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A. Miró1, S. Wallin2, A. Colombo3, L. Temmerman4, D. Wunsch4, O. Lehmkuhl1

1 Barcelona Supercomputing Center, Barcelona, Spain
2 FLOW Turbulence Lab, Eng. Mech., KTH, Stockholm, Sweden and ERCOFTAC

3 Dip. di Ing. e Scienze Applicate, Università degli Studi di Bergamo, Italy
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Abstract
A novel framework for a 5-term explicit algebraic

Reynolds stress model has been proposed, which is
suitable for machine learning procedures. Under this
framework, high-fidelity datasets have been explored
and post-processed. Through multi-expression pro-
gramming, models have been obtained using these
data. They have been thoroughly tested and present
all the desirable features of a model. Implementation
of these models in a numerical code has also been pos-
sible. Results have shown that they present a small up-
grade over classical models for certain kinds of flows,
thus showing that the physics have been captured well.
It is proved that the present workflow can obtain valid
expressions with similar to better performance than the
baseline model.

1 Introduction
Traditionally, RANS turbulence modelling is about

predicting/estimating the Reynolds stresses from
known states of the flow. While eddy-viscosity
two-equation Reynolds averaged turbulence models
are still highly popular in industrial applications,
Reynolds stress models, such as the explicit algebraic
Reynolds stress models (EARSM), have the poten-
tial for dealing with complex flows and geometries
as pointed by Wallin and Johansson (2000). These
models, which are derived from Differential Reynolds
Stress Models, replace the eddy-viscosity relation in
the two-equation models, however, they present non-
trivial complexities when forming algebraic approxi-
mations of the anisotropy transport equations.

The framework for Machine-Learning (ML) aided
model development from a turbulence modeller point
of view would consist of constitutive relations and
model equations with explicit terms representing the
different physical aspects of turbulent flow modelling.
The framework would comply with physical and math-
ematical constraints such as dimensionality, invari-
ance, realizability and “known” fix point behaviour
avoiding case specific measures utilising the essence

of Human-Learned (HL) knowledge. From a ML per-
spective, the framework might be very different. Here,
all available data in the solution field could be poten-
tial input to the learning process. Several previous
proposals in this direction, Weatheritt and Sandberg
(2016, 2018); Weatheritt et al. (2020) to mention a few,
have based their expression on the strain- and rotation
rate tensors, normalized by the turbulence time scale
τ = K/ε. Under this formulation, the tensors and
their invariants are all dependent on the dissipation rate
ε, and are not limited in the rapid limit when normal-
ized by τ . Hence, when introduced as a framework
for ML, the optimization problem is not well posed
and realizability of the anisotropy cannot easily be pre-
served. Other works have focused in using “black-
box” methodologies such as artificial neural networks
(ANNs) as in Xie et al. (2021), physics-informed neu-
ral networks (PINNs) as in Wang et al. (2017) or ran-
dom forest (RF) as in Kaandorp and Dwight (2020) as
closure of the nonlinear terms in the Reynolds Aver-
aged equations.

The present work results from a joint effort car-
ried out within the European Project HiFi-TURB. It
proposes a framework for ML based on a five-term
EARSM. This choice is motivated by the need to work
with an existing mathematical and physical framework
that has sufficient degree of freedom and flexibility for
model improvements. In this study, the aim is for a
general model capable of capturing the essence of the
turbulence statistics from the flow conditions only, lo-
cal as well as non-local. Hence, general data of suffi-
cient complexity is used and variety for training mod-
els applicable for different turbulent flows. The gen-
erated models are not formally EARSMs and should
be seen as non-linear eddy-viscosity relations, or NL-
EVMs. For the sake of simplicity, we shall label these
models EARSMs in this work.

The approach that we followed is to enable all
practically possible degrees of freedom in the model
formulation restricted by physical and mathematical
constraints as well as physical intuition. The ML ma-



chinery is not be used for producing the “optimal”
model out of the box. In our approach, ML is used
to find recalibrations and new terms with strong cor-
relation with observations, which are further studied,
refined and explained for model improvements. Us-
ing this approach, a working model has been obtained
through multi-expression programming (MEP), pro-
posed by Oltean and Groşan (2003), and using high-
fidelity simulations as training data.

2 Methodology
The starting point of the use of ML for data driven

turbulence modelling is the existing EARSM frame-
work firstly introduced by Pope (1975) and later used
by Wallin and Johansson (2000). This framework has
a number of associated problems when used as a ML
framework. For this reason, a novel EARSM frame-
work is presented mitigating or eliminating most of
these problems. This novel framework should be used
together with the Menter (1994) BSL K−ω model for
the scale-determining quantities.

The novel EARSM formulation
We propose to replace τ = K/ε, as the normaliza-

tion of the classical EARSM, by s, the L2 norm of the
velocity gradient (in plane shear s = dU/dy)

s2 = ||∆U ||2 = IIS − IIΩ, (1)

thus, the strain- and rotation rate tensors are normal-
ized with s. Then, II ′S − II ′Ω = 1 and r is introduced
so that

II ′S =
IIS
s2

= 1− r, II ′Ω =
IIΩ
s2

= −r, (2)

where prime denotes normalized quantities. Now, r is
limited between 0 and 1 so that r = 1/2 is for parallel
shear, r = 0 for irrotational straining and r = 1 for
pure (solid body) rotation. All these four invariants,
including the higher order ones (III ′S = IIIS/s

3,
IV ′ = IV/s3, V ′ = V/s4 are limited between -1 and
1. Moreover, they are independent of the turbulence
scales and can be considered as structure parameters.

The turbulence scales are used only for the equi-
librium parameter σ = sK/ε. It measures the state
of equilibrium by relating the turbulence to mean-
flow time scales. Flow in equilibrium has σ of or-
der unity and the rapid distortion limit is characterized
by σ → ∞. Hence, any dependency on σ must ap-
proach a constant for σ → ∞. Additionally, some ex-
tra invariants are introduced to account for non-local
effects. These are

σvk =
Lvks√
K

, Lvk =
2κ|Sij |
|∇Uk|

, (3)

gT =
ReT

10 +ReT
, ReT =

0.09σK2

νε
. (4)

The 5-term representation (Pope, 1975; Wallin and
Johansson, 2000) has been found to be practical suf-
ficient and not over-complex. Then, any algebraic re-
lation of the anisotropy aij can be mapped on these 5

terms aij =
∑5

k=0 βkT
(k)
ij , where T

(k)
ij are the tensor

groups. The different βk are now functions of σ, r and
the other invariants (III ′S , IV ′, V ′, σvk, gT ). The first
term β1 corresponds to the eddy-viscosity part with an
effective coefficient Ceff

µ = −1/(2σ)β1.
Interestingly, the effective eddy viscosity is not di-

rectly dependent of ε, µeff
t = −0.5ρKβ1/s, how-

ever, the dependency might (and will) be introduced
through β1 being a function of σ.

The production is related to the invariants as

− P

sK
=

aijSij

s
= β1(1− r)+β3IV

′ +2β4V
′. (5)

To obtain these functions, a regularization problem
is proposed as

βk = B−1
kl aijT

(l)
ji ; Bkl = T

(k)
ij T

(l)
ji + λδkl, (6)

where δij denotes the Dirac delta, while aij , T
(k)
ij

and the rest of the parameters are obtained from the
datasets. A good compromise for the regularization
parameter λ has been found to be 0.01.

The role of the ML procedure is then to minimize
the error (ϵ = ||βk − β̂k||) between the dataset and the
modelled coefficient β̂ as a function of the aformen-
tioned invariants.

The K − ω framework
The constitutive relation from EARSM should be

used together with the Menter BSL model, as proposed
in Menter et al. (2012). The ML procedure is included
in the computation of the momentum diffusion and the
production terms of the K and ω equations. In addi-
tion, the turbulence equations need to be balanced by
introducing residuals defined as

ρRK = PK − ρε+
∂

∂xk

(
µ+ σKµt

∂K

∂xk

)
− DK

Dt
, (7)

ρRω = Pω − βρω2 +
∂

∂xk

(
µ+ σωµt

∂ω

∂xk

)
+
σdρ

ω

∂K

∂xk

∂ω

∂xk
− Dρω

Dt

, (8)

which are normalized as

rK =
RK

max (εcut, ε)
; rω =

(
K

max (εcut, ε)

)2

Rω. (9)

where εcut defines a threshold for the dissipation to avoid
zero division. Then, the ML procedure becomes minimizing
the errors ϵK = [|rK − r̂k|, λr̂k], ϵω = [|rω − r̂ω|, λr̂ω]
with λ = 0.01 as a regularization parameter so to avoid a
null solution. Here, two additional invariants are considered

dK =
1

ε

∂

∂xk

(
K

ω

∂K

∂xk

)
, (10)

dω =

(
K

ε

)2
∂

∂xk

(
K

ω

∂ω

∂xk

)
. (11)

The rest of the procedure is analogous to that of the EARSM.

Datasets



The aforementioned parameters are computed for three
datasets: a DNS of the Stanford diffuser, a LES of a 2-D
curved backward-facing step and synthetic data generated by
applying the standard EARSM. The “smart” combination of
these three datasets yields a uniform exploration space for r
and σ, the main invariants of this novel formulation.

Synthetic EARSM data. This dataset corresponds to
the evaluation of the standard 3D EARSM model of Wallin
and Johansson (2000). Since the model is analytical it can
be evaluated for a range of uniform random distribution of r
and σ to recover the coefficients β1 to β5. While this dataset
does not bring any new model improvement from the ML
procedure, it is however useful to complement the data gaps
of the two other datasets. Moreover, it gives a first guess for
the ML procedure.

2-D curved backward-facing step. This dataset is
freely available and comes from a LES of a 2-D separating
flow over a curved ramp run with an incompressible code
(Lardeau and Leschziner, 2011; Bentaleb et al., 2012). A
selection of this dataset has been done by combining the ef-
fects on the dissipation and wall distance (excluding the area
where y+ < 30), excluding the boundaries. On this dataset
β1 to β3 find values while β4 and β5 are zero.

Stanford diffuser. This dataset is also freely avail-
able and comes from a DNS of the Stanford diffuser at
Re = 10, 000 run with an incompressible code (Ohlsson
et al., 2010; Miró et al., 2023, Preprint). The dataset is pro-
cessed volumetrically to obtain β1 to β5, and the invariants.
Due to the large number of data points, data extraction has
been performed by random sampling, “smart” sampling or
using a variational auto-encoder (VAE). Since a huge portion
of the points are in r = 1/2, VAE or “smart” sampling (i.e.,
sampling within a limited range of r) have yielded datasets
with uniform r, while 0 < σ < 10 has been obtained natu-
rally.

Baseline model constraints
The definition of baseline model constraints should be

based on mathematical and physical principles. Moreover,
additional constraints based on empirical knowledge, such
as the log-law, should be applied more restrictively and care-
fully, to allow for the ML process to find novel model ideas.

First, mathematical and physical strong constraints: 1)
dimensionally correctness, which implies scale-invariance,
2) frame invariance and symmetries, 3) Galilean invariance,
and 4) a well-posed resulting model. Moreover: a) Exclude
the acceleration – (and the related pressure gradient). Pres-
sure gradient and acceleration is connected through the mo-
mentum equation. The influence on turbulence is through
straining and compression by the velocity gradient. b) Ex-
clude case-dependent and non-local information, such as dif-
ferent kind of Reynolds numbers, free-stream values, refer-
ence length scales, wall skin friction, boundary layer thick-
ness. c) Wall distance might be used. Neighbouring walls
influence the local turbulence strongly. Without other more
physical measures of non-locality, the inclusion of the wall
distance might be useful as one measure of “non-locality”
effects. d) Avoid over-complex formulations for preserving
physical intuition. Also, for the sake of well-posedness and
avoiding spurious multiple solutions. Complex algebra is
not a problem by itself and can easily be handled by use of
computer algebra.

3 Results and discussion
ML model definition

The complete model was developed using the framework
and datasets previously defined. Data with y+ < 30 was
excluded. The MEP procedure is then used to generate a
surrogate model for the set βk as functions of r and σ. The
next step is then to optimize the coefficients in this surro-
gate model based on the data from the 3-D diffuser, the 2-D
back step as well as the artificial EARSM data. The resulting
model is named SyMEP-1 and its βk coefficients are

β1 = −Cβ1,1

cosh
(√

r6σ
)
tanh (σ)

cosh2
(√

r6σ
) , (12)

β2 = −Cβ2,1

(
Cβ2,2 − Cβ2,3e

(−Cβ2,4
σ)
)2

+[
−Cβ2,5r + Cβ2,6

(
Cβ2,7r − Cβ2,8

)2
+ Cβ2,9

]
σ2

Cβ2,aσ
2 + 1

,

(13)

β3 = −Cβ3,1IV σ tanh (r) tanh (rσ − σ tanh (r)), (14)

β4 = −1

2
sinh

[
cosh (tanh (σ))− r(r

2)σ
]
, (15)

β5 = Cβ5,1

[
r(r

√
log(σ) + log(σ))

]r−Cβ5,2
r
√

log (σ)

, (16)

where implicitly the following safe operations are in place:
(·)x = (max(10−5, ·))x;

√
· =

√
max (0, ·); ·/· =

·/max (10−5, ·); log (·) = log (max (10−5, ·)).
The coefficient Cβ1,1 is directly related to the effec-

tive Cµ in plane flow and, hence, the flat plate skin friction
magnitude. Flat-plate with zero pressure gradient (ZPG) a-
posteriori tests revealed that the flat-plate skin friction was
under-predicted and, hence, Cβ1,1 was manually tuned to
Cβ1,1 = Cβ1,1−tuned = 0.63, as seen in Figure (2). This is
the value to be used for the definition of SyMEP-1. The
original value from the MEP optimization was Cβ1,1 =
Cβ1,1−orig = 0.586964. The rest of the coefficients are:
Cβ2,1 = 0.526566, Cβ2,2 = 0.891788, Cβ2,3 = 0.880494,
Cβ2,4 = 0.661698, Cβ2,5 = 0.10875, Cβ2,6 = 0.0813025,
Cβ2,7 = 1.83837, Cβ2,8 = 0.880494, Cβ2,9 = 0.008045,
Cβ2,a = 0.248196, Cβ3,1 = 5.45337, Cβ5,1 = 0.359138,
Cβ5,2 = 0.870968.

Figure (1) shows that the effective Cµ in equilibrium
(P = ε) for the original and tuned version are around the
expected value of 0.09, while other models in the literature
do not respect this constraint.

The last piece of modelling is to introduce the correc-
tion of the K − ω model equations. The residual terms rK
and rω were extracted from the curved backward-facing step
data and used for the ML training. The reason is that the
curved backward-facing contains a clear developing shear-
layer where there is a transition in length scale that most
RANS models cannot correctly capture. Hence, the von
Kármán length scale is introduced through σvk as a parame-
ter. Their mathematical expressions read

rK = tanh
[(

σ
dK−σvk
vk − 1

)
tanh (dK)

]
−0.0588804,

(17)

rω = dωr + 2σ + σvk − 11.7919. (18)

Note that the rK and rω corrections are functions of the
diffusion terms as well. The linear term (dωr) in rω can ap-



proximately be included into the diffusion of ω, but the cor-
responding term in rK is strongly non-linear and not easily
approximated.

The corrected K − ω model equation are then solved
with the SyMEP-1 constitutive relation with one important
difference. After testing and validation for flat plate bound-
ary layers (BLs) it was clear that the original value of Cβ1,1

could be used together with the added residual terms and that
the previous recalibration was not consistent.

Further stability problems and delayed numerical tran-
sition to turbulence for the flat plate BL related to the large
variation of the von Kármán parameter σvk in the residual
terms. Hence, a limiting function is introduced as

σ∗
vk = c tanh

(σvk

c

)
, (19)

which limits σvk to ±c and approximately keep the linear
relation in between. The coefficient c was tuned to be 1.5, as
shown for the friction coefficient on the flat plate in Figure
(2) (top).

The final definition of the SyMEP-1 model is then con-
cluded as: 1) Use the SyMEP-1 relation in Equations (12)
and (16) for the β coefficients. If using only these terms
use Cβ1,1 = Cβ1,1−tuned = 0.63. 2) For SyMEP-1-Res,
use the residual terms in Equations (17) and (18) to correct
the Menter BSL K − ω model equation. In that case, use
Cβ1,1 = Cβ1,1−orig = 0.586964 and correct σvk using
Equation (19) with c = 1.5.

Verification and validation
Further validation of the ML model has been per-

formed by implementing it in two different solvers: 1)
FidelityTMDBS, a density-based unstructured finite-
volume (FV) solver with multi-grid acceleration and local-
time stepping. Low-Mach number and incompressible
flows are treated with preconditioning, using a second-order
scheme with scalar dissipation. 2) MIGALE, a Discontin-
uous Galerkin (DG) solver, where SyMEP-1 is coupled with
the Wilcox (2006) K−ω model instead of the BSL, cf. Bassi
et al. (2014).

The following three cases have been considered for val-
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Figure 1: Effective Cµ vs. σ in parallel shear (r = 1/2)
for the original and tuned SyMEP-1 models com-
pared with Akolekar et al. (2019), Saı̈di et al.
(2022) and experimental results (in black) from
Weighardt and Tillmann (1951). Diamonds are the
log (equilibrium P = ε) solutions, while circles
are the shear layer solutions.

idation: 1) flow on a flat plate; 2) 2-D curved backward-
facing step; 3) Stanford diffuser.

Flat plate. A fully turbulent flat plate has been defined
with reference data from Weighardt and Tillmann (1951) and
Klebanoff (1955) (L = 4m, U∞ = 68.79m/s, ν = 3 ×
10−5m2/s) treated as weakly compressible.

The introduction of SyMEP-1 revealed an under-
predicted skin friction without considering recalibration.
The residual model shows a somewhat different behavior
than the previous models and reference models. The initial
part of the flat plate is better captured in terms of Cf , but the
mean velocity somewhat under-predicted up to y+ ≈ 100,
as seen in Figure (2).

2-D curved backward-facing step. This verification
case of Bentaleb et al. (2012) is the same data in which the
model was trained. The Reynolds number based in the step
height and free-stream velocity is 13,700. Inlet conditions
are set by imposing profiles for Ux, Uy , K and ε upstream
of the step.

Table (1) shows the predicted separation and attachment
positions compared with the LES of Bentaleb et al. (2012).
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Figure 2: Flat-plate (ZPG) skin friction (top) and mean ve-
locity (bottom) at x = 3.487 for the original and
tuned SyMEP-1 models.

Table 1: 2-D curved backward-facing step predicted separa-
tion and attachment postions for the reference data,
S-BSL EARSM and the ML models.

(x/H)sep (x/H)reat
Bentaleb et al. (2012) 0.83 4.36
S-BSL EARSM 1.24 5.0
SyMEP-1 0.95 5.02
SyMEP-1-Res 1.07 4.74



Both models capture the skin friction very similar to the
reference model BSL-EARSM. The most complete model,
SyMEP-1-Res, captures the skin friction slightly better than
the reference model S-BSL EARSM though. In particular,
the size of the separation bubble is slightly less overpredicted
by SyMEP-1-Res.

Marginal improvements are observed with the SyMEP-
1-Res model, which is not able to capture the rapid growth
of the Reynolds stress in the initial shear layer. The added
residual term is not sufficient, although there is some small
tendency in the right direction seen in Figure (3). This might
be due to the quite aggressive limiting function for the von
Kármán parameter σvk. Less limitation resulted in delayed
numerical transition to turbulence for the flat plate and con-
vergence problems.

The convergence of the ML model is slower than for the
reference S-BSL EARSM, but still acceptable. The addi-
tional residual terms do not significantly influence the con-
vergence although they are quite complex and non-linear.

Stanford diffuser. This verification case is based on
the geometry experimentally studied in Cherry et al. (2008).
High-fidelity data was later computed in Miró et al. (2023,
Preprint) and used for training this ML model. The case is
set so that Re = 10, 000 based on inlet bulk velocity.

The results for the pressure coefficient are seen in Fig-
ure (4) show that the ML models delivered results better
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Figure 3: Back step velocity profiles for SyMEP-1 and
SyMEP-1-Res compared with S-BSL EARSM and
LES from Bentaleb et al. (2012).
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Figure 4: Distribution of the pressure coefficient along the
bottom wall for the 3D Stanford 1 for SyMEP-1
and SyMEP-1-Res.

or equivalent to results obtained with current state-of-the-
art models. Moreover, the application of the new model on
the slightly different geometry of the Stanford diffuser 2 (not
shown) gives an indication that the new EARSM models can
be ported on different geometries, albeit close ones, in the
present case.

4 Conclusions
When deriving the methodologies for data-driven RANS

modelling the aim is focused on models of general valid-
ity, not specific models for a limited class of problems.
This is a big challenge and not usually the aim for data-
driven approaches. Moreover, the search for mathematical
expressions that can be further analyzed for improved under-
standing and, more importantly, be implemented in general-
purpose CFD tools lead us to the use of MEP.

The novel EARSM framework is aiding in better con-
trollability of specific features of turbulent flows that are
more directly related to the flow physics. The resulting ML
models performed very well in parallel flows with two major
achievements concerning the first requirement: a) The model
captures the established log layer solution (P = ε) and,
more noticeable, it scales as expected for very high Reynolds
numbers, many orders of magnitudes larger than the flow
considered, with a von Kármán constant κ ≈ 0.38, which
is close to established values. b) The model did also capture
the quite different state of developed free shear layer, which
is far from equilibrium (P ≈ 1.8ε). A standard EVM with
constant Cµ will fail, but this state will be captured by full
DRSMs or consistent EARSMs. Also Menter SST K − ω
is consistent with this state by a semi-empirical approach.
These two achievements must be considered as extremely
remarkable since these states are not explicitly introduced in
any sense in the procedure. It is believed that the success
is strongly linked to the particular new EARSM framework,
the ML problem definition and the effective MEP algorithm.

When analysing the data in terms of the newly intro-
duced more physical invariants/parameters, it became clear
that the parameter space is poorly covered from data. Most
of the data is almost parallel (r ≈ 0.5) and locally 2D (3D
terms are small). This might rise a question, though. How
can we avoid bias from old traditional modelling when we
are searching for novel correlations and model terms? A
good answer is still not available, nevertheless, it is a fact that
the resulting SyMEP-1 performs very similar as the baseline
EARSM.

For the final model, SyMEP-1-Res, residual terms were
added for balancing the K − ω model equations from data.
The idea was to better capture the length scale in the ini-
tial free shear layer for separated flows resulting in the typi-
cal underprediction of the Reynolds stress and overpredicted
separation length. The MEP procedure found dependencies
on the von Kármán length scale σvk, which is a novel ingre-
dient to the baseline modelling. The residual terms needed
quite substantial limitation for convergence to a physical so-
lution which might degenerate the expected behavior. In fur-
ther work, the residual terms in the K − ω model equations
should be complemented with (or replaced by) turbulence
transport terms for better capturing the missing physics.
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