits well up to 350 A.
Below 20 A (idle phase), Toyota Mirai FC system is starved
of hydrogen to maintain a low open-circuit voltage [12], and
therefore this zone was excluded from the fitting.

The instantaneous H2 consumption is proportional to the
current [23]:

ṁH2
=

0.03761

3600
Ncell IFC,gross , (9)

where IFC,gross is the stack current (i.e. gross current) in
amperes, ṁH2

is the hydrogen mass flow rate in grams per
second and Ncell is the number of cells in the FC stack. This
expression considers only the H2 that reacts in the stack. The
H2 released by purges also contributes to the total consumption
but to a lesser extent. Furthermore, the amount of H2 released
in purges is hard to estimate with a model and no related
experimental data is available to compute it. After comparing

the H2 consumption reported with that computed with formula
9, it can be stated that the H2 consumed by purges is negligible
compared to the H2 used in the chemical reaction. It was
reported in [12] that the FC consumes 4.39 g/hr of H2 during
idle to maintain the low open circuit voltage.

The stack efficiency is the ratio between the gross power
delivered by the FC and power from the H2 consumed.
The latter is obtained by multiplying the instantaneous H2

consumption (9) by the H2 specific energy (120MJ/Kg).
The stack efficiency reaches a maximum of around 66% at
10kW. To compute the system efficiency shown in Figure 4-c,
the consumption of FC auxiliary components (water and H2

pumps and air compressor) is included. Figure 5 shows the
total consumption of auxiliary components as a function of
the FC gross power.

It is worth mentioning that models based on curve fit-
tings are usually used to estimate hydrogen consumption in
vehicle powertrain applications. Models used in [24]–[26]
are examples of the previous statement. More complex and
precise models can be found in the literature but are not
suitable for optimal control applications. Additionally, specific
experimental data is necessary to calibrate models with higher
complexity. The chosen model must be adjusted to problem
needs and energy management algorithms rarely use higher
complexity models.

Regarding the limitations to operate the FC, the variation
of the output power (power rate) is considered. As it was
mentioned, fast power variations contribute to FC degradation.
A wide range of criteria can be found in the literature about the
FC power rate constraints. Some authors adopt conservative
values around 2% of its maximum power per second [27],
[28], while higher values, between 5% and 40%, were adopted
by [24], [26], [29]–[33]. Other authors as [34]–[37] do not
consider any limitation for the FC power rate. From the
experimental data it was observed that Toyota Mirai can reach
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Figure 4. Fuel cell performance and proposed fitting (experimental data from Set 1, Table I).

Figure 5. Power consumption of FC auxiliary components and proposed
fitting (experimental data from Set 1, Table I)

a maximum FC power variation of 100 kW per second for
rising and falling, i.e. power rate of 88%.

The power variation in the FC is defined as:

∆PFC(k) =
PFC(k)− PFC(k − 1)

ts
, (10)

where PFC(k) is the FC power at time k. This variable is
called control input and is computed by the EMS, as will
be shown later. The control input PFC(k) is constrained as
follows:

0 ≤PFC(k) ≤ 114, (11)
−100 ≤∆PFC(k) ≤ 100. (12)

where PFC and ∆PFC are in kW and kW/s, respectively.
Notice that (12) depends on the current and the previous power
value in the FC. This leads to the need to use the instantaneous
FC power as a state variable, with its state equation:

xFC(k + 1) = PFC(k). (13)

As a consequence, (12) is a state-dependent constraint.
Finally, to evaluate the demand of the FC aimed at its

degradation, the following two phenomena are considered
[38]:

• Fast power variations (∆PFC), computed as the average
of the power gradient for ∆PFC greater than 10 kW/s;

• Idle time (%tidle), computed as the percentage of time
that the FC is idle compared to the total cycle time.

E. Power Electronic Converters and Motor

These components are considered in the powertrain model
through their efficiencies, which are computed via algebraic
expressions.

1) Boost Converter: this converter boosts the voltage from
the FC output to the DC-BUS and controls the power flow
between them. The DC-BUS voltage varies between 320 and
650V , while the voltage at the FC terminals varies between
220 and 317V . The boost converter can handle input and
output currents up to 500A and 165A, respectively. Detailed
information about the development of this converter can be
found in [39]. Figure 6 shows its performance and the pro-
posed model.

Figure 6. Boost converter performance and proposed fitting (experimental
data from Set 1, Table I)

The dispersion in this case leads to efficiencies greater
than 1, which is certainly not possible. However, the negative
impact of such dispersion in our fitting is minimized by the
fact that this dispersion is symmetric, i.e. there are efficiencies
greater than 1 as well as very low efficiencies for the same
FC power. As in the case of the FC, part of the dispersion
observed in the figures presented in this section may be related
to measurement and synchronization errors of the experimental
data.

2) Buck/Boost Converter: this converter controls the power
flow between the battery and the DC-BUS. Battery voltage
varies between 225 and 320V . The buck/boost converter can
handle battery side currents up to 150A. Unfortunately, for this
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converter there is no experimental data available on the DC-
BUS side. There is a condition where it is possible to compute
the buck/boost converter efficiency using the experimental
data. This is when the power consumed/delivered by the
motor is null. In this way, the power input in the Buck/Boost
converter (working as Buck) is the power output of the Boost
converter (available in the experimental data). As only a
reduced number of points meet this condition, it is hard to
fit a curve. Instead, a constant average efficiency is adopted,
obtained by integrating the power values at both sides of the
converter and computing the ratio. Using the experimental data
from Set 1, the efficiency is 97.8%. This efficiency will also
be used when the converter works as a Boost.

3) Motor and Inverter: the inverter is connected to the
DC-BUS and to the motor. There is no experimental data
available from the inverter on the DC-BUS side nor on the
motor side. As an alternative, it is proposed i) to model
these components together (motor + inverter) and ii) consider
the points where the battery power flow is null, in such a
way the electrical power entering the inverter is equal to the
boost converter power -available in the experimental data- (see
Figure 1). Figure 7 shows the combined performance of these
components and the proposed curve fitting. The fitting goes
up to 60kW, providing a power range wide enough to cover
the simulations of this work.

Figure 7. Motor and Inverter combined performance and proposed fitting
(experimental data from Set 1, Table I)

The fitting proposed is a cubic interpolation using the
following vectors as input data:
x = [0, 5, 10, 15, 30, 45, 60];
y = [0.7, 0.84, 0.95, 0.96, 0.9, 0.89, 0.89],
where x is the mechanical power in the motor (in kW ).
To reduce the observed dispersion, the authors evaluated the
possibility of using torque and motor revolutions instead of
power as inputs, but the results obtained did not show any
improvement.

F. FCHV model

Fig. 8 shows a schematic representation of the proposed
Toyota Mirai powertrain model. It is the result of integrating
the models presented in the previous sections. Causality is
indicated by red arrows and power flows by blue arrows.
PFC(k) is the control input and a variable computed by
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Figure 8. Schematic representation of the proposed model

the EMS. The power in the electric motor PEM (k) depends
on the power at the driving wheels. PEM (k) is considered
an input and is obtained from the experimental data. Car
accessories include the heater and car electric accessories
(connected to 12V battery). Car accessories power PCA takes
constant values of 462W and 489W for UDDS and WLTP
cycles, respectively. These values were obtained averaging the
consumptions available from the experimental data (Test ID
61712053 and 61712046, Table I).

III. ENERGY MANAGEMENT

In this section, the EMS of Toyota Mirai is analyzed
from experimental data and a rule-based strategy is proposed
to reproduce its behavior. Additionally, the formulation of
the global optimization problem is presented to obtain three
optimal EMS via Dynamic Programming.

A. Rule-based strategy

The strategy presented in this section aims to replicate the
behavior of Toyota Mirai EMS. The intention is not to mimic
the original EMS of Toyota Mirai but to achieve a performance
similar to that observed from the experimental data. Based on
the experience of the authors of this article, and after post-
processing and analyzing the experimental data in different
driving cycles, the following can be stated:

• The FC operates in two main conditions: i) Idle: no power
delivery; and ii) Active: power delivery following the
power demand on the motor.

• When the FC is active, the minimum power delivered is
around 7 kW .

• The battery SOC operates between 50 % and 65 % in nor-
mal conditions and 55 % is the average value observed.

Fig. 9 shows how the FC transitions from idle to active and
vice versa. Pon and Pidle are thresholds that depend on the
SOC, as shown in Fig. 10.

PEM>Pon(SOC)

FC idle
PFC=0
*

PEM<Pidle(SOC)

FC

active

PFC >0
*

Figure 9. FC operating conditions and transitions
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When the FC is active, P ∗
FC is computed as function of

PEM and SOC as follows:

P ∗
FC(PEM , SOC) =


Plow(PEM ) if SOC > 55.25,

Pmid(PEM ) if 54.75 < SOC < 55.25,

Phi(PEM ) if SOC < 54.75,
(14)

where Phi and Plow are mapped as shown Fig. 11. Then, Pmid

is a linear interpolation between Phi and Plow,

Pmid = Plow + (Phi − Plow)
SOC − 54.75

55.25− 54.75
(15)

Figure 11. Power deliver by the FC as function of SOC and PEM

From P ∗
FC , the filtered power P fil

FC is computed through
a first-order low-pass filter with time constant equal to 0.17
seconds. Finally, the power assigned to the FC has to be con-
strained according to the maximum/minimum power variation
allowed. Considering the constraints presented in section II-F,
the power assigned to the FC (in kW ) results:

PFC(k) = max{min{P fil
FC(k), ...

PFC(k − 1) + 100 ts}, ...
PFC(k − 1)− 100 ts}. (16)

The simulation time step ts was chosen in 0.1 seconds to
be aligned with the experimental data, whose sampling rate

is 10Hz. In the last two equations some variables depend on
PEM and SOC. This dependency was omitted in the writing
of the equations for reasons of simplicity.

B. Optimal Strategy

This section presents the formulation of the global opti-
mization problem and a known method to solve it. Reported
literature shows that in the case of FCHV with active state-
dependent constraints, the optimal strategy can only be found
by solving the global optimization problem [5], [32], [40]. The
objective of calculating the optimal strategy is to evaluate the
room for improvement of Toyota Mirai EMS.

The solution to the global optimization problem consists of
finding the sequence of control input u(k), k = 1, ..., N , that
minimizes the cost function

J =

N−1∑
k=1

ṁH2(u(k), k)

ṁmax
H2

+

α
| IBAT (x(k), u(k), k) | σ(x(k), u(k), k)

Imax
BAT σmax

+

β
| ∆PFC(x(k), u(k)) | 1(∆PFC(x(k), u(k)))

∆Pmax
FC

(17)

subject to,

x(k + 1) = f(x(k), u(k), k), (18)
x(1) = x0, (19)
x(N) = xf , (20)

0 ≤u(k) ≤ 114, (21)
−30 ≤PBAT (k) ≤ 30, (22)

45 ≤SOC(k) ≤ 65, (23)
−100 ≤ ∆PFC(x(k), u(k)) ≤ 100, (24)

where, u(k) := PFC(k) is the control input, x(k) :=
[SOC(k), I∗BAT (k), xFC(k)] the state vector, and f is the
dynamics of the system defined by (3)-(5)-(13). The first term
of the summation accounts for fuel consumption, while the
second and third account for the demand of the battery and the
FC, respectively. The objectives are normalized using ṁmax

H2
,

Imax
BAT , σmax and ∆Pmax

FC . The maximum instantaneous hydro-
gen consumption (ṁmax

H2
) is 1.422 g/s, while the maximum

power variation (∆Pmax
FC ) is 100 kW/s. In the battery, Imax

BAT

and σmax are 100A and 2 respectively, based on the maximum
currents observed from the experimental data in cycles UDDS
and WLTP (Test ID 61712053 and 61712046). Weighting
factors α and β allow to vary the optimal strategy performance.
With α and β equal to zero, the strategy only focuses on fuel
economy, whereas if α and/or β are non-zero, the strategy
simultaneously minimizes fuel consumption and the demand
on the battery and FC. 1 is an indicator function that equals
1 if | ∆PFC |> 10 kW/s, otherwise equals 0.

Equation (20) represents the boundary conditions applied to
the state variables at the end of the cycle. In this case, xFC and
I∗BAT are free while SOC is constrained. The SOC boundary
conditions are necessary to perform fair comparisons between
different optimal strategies. Dynamic programming method
was adopted to solve this optimization problem. This method
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Table II
H2 CONSUMPTION (IN GRAMS): MEASURED BY ARGONNE LABORATORY

[12] VS. COMPUTED WITH THE PROPOSED POWERTRAIN MODEL

Measured Simulation
UDDS 86.4 87.2 (+0.9%)
WLTP 190.3 188.8 (-0.8%)

guarantees to find the optimal solution even in presence of
active state-dependent constraints [41]. To reduce the compu-
tational time required by dynamic programming when dealing
with an optimization problem with three state variables, a
vectorized instead of scalar implementation was chosen. Some
guidelines for this can be found in [42].

IV. SIMULATION RESULTS

This section presents the validation of both powertrain
model and rule-based strategy, and the comparison between
the performance of Toyota Mirai EMS and optimal strategies.

A. Validation of powertrain model and rule-based strategy

The validation of the powertrain model was performed using
the cycles UDDS and WLTP. Experimental data corresponds
to the last two tests mentioned in Table I. It should be
noted that these tests were not used until now. For this
validation is not necessary to compute the EMS as PFC is
directly obtained from experimental data. The evolution of the
SOC are compared in Fig. 12 and the H2 consumptions are
presented in Table II.
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Figure 12. Validation of the powertrain model: evolution of the SOC in
the battery. Measurements and inputs for simulation are taken from Test ID
61712053 and 61712046, Table I.

The differences between simulations and measurements are
lower than 1% in fuel consumption and root-mean-square
error in SOC is 0.46% and 0.47% in the UDDS and WLTP,
respectively.

The same cycles and experimental data were used to vali-
date the proposed rule-based strategy. Two simulations were
performed per cycle: one using PFC from data (Toyota Mirai
strategy) and the other with PFC computed by the proposed

Table III
SIMULATION RESULTS, TOYOTA MIRAI STRATEGY VS. PROPOSED

RULE-BASED STRATEGY.

Cycle Toyota Mirai
strategy Proposed strategy

UDDS

EFC [MJ] 6.64 6.68(+0.6%)
mH2 [g] 87.2 88.0 (+0.9%)
∆PFC [kW/s] 17.4 17.4 (0%)
Nswitching [-] 54 52 (-3.7%)
%tidle [%] 51.9 52.8 (+0.9%)
Aheff [Ah] 4.09 3.93 (-3.9%)
SOCend [%] 60.1 60.8 (+0.7%)

WLTP

EFC [MJ] 14.1 14.1 (-0.0%)
mH2

[g] 188.8 188.5 (-0.2%)
∆PFC [kW/s] 16.6 17.0 (+2.4%)
Nswitching [-] 53 56 (+5.7%)
%tidle [s] 48.3% 47.1% (+1.2%)
Aheff [Ah] 6.03 6.02 (-0.2%)
SOCend [%] 61.9 61.7 (-0.2%)
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Figure 13. Comparison of the PFC computed by the proposed strategy
with the measurements from experimental data. Measurements and inputs for
simulation are taken from Test ID 61712053 and 61712046, Table I.

strategy. Notice that PFC is updated at each time step. The
comparison between the strategies is presented in terms of:
energy delivered by the FC EFC ; H2 consumption mH2 ;
number of switching in the FC from idle to active Nswitching;
the time FC is idle tidle; average of the variation of power
in the FC ∆PFC (see section II-D); effective Ah-throughput
in the battery Aheff (see section II-C); and state of charge
of the battery at the end of the cycle SOCend. Table III
summarizes the results and Fig. 13 compares the PFC profiles.
These results show a high degree of correlation between the
proposed strategy and Toyota Mirai EMS.

B. Comparison of Toyota Mirai strategy with optimal strate-
gies

In this section, Toyota Mirai EMS is compared with three
optimal strategies obtained offline via dynamic programming.
The comparison is presented in terms of fuel consumption
and the demand of the FC and the battery. For the FC, the
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variation of power ∆PFC , idle time tidle and the number
of switching from idle to active Nswitching are computed;
while for the battery the demand is evaluated through the
effective Ah-throughput Aheff . The simulations performed in
this section use the powertrain model presented in this work.
Note that to compute the performance of Toyota Mirai EMS,
the FC power (PFC) was directly taken from the experimental
data, so the proposed rule-based strategy is not involved in this
section. The simulation results correspond to the WLTP cycle,
Test ID 61712046 (Table I).

Different optimal strategies can be computed depending on
the values adopted for α and β in expression (17). When
α = 0 and β = 0, the optimal strategy achieves the
absolute minimum fuel consumption. This strategy will be
called “Optimal Strategy 1”. Fig. 14 shows the comparison
between Optimal Strategy 1 and Toyota Mirai strategy.

S

Figure 14. Mirai strategy vs. Optimal Strategy 1 (α = 0 and β = 0).

As can be seen, the Optimal Strategy 1 achieves a savings of
2.1% of H2 with similar demand of the battery. However, this
strategy is more demanding on the FC with more switching
from idle to active and higher average variation of power. To
reduce the demand on the FC, a second optimal strategy was
computed with β = 0.352. This strategy named “Optimal
Strategy 2” is compared with Toyota Mirai strategy in Fig.
15. Optimal Strategy 2 is less demanding on the FC than
Toyota Mirai strategy in terms of ∆PFC and tidle, preserving
1.7% savings in H2 consumption. The number of switching is
significantly lower than the previous optimal strategy, but still
above Toyota Mirai strategy. Notice that ∆PFC = 10kW/s
is the lowest demand possible in the FC according to the
formulation presented (see Eq. 17).

S

Figure 15. Mirai strategy vs. Optimal Strategy 2 (α = 0 and β = 0.352).

So far, the demand of the battery in terms of Ah-throughput
shows similar values between the strategies presented. It is
possible to reduce the demand on the battery to the minimum
by setting α = 0.563. This strategy named “Optimal Strategy
3” is presented in Fig. 16. Its performance achieves 17%
less demand on the battery, preserving 1.4% savings in H2

consumption compared to Toyota Mirai strategy. It should
also be noted the negative effect of Optimal Strategy 3 in
the demand of the FC.

S

Figure 16. Mirai strategy vs. Optimal Strategy 3 (α = 0.563 and β = 0).

It is worth noticing that a further reduction in the demand
of the battery is not possible as regenerative braking is not
controlled by the EMS in this formulation. It means that the
energy recovered during braking and stored in the battery, has
to be used at some point during the cycle to meet the SOC
constraint at the end of the cycle (see Eq. 20).

Table IV summarizes the results presented so far in this
section. On the other hand, Fig. 17 compares the different
strategies in terms of the power profile in the FC and the
evolution of the SOC throughout the cycles.

In terms of multi-objective optimization, the optimal solu-
tions presented in this section not only belong to the Pareto
frontier but also are extremes of the frontier. This means that
it is not possible to obtain an optimal solution with lower
H2 consumption than Optimal Strategy 1; or lower FC power
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Figure 17. Mirai strategy vs. optimal strategies in terms of FC power and SOC.

variation than Optimal Strategy 2; or lower current through the
battery than Optimal Strategy 3. Adopting weighting factors
(α and β) within the range presented conducts to obtain
intermediate optimal solutions to the solutions presented.

Table IV
SIMULATION RESULTS, TOYOTA MIRAI STRATEGY (FROM DATA) VS.

DIFFERENT OPTIMAL STRATEGIES

Toyota Mirai Optimal
Strategy 1

Optimal
Strategy 2

Optimal
Strategy 3

mH2 [g] 188.8 184.8 185.5 186.2
∆PFC [kW/s] 16.6 23.8 10.0 26.3
Nswitching [-] 53 87 67 94
%tidle [%] 48.3 42.5 41.0 48.4
Aheff [Ah] 6.03 5.92 5.96 4.92

V. CONCLUSION

This work presented a low-order model of Toyota Mirai
powertrain which was parameterized using experimental data.
The correlation observed between the simulations and the real
tests indicates that the proposed model is suitable for system
level and energy management simulations. At this point it is
necessary to point out a certain weakness of this work in
relation to the dispersion observed in some figures. It was
also presented a rule-based strategy aimed to reproduce the
behavior of Toyota Mirai EMS. Simulation results showed
small differences with the experimental data which indicates
a good correlation between the proposed strategy and Toyota
Mirai EMS.

Finally, three optimal offline EMS were computed using
dynamic programming and their performances were compared

with Toyota Mirai EMS. Results show that Toyota Mirai
strategy achieves a H2 consumption remarkably close to the
absolute minimum obtained with Optimal Strategy 1, leaving
only a 2.1% of room for improvement. Regarding the demand
on the FC and the battery, it was shown that the Optimal
strategies 2 and 3 are able to significantly reduce the high
variations of power in the FC and the Ah-throughput in
the battery, respectively. In both cases, the H2 consumption
remained close to the absolute minimum. This would have
a positive effect on the FC and battery lifetime with a low
impact on H2 consumption.
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Nigro, Sergio Junco, and Diego Feroldi. Energy management strategy
for fuel cell-supercapacitor hybrid vehicles based on prediction of energy
demand. Journal of Power Sources, 360:419–433, 2017.

[41] Donald E Kirk. Optimal control theory: an introduction. Courier
Corporation, 2012.

[42] Mauro G. Carignano, Norberto M. Nigro, and Sergio Junco. HEVs
with reconfigurable architecture: a novel design and optimal energy
management. In Integrated Modeling and Analysis in Applied Control
and Automation (IMAACA), 2016 I3M, pages 59–67, 2016.

ACKNOWLEDGMENTS

This work is part of the project MAFALDA
(PID2021-126001OB-C31) funded by MCIN/ AEI
/10.13039/501100011033 and by ”ERDF A way
of making Europe”, and also part of the project
MASHED (TED2021-129927B-I00) funded by MCIN/
AEI/10.13039/501100011033 and by the European Union
Next GenerationEU/PRTR.

https://www.toyota-europe.com/download/cms/euen/Toyota%20Mirai%20FCV_Posters_LR_tcm-11-564265.pdf
https://www.toyota-europe.com/download/cms/euen/Toyota%20Mirai%20FCV_Posters_LR_tcm-11-564265.pdf
https://www.toyota-europe.com/download/cms/euen/Toyota%20Mirai%20FCV_Posters_LR_tcm-11-564265.pdf
https://www.anl.gov/es/energy-systems-d3-2016-toyota-mirai
https://www.anl.gov/es/energy-systems-d3-2016-toyota-mirai

	Introduction
	Powertrain Model and Experimental Data
	Experimental Data
	Battery model
	Battery aging
	Fuel Cell Model
	Power Electronic Converters and Motor
	Boost Converter
	Buck/Boost Converter
	Motor and Inverter

	FCHV model

	Energy Management
	Rule-based strategy
	Optimal Strategy

	Simulation Results
	Validation of powertrain model and rule-based strategy
	Comparison of Toyota Mirai strategy with optimal strategies

	Conclusion
	References
	Biographies
	Mauro Carignano
	Ramon Costa-Castelló


