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Abstract
We analyse uniform random cubic rooted planar maps and obtain limiting distributions for several

parameters of interest. From the enumerative point of view, we present a unified approach for the enu-
meration of several classes of cubic planar maps, which allow us to recover known results in a more
general and transparent way. This approach allows us to obtain new enumerative results.

Concerning random maps, we first obtain the distribution of the degree of the root face, which has an
exponential tail as for other classes of random maps. Our main result is a limiting map-Airy distribution
law for the size of the largest block L, whose expectation is asymptotically n/

√
3 in a random cubic map

with n + 2 faces. We prove analogous results for the size of the largest cubic block, obtained from L by
erasing all vertices of degree two, and for the size of the largest 3-connected component, whose expected
values are respectively n/2 and n/4. To obtain these results we need to analyse a new type of composition
scheme which has not been treated by Banderier et al. [Random Structures Algorithms 2001].

1 Introduction
The enumeration of planar maps has a long history, starting with the seminal papers of Tutte in the 1960s
[32, 33, 34]. Since then, the theory has been extended to maps on arbitrary surfaces and relevant connections
have been found between map enumeration and other areas from physics, algebra and probability.

In this work we focus on cubic (3-regular) planar maps. All planar maps considered in this paper will be
rooted at a directed edge uv, where u will be called the root vertex and by convention the outer face will
be the one to the right of uv and will be called the root face. There are numerous papers devoted to the
enumeration of cubic maps, and most of them use the direct bijection with triangulations. The first such
result was the enumeration of 3-connected and 4-connected triangulations by Tutte [33]. He also counted
2-connected cubic maps [32], but using a direct approach, while Mullin counted cubic maps using bijections
with triangulations [21]. More recently, Gao and Wormald [18] enumerated simple cubic planar maps, as well
as two other classes of cubic maps: simple 2-connected and simple 3-connected triangle-free. Their proofs
are again based on counting the associated triangulations. The usual approach in the previous references is
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to consider the more general class of near-triangulations, that are maps in which all faces except possibly
the root face have degree three. Near-triangulations are counted according to the number of faces and the
degree of the root face. Using the quadratic method (see [9], and [8] for a far-reaching generalisation), one is
usually able to find an expression for the associated generating function.

Our approach is based instead on a direct decomposition of cubic maps, without going through the
corresponding dual triangulations. This approach was already used by Tutte [32] as mentioned above, and
extended by Bodirsky, Kang, Löffler and McDiarmid [7] in order to study random cubic planar graphs (see
also [24]). It avoids the quadratic method and, we believe, makes the combinatorial decompositions and the
corresponding algebraic formulation more transparent.

As a significant example, it is mentioned by Gao and Wormald in [18] that it would be very interesting to
find an alternative approach to the enumeration of simple cubic maps. We provide such an approach which is
technically simple and extends the results in [18]. Furthermore, we recover in a unified way the enumeration
of both arbitrary and simple maps with given connectivity. We are also able to count triangle-free cubic
(both arbitrary and simple) maps, a problem considerably more challenging than counting triangle-free 3-
connected cubic maps as done in [18]. Using a similar strategy, but technically more involved, the present
authors have recently been able to enumerate simple 4-regular maps [23, 25].

In the second part of the paper we obtain limiting distributions of several parameters in a uniform random
cubic map. First, we analyse the degree of the root face. We show that the probability that the root face
has degree k for fixed k ≥ 1 tends to a constant pk > 0. We show that

∑
k≥1 pk = 1 and obtain an explicit

(although involved) expression for the probability generation function p(u) =
∑

k≥1 pku
k. We also deduce

the estimate pk ∼ c · k1/2qk as k → ∞, for computable constants c > 0 and 0 < q < 1, which conforms to
the universal behaviour for tail estimates of the root degree in maps observed in [20], and argue why it is
expected that the maximum degree is asymptotically log1/q n.

Next we analyse the size of the largest block, a block being a maximal 2-connected component, and of the
largest 3-connected component in random cubic maps. The first result of this kind was obtained by Bender,
Richmond, and Wormald [5], who showed that the largest 4-connected component in random 3-connected
triangulations with n edges has size asymptotically n/2. This was later extended in [17] to several types
of components in classes of maps, where it was also shown that the size of the second largest component
is O(n2/3+ϵ). The results from [5] and [17] were revisited by Banderier, Flajolet, Schaeffer and Soria [3],
who showed that the size of the largest component in many families of random maps obey asymptotically a
continuous law of the so-called map-Airy type. This is a particular stable law of index 3/2, whose relevant
properties are recalled in Section 2.3. Let us mention that recently the sizes of blocks in random maps have
been analysed using probabilistic tools [1], reproving part of the results in [3] and determining for the first
time the distribution of the size of k-th largest block for k ≥ 2.

We also study the size of the largest cubic block, obtained from the largest block by erasing all vertices
of degree two. To obtain these results we cannot apply directly the techniques developed in [3], since the
combinatorics of cubic maps differs from the classical families of maps considered so far: when in a cubic
map an edge is replaced by a 2-connected map, a new edge in the corresponding block is created and has to
be accounted for.

We prove a limiting map-Airy distribution for the size of the largest block L, whose expectation is
asymptotically n/

√
3, where n is the number of edges, then show an analogous result for the size of the

largest cubic block, obtained from L by erasing all vertices of degree two, whose expected size is n/2. Finally,
we prove the corresponding result for the size of the largest 3-connected component, whose expectation is
n/4. It is somehow surprising to obtain these simple constants after a somewhat long analysis involving
evaluations of bivariate Cauchy integrals. We remark that a limiting map-Airy distribution for the size of
the largest 3-connected component in random labelled cubic planar graphs with n vertices was determined
by Stufler in [27] (see also the work by Albenque, Fusy and Lehéricy [2] and Stufler [31]), with expected
value αn, where α ≈ 0.8509, a key step in proving the scaling limit of random cubic planar graphs. In the
concluding section (Section 6) we argue why a similar results holds for the size of the largest block in cubic
planar graphs.
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To obtain our results we need to study novel combinatorial schemes, different from the classical scheme
C(wH(z)) from [3], where C(z) is the generating function of cores (defined in Section 2.1), w marks the size
of the core, and H(z) corresponds to the objects replaced inside the core. There are several recent papers
analysing general composition schemes that go beyond the work in [3]. For instance, Banderier, Kuba and
Wallner [4] studied schemes of the form C(wH(z))F (z), which generalise the schemes C(wH(z)) from [3],
with applications to trees and lattice paths enumeration. On the other hand, Stufler [28, 29, 30] analyses
so-called Gibbs partitions with applications to random graphs from block-stable classes of graphs.

In our paper we also make a contribution on this line of research: for the largest block the composition
scheme is of the form

B

(
zw

1 − zwL(z)

)
zw

1 − zwL(z) ,

where w marks the size of the 2-core (defined in Section 2.1) and B and L are, respectively, the generating
functions of 2-connected cubic maps and cubic maps rooted at a loop. For the largest 3-connected component
the scheme is

M (zw(1 + zwD(z))) 1 + 2zwD(z)
1 + zwD(z) ,

where now w marks the size of the 3-core and M and D are, respectively, the generating functions of
3-connected cubic maps and cubic maps not rooted at an isthmus.

We are able to analyse these compositions schemes by combining different ingredients. Our approach is
to prove first a limiting map-Airy distribution for the size of the 2- and 3-cores, and then transfer it using
a double-counting argument to the size of the largest 2- and 3-connected component. For the largest block,
the analysis is technically demanding as one has to consider simultaneously the size of the largest block and
the number of vertices of degree two, combining the fluctuations of an Airy law with those of a Gaussian
law. A similar situation arises for the largest 3-connected component.

1.1 Results on enumeration
Our first result (Theorem (1.1)) rediscovers different results that have appeared over the years in the literature
by using a unifying method: (a) and (b) were first derived by Mullin et al. [22] and by Tutte [32], respectively,
while (c) and (d) represent new proofs of Corollaries 3.2 and 4.2 from Gao and Wormald [18], respectively.
As a convention, if an denotes a counting sequence of a class of cubic maps, a∗

n denotes the corresponding
one for simple cubic maps.

Theorem 1.1 ([32], [22], [18]). Let cn and bn be respectively the number of arbitrary and 2-connected cubic
planar maps with n+ 2 faces. Then the following estimates hold as n → ∞:

(a) cn ∼
√

6√
π
n−5/2(12

√
3)n, where

√
6√
π

≈ 1.38198 and 12
√

3 ≈ 20.78461.

(b) bn ∼
√

3
4
√
π

· n−5/2
(

27
2

)n

, where
√

3
4
√
π

≈ 0.24430.

(c) c∗
n ∼ c · n−5/2ρ−n, where c ≈ 0.16559 and ρ−1 ≈ 10.38845, where ρ is the smallest positive solution of

P (z) = 27z6 + 216z5 + 171z4 − 208z3 − 339z2 + 24z + 1 = 0. (1)

(d) b∗
n ∼ b · n−5/2(5 + 3

√
3)n, where b = (3 +

√
3)

√
2
√

41
√

3 − 71
4
√
π

≈ 0.11201 and 5 + 3
√

3 ≈ 10.19615.
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Remark. We notice that two corrections are needed in [18]. In Corollary 3.2, the authors give the values
c ≈ 0.0027278757 in the estimate for c∗

n, and in Corollary 4.2 they give the value b ≈ 0.0019155063 in the
estimate for b∗

n.
Our second result deals with the enumeration of triangle-free cubic maps. By duality this amounts to

count triangulations without vertices of degree three. This was done in [18] for 3-connected maps, but the
analogous result for arbitrary maps is more demanding since we have to keep track of triangles in cubic
maps. Indeed they can be created or destroyed when maps are combined in series or in parallel. To that end,
we use decompositions that already proved useful in the graph setting (see [24]).
Theorem 1.2. Let fn be the number of triangle-free cubic planar maps with n+ 2 faces. Then the following
estimates hold as n → ∞:

(a) fn ∼ f · n−5/2ϕ−n, where f ≈ 0.72142 and ϕ−1 ≈ 18.18695, and ϕ is a root of

22161087866383368192z29 − 110805439331916840960z28 + 128349633892803674112z27

+306063926988657131520z26 − 1017316468360256421888z25 + 731390086938712080384z24

+1412989605840194371584z23 − 3904918887380696432640z22 + 3286085170959772286976z21

+3062041896395210752000z20 − 13636190761420628951040z19 + 22452065614202935443456z18

−24015782846601940172800z17 + 18890731381294758887424z16 − 12618646835081595715584z15

+9454042977513918959616z14 − 8938299800000420075520z13 + 8330326495570886895360z12

−6335783442775792180480z11 + 3739491505211342742768z10 − 1707114753190595308440z9

+606877106680714207393z8 − 169460055073349524800z7 + 37432243036560849408z6

−6518789166080065536z5 + 864781240587780096z4 − 79062401625882624z3

+3851046019399680z2 − 14872398004224z − 3131031158784.

(b) f∗
n ∼ f∗ · n−5/2(ϕ∗)−n, where f∗ ≈ 0.015166 and (ϕ∗)−1 ≈ 7.039997, and ϕ∗ is a root of

22161087866383368192z29 − 72023535565745946624z28 − 217455674688886800384z27

+1366192402856046231552z26 − 1408884772502960603136z25 − 5273526725499791867904z24

+18711657605588519485440z23 − 20661513660592621092864z22 − 15535239133496397004800z21

+90959874721137062576128z20 − 166070979940102503923712z19 + 193400402328142378696704z18

−162268637001045608759296z17 + 102897252166421987721216z16 − 51989933333416282030080z15

+24221605189030571544576z14 − 13520809952153729316864z13 + 9265021383768406435584z12

−6064247347538996966656z11 + 3267142329643563126000z10 − 1396980037043271835032z9

+473034839943808953505z8 − 127347508539288938304z7 + 27332424367753886208z6

−4657078534989938688z5 + 614598596098523136z4 − 58444903901822976z3

+3329729331462144z2 − 52444771909632z − 3131031158784.

We can also obtain analogous results for 2-connected triangle-free cubic maps (both arbitrary and simple)
but do not include them here to avoid repetition. The asymptotic estimates are of the same kind and the
growth constants are, respectively, ψ−1 ≈ 11.49420 and (ψ∗)−1 ≈ 7.01866. For completeness, the number of
these maps for small values of n are shown in Section 6.

1.2 Results on random cubic maps
Next, we study properties of the uniform random cubic map Mn with n + 2 faces as n → ∞. For some
basic additive parameters, namely the number of cut vertices and isthmuses, we can show convergence to a
Gaussian law as n → ∞. Since the techniques are standard we only display the asymptotic value of the first
moment in each case without giving the details:

Parameter Expectation
Cut vertices 3

4n = 0.75n
Isthmuses 3

(
1 −

√
3

2

)
n ≈ 0.40192n
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One can compare these values with the corresponding ones in random cubic planar graphs [24]: for
cut vertices the expectation is ∼ 0.00188n and for isthmuses it is ∼ 0.00094n. The intuition behind this
discrepancy in the respective values is that in graphs loops are not allowed, whereas in maps they appear
linearly often. Let us remark that the number of cut vertices is a difficult parameter to analyse in general
planar maps [14] but not in cubic maps, since in our case a cut vertex is necessarily incident to an isthmus.
Similarly to [24], one could also show asymptotic normality for the number of blocks and triangles in Mn

but the details would be relatively long and we prefer to concentrate on more novel parameters.

The degree of the root face. Our first result is a discrete limit law for the degree of the root face.
Notice that this parameter does not make sense for cubic graphs, since there is no embedding and faces are
not defined. The asymptotic estimate for the tail of the distribution follows the usual form c · k1/2qk for the
degree of the root face, or root vertex in random maps (see [20]), with c > 0 and 0 < q < 1. More precisely,
we have:

Theorem 1.3. For k ≥ 1, the probability that the root face of Mn has degree k tends to a constant pk as
n → ∞. In addition,

∑
k≥1 pk = 1, and

p(u) =
∑
k≥1

pku
k

satisfies the cubic equation

a3(u)p(u)3 + a1(u)p(u) + a0(u) = 0,

where

a0(u) = 2(211
√

3 − 534)u4(4u6√
3 + u7 − 6u5√

3 − 9u6 + 12u5 − 24u2√
3 + 60u

√
3 + 36u2 − 24

√
3 − 90u+ 36),

a1(u) = 2(956
√

3 − 1701)u2(36u9√
3 − 2u10 − 126u8√

3 + 54u9 + 126u7√
3 − 81u8 − 6u6√

3 − 27u7 − 60u5√
3

+ 54u6 − 648u4 + 1944u3 − 2160u2 + 864u− 216),
a3(u) = 9(12u4√

3 + 23u5 + 18u3√
3 + 54u4 + 24u2√

3 + 81u3 + 66u
√

3 + 108u2 + 24
√

3 + 90u+ 108)(4u2√
3

+ 13u3 − 26u
√

3 − 36u2 + 24
√

3 + 78u− 60)3.

Moreover, the tail of the distribution is of the form

pk ∼ c · k1/2qk, as k → ∞,

where c ≈ 0.032328, q ≈ 0.90699 and q−1 is the unique positive root of the equation

13u3 +
(

4
√

3 − 36
)
u2 +

(
78 − 26

√
3
)
u+ 24

√
3 − 60.

We show below a table containing the first values of pk:

k 1 2 3 4 5 6 7

pk

√
3

36

√
3

36

√
3

36
6
√

3 − 1
216

25
√

3
864

√
3

36
35

√
3

1296

Largest components. Our first result on this topic is a limit law of the map-Airy type for the size of the
largest block of Mn, whose proof is an adaptation of the method developed in [3]. More precisely, if A(x) is
the density function of the Airy distribution (see Subsection 2.3 for a precise definition) then we have
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Theorem 1.4. Let Xn denote the size of the largest block in Mn. Then, uniformly for q in a bounded interval,
we have as n → ∞

n2/3P
(
Xn = ⌊n/

√
3 + qn2/3⌋

)
= cA(cq)(1 + o(1)),

where c = 2
√

3/(1 − 1/
√

3)4/3 ≈ 10.9215218947.

Notice that a block of a cubic planar map M can have vertices of degree two, hence it is not cubic in
general. This motivates us to define the cubic block associated to a block B of M . It is the 2-connected cubic
map obtained from B as follows: for each vertex v of degree two of B, with neighbours a and b, contract the
edge av. Remark that at the end of the process, every vertex of degree two of B has been deleted and we end
up with a cubic map (except when B is a cycle). Our next result is an analogous limit law of the map-Airy
type for the size of the largest cubic block of Mn. As will be seen in the proofs, the process of counting the
removed vertices of degree two constrains demands a much more refined analysis for cubic blocks than for
ordinary blocks.

Theorem 1.5. Let X∗
n denote the size of the largest cubic block in Mn. Then, uniformly for q in a bounded

interval, we have as n → ∞

n2/3P
(
X∗

n = ⌊n/2 + qn2/3⌋
)

= c∗A(c∗q)(1 + o(1)),

where c∗ = 4/(1 − 1/
√

3)4/3 ≈ 12.6110872117.

Finally, we obtain a limit law of the map-Airy type for the size of the largest 3-connected component. Due
to the differences between the decomposition of cubic maps into their 3-connected components compared
with other families of maps (see the discussion in Section 2), the method from [3] does not directly apply to
this case. But since 3-connected components are always cubic, the scheme developed for the size the largest
cubic block can also be used here.

Theorem 1.6. Let Zn denote the size of the largest 3-connected component in Mn. Then, uniformly for q
in a bounded interval, we have as n → ∞

n2/3P
(
Zn = ⌊n/4 + qn2/3⌋

)
= c′A(c′q)(1 + o(1)),

where c′ = 72(3/2 − 1/
√

3)−4/3 ≈ 27.1635288451.

Let us point that the parameters c, c∗ and c′ quantify in some sense the dispersion of their respective
distributions and not the variance since the second moments of Xn, X∗

n and Zn do not exist.

Outline of the paper. The rest of the paper is organised as follows. Section 2 contains several preliminary
results, in particular the decomposition of cubic maps. Our main counting results are proved in Section 3.
The second part of the paper is devoted to the analysis of parameters in a random cubic map. In Section 4 we
find the limiting distribution of the degree of the root face. And in Section 5 we obtain limiting distributions
of the map-Airy type for the sizes of the largest block, cubic block and 3-connected component.

2 Preliminaries
For some background on planar maps we refer the reader to [26], and to [10] for other relevant definitions in
graph theory. We nevertheless explicit some important notions next.
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Basic definitions. As mentioned in the introduction, all maps considered in this paper are planar and
rooted. A map is simple if it has no loops and no multiple edges. It is 2-connected if it has at least two vertices,
no loops and no cut-vertices, 3-connected if it has at least four vertices, no 2-cuts and no multiple edges, and
4-connected if it has at least five vertices and no 3-cuts. A map is cubic if it is 3-regular, and it is a triangulation
if every face has degree three. By duality, cubic maps are in bijection with triangulations. And since duality
preserves 3-connectivity, 3-connected cubic maps are in bijection with 3-connected triangulations. Notice
that a general triangulation can have loops and multiple edges, and that a simple triangulation that is not
the single triangle is necessarily 3-connected.

At the exception of Section 5, cubic maps will be counted with respect to the number of faces minus two.
By duality, this amounts to counting triangulations by the number of vertices minus two. The smallest cubic
maps are the one composed of an isthmus with two loops attached to its endpoints, called the dumbbell,
and the one composed of two vertices connected by a triple edge, called the 3-bond; they are depicted by
the maps N1 and N3 (respectively) on the left of Figure 1. As a map, the 3-bond admits a unique rooting,
while the dumbbell has three: two on the loops and one on the isthmus. The smallest triangulations are their
respective duals: the triangle which has a single rooting, and the loop with a bridge inside and another one
outside.

2.1 Decompositions of cubic planar maps
3-connected cubic maps. Let T (x) and T4(z) be the generating functions of simple and 4-connected
triangulations of the sphere, respectively, where x marks the number of vertices minus two and z the number
of faces minus two. This convention on the variables x and z makes both the algebra and the combinatorics
simpler. A map on n + 2 vertices has exactly 3n edges and 2n faces. As proven in [33] and [18], the series
T (x) and T4(z) are algebraic functions given by

T (x) = U(x) (1 − 2U(x)) , x = U(x)(1 − U(x))3, (2)

and
T4(z) = z + V (z)(V (z) − 1)(V (z) + 1)−2 − z2, z = V (z)(1 − V (z))2. (3)

By duality the generating function M(z) of 3-connected cubic maps is given by

M(z) = T (z) − z, (4)

where z encodes the 3-bond.

Edge replacement, cherries and beads. Given two cubic maps N and M , where st is the root edge of
N , and a directed edge e = uv of M , the replacement of e by N is the following operation. Subdivide e twice
producing a path uu′v′v in M , remove the edge u′v′, and identify u′ and v′ with vertices s and t of N − st,
respectively. These results in a cubic map M ′, whose root edge is that of M , unless if e was originally the
root of M then there are two possible re-rootings, namely at uu′ and v′v. See Figure 1 for an illustration.
The reverse operation is called the removal of N from M ′ resulting in the map M .

Notice that the replacement of an edge e of M remains valid even when N is rooted at a loop, i.e. s = t.
In that case, N is called a cherry of M attached at e, while when s ̸= t it is called a bead of M attached at
e. On the right of Figure 1 is an example of a map M ′ with one cherry and two beads.

2-connected cubic maps. Tutte showed in [34] that the family of 2-connected maps can be partitioned
into three subclasses, namely series, parallel and polyhedral maps. Following [7] (see also [24]), we can easily
adapt this idea to the setting of 2-connected cubic maps. More precisely, let N be a 2-connected cubic map
with root st. Then the following three classes form a partition of the class B of 2-connected cubic maps:

• P (Parallel): N − {s, t} is not connected.

• S (Series): N − st is connected but not 2-connected.
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M
N3

N1

N2

M ′

Figure 1: Left: the dumbbell N1 with one of its three possible rootings (one other is at the same loop but
in the reverse direction, the third one is at the isthmus), the 3-bond N2 with its unique rooting, and M and
N3 which both form the map of the complete graph on four vertices (K4) with its unique rooting. Right: the
replacement of three edges of M by N1, N2 and N3, resulting in the cubic map M ′ in which N1 now forms
a cherry, while N2 and N3 form beads.

• H (Polyhedral): N is a 3-connected cubic map C where every edge but st is possibly replaced by some
map in B.

We let B(z), P (z), S(z) and H(z) be the ordinary generating functions associated to the classes defined
above, where once more the variable z marks the number of faces minus 2. This decomposition can be
translated into a system of algebraic equations characterizing those generating functions:

B(z) = S(z) + P (z) +H(z),

S(z) = B(z)(B(z) − S(z)),

P (z) = z(1 +B(z))2,

H(z) = M(z(1 +B(z))3)
1 +B(z) .

(5)

The first equation holds by definition. The second one follows from the fact that a series map can be
decomposed into an arbitrary map in B and a non-series map in B − S. The right hand-side of the third
equation encodes all possible parallel maps: the 3-bond (z), the maps whose root is in a double edge (2zB(z)),
and the parallel composition of two maps in B (zB(z)2). The last equation corresponds to the definition of
the class H, encoded as a composition scheme between the generating functions M(z) and z(1 +B(z))3, i.e.
each non-root edge of a 3-connected cubic map is possibly replaced by a map in B. The cube marks the fact
that a cubic map with n+2 faces has 3n edges, and we divide by 1+B(z) to account for the non-replacement
of the root edge.

Cubic maps. Notice that a cubic map is either 2-connected or it admits an isthmus, and that a loop is
necessarily incident to an isthmus. We define the following two classes which partition the class of cubic
maps that are not 2-connected:

• L (Loop): the root edge is a loop.

• I (Isthmus): the root edge is an isthmus.

A map in L (resp. I) is obtained by possibly replacing by some cubic map the non-root loop (resp. the two
loops) of the dumbbell rooted at one of the loops (resp. rooted at an isthmus).

8



Figure 2: Top is a cubic map M . Bottom left is the 2-core of M obtained by contracting each cherry of M
to a vertex of degree two (in red). Bottom middle is the cubic 2-core of M obtained by contracting one edge
incident to each vertex of degree two in the 2-core (or equivalently, obtained directly from M by removing
all its cherries). Bottom right is the 3-core of M obtained by removing all the beads of M .

The class C of cubic maps can then be partitioned as C = B ∪ L ∪ I. To translate this partition into
a recursive decomposition, we define the class D = L ∪ S ∪ P ∪ H of cubic maps whose root edge is not
an isthmus, and we let L(z), I(z) and D(z) be the ordinary generating functions associated to these new
classes. The system (5) can be rewritten and extended as (see [7, Lemma 1] for a proof):

C(z) = D(z) + I(z),

D(z) = L(z) + S(z) + P (z) +H(z),

L(z) = 2z(1 +D(z) + I(z)),

I(z) = L(z)2

4z ,

S(z) = D(z)(D(z) − S(z)),

P (z) = z(1 +D(z))2,

H(z) = M(z(1 +D(z))3)
1 +D(z) .

(6)

The equations for P (z), S(z) and H(z) are analogue to their counterpart in (5), with the difference that
they are not restricted to 2-connected cubic maps, in particular edges can be replaced by loop maps.

Cores. Let M be a cubic map not rooted at an isthmus, and C be the map obtained from M by iteratively
deleting every isthmus while keeping the component containing the root. If C is 2-connected, then it is called
the 2-core of M . Notice that the 2-core is not in general cubic as it can have vertices of degree two. The cubic
2-core of M is the cubic map obtained after contracting exactly one edge incident to every vertex of degree
two of the 2-core of M . Let now C ′ be the map resulting from the removal of all the cherries and beads of
M . If C is cubic and 2-connected, then it is in fact the cubic 2-core of M . If it is furthermore 3-connected,
then it is called it the 3-core of M . Illustrations are given in Figure 2. Note that several cherries and beads
attached to the same edge e (as is the case at the top of Figure 2) is in fact the result of the replacement of
e by a series map.
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Cubic maps in the classes S, P and H always admit a cubic 2-core, while those in I and L never do.
Furthermore, the only cubic maps that admit a 2-core but not a cubic 2-core are those in S obtained by
attaching pending loop maps to the vertices of a rooted cycle (see case (2) in the proof of Lemma 5.1). As
pointed out in its definition, every cubic map in the class H admits a 3-core. This is also the case for some
of the cubic maps in S, namely those obtained by replacing the root edge uv of a map in H by a map in D;
see the series cubic map M ′ depicted on the right of Figure 1 for an example.

2.2 Asymptotic enumeration
For r > 0, ε > 0, and 0 < ϕ < π/2, a ∆-domain ∆(r, ϕ, ε) is a region of the complex plane the form

∆(r, ϕ, ε) = {z ∈ C : |z| < r + ε, ϕ < |arg(z − r)| ≤ π}.

The generating function A(z) with non-negative coefficients and radius of convergence ρ > 0 is said to be
∆-analytic if it admits an analytic continuation around z = 0 to the domain ∆(ρ, ψ, ε). Furthermore, an
algebraic generating function A(z) is said to have a 3/2-singularity at z = ρ if for some values ψ, ε and for
z ∼ ρ it admits a Puiseux expansion in ∆(ρ, ψ, ε) of the form

A(z) = A0 −A2

(
1 − z

ρ

)
+A3

(
1 − z

ρ

)3/2
+O

((
1 − z

ρ

)2
)
, (7)

with A0 = A(ρ) > 0, A1 > 0, A2 = ρA′(ρ) > 0, and A3 > 0. In the case where A(z) is an algebraic function,
the constants ρ, A0, A2 and A3 are algebraic numbers themselves and can be determined, at least implicitly.

The following lemma is an immediate consequence of the Transfer Theorem (see [15, Corollary 6.1]).
Lemma 2.1. Let A(z) be a generating function with non-negative coefficients and radius of convergence
ρ > 0. Further assume that A(z) has a 3/2-singularity at z = ρ in the form of (7). Then we have

[zn]A(z) ∼ 3A3

4
√
π
n−5/2 ρ−n, as n → ∞.

The next lemma is directly adapted from [12, Theorem 2.31].
Lemma 2.2. Suppose that the generating function F (x, y) has a local expansion of the form

F (x, y) = g(x, y) + h(x, y)
(

1 − y

ρ(x)

)3/2
+O

((
1 − y

ρ(x)

)2
)
,

where the function ρ(x) is analytic around x0 such that ρ(x0) ̸= 0, and the functions g(x, y) and h(x, y) are
analytic around (x0, y0) and satisfy (∂/∂y)g(x, y) ̸= 1, h(x, y) ̸= 0, and ρ′(x) ̸= (∂/∂x)g(x, y). Furthermore,
assume that y = y(x) is a solution of the functional equation y = F (x, y), with y(x0) = y0. Then y(x) has a
local expansion of the form

y(x) = g1(x) + h1(x)
(

1 − x

x0

)3/2
+O

((
1 − x

x0

)2
)
,

where g1(x) and h1(x) are analytic around x0, and h1(x0) ̸= 0.
The proofs of the enumerative results presented in this paper will all follow a common scheme, based on

the following steps (we use the terminology and results of [15], notably Section VII.7.1).

• By means of combinatorial decompositions, obtain a system of polynomial equations defining implicitly
the generating function of interest A(z). Using polynomial elimination, for instance a Gröbner basis or
successive resultants algorithm, reduce the system to a single bivariate polynomial P (y, z) such that
P (A(z), z) = 0. If P (y, z) is reducible, compute by hand sufficiently many coefficients of A(z) to decide
the irreducible factor Q(y, z) of P (y, z) that admits a solution y(z) with the corresponding Taylor
expansion at z = 0. As Q(y, z) is irreducible and satisfies Q(A(z), z) = 0, it is called the minimal
polynomial of A(z).
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• Find the dominant singularity ρ of A(z) by looking at the roots of the discriminant of Q(y, z) with
respect to y. By Pringsheim’s theorem and due to the fact that A(z) has only non-negative coefficients,
ρ will always be a positive real number. Prove that ρ is the unique dominant singularity of A(z). Since
A(z) is algebraic, it is clear that A(z) is then analytic in some ∆(ρ, ϕ, ε).

• Using for example the Newton-Puiseux polygon algorithm, compute the Puiseux expansion of A(z)
from Q(y, z), in a neighbourhood of ρ, corresponding to the branch passing at zero (provided that it
holds combinatorially that A(0) = 0). It will always be of the form of (7).

• Conclude with Lemma 2.1.

In the rest of the paper when an algebraic generating function A(z) admits a 3/2-singularity at z = ρ > 0,
the notationAi (for i ≥ 0) will always denote the ith coefficient of its Puiseux expansion for z ∼ ρ in ∆(ρ, ψ, ε),
and we will omit the mention of the ∆-domain.

An illustrative example. As an application of the above scheme, we reprove the estimate on the number
of 3-connected cubic planar maps first derived in [33]. From the equations (2) and (4) we eliminate U = U(z)
and T = T (z) (setting x = x(z) = z) to obtain the following irreducible polynomial equation

M4 + (4z + 3)M3 + (6z2 + 17z + 3)M2 + (4z3 + 25z2 − 14z + 1)M + z4 + 11z3 − z2 = 0. (8)

The discriminant with respect to M is z2(256z−27)3, whose unique positive root gives the (unique) dominant
singularity 27/256 of M(z). The Puiseux expansion of M(z) for z ∼ 27/256 is readily computed from (8)
and is equal to

M(z) = M0 −M2Z
2 +M3Z

3 +O(Z4), Z =
√

1 − 256z/27, (9)

with M0 = 5/256, M2 = 21/256 and M3 =
√

6/24. We check that the conditions of Lemma 2.1 are satisfied,
and we obtain as n → ∞

[zn]M(z) = 3M3

4
√
π
n−5/2

(
256
27

)n

(1 + o(1)) =
√

6
32

√
π
n−5/2

(
256
27

)n

(1 + o(1)).

2.3 The map-Airy distribution
Density. The map-Airy distribution (or Airy distribution of the ‘map-type’) has density given by

A(x) = 2e−2x3/3(xAi(x2) − Ai′(x2)),

where Ai(x) is the Airy function which satisfies the differential equation y′′ − xy = 0, i.e.

Ai(x) = 1
2π

∫ +∞

−∞
exp

(
i

(
t3

3 + xt

))
dt.

The map-Airy distribution of parameter c is defined by the density cA(cy). The tails of the distribution are
extremely asymmetric, see a plot of A(x) shown in Figure 3, in fact the left tail decays polynomially while
the right tail decays exponentially:

A(x) ∼
x→−∞

1
4
√
π

|x|−5/2 and A(x) ∼
x→+∞

2√
π
x1/2 exp

(
−4

3x
3
)
.
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Figure 3: The map-Airy distribution.

Integral representations. A representation that proves useful in the context of singularity analysis is

A(x) = 1
2iπ

∫ ∞eiθ

∞e−iθ

exp
(
t3/2

3 − xt

)
dt, for any θ ∈

[
π

3 ,
2π
3

]
.

From the above expression we get for any d1, d2 > 0 that

1
2πi

∫ ∞ei2π/3

∞e−i2π/3
exp

(
d2s

3/2 − d1ys
)
ds = (3d2)2/3A

(
d1(3d2)2/3y

)
. (10)

For an extended account on the Airy distribution as well as other representations (series, etc.), we refer
the reader to [3, Appendix B].

3 Asymptotic enumeration of cubic planar maps
3.1 Cubic maps
Proof of Theorem 1.1(a). Consider the system of equations (6), where M is defined by (2) and (4). By
elimination we obtain the minimal polynomial of C(z) which is equal to

64C3z3 + (192z3 − 96z2 + z)C2 + (192z3 − 192z2 + 32z − 1)C + 64z3 − 96z2 + 4z. (11)

Its discriminant with respect to C is z2(1 − 432z2)3, so that the unique dominant singularity of C(z) is√
1/432 =

√
3/36. From (11) we compute the Puiseux expansion of C(z) for z ∼

√
3/36 which is

C(z) = 6
√

3 − 10 − (6
√

3 − 12)Z2 + 4
√

6
3 Z3 +O(Z4), where Z =

√
1 − 36z/

√
3.

Applying Lemma 2.1 gives the asymptotic estimate for cn = [zn]C(z) as claimed.

Proof of Theorem 1.1(b). In this case we eliminate from (5) and obtain

16z2B3 + (48z2 + 8z)B2 + (48z2 − 20z + 1)B + 16z2 − z.

Its discriminant with respect to B is 256z3(2 − 27z)3. The unique dominant singularity of B(z) is 2/27 and
the Puiseux expansion for z ∼ 2/27 is

B(z) = 1
8 − 3

8Z
2 +

√
3

3 Z3 +O(Z4), where Z =
√

1 − 27z/2.

12



The estimate for bn = [zn]B(z) follows again from Lemma 2.1.

Remark 3.1. Explicit formulas are known for the coefficients of C(z) and B(z), namely

cn = 22n+1(3n)!!
(n+ 2)!n!! , bn = 2n+1(3n)!

n!(2n+ 2)! ,

where n!! = n(n − 2)(n − 4) · · · (see [21] and [32], respectively). In those cases, the asymptotic estimates
follow by applying Stirling’s formula. However, in the rest of the paper closed formulas will not be available
and one needs to rely on methods such as Lemma 2.1.

Remark 3.2. Furthermore, if we eliminate S, P , H and M from the system composed of (4) and (5), we
obtain the simple identity B(z) = T (z(1 +B)3), which already appears in [32].

Proof of Theorem 1.1(c). We adapt (6) to encode the generating function C∗(z) =
∑

n≥0 c
∗
nz

n. We use
the same letters as in (6) for the analogous generating functions but with an exception: we need to redefine
the class D to be the class of cubic maps which become simple after the removal of their root edge.

First we subtract the term z from L(z) corresponding to the dumbbell rooted at a loop, and the term z
from P (z) corresponding to 3-bond. Then we modify the equation for L(z) in order to avoid a double edge
when replacing a loop with a loop map. Finally, C∗(z) is obtained by adding I(z) to D(z) and subtracting
the maps giving rise to either loops or double edges, that are the maps encoded in L(z), in 2zD(z) (maps
obtained from the 3-bond by replacing only one edge), and in L(z)2 (the series composition of two loop
maps, which produces a double edge). This gives

C∗(z) = D(z) + I(z) − L(z) − 2zD(z) − L(z)2,

D(z) = L(z) + S(z) + P (z) +H(z),

L(z) = 2z(I(z) +D(z) − L(z)),

I(z) = L(z)2

4z ,

S(z) = D(z)(D(z) − S(z)),

P (z) = 2zD(z) + zD(z)2,

H(z) = M(z(1 +D(z))3)
1 +D(z) .

(12)

By elimination we obtain the minimal polynomial of C∗(z) as

64z5(C∗)4 + p3(z)(C∗)3 + p2(z)(C∗)2 + p1(z)(C∗) + p0,

where

p0(z) = z2(z2 − 11z + 1)(1568z8 + 476z7 − 7456z6 − 8458z5 − 27z4 + 2672z3 + 130z2 − 330z + 41),
p1(z) = 784z11 + 13524z10 + 29478z9 − 51033z8 − 194686z7 − 166400z6 − 5454z5 + 43746z4 + 4030z3

− 5652z2 + 904z − 41,
p2(z) = −z(1743z8 + 13968z7 + 13344z6 − 52888z5 − 116934z4 − 71248z3 − 4064z2 + 3768z − 41),
p3(z) = 16z3(57z4 + 40z3 + 24z2 + 208z + 179).

The discriminant with respect to C∗ has two real roots between 0 and 1. One of them is approximately
0.32, and can be discarded since it is greater than the dominant singularity of the generating function
of 2-connected simple cubic maps, approximately 0.099, computed in the next proof. The second one is
ρ ≈ 0.096260, a root of P (z) defined in (1), as claimed. The Puiseux expansion of C∗(z) for z ∼ ρ is

C∗(z) = C∗
0 − C∗

2Z
2 + C∗

3Z
3 +O(Z4), where Z =

√
1 − z/ρ,
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and C∗
0 , C∗

2 and C∗
3 are computable polynomials in ρ. Their expressions are too long to be reproduced here,

and we just write down the numerical approximations:

C∗
0 ≈ 0.020004, C∗

2 ≈ 0.14836, C∗
3 ≈ 0.39135.

The asymptotic estimate on c∗
n follows again from Lemma 2.1.

Proof of Theorem 1.1(d). We restrict the system (12) to 2-connected simple maps. To this end we need
to discard the classes of simple maps that produce cut vertices, namely L and I. The generating functions
D(z), S(z), P (z) and H(z) have the same meaning as for simple cubic maps, except that they are now
restricted to 2-connected simple cubic maps.

Similarly to the previous proof, B∗(z) is obtained from D(z) by removing the maps containing a double
edge, which are parallel maps encoded by zD(z)2.

B∗(z) = D(z) − 2zD(z),

D(z) = S(z) + P (z) +H(z),

S(z) = D(z)(D(z) − S(z)),

P (z) = 2zD(z) + zD(z)2,

H(z) = M(z(1 +D(z))3)
1 +D(z) .

By elimination we obtain the minimal polynomial of B∗(z) as follows

16z2(B∗)3 − (16z4 + 120z3 − 48z2 − 8z)(B∗)2 + (4z6 + 76z5 + 121z4 − 244z3 + 118z2 − 20z + 1)B∗

− 8z7 − 76z6 + 134z5 − 77z4 + 17z3 − z2.

The smallest positive root of the discriminant with respect to B∗ is (3
√

3−5)/2. And the Puiseux expansion
for z ∼ (3

√
3 − 5)/2 is given by

B∗(z) = 33
√

3 − 57
8 − 25 − 15

√
3

8 Z2 + (3 +
√

3)
√

2
√

41
√

3 − 71
3 Z3 +O(Z4), where Z =

√
1 − z(5 + 3

√
3).

Once more, we obtain the asymptotic estimate for b∗
n from Lemma 2.1.

3.2 Triangle-free cubic maps
We need to adapt (6) to encode the decomposition of triangle-free cubic maps. The first obstacle arises from
the edge-replacement operation: when replacing an edge of a map M by a map N we can potentially erase
or create triangles, and the resulting map becomes or stop being triangle-free.

To address this problem, we will encode whether the root edge of a map belongs or not to a triangle. We
will also keep track of triangular faces in 3-connected cubic maps. The latter is in order to control whether
at least one of the edges of each of those faces gets replaced with a map. By duality, this is equivalent to
keeping track of cubic vertices in 3-connected triangulations.

Cubic vertices in 3-connected triangulations. We introduce two bivariate generating functions: T1(x, u)
which counts 3-connected triangulation with at least five vertices and rooted at a cubic vertex, and T0(x, u)
which counts those that are not rooted at a cubic vertex. In both cases, x marks the number of vertices
minus two and u marks the number of cubic vertices.

In order to derive functional equations for T0 and T1, we will proceed as in [24, Section 4.1] (to which
we refer the reader for a more complete proof): start from the univariate generating function T4(z) of 4-
connected triangulations (see (3)), since 4-connected triangulations cannot have cubic vertices, and introduce
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an auxiliary generating function T (3)(x, u) which counts 3-connected triangulations and where now u marks
the number of inner cubic vertices, that is, not in the outer face. The triangulation K4 is treated separately.
This gives the following system of equations:

T (3)(x, u) = T4(x(1 + x−1T (3)(x, u))2)
1 + x−1T (3)(x, u) + x2(1 + x−1T (3)(x, u))3 + x2(u− 1),

T1(x, u) = uxT (3)(x, u),

T0(x, u) = (1 + 2xu− 3x)T (3)(x, u) − x2u.

(13)

Proof of Theorem 1.2(a). We use the same letters as in (6) for the generating functions, with the
difference that those with the index 1 (resp. 0) will encode cubic maps that are triangle-free with the
exception of at least one triangle (resp. no triangle) incident with the root edge. They will be called near-
triangle-free (resp. triangle free).

The series S1(z), P1(z) and H1 (resp. S0(z), P0(z) and H0) encode near-triangle-free (resp. triangle-free)
cubic maps thats are respectively series, parallel and polyhedral. The maps counted by L(z) and I(z) never
have triangles at the root, so we omit their index. Additionally, the polyhedral maps with K4 as a 3-core
will be encoded by W0(z) and W1(z). We now prove the next lemma, which is an adaptation of [24, Lemma
21] to the setting of planar maps.

Lemma 3.3. The generating function F (z) =
∑

n≥0 fnz
n, where fn (n ≥ 0) is the number of triangle-free

cubic maps on n+ 2 faces, satisfies the following system of equations:

F = I + L+ S0 + P0 +W0 +H0,

D = L+ S0 + P0 +W0 +H0 + S1 + P1 +W1 +H1,

L = 2z(1 + I +D − L2 − z) − 4z2(D − L),

I = L2

4z ,

P0 = z(1 +D − L)2,

P1 = zDL,

S0 = (D − S0 − S1)D − S1,

S1 = 2zL+ 4z(D − L)L+ L3,

W0 = z2(4D2 + 8D3 + 5D4 +D5),
W1 = z2(D + 6D2 + 2D3),

H1 = T1(x, u)
3D + 3D2 +D3 ,

H0 = (2D +D2)H1 + T0(x, u)
1 +D

,

(14)

where the arguments of the univariate series are omitted, x = z(1+D)3, and u = (3D+3D2 +D3)/(1+D)3.

Proof. The first two equations follow from their respective definitions. The rest of the proof goes into the
lines of [24, Lemma 21]: setting x2 = z and u = 0 in [24, Lemma 17]. In order to adapt it to the setting of
maps, we remove the various graph symmetries (encoded by the factor 1/2 in [24, Lemma 21]), add a factor
2 for the choice of the root face, and add/remove the terms with loops or multiple edges. For instance, the
terms 2z and −2z2 in the equation for L(z), the latter creating a triangle not at the root edge coming from
the added term z in the equation for P0(z). And the terms 2zL(z) and z2D(z) in the equations for S1(z)
and W1(z), respectively. Notice finally that all the generating functions with index 2 in [24, Lemma 21] have
been fused here with those of index 1.

By elimination from the system composed of (3), (13) and (14), and setting x = z(1 + D)3 and u =
(3D + 3D2 + D3)/(1 + D)3, we obtain an irreducible polynomial equation pF (F, z) = 0 which has degree
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24 in F , and is too large to be reproduced here. The discriminant with respect to F has four factors with
positive roots smaller than one. Only one such factor has a positive root ϕ ≈ 0.054984 larger than ρ, the
dominant singularity of all cubic maps. Hence ϕ must be the dominant singularity of F . Its defining equation
is given in the statement of Theorem 1.2(a). From pF we compute the Puiseux expansion of F (z) for z ∼ ϕ:

F (z) = F0 − F2Z
2 + F3Z

3 +O(Z4), where Z =
√

1 − z/ϕ.

The Fi’s are computable algebraic functions of ϕ that are too large to be displayed here, and we only give
numerical approximations

F0 ≈ 0.35300, F2 ≈ 1.05162, F3 ≈ 1.70491.

We conclude the proof by applying Lemma 2.1.

Since the next proof is very similar to the proof of the previous theorem, we only provide a sketch of it.

Sketch of the proof of Theorem 1.2(b). We adapt the system (14) to the case of simple triangle-free
cubic maps encoded by F ∗ = F ∗(z). This is done by taking care of possible appearances of loops or multiple
edges that are not the root. This gives the following system where the arguments of the funtions are omitted:

F ∗ = I +D − S1 − P1 −W1 −H1 − L2 − 2z(D − L),
L = 2z(I +D − 2z(D − L) − L2),
P0 = 2z(D − L) + z(D − L)2,

S1 = 4z(D − L)L+ L3.

(15)

From there, we compute the minimal polynomial pF ∗(F ∗, z) which also has degree 24 in F ∗. By carefully
analysing its discriminant, we obtain the dominant singularity ϕ∗ ≈ 0.142046, whose minimal polynomial
Pϕ∗ is given in the statement of Theorem 1.2(a). Finally we compute the Puiseux expansion as before and
obtain the estimate for [zn]F ∗(z).

4 The degree of the root face
We continue with the convention that z marks faces minus two in a cubic map. Let C(z, u) be the generating
function of cubic maps, where u marks the degree of the root face, and let M(z, u) be the analogous series for
3-connected cubic maps. We first find an expression for M(z, u) using the fact that the number of loopless
maps with n edges and root face of degree k equals the number of 3-connected cubic maps with n+ 2 faces
and root face degree k + 2; see also a bijective proof of this fact in [16].

The generating function A(x, y) of loopless maps, where x marks edges and y marks the root face degree
was obtained in [6] as follows. The univariate function A1(x) = A(x, 1) is given by

A1(z) = A(z, 1) = (1 + q)2(1 − q), (16)

where q = q(x) satisfies q = x(1 + q)4, which in fact is the generating function of 4-ary trees. We notice that
A1(x) = x−1T (x), where T (x) is as in Section 2, and that the unique singularity of q agrees with that of T ,
namely x = τ = 27/256. It is further shown in [6] that A = A(x, y) is the solution of

xyA2 + (1 − y − xyA1)A+ y − 1 = 0. (17)

Solving the quadratic equation and eliminating from the previous equations, we arrive at [6, Equation (4)]

A(x, y) = (1 + q)2

2qy2

(
y + 3qy − (1 + q)2 − (1 + q)(1 + q − y)

√
1 − 4qy

(1 + q)2

)
, (18)
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where the sign in front of the square root is taken so that A(x, y) has non-negative coefficients. From the
bijection between loopless maps and 3-connected cubic maps it follows that

M(z, u) = zu2(A(z, u) − 1) = u3z2 + (u3 + 2u4)z3 + (3u3 + 5u4 + 5u5)z4 + · · · . (19)

Our next result extends (6) by considering the degree of the root face as an additional parameter. Let
D(z, u) be the generating function of the class D of cubic maps defined in Section 2, where u marks de degree
of the root face, and similarly for L1, L2, I, S, P and H.

Lemma 4.1. Let D(z) = D(z, 1) and I(z) = I(z, 1) the univariate series as in (6). Then the following
equations hold:

C(z, u) = D(z, u) + I(z, u),

D(z, u) = L1(z, u) + L2(z, u) + S(z, u) + P (z, u) +H(z, u),

L1(z, u) = zu(1 +D(z) + I(z)),

L2(z, u) = zu4(1 +D(z, u) + uI(z, u)),

I(z, u) = L2(z, u)2

zu4 ,

S(z, u) = D(z, u)(D(z, u) − S(z, u)),

P (z, u) = zu2(1 +D(z))(1 +D(z, u)),

H(z, u) =
M

(
z(1 +D(z))3,

1 +D(z, u)
1 +D(z)

)
1 +D(z, u) .

(20)

Proof. We revisit (6) and enrich it in order to mark the degree of the root face. The main differences are the
equations for the generating functions counting loop, parallel and h-maps.

The series L1 and L2 count loop maps in which the root face has size one and at least two, respectively.
For instance, the maps counted by L1 are obtained from the dumbbell rooted at a loop, encoded by zu, in
which the non-root loop is possibly replaced by an arbitrary map, hence the factor 1 +D(z) + I(z). Thoses
series are univariate since the maps attached to the non-root loop do not contribute to the degree of the
root face. For L2 however, the dumbbell (rooted at a loop) is now encoded by zu4 and the root face degree
of the attached map contribute to the total degree.

In the equation for I, the difference with the univariate case is that one can only attach loop maps whose
root face degree contributes to the total degree, i.e. those counted by L2. In the equation for P , the 3-bond is
now encoded by z2u. And maps attached to the edge directly to the right of the root edge contribute to the
root face degree, while maps attached to the left do not. Finally, in the equation for H every non-root internal
edge of a 3-connected cubic map is possibly replaced by a non-isthmus map whose root face degree is not
marked. Whereas, the maps attached to the external edges contribute to the resulting root face degree.

Next we analyse the singularities of both M(z, u) and D(z, u). We remark that the condition |u| ≤ 1 and
u close enough to the real axis is sufficient to determine the probability generating function p(u) (see the
proof of Theorem 1.3 below) by analytic continuation. It could have been replaced by a different condition
for u close to 1, but this one is convenient for the proof.

Lemma 4.2. Suppose that z and u are complex numbers sufficiently close to the real axis and that |u| ≤ 1.
Then the singularity of M(z, u) does not depend on u and is equal to τ = 27/256. Furtermore, for fixed u ∼ 1
the Puiseux expansion of M(z, u) for z ∼ τ is of the form

M(z, u) = M0(u) +M2(u)Z2 +M3(u)Z3 +O(Z4), Z =
√

1 − z/τ ,

where M0(u), M2(u) and M3(u) are algebraic functions, analytic for |u| ≤ 1 sufficiently close to the positive
real axis.
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Proof. Given the expression in Equation (18), the singularities of A(x, y), hence those of M(z, u), have only
two possible sources: a) those coming from u, or b) the vanishing of the term 1−4uy/(1+u)2 inside the square-
root. We can rule out source b) easily as follows. A simple calculation shows that function 4u(x)/(1 +u(x))2

is increasing for x ≥ 0 and its maximum is at the radius of convergence τ , where it takes the value 3/4. Since
|y| ≤ 1, for x and y sufficiently close to the positive real line, we have

∣∣∣ 4uy
(1+u)2

∣∣∣ < 1.

The analogous statement for D(z, u) needs more work.

Lemma 4.3. Suppose that z and u are sufficiently close to the positive reals and that |u| ≤ 1. Then the
dominant singularity of D(z, u) does not depend on u and is equal to σ =

√
3/36. Furtermore, for fixed u ∼ 1

the Puiseux expansion for z ∼ σ is of the form

D(z, u) = D0(u) +D2(u)Z2 +D3(u)Z3 +O(Z4), Z =
√

1 − z/σ,

where D0(u), D2(u) and D3(u) are algebraic functions, analytic for |u| ≤ 1 sufficiently close to the positive
real axis.

Proof. Eliminating from (20), we get

2uD = 2uM + (1 +D)(1 −
√

1 − 4zu5(1 +D)) + 2zu2(1 +D)(1 +D1 + I) + 2zu3(1 +D)2(1 +D1), (21)

where M = M(z(1 + D1)3, (1 + D)/(1 + D1)), D = D(z, u), D1 = D(z) and I = I(z). Observe that the
singularities of D(z, u) can either arise from the square-root term, i.e. when 4zu5(1 +D) = 1, from a branch
point, i.e. a zero of the derivative of (21) with respect to D, or from the singularities of D1, I and M .

We will first rule out any singularity coming from the term
√

1 − 4zu5(1 +D). Adapting the proof of
Theorem 1.1(a), we observe that σ is the dominant singularity of D(z) and that

D(σ, 1) = D(σ) = 3
4

√
3 − 1. (22)

Because its coefficients are non-negative, D(z, u) is increasing in both variables on (0, σ] × (0, 1]. Hence if
|u| ≤ 1 then |D(z, u)| ≤ D(|z|, |u|) ≤ D(|z|, 1) converges when |z| < σ ≈ 0.04811. But then assuming
4zu5(1 +D(z, u)) = 1, we get a contradiction using (22):

|z| = 1
|4u5(1 +D(z, u))| >

1
4 + 4D(σ, 1) = 1

3
√

3
≈ 0.19245.

Next, we rule out the possibility of a branch point coming from (21). The derivative of (21) with respect
to D can be written as follows

2u = 2u M2

1 +D1
+1−

√
1 − 4zu5(1 +D)+ 2zu5(1 +D)√

1 − 4zu5(1 +D)
+2zu2(1+D1 +I)+4zu3(1+D)(1+D1), (23)

where M2 = M2(z, u) = (∂/∂u)M(z(1 +D1)3, (1 +D)/(1 +D1)) can be computed from (17) and (19), and
verifies

∂

∂u
M(z, u) = zu(A− 2)(2uA−A1) − (u− 2)(A− 1)

2Azu2 −A1zu− u+ 1 , (24)

with A = A(z, u) and A1 = A(z). We assume that there exists a pair (z0, u0) with |z0| ≤ σ and |u0| ≤ 1 and
sufficiently close to the real plane which satisfies (23), and then reach a contradiction.

Both D(z) and I(z) have non-negative coefficients and are thus increasing functions on (0, σ]. Hence, as
a byproduct of Theorem 1.1(a) we get

|I(z0)| ≤ I(|z0|) ≤ I(σ) = 21
√

3/4, (25)
|z0(1 +D(z0))3| ≤ |z0|(1 +D(|z0|))3 ≤ σ(1 +D(σ))3 = τ, (26)
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where the last equality is a so-called critical composition scheme. Notice also that as |u0| ≤ 1 we have∣∣∣∣1 +D(z0, u0)
1 +D(z0)

∣∣∣∣ ≤ 1. (27)

Further remark that the coefficients of M2(z, u)/(1 + D1(z)) are also non-negative integers, as they count
3-connected cubic maps where an additional edge of the root face is distinguished and in which every edge
but the distinguished one is possibly replaced by a non-isthmus cubic map. It is thus an increasing function
over (0, σ] × (0, 1]. And using (26) and (27) we get∣∣∣∣M2(z0, u0)

1 +D(z0)

∣∣∣∣ ≤ 1
1 +D(|z0|)

∂

∂u
M

(
|z0(1 +D(z0))3|,

∣∣∣∣1 +D(z0, u0)
1 +D(z0)

∣∣∣∣) ≤ 1
1 +D(σ)

∂

∂u
M (τ, 1) =

√
3

32 , (28)

where the last equality is computed from (22) and (24), using the value A(τ, 1) = A(τ) = 32/27 obtained
from (16). From the right hand-side of (23) it now remains to consider the generating function

F (z, u) = 1
2u

(
1 −

√
1 − 4zu5(1 +D) + 2zu5(1 +D)√

1 − 4zu5(1 +D)
+ 2zu2(1 +D1 + I) + 4zu3(1 +D)(1 +D1)

)
.

Since every series within the brackets has non-negative coefficients (z, u) is increasing on (0, σ]× (0, 1]. Using
(22) and (25) we obtain

|F (z0, u0)| ≤ F (|z0|, |u0|) ≤ F (σ, 1) = 1 − 35
√

3
96 . (29)

Finally, plugging (28) and (29) together in (23) we reach a contradiction:

1 =
∣∣∣∣M2(z0, u0)

1 +D(z0) + F (z0, u0)
2u0

∣∣∣∣ ≤ 1 −
√

3
3 < 0.423.

As mentioned above, this means that the dominant singularity of D(z, u) is that of D(z), I(z) and
M(z, u). Its singular behaviour can then be deduced from Lemma 4.2 together with Lemma 2.2. Note that
the functions D0(u), D2(u) and D3(u) are the first coefficients of the Puiseux expansion of D(z, u) for z ∼ σ,
which can be computed from the minimal polynomial of D(z, u) of degree 9 and obtained by elimination
from (20). This concludes the proof.

Proof of Theorem 1.3. Using the singular expansion of D(z, u) and the equations in (20) we obtain an
analogous expansion for I(z, u) and thus for C(z, u) when |u| ≤ 1 and u is sufficiently close to the real line:

C(z, u) = D(z, u) + I(z, u) = C0(u) + C2(u)Z2 + C3(u)Z3 +O(Z4), Z =
√

1 − z/σ.

Then we have
pk = lim

n→∞

[zn][uk]C(z, u)
[zn]C(z) .

It follows that the probability generating function is equal to

p(u) =
∑

k

pku
k = C3(u)

C3(1) .

We observe that p(u) is uniquely determined by analytic continuation. Furthermore, using Maple we obtain
that p(u) is the unique power series with non-negative coefficients which is a solution of the irreducible
polynomial

Q(p, u) = a0(u) + a1(u)p+ a3(u)p3, (30)
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where a0(u), a1(u) and a3(u) are the polynomials given in the statement of Theorem 1.3.
The dominant singularity u0 of p(u) is computed from the discriminant of Q(p, u) with respect to p. It

is the unique real root of

13u3 + (4
√

3 − 36)u2 + +(78 − 26
√

3)u+ 24
√

3 − 60 = 0,

and we have u0 ≈ 1.10254. The former equation can be rationalized and is equivalent to

13u6 − 72u5 + 252u4 − 504u3 + 600u2 − 432u+ 144.

The Puiseux expansion of p(u) for u ∼ u0 is of the form

C3(u) = aU−3 +O(U−1), with a ≈ 0.028650 and U =
√

1 − u/u0.

Using the Transfer Theorem we finally obtain the estimate

pk ∼ c · k1/2qk,

where c = a/κ(3/2) and q = u−1
0 . Let us remark that u0 > 1 and q < 1, in accordance to the fact that the

pk are the tail of a probability distribution.

The maximum face degree. Let pk be as before, and let p∗
k be the limiting probability that a random

face has degree k. A double counting argument [20] shows that the two distributions are related by

kp∗
k = µpk,

where µ is the expected degree of a random face (notice that
∑
kp∗

k = µ). It follows that

p∗
k ∼ c∗k−1/2qk, c∗ = cµ.

Let Yn,k be the number the number of faces of degree at least k+1 in maps of size n. As discussed in [13],
in this situation one has

EYn,k ≈ c∗q

1 − q
k−1/2qkn.

Denote by ∆n the maximum degree of a random cubic map. Then we have

P(∆n > k) = P(Yn,k > 0) ≤ EYn,k.

Thus, if k−1/2qkn → 0, then ∆n ≤ k almost surely when n → ∞. This happens if k = (1 + ϵ) logn/ log(1/q).
Usually such a threshold is tight, so one can expect the converse statement also to be true. This would imply
that ∆n ∼ logn/ log(1/q). In order to prove this rigorously, one needs to estimate the variance of Yn,k then
apply the second moment method. This can be achieved by analysing the degree of a second root face (see
[13] for details in a similar situation). This program could in principle be carried out by extending Lemma
4.1 to mark a second face with a new variable v. After verifying the conditions of [13, Theorem 1.1] one
would obtain

∆n

logn → log(1/q), E∆n ∼ 1
log(1/q) logn.

Although we expect that the former estimates hold, we have refrained from doing the necessary lengthy
calculations.
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5 Largest components
This section is devoted to proving Theorems 1.4, 1.5 and 1.6. The proof strategy follows the approach
from [3], which works for many different classes of maps (see [3, Table 4]). It consists in first proving a
map-Airy limiting distribution for the component (block, cubic block and 3-connected) containing the root
edge, the cores defined in Section 2, then transferring it to the largest component via a double-counting
argument. This strategy (see [3, Appendix D] or [17]) works by rooting maps at a secondary edge and then
‘exchanging the role of the two roots’, so that one can relate the number of maps whose core has size t with
those whose largest component has size t.

However, the last step does not extend directly to the size of the largest cubic block or the largest 3-
connected component of a random cubic map, that is, in the proofs of Theorems 1.5 and 1.6. The reason is
twofold. First, when counting maps by faces or vertices the argument from [3, Appendix D] fails, as rooting a
cubic map at a face or at a vertex does not carry sufficient information, unlike rooting at an edge. Secondly,
the recursive decomposition of cubic maps based on replacements of edges in the core has the particularity
that each replacement increases the number of edges in the core by one. Thus, when counting cubic maps
by edges, one needs to account for this fact in order to encode the number of edges of the largest component
containing the root.

Our solution is to introduce an extra variable u that encodes the number m of (non-empty) edge re-
placements in the core. In our context, each replacement is accounted for by subdividing the edge once, thus
creating a vertex of degree two. Adapting the proof method developed in [3], we show a limit law of the
map-Airy type, with fluctuations of order O(n2/3), for the number of edges of the core taking into account
vertices of degree two. Finally, we transfer this result to the size of the core without vertices of degree two
by showing that the fluctuations of m are typically Gaussian, of order O(n1/2+ε) for some ε > 0. The results
in this section are thus obtained for cubic maps counted by edges, but the same limiting distributions and
constants hold when considering cubic maps counted by faces.

Pure periodicities. We note that when counting cubic planar maps by edges one has to take care of
so-called pure periodicities, that is, the parameters satisfy several congruence relations. More precisely, the
number of edges e and the number of faces f satisfy the relations e = 3(f − 2) so that e is always a multiple
of 3. This is reflected by the appearance of singularities that are not located on the positive real line.

For instance, if a generating function F (z) with non-negative coefficients has the property that the only
positive coefficients are those whose indices are multiples of 3, then we can write F (z) = F̂ (z3), for some
function F̂ (z). Furthermore, in this case the dominant singularity z = ρ′ > 0 of F̂ (z) has three singularities
of F (z) as natural counterparts, z1 = ρ, z2 = ρei2π/3 and z3 = ρei4π/3, where ρ3 = ρ′. Hence, if we perform
Cauchy integration to obtain an asymptotic expansion for the coefficient [zn]F (z) we have to take into
account the contribution of the integral close to ρ, ρei2π/3 and ρei4π/3. Due to the relation between F (z)
and F̂ (z), these three contributions are the same up to a third root of unity. So that if n is a multiple of 3
then the total contribution is three times the contribution coming from the singularity z = ρ. On the other
hand, if n is not a multiple of 3 then the three contributions sum up to zero.

In order to make the following analysis more transparent and readable, we assume that no pure periodicity
appears, that is, no congruence relation between the non-zero coefficients is considered. This means in
particular that we do not take into account whether n is a multiple of 3 or not, and thus neglect the factor
3. However, we will eventually compute ratios of the form ([zn]F (z))/([zn]G(z)) so that the factor 3 finally
cancels. Thanks to this simplification we just have to consider the positive dominant singularity. Clearly, all
computations can be made completely rigorous.

5.1 Map-Airy law for the size of the 2-core
This section is devoted to the proof of a map-Airy law for the size (number of edges) of the 2-core of a
random cubic planar map with n edges, as n → ∞, but parameterized by a variable u marking the number
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of vertices of degree two in the 2-core. Before stating and proving it, we will however need to establish
preliminary results.

Our first preliminary result allows us to encode, using trivariate generating functions, the number of
edges of the 2-core of a cubic map while keeping track of the number of vertices of degree two.

Lemma 5.1. Let B(y) be the generating function of 2-connected cubic maps and C(z, w, u) that of cubic
maps, where y and z mark, respectively, the total number of edges, while w and u mark, respectively, the
number of edges and vertices of degree two in the 2-cores. Furthermore, let L(z) be the generating function
of loop cubic maps where z marks only non-root edges. Then the following equation holds:

C(z, w, u) = B

(
zw

1 − zwuL(z)

)
1

1 − zwuL(z) + zwuL(z)
1 − zwuL(z) + L(z)2

4z . (31)

Proof. After iteratively removing all the cherries from a cubic map, we are left with three possible configura-
tions: the resulting map is either a dumbbell (1), a rooted cycle of length at least one (2), or is 2-connected
and is thus the 2-core (3).

Case (1): cubic maps in this case are counted by L(z)2/4z. Dumbbells are not 2-connected and thus there
is no occurrence of the variables w and u here.

Case (2): those cubic maps can be derived by attaching a loop map at each vertex of a rooted cycle of
size at least one. Attaching a loop map at a vertex v is done by removing its root edge and identifying its
root vertex with v. Each such vertex (originally of degree two) amounts for one in the size of the 2-core. So
that the generating function for this family of cubic maps is zwuL(z)/(1 − zwuL(z)).

Case (3): any 2-core of some cubic map can be obtained by replacing the edges of some 2-connected cubic
map by (possibly empty) paths. The length of each added path contributes to as many vertices of degree
two in the 2-core. Conversely, one recovers the original map from its 2-core by attaching a loop map at
each vertex of degree two. Such maps are thus encoded by B (zw/(1 − zwuL(z))) /(1−zwuL(z)). The factor
1/(1 − zwuL(z)) amounts for the extra re-rooting of the map when the root edge of the core was replaced
by a non-empty path.

In order to adapt the methods of [4] to the composition scheme in (31), we will need a notion of ’criticality’.
This is our next preliminary result.

Critical composition scheme. When considering the first summand of the right side of (31), i.e. of
the composition scheme, the variables z and w always appear together as zw since an edge in the 2-core
contributes to the total number of edges. This motivates the changes of variables

x = zw and v = uL(z),

which transforms (31) into

C(x, v) = B

(
x

1 − xv

)
· 1

1 − xv
+ xv

1 − xv
+ L(z)2

4z .

Thus, for t > 0 we have

[wt]C(z, w, u) = [xt]B
(

x

1 − xv

)
· 1

1 − xv
zt + vtzt, (32)

We will eventually see that only the first summand of (32) contributes to the total mass of the distributions
of Xn and X∗

n, the random variables in Theorems 1.4 and 1.5 respectively. Hence, we can safely restrict our
study to the composition scheme

C̃(z, w, u) = C̃(x, v) = B

(
x

1 − xv

)
· 1

1 − xv
,
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and define x(v) = τ/(1 + τv) so that

x(v)
1 − x(v)v = τ and x(v)−1 = τ−1 + v. (33)

This composition scheme is ‘critical’ in the sense that, when z ∼ ρ and w = u = 1, we have

v = uL(z) ∼ L0, x(v) ∼ ρ, and zw

1 − zwuL(z) = x

1 − xv
∼ ρ

1 − ρL0
= τ,

that is,
ρ = τ

1 + τL0
and ρ−1 = τ−1 + L0.

Our last preliminary result is to derive asymtptotic estimates for the number of cubic maps, analogue to
those in Section 3, but this time counted by edges.

Estimates for cubic maps counted by edges. We already mentioned that there are three times as
many edges as faces minus two in a cubic map. Hence, the corresponding generating functions and their
dominant singular behaviour can be obtained by applying the change of variable z → z3 in the proofs of
Theorem 1.1 (a) and (b).

The generating function B(y) (where the exponent of y takes care of the number of edges) has its dominant
singularity at τ = 21/3/3 and for y ∼ τ we have the expansion

B(y) = B0 −B2Y
2 +B3Y

3 +O(Y 4), Y =
√

1 − y

τ
, (34)

with B0 = 1/8, B2 = 9/8 and B3 = 3. There are corresponding singularities at τei2π/3 and τei4π/3 that we
neglect. So in what follows we assume that B(y) is ∆-analytic so that the Transfer Theorem implies

[yn]B(y) = 3B3

4
√
π
n−5/2τ−n(1 + o(1)), as n → ∞. (35)

As mentioned above we omit a factor 3 and the restriction to n that are multiples of 3.
Similarly we assume that, both C(z) and L(z) are ∆-analytic at ρ = 21/3√

3/6. And for z ∼ ρ and
Z =

√
1 − z/ρ it holds that

C(z) = C0 − C2Z
2 + C3Z

3 +O(Z4) and L(z) = L0 − L2Z
2 + L3Z

3 +O(Z4), (36)

with C0 = 6
√

3−10, C2 = 18(2−
√

3), C3 = 12
√

2, and L0 = 22/3(
√

3−3/2), L2 = 22/3(3−
√

3), L3 = 21/64.
In particular, this means that the number of rooted cubic maps with n edges is

[zn]C(z) = 3C3

4
√
π
n−5/2ρ−n(1 + o(1)), as n → ∞, and with ρ = 21/3√

3/6. (37)

Again we omit here a factor 3 and the restriction to n that are multiples of 3.

We are now in a position to state and prove the main result of this section.

Proposition 5.2. Let α0 > 0 (that will be fixed later), q = O(1) and 0 < ε < 1/6. Then for t = α0n+ qn2/3

and u = 1 +O(t−1/2+ε) the following holds as n → ∞

[znwt] C̃(z, w, u) = 3B3

4
√
π

(1 + τuL0)5/2ρ−n+t
(
τ−1 + uL0

)t
n−5/2α

−3/2
0 n−2/3cA(cq)(1 + o(1)), (38)

where c = (3L3/L2)2/3
α−1

0 (1 − α0)−2/3.
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Proof. From the notation in (33), let us set

X =
√

1 − x

x(v) , so that x = x(v)(1 −X2).

Thus, when y = x/(1 − xv) ∼ τ and considering Y from (34), we can write

Y 2 = 1 − y

τ
= 1 −

x
1−xv

τ
= 1 −

x(v)(1−X2)
1−x(v)(1−X2)v

x(v)
1−x(v)v

= X2

1 − x(v)v +O(X4). (39)

So that the following asymptotic estimates hold

[xt] C̃(x, v)zt ∼ [xt]B3Y
3 1

1 − xv
zt, by applying the Transfer Theorem to (34) as y ∼ τ,

∼ [xt]B3
X3

(1 − x(v)v)3/2
1

1 − xv
zt, using (39),

∼ B3
3

4
√
π

(1 − x(v)v)−5/2x(v)−tt−5/2zt, by the Transfer Theorem as t → ∞,

= B3
3

4
√
π

(1 + τuL(z))5/2 (τ−1 + uL(z)
)t
t−5/2zt, using (33).

Hence,
[wt]C(z, w, u) ∼ [xt] C̃(x, uL(z))zt ∼ B3

3
4
√
π

(1 + τv)5/2 (τ−1 + v
)t
t−5/2zt.

Looking at each term of the above estimate, we first obtain using (36) and as z ∼ ρ(
τ−1 + uL(z)

)t ∼
(
τ−1 + uL0 − uL2Z

2 + uL3Z
3)t

∼
(
τ−1 + uL0

)t exp
(

− uL2

τ−1 + uL0
tZ2 + uL3

τ−1 + uL0
tZ3
)
.

(40)

And similarly, as z ∼ ρ we get

(1 + τuL(z))5/2 ∼ (1 + τuL0)5/2 exp
(

− τuL2

1 + τuL0

5
2Z

2 + τuL3

1 + τuL0

5
2Z

3
)
. (41)

With this at hand, we are in a position to compute the coefficient [zn][xt] C̃(x, uL(z))zt via Cauchy’s
formula, using a suitable contour γ in the z-plane that will be defined later:

[zn][xt] C̃(x, uL(z))zt = [zn−t][xt] C̃(x, uL(z)) = 1
2iπ

∫
γ

[xt]C̃(x, uL(z))
zn−t

dz

z
. (42)

In fact, as argued in the proof of [3, Theorem 5(ii)], the asymptotically significant part of (42) arises when
z is at distance (n − t)−2/3 from ρ, for instance when Z2 in (40) scales with (n − t)−2/3. This justifies the
following definition of the contour γ, depicted in Figure 4. It includes a positively oriented ”loop” that is
made of two rays at an angle of π/3 and −π/3 with (0,+∞), and intersecting on the real axis at distance
ρn−2/3 of ρ from the left. This contour is called γ2 in the proof of [3, Theorem 5(ii)]. Furthermore, this
motivates the following change of variable

s = s(z) = (n− t)2/3(1 − z/ρ). (43)

So that

Z2 = s

(n− t)2/3 , z = z(s) = ρ

(
1 − s

(n− t)2/3

)
and dz = − ρ

(n− t)2/3 ds.
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0
ρ

π
3

ρ

n2/3

Figure 4: The contour of integration γ in the z-plane.

Consequently, this changes (40) into

(
τ−1 + uL(z)

)t ∼
(
τ−1 + uL0

)t exp
(

− uL2

τ−1 + uL0

ts

(n− t)2/3 + uL3

τ−1 + uL0

ts3/2

n− t

)
. (44)

While (41) becomes

(1 + τuL(z))5/2 ∼ (1 + τuL0)5/2.

And the shifted Cauchy kernel is also transformed into

z−(n−t) = ρ−(n−t)es(n−t)1/3+o(n−1/3). (45)

Now, from t = α0n+ qn2/3 we get the following estimates as n → ∞

n− t = (1 − α0)n− qn2/3, t−5/2 = α
−5/2
0 n−5/2 +O(n−17/6),

(n− t)−1 = 1
1 − α0

n−1 +O(n−4/3), (n− t)−2/3 = 1
(1 − α0)2/3n

−2/3 +O(n−1/3),

t(n− t)−1 = α0

1 − α0
+O(n−1/3), (n− t)1/3 = (1 − α0)1/3n1/3 − q

3(1 − α0)2/3 +O(n−1),

t(n− t)−2/3 = α0

(1 − α0)2/3n
1/3 +

(
2α0

3(1 − α0)5/3 + 1
(1 − α0)2/3

)
q +O(n−1/3).

Hence, the exponential part of the product of (44) with (45) is asymptotically given by

sn1/3
(

(1 − α0)1/3 − uL2

τ−1 + uL0

α0

(1 − α0)2/3

)
− qs

(
1

3(1 − α0)2/3 + uL2

τ−1 + uL0

(
2α0

3(1 − α0)5/3 + 1
(1 − α0)2/3

))
+ α0

1 − α0

L3

τ−1 + uL0
s3/2.

(46)

Notice then that, using the values in (34) and (36), if we set

α0 = τ−1 + L0

τ−1 + L0 + L2
= 1√

3
, (47)
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this ensures that

(1 − α0)1/3 − L2

τ−1 + L0

α0

(1 − α0)2/3 = 0 and L2

τ−1 + L0
= 1 − α0

α0
.

And from u = 1 +O(t−1/2+ε) we further get that (46) reduces asymptotically to
L3

L2
s3/2 − 1

α0(1 − α0)2/3 qs+ o(1).

Remark finally that under the change of variable (43) γ evolves into a contour made of two segments of angle
2π/3 and −2π/3, intersecting at −1, and each of length O(log2 n). As argued in the proof of [3, Theorem
5(ii)], this contour can be extended back to infinity at the expense of exponentially small error terms.

Taking all the above assumptions into account then reverting the orientation of the new contour and
shifting it by one, we can transform (42) into

[zn][wt] C̃(z, w, u) ∼ 3B3(1 + τuL0)5/2

4
√
π

α
−5/2
0 ρ−n+t

(
τ−1 + uL0

)t

(1 − α0)2/3n2/3n5/2
1

2πi

∫ ∞ei2π/3

∞e−i2π/3
e

L3
L2

s3/2− 1
α0(1−α0)2/3 qs

ds.

The claimed estimate is then deduced by setting d1 = α−1
0 (1 − α0)−2/3 and d2 = L−1

2 L3 in the integral
representation from (10).

5.2 Proofs of the main results
Proof of Theorem 1.4. In order to study the distribution of Xn in the central regime, that is, when
blocks can have vertices of degree two and size in the range α0n + O(n2/3), we first consider the random
variable Yn denoting the size of the 2-core in Mn. Let q be in some bounded interval, then we have

P
(
Yn = ⌊α0 n+ qn2/3⌋

)
∼ [znwt] C̃(z, w, 1)

[zn]C(z) ∼ B3

C3
(1 + τL0)5/2α

−3/2
0 n−2/3cA(cq).

It follows then from the double-counting lemma used to prove Theorem 7 in [3, Appendix D] that, for
t = α0n+ qn2/3, there exists some A < 1 such that

P (Xn = t) = n

t
P (Yn = t) (1 +O(An)).

Since from (47) α0 = 1/
√

3, and using the values in (34) and (36)
B3

C3
(1 + τL0)5/2α

−5/2
0 = 1, (48)

it immediately follows that
P
(
Xn = ⌊n/

√
3 + qn2/3⌋

)
∼ n−2/3cA(cy),

with c = 2
√

3/(1 − 1/
√

3)4/3, as claimed.
We now focus on proving the first intermediate result required for the proof of Theorem 1.5, that is, in

a random cubic map whose 2-core has t edges and m vertices of degree two, m has Gaussian fluctuations
centered around t.
Lemma 5.3. Fix some 0 < ε, ε′ < 1/6, and let as before t = α0n + qn2/3 and u = 1 + O(t−1/2+ε),
where α0 = 1/

√
3 and q = O(1). Further let m = β0t + r, for some β0 > 0 (that will be fixed later) and

r = O(t1/2+ε′). Then as n → ∞ we have

[znwtum] C̃(z, w, u) ∼ 3B3

4
√
π

(1 + τL0)5/2

α
3/2
0

ρ−n

n5/2
e−r2/(2σ2α0n)
√

2πσ2α0n
n−2/3cA(cq), (49)

where c is as in (38).
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Proof. By using the identity ρ = (τ−1 + L0)−1, we obtain from (38)

[znwt] C̃(z, w, u) ∼ 3B3

4
√
π

(1 + τuL0)5/2

α
3/2
0

ρ−n

n5/2

(
τ−1 + uL0

τ−1 + L0

)t

n−2/3cA(cq). (50)

Remark that the function

u 7→
(
τ−1 + uL0

τ−1 + L0

)t

can be considered as the probability generating function of the sum of t iid random variables. In the present
context, this leads to the binomial distribution.

A known method to obtain a local limit theorem is to use Cauchy’s formula and a saddle point like
integration for the contour |u| = 1 (see for instance [11]). For r = O(t1/2+ε′), this yields

[um]
(
τ−1 + uL0

τ−1 + L0

)t

= 1
2πi

∫
|u|=1

(
τ−1 + uL0

τ−1 + L0

)t
du

um+1 ∼ e−r2/(2σ2t)
√

2πσ2t
, (51)

when
β0 = L0

τ−1 + L0
= 1 −

√
3

2 and σ2 = L0

τ(τ−1 + L0)2 .

It is important to note that the asymptotic leading term e−r2/(2σ2t)/
√

2πσ2t in (51) comes from the part
of integration where |u − 1| = O(t−1/2+ε). This justifies the above assumptions and also shows that the
asymptotic leading term of (50) is indeed equal to the claimed estimate.

Remark 5.4. Concerning the other regimes of t, outside the central region t = α0n+O(n2/3), of the distribu-
tion of [znwtum] C̃(z, w, u)/[zn]C(z), one can for instance show that the left tail decays like O(t−1/2t−3/2) =
O(t−2), when either t = O(1) or t = αn with α < α0, and m = β0t+ r. Just like for the central regime, this
can be derived by adapting the proof of [3, Theorem 5](i) to the present context.

It can similarly be shown (see [3, Theorem 5](iii)) that the right tail decays like O(An) for some A < 1,
when t = αn with α > α0.

In order to transfer this asymptotic result on the 2-core to the largest block, we need a generalisation of
the double-counting lemma from [3, Appendix D] to account for the vertices of degree two.

Lemma 5.5. Let α0, β0 ∈ (0, 1) be as above, let q = O(1), and assume that r = O(t1/2+ε) for some
0 < ε < 1/6. Let then cn,t,m be the number of cubic maps with n edges, and a 2-core with t = α0n + qn2/3

edges and m = β0t + r vertices of degree two. Further let c∗
n,t,m denote the number of cubic maps with n

edges, and a largest block with t edges and m vertices of degree two. Then there exists A < 1, independent
from the choices of q and r, such that

c∗
n,t,m = n

t
cn,t,m (1 +O(An)) .

Proof. The statements in [3, Appendix D] translate almost directly to our setting. Let an,t,m be the number
of cubic maps whose 2-core is also the largest block and has t edges and m vertices of degree 2. Similarly,
let bn,t,m be the number of cubic maps whose 2-core has t edges and m vertices of degree 2, but is not the
largest block. Then cn,t,m = an,t,m + bn,t,m. Furthermore, by rooting each cubic map at a second edge we
get the following identity

2ncn,t,m = 2nan,t,m + 2nbn,t,m = 2tc∗
n,t,m + 2nbn,t,m, (52)

where the second equality can be derived as follows. Among the 2ncn,t,m cubic maps with a 2-core of size t
and a second root edge, 2nbn,t,m of them have a largest block of size ℓ > t. The remaining ones have a 2-core
which is the largest block and, upon exchanging the rôle of the two roots, those maps are identified with the
2tc∗

n,t,m cubic maps with a largest block L of size t and a secondary root chosen in L.
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Let now B be one of the cubic maps counted by bn,t,m, that is B has n edges, a 2-core T of size t with
m vertices of degree two, and a largest block L of size ℓ > t. By construction, L is contained in a loop cubic
map H of size h attached to v, a vertex of degree two of T. Let D be the cubic map of size n − h obtained
from B by removing H. Then the 2-core of D is also T.

Conversely, B can be uniquely reconstructed from D, H and v. Thus, bn,t,m is bounded above by the
number of such triples: there are O(cn−h,t,m) many maps D whose 2-core of size t contains m vertices v of
degree two; and to every v there are O(c∗

h,ℓ,m) many possible loop cubic maps H to be attached. This means
that there exists a constant A0 such that

bn,t,m ≤ A0
∑
ℓ,h

t<ℓ<h<n−t

mcn−h,t,mc
∗
h,ℓ,m ≤ mA0

∑
ℓ,h

t<ℓ<h<n−t

cn−h,t,m
h

ℓ
(ch,ℓ,m − bh,ℓ,m)

≤ mA0
∑
ℓ,h

t<ℓ<h<n−t

h

ℓ
cn−h,t,mch,ℓ,m,

where the second inequality stems from (52). Thus,

bn,t,m

cn,t,m
≤ mA0

∑
ℓ,h

t<ℓ<h<n−t

h

ℓ

cn−h,t,m

[zn−h]C(z)
ch,ℓ,m

[zh]C(z)
[zn−h]C(z) · [zh]C(z)

[zn]C(z)
[zn]C(z)
cn,t,m

.

We now separately bound the ratios present in the right hand-side of this inequality as n → ∞. First,
from (37) we get [zn−h]C(z) · [zh]C(z)/[zn]C(z) = O(n5/2h−5/2(n − h)−5/2). Second, when ℓ and h are
fixed we fall under the regime of the left tail of the distribution of [znwtum] C̃(z, w, u)/[zn]C(z) (see Remark
5.4), so that ch,ℓ,m/[zh]C(z) = O(ℓ−1/2ℓ−3/2). While (49) implies that cn,t,m/[zn]C(z) = O(n−2/3n−1/2).
Furthermore, we have t/(n−h) > α0/(1 −α0) > α0. This is the regime of the right tail of the distribution of
[znwtum] C̃(z, w, u)/[zn]C(z) (see again Remark 5.4), thus cn−h,t,m/[zn−h]C(z) = O(At

1) for some A1 < 1.
All together, this implies the existence of constants A2 and A3 such that

bn,t,m

cn,t,m
≤ mA2A

t
1

∑
ℓ,h

t<ℓ<h<n−t

ℓ−3h−3/2(n− h)−5/2n11/3 ≤ A3A
n. (53)

And the claim follows by combining (52) with (53).

With this at hand, we can now transfer the estimate (49) to the distribution of X∗
n.

Proof of Theorem 1.5. Let c∗
n,t∗ denote the number of cubic maps of size n whose largest cubic block

has size t∗. By definition, we have

P (X∗
n = t∗) =

c∗
n,t∗

[zn]C(z) = 1
[zn]C(z)

∑
m,t: t−m=t∗

c∗
n,t,m.

And consequently, by Lemma 5.5

P (X∗
n = t∗) ∼ 1

[zn]C(z)
∑

m,t: t−m=t∗

n

t
cn,t,m ∼ 1

α0

1
[zn]C(z)

∑
m,t: t−m=t∗

cn,t,m.

We recall that n and t are (almost) proportional, with an error of order n2/3, and m and t are (almost)
proportional too, with an error of order n1/2. Thus, n and t∗ = t−m are again (almost) proportional, with
an error of order n2/3. And by representing t∗ as

t∗ = t−m = (1 − β0)t− r = α0(1 − β0)n+ q(1 − β0)n2/3 − r = α0(1 − β0)n+ q∗n2/3,
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where q∗ is considered as the new parameter, and using the values in (34) and (36)

α0(1 − β0) = 1/2.

We see that q = q∗/(1 − β0) + O(nε−1/6) that is, we certainly have A(cq) ∼ A(cq∗/(1 − β0)). Similarly,
m = β0t+ r rewrites to

m = β0

1 − β0
t∗ + r∗, where r∗ = r

1 − β0
.

In particular, this means that if t∗ is fixed and m varies then corresponding consecutive r differ by 1 − β0.
Hence, we obtain

1
α0

1
[zn]C(z)

∑
m,t: t−m=t∗

cn,t,m ∼ 1
α0

∑
r∗=r/(1−β0)=O(n1/2+ε)

B3

C3

(1 + τL0)5/2

α
3/2
0

e−r2/(2σ2α0n)
√

2πσ2α0n
n−2/3cA(cq)

∼ 1
α0

B3

C3

(1 + τL0)5/2

α
3/2
0

1
1 − β0

n−2/3cA(cq∗/(1 − β0))

= n−2/3c∗A(c∗q∗),

where the last equality is implied by (48) and by setting c∗ = c/(1 − β0) = 4/(1 − 1/
√

3)4/3.

Finally, we make a plausibility check and note that for any fixed constant a > 0 we have

n−2/3
∑

|x|≤K : xn2/3∈Z

aA (ax) = 1 + o(1), as K,n → ∞.

Hence, all neglected parts in our computations have no asymptotic weight. This concludes the proof.

Proof of Theorem 1.6. We only give a short sketch of the proof here, as it follows the lines of the proof
of Theorem 1.5. First, to obtain a decomposition of cubic maps in terms of their 3-cores, we consider the
near 3-core of a cubic map, that is, we contract each bead then each cherry to a single vertex of degree
two. The family of near 3-cores of cubic maps can be obtained by considering all 3-connected cubic maps
then possibly replacing each of their edges by a path of two edges. Special care must be taken to re-root the
resulting map when the original root edge was effectively replaced.

Let C(z, w, u) be the generating function counting cubic maps where the variable z marks the number
of edges, while w marks the number of edges and u the number of vertices of the near 3-core. And let M(y)
be the generating function counting 3-connected cubic maps where y marks the number of edges. Then the
decomposition of cubic maps in terms of their near 3-core gives an equation analogue to (31):

C(z, w, u) = M
(
zw(1 + zwuD(z))

)1 + 2zwuD(z)
1 + zwuD(z) + zA(z), (54)

where both D(z) and A(z) encode cubic maps without their root edge, D(z) count those not rooted at an
isthmus, while A(z) count those without a 3-core, namely

A(z) = L(z) + I(z) + P (z) + (D(z) −H(z))(D(z) −H(z) − S(z)).

Again, omitting periodicities and setting z → y3 in (9), we get that M(y) is ∆-analytic at θ = 21/33/8,
and furthemore we have for y ∼ θ that

M(y) = M0 −M2Y
2 +M3Y

3 +O(Y 4), Y =
√

1 − y

θ
, (55)
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with M0 = 5/256, M2 = 63/256 and M3 = 3
√

2/8. Similarly, setting z → z3 in the proof of Theorem 1.1(a)
implies that D(z) is ∆-analytic at σ = 21/3√

3/6, and for z ∼ σ

D(z) = D0 −D2Y
2 +D3Y

3 +O(Z4), Z =
√

1 − z

σ
, (56)

with D0 = 22/3(9/4 −
√

3), D2 = 22/3(9/2 +
√

3) and D3 = 21/636. Then, we apply the change of variables
x = zw and v = uD(z) to (54), and focus on the composition scheme

M
(
x(1 + xv)

)1 + 2xv
1 + xv

,

using the exact same strategy as in the proof of Theorem 1.5 (including an analogue version of Lemma 5.5),
but where D2 plays the rôle of L2, D3 of L3, and 2θ(1+4θD0)−1/2(1+

√
1 + 4θD0)−1 of (τ−1 +L0)−1. Thus,

the constants α0, β0 and c become

α0 = 2θ − σ

2θ − σ(1 − σD2) = 1
2 −

√
3

9 , β0 = σ2D0

2θ − σ
= 19

46 − 3
√

3
23 and c = 1

α0

(
3D3

(1 − α0)D2

)2/3
.

And, for q in a bounded interval, we obtain the final estimate

P
(
Zn = ⌊α0(1 − β0)n+ qn2/3⌋

)
∼ M3

C3

(
1 + 2σD0

1 + σD0

)5/2
α

−5/2
0 n−2/3c′A(c′q) as n → ∞.

From the values in (36), (55) and (56), we get α0(1 − β0) = 1/4, c′ = c/(1 − β0) = 72(3/2 − 1/
√

3)−4/3 and

M3

C3

(
1 + 2σD0

1 + σD0

)5/2
α

−5/2
0 = 1,

which concludes the proof.

6 Concluding remarks
We include a table of small values for the various number sequences counting cubic planar maps that are
2-connected (bn), arbitrary (cn), 2-connected simple (b∗

n), simple (c∗
n), 2-connected triangle-free (gn), triangle-

free (fn), 2-connected triangle-free simple (g∗
n), triangle-free simple (f∗

n). The index n is now the total number
of faces. For completeness we also include the numbers tn = [zn]M(z) of 3-connected cubic maps, which are
equal to the numbers of 3-connected triangulations.

n tn bn cn b∗
n c∗

n gn fn g∗
n f∗

n

3 1 4 1 4
4 1 4 32 1 1 3 19
5 3 24 336 3 3 12 147
6 13 176 4096 19 19 64 1432 1 1
7 68 1456 54912 128 143 432 16547 3 3
8 399 13056 786432 909 1089 3244 206520 12 12
9 2530 124032 11824384 6737 8564 2596 2707135 59 59

10 16965 1230592 184549376 51683 69075 217806 36818912 325 325
11 118668 12629760 2966845440 407802 569469 1893226 515736964 1863 1890

OEIS A000260 A000309 A002005 A058860 A058859

To conclude, let us mention that it would be also possible to analyse the size of the largest block in
random cubic planar graphs (see [24] for recent results on this topic). The main differences with the present
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work are the following. Given a vertex-rooted cubic planar graph G one cannot just define the 2-core as
the block containing the root vertex, as there may be several such blocks. This can be circumvented by
considering coreless graphs as in [19]. However the main difficulty, even if the 2-core is well defined, is that
it may contain double edges. One needs thus to consider rooted 2-connected cubic planar graphs counted
according to the number of vertices and double edges (the total number of edges is determined by the number
of vertices). If B•(x, y) is the associated generating function, where x marks vertices and y marks double
edges, then the composition scheme is

B•
(
wxQ(x,w)3/2,

Q(x,w)2 − 1
2Q(x,w)2

)
, (57)

where w marks the size (number of vertices) of the 2-core and Q(x,w) is the generating function of sequences
of ‘cherries’, playing the same role as 1/(1 − zL(z)) in Equation (31).

We see that this is a bivariate composition scheme in which the substitution in both variables contributes
to the size of the core. It is possible to show that a bivariate scheme of the form C(wH(z), F (z))G(z) leads
to a map-Airy law assuming suitable analytic conditions. And we believe this can be extended to prove a
map-Airy law for the size of the largest block in a random cubic planar graph (and also for a random simple
cubic map), but this would be technically more demanding and we leave it as a future project.
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