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tots ells per haver estat al meu costat durant aquesta etapa.

Finalment, al meu iaio, que m’ha motivat a estudiar des de ben menut i no m’ha pogut veure acabant aquesta

gran etapa. Gràcies.
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Abstract

This undergraduate thesis presents a study on the numerical solution of the Navier-Stokes equations under

various assumptions. To achieve this, several codes have been developed in C++ language to evaluate and

verify the cases proposed by the Heat Transfer Technological Center (CTTC).

The thesis is divided into different chapters. Firstly, there is an introduction to numerical methods, where

spatial and temporal discretizations are explained, along with algorithms for solving systems of equations.

Then, the main body of the work consists of four chapters. The first chapter addresses the heat conduction

phenomenon and solves a transient two-dimensional conduction case. The second chapter deals with the

general convection-diffusion equation and applies it to four problems to validate the code. The third chapter

implements the Fractional Step Method (FSM) and solves the Lid-Driven Cavity, Differential Heated Cavity,

and Square Cylinder cases. The fourth chapter solves the Burgers’ equation in the Fourier space. All four

chapters include theoretical development, the algorithm’s structure for solving the case, and one or several

verification cases, along with their respective reference results.

Finally, there is a last chapter about the Turbulent Flow problem, where the extension to three dimensions of

the numerical algorithm is explained.
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Resum

Aquest treball de final de grau presenta l’estudi sobre la resolució numèrica de les equacions de Navier-Stokes

sota diverses hipòtesis. Per fer-ho, s’han desenvolupat diversos codis en llenguatge C++ per tal d’avaluar i

verificar els casos proposats pel Centre Tecnològic de Transferència de Calor (CTTC).

El treball es divideix en diferents caṕıtols. Primerament hi ha una introducció als mètodes numèrics, on

s’explica la discretització espacial, temporal, i els algoritmes de resolució de sistemes d’equacions. Després,

entren els quatre caṕıtols que són el cos principal del treball. El primer caṕıtol tracta el fenòmen de conducció

de calor i resol un cas de conducció en dos dimensions i estat transitori. El segon, tracta l’equació general de

convecció-difusió i l’aplica a quatre problemes per verificar el codi. El tercer caṕıtol implenta el Fractional Step

Method i resol el cas de la Lid-Driven Cavity, la Differential Heated cavity i el cas del Square Cylinder, i el

quart caṕıtol resol l’equació de Burguers a l’espai de Fourier. Tots quatre caṕıtols inclouen un desenvolupament

teòric, l’estuctura de l’algoritme a seguir per resoldre el cas, i un o diversos casos de verificació, amb els

respectius resultats de referència.

Finalment, hi ha un últim caṕıtol sobre el problema del Flux Turbulent, on s’explica l’extensió l’esquema

numèric a tres dimensions.
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Glossary

The next list describes several symbols and abbreviations that will be later used within the body of the

document.

Abbreviations

2D, 3D: Two and three dimensions

CDS: Central-Difference Scheme

CFD: Computational Fluid Dynamics

CFL: Courant-Friedrich-Levy

CTTC: Centre Tecnològic de Transferència de

Calor

CV: Control Volume

DNS: Direct Numerical Simulations

EDS: Exponential-Difference Scheme

FDM: Finite Difference Method

FEM: Finite Element Method

FFT: Fast Fourier Transform

FSM: Fractional Step Method

FVM: Finite Volume Method

HRS: High Resolution Scheme

LES: Large Eddy Simulations

NS: Navier-Stokes

QUICK: Quadratic Interpolation for Convective

Kinematics

RANS: Reynolds Averaged Navier-Stokes Simula-

tions

SUDS: Second-order Upwind Difference Scheme

TDMA: Tri-Diagonal Matrix Algorithm

UDS: Upwind-Difference Scheme

Symbols

α: heat transfer coefficient [W/m2 ·K]

β: time integration coefficient

Γ: diffusion coefficient

δ: convergence parameter

δw: half-width for turbulent flow

ϵ: energy dissipation ratio [J/s]

η: Kolmogorov microscale

κ: volumetric expansion coefficient [1/K]

λ: thermal conductivity [W/m ·K]

µ: viscosity [Pa · s]
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ν: kinematic viscosity [m2/s]

ρ: density [kg/m3]

τ⃗ : shear stress tensor [N/m2]

ϕ: general convection-diffusion variable

ΩxP ,ΩyP ,ΩzP : staggered CV volumes [m3]

Af : CV surface (f = e, w, n, s, f, b) [m2]

aF , bP : coefficients (F = E,W,N, S, P, F,B)

Ck: Kolmogorov constant [m3/4/kg1/4 · s1/2]

Cn: integration coefficient (n = 1, 2...)

cP : specific heat at constant pressure [J/kg ·K]

cv: specific heat at constant volume [J/kg ·K]

Df : diffusive term (f = e, w, n, s)

d: distance [m]

E: energy [J ]

e: wall width [m]

F : force term

ff : convective term (f = e, w, n, s)

g⃗: gravity [m/s2]

H: height [m]

k: wave number

L: total length [m]

Lr: dimensionless recirculation length

l: partial length [m]

M : vertical number of nodes

m: slope of the energy spectrum

ṁ: mass flux [kg/s]

N : horizontal number of nodes

Nu: Nusselt number

n: time coefficient

n⃗: surface vector

Pe: Péclet number

Pr: Prandtl number

p: pressure [Pa]

⃗̇q: heat flux [W/m2]

R: FSM coefficient

Ra: Rayleigh number

Re: Reynolds number

Reτ : Friction Reynolds number

S: generic surface [m2]

Sϕ: diffusion source term

T : temperature [K]

t: time [s]

u: x-velocity [m/s]

ui: internal energy [J ]

uτ : shear velocity [m/s]

V : volume [m3]

v: y-velocity [m/s]

v⃗: velocity vector [m/s]

v⃗P : predictor velocity [m/s]

W : total width [m]

w: z-velocity [m/s]

x: horizontal coordinate [m]

y: vertical coordinate [m]

∞: infinity number
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Study for the computational resolution of conservation
equations of mass, momentum and energy.
Numerical analysis and turbulence models

Chapter 1

Introduction

1.1 Object

This project aims to develop a set of codes capable of solving heat and mass transfer problems involving fluid

dynamics. For this purpose, a study of different numerical methods and an in-depth study of the physics

behind these problems and the mathematical formulation are performed. These problems are offered by the

CTTC department and once its solution is obtained, a real particular case is proposed to be solved following

the same methodology.

1.2 Scope

The study includes the following tasks:

1. Heat conduction: study of the transient conduction and development of a code to solve the case

applied to a two-dimensional domain with different materials.

2. The Convection-Diffusion equation: study of the general convection-diffusion equation and

development of a code to solve different benchmark problems with different schemes.

3. Fractional Step Method: study of the method and development of a code for solving different

benchmark problems, such as the Lid-Driven Cavity, the Differential Heated Cavity, or the Square

Cylinder.

4. Turbulence: study of the phenomena and development of a code for solving the Burgers’ equation.

5. Turbulence study: following the same methodology as for the previous cases, solve a turbulent

channel flow problem.

The language chosen to write the different codes is C ++.

In any case, the study will include:

1. Experimental studies: every single study listed above will be solved by a code.

1
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As high-level deliverables, the following documents will be drafted:

1. Report: will include the introduction, theoretical studies, case studies, and results, together with

particular and global conclusions.

2. Budget: economic study of the project implementation.

3. Annexes: the codes and other relevant data will be delivered in the annexes.

1.3 Requirements

1. The codes to solve all the problems must be written in C ++ language.

2. The codes must be developed with comments to ease their understanding.

3. The codes must be optimized to reduce the computational time.

1.4 Rationale

Since the advent of computers, engineering has evolved so that the first option to consider when designing

anything is its simulation. Simulations are the closest approximation to the reality that allows for saving the

costs of designing and manufacturing experiments. For this reason, it is absolutely necessary that nowadays,

an engineer must know the basics of Computational Fluid Dynamics (CFD) and how to transform the theory

of the phenomena to be studied in codes and simulations as close to reality as possible.

Undoubtedly, the study of heat transfer is of great importance in many engineering applications, since

processes involving heat transfer are widely used in a great variety of devices and systems. For example,

heat transfer is crucial in the study of heat dissipation in electrical components, in the design of internal

combustion engines, in the design of chemical reactors, in the control of temperature in manufacturing

processes, in the heating and cooling of buildings, and many other applications.

Knowledge of the main physics of heat transfer and its application in practice is essential for these processes.

Numerical methods are an important tool to study and understand heat transfer processes. Through numerical

simulation, it is possible to investigate heat transfer processes in different scenarios and conditions and

optimize the design of devices and systems for higher efficiency.

In summary, this work on numerical methods applied to the study of heat transfer is important because it

helps to understand and optimize heat transfer processes in a variety of benchmark problems. The study of

conduction, convection-diffusion, and turbulence in particular is fundamental to this task, and numerical

methods are a key tool for the study of these processes.
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Chapter 2

State of the art

CFD and numerical methods have revolutionized the field of fluid dynamics by providing powerful tools to

simulate and analyze complex fluid flow phenomena. With the advancement of computer technology and

the development of sophisticated algorithms, CFD has become an indispensable tool in various industries,

ranging from the energy and environmental sciences to aerospace and automotive engineering. Since 1960,

CFD techniques have been integrated into the design and manufacture of airplane components and aircraft

[1].

CFD involves the numerical solution of governing equations that describe fluid flow behavior. These equations,

typically derived from the fundamental laws of physics, such as the conservation of mass, momentum, and

energy, are solved using numerical methods to obtain approximate solutions. Numerical methods play a

crucial role in CFD by discretizing the governing equations and transforming them into algebraic equations

that can be solved using computational algorithms.

Figure 2.1: High-Performance Computing - Flow past a circular cylinder from critical to trans-critical
Reynolds numbers. Extracted from [2]

The main scheme used throughout the work is based on the spatial and temporal discretization of the

equations using the Finite Volume Method (FVM), transforming them into an algebraic system that is solved

by means of an iterative process.
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2.1 The FVM

Methods such as Finite Difference Method (FDM) or Finite Element Method (FEM) are also discretization

methods that take the governing equations and discretize them into numerical systems that can be solved by

computers. To give an example, FEM divides the domain into a finite number of subdomains called elements,

and functions are applied to these elements. The whole domain function is defined by the summary of all the

elements. This report is based on the FVM.

The FVM breaks the domain into control volumes (CV) or grid cells, defined by a grid. Then, nodes are

placed at the cell faces or cell centers, and the flow properties are applied to these nodes [3]:

1. Face-centered nodes: nodes are placed at the center of the faces, which are determined by the grid.

The centroid values are obtained by the mean values of the contiguous nodes.

2. Cell-centered nodes: nodes are placed at the CV centroid. The face values are interpolated with

different schemes and the contiguous node values. It is considered that the whole CV has a constant

value of a certain property, which is also known as cell average property value [4].

It is mandatory to create a mesh generation function in order to apply the FVM. The following subsection

present the most commonly used grids nowadays.

2.1.1 Spatial discretization

As explained before, the FVM relies on a spatial discretization of the fluid domain to apply the numerical

approximation of the solution. Down below are presented the main meshes that are used in the present. It

must be kept in mind that every problem has its particular geometry, thus there is no correct or incorrect

mesh.

The main division of meshes is the structured or unstructured meshes, and the hybrid ones [3]:

1. Structured mesh: the grid characteristics, such as cell faces or node positions can easily be identified

by an index in every direction, and they are logically placed. To give an example, the third node of the

first row is at the left of the fourth node of the same row, and it is above the third node of the second

row. The structured meshes can also be sub-classified depending on the geometry of the CV (a and b),

and their uniformity (c and d):

(a) Orthogonal mesh: all the CVs have the same geometry and structure. It can also be defined as

all the grid lines crossing each other by right angles (see Figure (2.2a)).

(b) Non-orthogonal mesh: the geometry of the CVs is not constant along the mesh, meaning that

the grid lines are crossing in angles different than 90◦. This kind of mesh is widely used for circular

geometries (see Figure (2.2b)).

(c) Uniform mesh: the separation between grid lines is constant along the mesh.

(d) Non-uniform mesh: the separation between grid lines is not constant. It is commonly increased

in the zones where is expected to happen the major perturbations of the flow and a detailed view
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of the phenomenon wants to be captured.

Its efficiency and ease of definition make this kind of mesh a very suitable option for simulations.

Notwithstanding, complex geometries can not be enough precisely defined with this type of grid. In

other cases, the precision is certainly sacrificed and the Block-off Method is applied, which is explained

below.

2. Unstructured mesh: the placement is no longer a logical function. For example, the first node can

be at the right of the tenth node, and below the fifth one. Despite its computational cost increase, this

mesh offers the capability to adapt to the most complex geometries (see Figure (2.2c)).

3. Hybrid mesh: this last case blends structured orthogonal non-uniform meshes near the walls of the

geometry, with unstructured meshes where the flow is not expected to suffer huge variations and, thus,

a detailed study of the zone is not needed (see Figure (2.2d)).

The following image sums up different mesh types.

(a) Orthogonal uniform mesh (b) Non-orthogonal uniform mesh

(c) Unstructured mesh (d) Hybrid non-uniform mesh

Figure 2.2: Different types of mesh

Another important feature of spatial discretization and the meshes is where the values are stored. It has been
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said that the values are stored at the nodes, but this is only true for collocated meshes. There is a special

type of meshes in which scalar variables are stored at the nodes, but momentum variables are stored in the

cell faces. These are known as staggered meshes.

The Block-off Method consists of a geometrical approximation of the fluid domain. It is common to study

the flow around a curved surface. In this case, it is wanted to avoid the densification of the mesh and

an orthogonal uniform mesh must be used. For this, the surface is no longer a perfect curve and it is

approximated to a phased curve, as the picture shows:

(a) Real solid (b) Approximation of the solid

Figure 2.3: Block-off Method representation

2.1.2 Temporal discretization

For unsteady solutions, it is mandatory to consider the temporal variation of the flow. As well as geometry,

time is also discretized into a finite number of time instants, and denoted by n for the current time instant,

n− 1 for the previous, and n+ 1 for the next one [3]. Considering a velocity vector v⃗, its time dependency

can be expressed as follows:
∂v⃗

∂t
= f(v⃗) (2.1)

The time integration can be first-order discretized as the next expression shows:

v⃗n+1 − v⃗n

∆t
= f(v⃗n+1, v⃗n) (2.2)

It is clearly visible that there is a dependency on the next and current velocity. The previous equation can be

expressed in terms of a β ∈ [0, 1] parameter. The value of this parameter will determine the type of scheme

chosen:
v⃗n+1 − v⃗n

∆t
= βf(v⃗n+1) + (1− β)f(v⃗n) (2.3)

1. Explicit scheme: the solution of the next velocity only depends on the previous time instant value.
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In other words, β = 0.

v⃗n+1 = v⃗n +∆tf(v⃗n) (2.4)

This scheme is easy to program since it does not need a solver. The solution of the next time step only

depends on the previous solution, which is already known. On the other hand, it presents stability

problems, depending on the ∆t.

2. Implicit scheme: the solution of the next velocity depends on the solution itself. The parameter is

β = 1.

v⃗n+1 = v⃗n +∆tf(v⃗n+1) (2.5)

This scheme is unconditionally stable, no matter the value of the time step. The main disadvantage is

that a solver is mandatory. Some solvers are explained in the following section.

3. Crank-Nicolson scheme: this is also known as semi-implicit scheme since β = 0.5. The solution of

the next time instant depends on both the current and next time instant. It is also unconditionally

stable and it also needs a solver, but it is a second-order accurate scheme.

As well as spatial discretization, temporal discretization scheme selection relies on the problem itself.

Depending on the situation and conditions, explicit or implicit schemes could present both advantages and

disadvantages over the other scheme.

2.1.3 Solvers

As said before, for certain time integration schemes, solvers are needed. The following two solvers are

presented down below [5]:

1. Direct solver: the most commonly used direct solver is the Tri-Diagonal Matrix Algorithm (TDMA).

The following equation wants to be solved:

aP (i)T (i) = aE(i)T (i+ 1) + aW (i)T (i− 1) + bP (i) (2.6)

In matrices, it can be expressed as follows:

aP (1) aE(1) 0 0 0 ...

−aW (2) aP (2) −aE(2) 0 0 ...

0 −aW (3) aP (3) −aE(3) 0 ...

... ... ... ... ... ...


·



T (1)

T (2)

T (3)

...


=



bP (1)

bP (2)

bP (3)

...


(2.7)

The Tri-Diagonal matrix can be easily seen above. For 2D cases, it becomes Penta-Diagonal, and for

7



2.1. THE FVM CHAPTER 2. STATE OF THE ART

3D, Hepta-Diagonal. The equation is rewritten as follows, and substituted inside equation (2.6):

T (i− 1) = P (i− 1)T (i) +R(i− 1) (2.8)

aPT (i) = aET (i+ 1) + aW (P (i− 1)T (i) +R(i− 1)) + bP (i) (2.9)

This previous equation can be rewritten in terms of the next velocity. It must be seen that the TDMA

solves from the last temperature instant to the previous one:

T (i) =
aE(i)

aP (i)− aW (i)P (i− 1)
T (i+ 1) +

bP (i) + aW (i)R(i− 1)

aP (i)− aW (i)P (i− 1)
(2.10)

2. Undirect solvers: also known as iterative solvers, they take an initial estimated value T est and a

convergence parameter δ, and the iterative process continues until the convergence criterion is reached.

The most commonly used direct solver is the Gauss-Seidel:

T (i) =
aE(i)T

est(i+ 1) + aW (i)T est(i− 1) + bP (i)

aP (i)
(2.11)

If |T est − T (i)|> δ, there is a data update step, such as T est = T (i). If not, the convergence criterion

has been reached.
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Chapter 3

Conduction heat transfer

This third chapter is focused on the study and the appliance of the first thermal conduction phenomenon, heat

conduction. For this purpose, a previous mathematical study is done to better understand the formulation

and physics behind heat conduction, and after that, it is applied to different theoretical cases.

3.1 Mathematical formulation

The first approach to heat conduction can start with the energy conservation equation:

∂

∂t

∫
ρuidV = −

∫
⃗̇q · n⃗dS (3.1)

From this equation, two branches can be distinguished. The first is steady-state conduction, which is

accomplished by assuming a null value for the left-hand side of the equation. The second is the transient-state

conduction and is the following developed case.

Assuming constant thermophysical properties, equation (3.1) becomes as follows:

ρ
∂

∂t

∫
uidV = −

∫
⃗̇q · n⃗dS (3.2)

This equation is applied to a certain domain discretized with uniform CVs and cell-centered nodes (see Figure

(3.1)).

Let’s focus on an internal control volume, denoted with the subscript P . A new mean internal energy is

introduced to evaluate the whole energy inside the CV:

uiP =
1

VP

∫
uidV (3.3)

9
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Figure 3.1: 2D spatial discretization

On the other side, it is assumed that the average energy can be written as a summation of the conduction

heat flows entering and leaving the actual control volume. It is considered a two-dimensional domain with

positive heat flow with positive coordinates axis. Subscripts stand for East, West, North, and South:

−
∫
⃗̇q · n⃗dS = QE −QW +QN −QS =

∑
Q (3.4)

Taking equation (3.2) and introducing equations (3.3) and (3.4), the new equations is rewritten as follows:

ρPVP
∂uiP
∂t

=
∑

Q (3.5)

Time integration is done at this point. Since time is also discretized in time steps, the integral is done between

the current time and the next time step, tn and tn+1 respectively. A new parameter β is introduced since the

nature of the scheme can be implicit or explicit.

∫ tn+1

tn
ρPVP

∂uiP
∂t

dt =

∫ tn+1

tn

∑
Qdt (3.6)

ρPVP
uiP

n+1 − uiP
n

∆t
= β

∑
Qn+1 + (1 + β)

∑
Qn (3.7)

From now on, an implicit resolution is considered, being β = 1. In equation (3.7), the following relations can

be introduced:

1. Internal energy definition:

uiP = cPTP (3.8)

2. Fourier’s law of Thermal Conduction with a second-order approximation

Q̇n = −λ∂T
∂n

Sn = −λTX − TP
dXP

Sx (3.9)
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being X a general node that can be East, West, North, or South.

Introducing the previous relations and expanding the summation term for the four possible locations mentioned

before, the final equation results in the following:

ρPVP cP
TP

n+1 − TP
n

∆t
=

[
λe
TE − TP
dPE

Se − λw
TP − TW
dPW

Sw + λn
TN − TP
dPN

Sn − λs
TP − TS
dPS

Ss

]n+1

(3.10)

This equation can be easily simplified by introducing the discretization coefficients. These coefficients collect

the different variables that are multiplying the node temperatures, and the equation results in a simpler form:

aPT
n+1
P = aWTn+1

W + aET
n+1
E + aST

n+1
S + aNT

n+1
N + bP (3.11)

It is important to remember that these coefficients can change between problems, depending on the conditions

taken into consideration or the boundary conditions of each particular case. For this reason, a particular

treatment of each coefficient will be done if it changes from this general form.

3.2 Code structure

The global algorithm to solve the problem is presented below:

1. Input data

(a) Physical data, such as geometry, initial and physical properties, boundary conditions, etc.

(b) Numerical data, such as convergence parameter, time step, mesh size, etc.

2. Previous calculations: vector definitions and mesh generation, assigning each CV its properties, using

the Block-off Method depending on the material.

3. Initial temperature map: both real and estimated temperatures are initialized. The initial temperature

value is assigned to the real temperature matrix at t = 0, Tn, and an arbitrary initial value is assigned

to the estimated temperature matrix, Tn
est.

4. Time-convergence starting point:

(a) Thermophysical properties calculations using the harmonic mean:

λEast =
dPE

dPe

λP
+ deE

λE

(3.12)

where dPE stands for the distance between the actual and its east node, and dPe stands for the

distance between the actual node and the east face of its CV. The operation is repeated for each

face.

(b) Discretization coefficients aE , aW , aN , aS , aP and bP . Particular treatment for each wall and the

nodes inside. A detailed explanation is written in each particular case subsection.
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(c) Temperature resolution: real temperature is solved by the previous coefficients and the estimated

temperature Test. The process is done node-by-node:

aPT
n+1
P = aWTn+1

West
+ aET

n+1
Eest

+ aST
n+1
Sest

+ aNT
n+1
Nest

+ bP (3.13)

(d) Convergence analysis: If the result converges, max|Tn+1−Tn+1
est |< δ the code goes to step 5. If not,

the code updates the data, being the new estimated values the last computed ones Tn+1
est = Tn+1,

and returns to step 4a.

5. New time step: here two different criteria can be applied, depending on the steady-state achievement

or a certain time achievement. This study in particular applies the second one, achieving up to 5000

seconds.

6. Final computations and results printing

3.3 Code verification

Code verification is an essential step as it helps to identify errors or bugs in the code. By verifying the code,

it can be ensured that the code of the previous algorithm meets the intended specifications, is free of errors,

and is reliable and efficient. For this reason, the following cases are solved using the same code and making

the modifications needed.

The reason why these cases are chosen is that they have an analytical solution and taking it as a reference

result, the code can be perfectly verified [6]. The problems will be solved as a one-dimensional steady-state

problem, and the code is run until a steady state is reached.

At the end of the four verification cases, a particular problem is solved, which involves different boundary

conditions and transient terms, as well as different materials. Thermophysical properties for all the verification

cases will be taken from this last problem.

3.3.1 Case 1

The first case considers a single material with very high thermal conductivity, allowing simplification of the

solution. The whole solid is in contact with an external fluid of constant and known properties αg and Tg,

and heat generation is not considered (see Figure (3.2)).

The analytical solution results from the following process:

ρcp
∂T

∂t
= αg(T − Tg)ST (3.14)

where ST stands for the total surface of the solid in contact with the external fluid. Since the properties of

the external fluid are constant over time, the previous equation has a direct solution:

T = Tg (3.15)
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Figure 3.2: Verification case 1. Geometry and properties

As for the code, the following changes in the boundary conditions must be done:

1. Thermal conductivity: λ = 108 W
mK . Density and specific heat are also changed into the same value.

2. Right, left, north, and south sides: since the left side does not have west nodes, aW = 0, and the

surface of the north and south faces is null, so aN = aS = 0. Natural convection must be considered in

aP and bP coefficients. The four sides follow the same scheme, so let’s take the left side as an example:

aE =
λeSe

dPE

aW = aN = aS = 0

aP = aE + αgSe

bP = αgTgSe (3.16)

Considering the properties of the first material and the external fluid of the left side (see Table (3.3)), the

results obtained are the following:

Table 3.1: 1st verification case results. Comparison between analytical and numerical solutions

Analytical solution [K] Numerical solution [K]

303 303.001

It can be observed that the relative error obtained is below 0.001%.

3.3.2 Case 2

The second case considers also a single material with the first material properties. The boundary conditions

are adiabatic walls for the upper and lower ones and convection with external fluids A and B for the left and

right walls. Also, heat generation is neglected.
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Figure 3.3: Verification case 2. Geometry and properties

The analytical solution results from the following process:

ρcp
∂T

∂t
= λ

(
∂2T

∂x2

)
(3.17)

Since the properties of the external fluid are constant over time, the previous equation can be integrated:

T (x) = C1x+ C2 (3.18)

Applying boundary conditions on the left side, the second integration constant can be written in terms of

the left wall temperature. Doing the same on the right side, the first integration constant can be written in

terms of the right wall temperature:

T (x = 0) = Tleft = C2 (3.19)

T (x = L) = Tright = C1L+ Tleft (3.20)

To solve the two wall temperatures, an energy balance has to be applied, since the convection heat flux must

be equal to the conduction heat flux in each wall.

q̇conv |(x=0)= q̇cond |(x=0) (3.21)

αA(TA − Tleft) = −λdT
dx

|(x=0) (3.22)

q̇cond |(x=L)= q̇conv |(x=L) (3.23)

−λdT
dx

|(x=L)= αB(Tright − TB) (3.24)

The final analytical solution is the following one:

T (x) =
−αA

λ
(TA − Tleft)x+ Tleft where Tleft =

αATA
(
1 + αBL

λ

)
+ αBTB

αB

(
1 + αAL

λ

)
+ αA

(3.25)
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As for the code, the following changes in the boundary conditions must be done:

1. Materials properties: density, specific heat, and thermal conductivity are the same for the four

materials.

2. Right and left sides: both sides follow the same scheme. Take the left side as an example:

aE =
λeSe

dPE

aW = aN = aS = 0

aP = aE + αgSe

bP = αgTgSe (3.26)

3. North and left sides: this time, convection must not be considered in the upper and lower walls,

since they are adiabatic. Both sides have the same adiabatic boundary condition, so let’s take the north

side as an example:

aN = 1

aS = aE = aW = bP = 0

aP = 1 (3.27)

Considering the properties of the first material and the external fluid of the left side (see Table (3.3)), at

Tleft = 33◦C and Tright = 0◦C, the results obtained are the following:
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Figure 3.4: 2nd verification case results. Comparison between analytical and numerical solutions

The maximum relative error obtained is below 0.003%.
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3.3.3 Case 3

The third case considers two materials with the first and fourth material properties. The boundary conditions

are adiabatic walls for the upper and lower ones and convection with external fluids A and B for the left and

right walls. Again, heat generation is neglected.

Figure 3.5: Verification case 3. Geometry and properties

The analytical solution results from the following process. This time, a different equation for each material

must be found, and an additional energy balance between the two materials has to be done.

ρcp
∂T

∂t
= λ

(
∂2T

∂x2

)
(3.28)

Since the properties of the external fluid are constant over time, the previous equation can be integrated, and

the two equations are found:

T1(x) = C1x+ C2 and T2(x) = C3x+ C4 (3.29)

The solution is found by an alternative way to solve the previous Cn coefficients.

For the left wall, boundary condition and energy balance allow writing C1 and C2 in terms of the left wall

temperature:

C1 =
−αA

λ
(TA − Tleft) and C2 = Tleft (3.30)

For the center wall, the contact between both materials, boundary conditions for the two materials, and an

energy balance are applied:

Tcenter = C1e+ C2 (3.31)

Tcenter = C3e+ C4 (3.32)

−λ1C1 = −λ2C3 (3.33)

Equations (3.31) and (3.32) must be equal, and equation (3.33) allows writing C3 in terms of the left wall

temperature.
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For the right wall, boundary condition and energy balance allow writing C4 in terms of the right wall

temperature, and this temperature can be also expressed in terms of the left wall.

Finally, the left wall can be expressed in terms of the external fluid temperatures. The final analytical

solutions are found:

T1(x) =
−αA

λ1
(TA − Tleft)x+ Tleft where Tleft =

TB − TAαA

(
−e
λ1

+ e
λ2

− 1
αB

− l
λ2

)
1− αA

(
−e
λ1

+ e
λ2

− 1
αB

− l
λ2

) (3.34)

T2(x) =
αA

λ2
(TA − Tleft)(L− x) + Tright where Tright =

αA

αB
(TA − Tleft) + TB (3.35)

As for the code, the same changes as in the previous case must be done. Considering the properties of the first

and fourth material and the external fluid of the left side (see Table (3.3)), at Tleft = 33◦C and Tright = 0◦C,

the results obtained are the following:
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Figure 3.6: 3rd verification case results. Comparison between analytical and numerical solutions

3.3.4 Case 4

The fourth case is an extension of the previous one. Now, heat generation is considered in the first material.

Figure 3.7: Verification case 4. Geometry and properties
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The analytical solution also results from the previous process, adding a heat source to the equation of the

first wall:

ρcp
∂T

∂t
= λ

(
∂2T

∂x2

)
+ q̇V (3.36)

The integration results in the following two equations:

T1(x) =
−q̇V
2λ1

x2 + C1x+ C2 and T2(x) = C3x+ C4 (3.37)

The solution is found following the same way as before to solve the previous Cn coefficients.

For the left wall, boundary condition and energy balance allow writing C1 and C2 in terms of the left wall

temperature:

C1 =
−αA

λ
(TA − Tleft) and C2 = Tleft (3.38)

For the center wall, the contact between both materials, boundary conditions for the two materials, and an

energy balance are applied. It must be seen that both temperature equations must be equal to the same

center wall temperature:

T1center =
−q̇V
2λ1

e2 + C1e+ C2 (3.39)

T2center = C3e+ C4 (3.40)

−λ1
(
−q̇V
λ1

e+ C1

)
= −λ2C3 (3.41)

Equation (3.41) allows writing C3 in terms of the left wall temperature.

For the right wall, the boundary condition allows writing C4 in terms of the right wall temperature, and the

left wall through C3.

C4 = Tright − C3L (3.42)

The energy balance allows writing the right wall temperature in terms of the left wall temperature:

Tright =
αBTB + αA(TA − Tleft) + q̇V e

αB
(3.43)

Finally, the values of the Cn coefficients are introduced in equations (3.39) and (3.40), together with the

Tright equation to solve Tleft in terms of the external fluid temperatures:

Tleft =
Tb+ αATA

(
e
λ1

− e
λ2

+ L
λ2

+ 1
αB

)
+ q̇V e

(
e

2λ1
− e

λ2
+ L

λ2
+ 1

αB

)
1 + αA

(
e
λ1

− e
λ2

+ L
λ2

+ 1
αB

) (3.44)

T1(x) =
−q̇V
2λ1

x2 +
−αA

λ1
(TA − Tleft)x+ Tleft (3.45)

T2(x) =
−αA(TA − Tleft)− q̇V e

λ2
x+ Tright +

αA(TA − Tleft)L+ q̇V eL

λ2
(3.46)
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As for the code, the same changes as in the previous cases must be done. Considering the properties of

the first and fourth material and the external fluid of the left side (see Table (3.3)), at Tleft = 33◦C and

Tright = 0◦C, and adding a heat generation of q̇w = 100W/m3, the results obtained are the following:
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Figure 3.8: 4th verification case results. Comparison between analytical and numerical solutions

3.3.5 4-materials 3D rod

The main goal is the thermal analysis of a rod composed of four different materials through its section, with

an ideal infinite length, different boundary conditions, and transient state once the code has been successfully

verified. The geometry is the following:

Figure 3.9: Materials distribution. Extracted from [7]

The following table sums up the physical properties of the different materials and the boundary conditions

for each wall of the rod, respectively. The following properties are the ones used for the previous verification

cases:
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Table 3.2: Thermophysical properties of the materials

ρ (Kg/m3) cP (J/KgK) λ (W/mK)

M1 1500 750 170

M2 1600 770 140

M3 1900 810 200

M4 2500 930 140

Table 3.3: Specific boundary conditions

Wall Boundary condition

Bottom Isothermal wall at Tb = 23◦C

Top Uniform incident heat flux q̇w = 54.55W/m2 (negative on Y)

Left Convection with external fluid at Tl = 33◦C and αl = 9W/m2K

Right Uniform transitory wall at Tr(t) = 8 + 0.005t

As a last condition, it is established that the initial rod temperature is 8◦C.

As said before, the discretization coefficients vary depending on the wall. For this reason, a particular

treatment must be done for each side of the rod:

1. Left side: since the nodes of this side don’t have west nodes, is imposed that aW = 0, and the surface

of the north and south faces is null, so aN = aS = 0. Convection with the east side must be applied for

aE . The rest of the coefficients are defined as follows:

aE =
λeSe

dPE

aP = aE +
ρP cPVP

∆t
+ αlSw

bP =
ρP cPVP

∆t
Tn
P + αlTlSw (3.47)

2. Right side: since the nodes of this side don’t have east nodes, is imposed that aE = 0, and the surface

of the north and south faces is null, so aN = aS = 0. In addition, this side corresponds to a uniform

transitory wall, which does not depend on its west nodes, so aW = 0, and only bP takes a non-null

value:

aP = 1

bP = (8 + 0.005t) + 273 (3.48)

3. Top side: since the nodes of this side don’t have north nodes, is imposed that aN = 0, and the surface

of the east and west faces is null, so aE = aW = 0. Conduction with the north side must be applied.
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The rest of the coefficients are defined as follows:

aS =
λwSw

dPW

aP = aS +
ρP cPVP

∆t

bP =
ρP cPVP

∆t
Tn
P + ˙qwSw (3.49)

4. Bottom side: since this side’s nodes are at a constant temperature, the aP coefficient only relies on

this temperature, which is assigned by the bP coefficient. The rest of the coefficients take a null value

aE = aW = aN = aS = 0:

aP = 1

bP = Tb (3.50)

The temperature map obtained after 5000 seconds is the one below, together with the reference solutions:
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Figure 3.10: Temperature map after 5000 seconds and 50× 50 mesh

3.3.6 Mesh size influence

The mesh influence is important as it can prevent the code from reaching convergence. Also, the accuracy of

the results depends on this parameter.

As can be seen below, four different results are obtained with four different uniform meshes (see Figure

(3.11)). The coarse mesh of the two first cases results in a significant inaccuracy compared to the reference

result, provided by CTTC. The results obtained with a finer mesh seem to converge in the same result as the

reference one.
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Figure 3.11: Temperature map after 5000 seconds for different meshes

3.4 Discussion

In conclusion, this chapter presented the verification of the heat conduction code through the analysis of four

different verification cases and a benchmark problem. Each verification case allowed the comparison of the

numerical results with analytical solutions or reference data.

The first four verification cases involved one-dimensional steady-state heat conduction problems with different

boundary conditions and internal configurations. The code accurately reproduced the analytical solution,

confirming its capability to handle simple heat transfer problems. Finally, the benchmark problem of the

four materials, which is widely used in the heat conduction field, also demonstrated the excellent agreement

between the numerical results and the benchmark data further reinforcing the reliability and validity of the

numerical approach.

These results provide confidence in the code’s ability to handle a wide range of heat transfer scenarios, laying

a solid foundation for its application to extension cases in subsequent chapters.
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Study for the computational resolution of conservation
equations of mass, momentum and energy.
Numerical analysis and turbulence models

Chapter 4

Convection and Diffusion

This fourth chapter is focused on the mathematical study and the appliance of the general Convection-Diffusion

equation For this purpose, a previous mathematical study is done, and four benchmark problems are solved

with the developed algorithm.

4.1 The Convection-Diffusion Equation

The convection-diffusion equation comes from summarizing all the governing equations of the heat transfer by

convection, also known as the Navier-Stokes equations [8]. Composed of mass conservation (4.1), momentum

conservation (4.2), and energy conservation (4.3), the Navier-Stokes equations are expressed in differential

form as follows:
∂ρ

∂t
+∇ · (ρv⃗) = 0 (4.1)

∂(ρv⃗)

∂t
+∇ · (ρv⃗v⃗) = ∇ · (µ∇v⃗) + {∇ · (τ⃗ − µ∇v⃗)−∇p+ ρg⃗} (4.2)

∂(ρT )

∂t
+∇ · (ρv⃗T ) = ∇ ·

(
λ

cv
∇T
)
+

{
−∇ · ⃗̇qR − p∇ · v⃗ + τ⃗ : ∇v⃗

cv

}
(4.3)

These previous equations can be expressed in a single one, named the general Convection-Diffusion Equation:

∂(ρϕ)

∂t
+∇ · (ρv⃗ϕ) = ∇ · (Γ∇ϕ) + Sϕ (4.4)

Being ϕ a general variable, Γ a diffusion coefficient, and Sϕ the source term, the following table gives each

specific value of the previous variables to reproduce the governing equations:
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Table 4.1: Specific values of ϕ, Γ, and Sϕ

Governing equation ϕ Γ Sϕ

Mass conservation 1 0 0

Momentum conservation v⃗ µ ∇ · (τ⃗ − µ∇v⃗)−∇p+ ρg⃗

Energy conservation T λ
cv

−∇·⃗q̇R−p∇·v⃗+τ⃗ :∇v⃗
cv

For numerical discretization, FVM is applied, with non-overlapping CVs and cell-centered nodes. An implicit

scheme is considered for the unsteady terms. With all these considerations taken into account, the general

equation (4.4) is integrated and results as follows:

(4.5)ρPϕP − ρ0Pϕ
0
P

∆t
VP + ṁe(ϕe − ϕP )− ṁw(ϕP − ϕw) + ṁn(ϕn − ϕP )− ṁs(ϕP − ϕs)

= De(ϕE − ϕP )−Dw(ϕP − ϕW ) +Dn(ϕN − ϕP )−Ds(ϕP − ϕS)

Note that each term of the equation is referred to the next time step, except the ones expressed with

superscript x0, which are referred to the previous time step.

Also, note that the convection terms are expressed as a function of the ϕ value at the CV face (ϕe), but the

diffusion terms are referred to the ϕ value at the adjacent node (ϕE). To avoid this situation and standardize

the nomenclature, different schemes are presented.

4.1.1 Central-Difference scheme - CDS

Being the simplest scheme assumes a linear ϕ distribution between adjacent nodes. With this assumption,

the following relation is applied:

ϕe − ϕP = fe(ϕE − ϕP ) (4.6)

where fe stands for the ratio of the distance between the node and the face, and the distance between both

nodes.

Figure 4.1: CDS scheme

24



4.1. THE CONVECTION-DIFFUSION EQUATION CHAPTER 4. CONVECTION AND DIFFUSION

Introducing this relation into equation (4.5) and grouping the different terms referring to the nodes, the

equation is discretized as follows:

aPϕP = aEϕE + aWϕW + aNϕN + aSϕS + bP (4.7)

where

aE = De − ṁefe aW = Dw − ṁwfw aN = Dn − ṁnfn aS = Ds − ṁsfs (4.8)

aP = aE + aW + aN + aS +
ρ0PVP
∆t

(4.9)

bP =
ρ0PVP
∆t

ϕ0P (4.10)

De =
ΓeSe

dPE
Dw =

ΓwSw

dPW
Dn =

ΓnSn

dPN
Ds =

ΓsSs

dPS
(4.11)

fe =
dPe

dPE
fw =

dPw

dPW
fn =

dPn

dPN
fs =

dPs

dPS
(4.12)

Being a 2nd-order accurate scheme, CDS presents stability problems.

4.1.2 Upwind-Difference scheme - UDS

The UDS is defined by the assumption that for incompressible flows, or gases at low Mach number, convective

terms are more influenced by upstream nodes than downstream conditions. For this reason, the following

relation is applied:

ṁe(ϕe − ϕP ) =
ṁe − |ṁe|

2
(ϕE − ϕP ) (4.13)

(a) Positive UDS scheme (b) Negative UDS scheme

Figure 4.2: UDS scheme

Introducing this relation into equation (4.5) and grouping the different terms referring to the nodes, the same
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equation is obtained (4.7). This time, the coefficients are the following:

aE = De −
ṁe − |ṁe|

2
aW = Dw − ṁw − |ṁw|

2
(4.14)

aN = Dn − ṁn − |ṁn|
2

aS = Ds −
ṁs − |ṁs|

2

aP = aE + aW + aN + aS +
ρ0PVP
∆t

(4.15)

bP =
ρ0PVP
∆t

ϕ0P (4.16)

De =
ΓeSe

dPE
Dw =

ΓwSw

dPW
Dn =

ΓnSn

dPN
Ds =

ΓsSs

dPS
(4.17)

UDS is much more stable than the previous scheme but is 1st-order accurate. Since a 2nd-order accurate and

stable scheme is searched, the next scheme is presented.

4.1.3 Exponential-Difference scheme - EDS

This scheme assumes a ϕ distribution based on a simplified form of the general Convection-Diffusion equation

without source terms. The same relation as for the CDS scheme is applied (4.6), and the equation is discretized

as follows:

aPϕP = aEϕE + aWϕW + aNϕN + aSϕS + bP (4.18)

where

aE = De − ṁefe aW = Dw − ṁwfw aN = Dn − ṁnfn aS = Ds − ṁsfs (4.19)

aP = aE + aW + aN + aS +
ρ0PVP
∆t

(4.20)

bP =
ρ0PVP
∆t

ϕ0P (4.21)

De =
ΓeSe

dPE
Dw =

ΓwSw

dPW
Dn =

ΓnSn

dPN
Ds =

ΓsSs

dPS
(4.22)

fe =
e
Pe

dPe
dPE − 1

ePe
fw =

e
Pw

dPw
dPW − 1

ePw
fn =

e
Pn

dPn
dPN − 1

ePn
fs =

e
Ps

dPs
dPS − 1

ePs
(4.23)

where Px stands for the local Péclet number, and it is computed as follows:

Pe =
ρevedPE

Γe
Pw =

ρwvwdPW

Γw
Pn =

ρnvndPN

Γn
Ps =

ρsvsdPS

Γs
(4.24)

EDS is also stable and it is 2nd-order accurate, but when it comes to a large Péclet number, the solution

tends to be the same as for UDS. For this reason, high-resolution schemes (HRS) such as SUDS or QUICK

are applied.
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4.1.4 Second-order Upwind linear extrapolation - SUDS

This first HRS assumes a linear extrapolation but with the two upstream nodes. Located at the face position,

the nomenclature for the three nodes is the following:

D = downstream node

C = first upstream node

U = most upstream node

(a) Positive SUDS scheme (b) Negative SUDS scheme

Figure 4.3: SUDS scheme

The relation for solving ϕ at the desired face is a little trickier than the schemes mentioned before since the ϕ

result is obtained through its dimensionless form as it follows:

ϕ̂f =
x̂f
x̂C

ϕ̂C (4.25)

where ϕ̂f stands for the located face dimensionless ϕ value, and:

ϕ̂ =
ϕ− ϕU
ϕD − ϕU

(4.26)

and

x̂ =
x− xU
xD − xU

(4.27)

To better understand the whole process, the following simple algorithm is applied to solve ϕe:

1. Input geometrical and ϕest data, and mass fluxes

2. Dimensional values assignation: xD, xC , and xU , and ϕD, ϕC , and ϕU

3. Dimensionless values evaluation: ϕ̂C with equation (4.26), and x̂C together with x̂e, both with equation

(4.27)

4. ϕ̂e evaluation with equation (4.25)

5. ϕe evaluation, rearranging equation (4.26)
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The following relation is applied to solve the next time step, as it has been done in the previous schemes:

ϕHRS
f − ϕP = (ϕUDS

f − ϕP ) + (ϕHRSprev

f − ϕUDSprev

f ) (4.28)

where ϕHRSprev

f and ϕUDSprev

f are calculated with the values obtained in the previous iteration. The discretized

equation takes the following form:

aPϕP = aEϕE + aWϕW + aNϕN + aSϕS + bP (4.29)

where

aE = De −
ṁe − |ṁe|

2
− ṁe(ϕ

HRSprev

e −ϕUDSprev

e ) aW = Dw − ṁw − |ṁw|
2

+ ṁw(ϕ
HRSprev

w −ϕUDSprev

w )

(4.30)

aN = Dn − ṁn − |ṁn|
2

− ṁn(ϕ
HRSprev

n − ϕUDSprev

n ) aS = Ds −
ṁs − |ṁs|

2
+ ṁs(ϕ

HRSprev

s − ϕUDSprev

s )

(4.31)

aP = aE + aW + aN + aS +
ρ0PVP
∆t

(4.32)

bP =
ρ0PVP
∆t

ϕ0P (4.33)

De =
ΓeSe

dPE
Dw =

ΓwSw

dPW
Dn =

ΓnSn

dPN
Ds =

ΓsSs

dPS
(4.34)

4.1.5 Quadratic Interpolation for Convective Kinematics - QUICK

This second HRS assumes a quadratic extrapolation also with the two upstream nodes, and it could be up

to the third-order if desired. The process followed to solve the dimensional ϕe value is exactly the same as

before, but the relation for the dimensionless located face ϕ value is changed for the following one:

ϕ̂f = x̂f +
x̂f (x̂f − 1)

x̂C(x̂C − 1)
(ϕ̂C − x̂C) (4.35)

(a) Positive QUICK scheme (b) Negative QUICK scheme

Figure 4.4: QUICK scheme
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4.2 Code structure

The following lines sum up the general algorithm used to solve the ϕ distribution for every case. The same

code can be used to solve the four different cases by changing boundary conditions and using the previous

schemes by changing the expressions to evaluate convection and diffusion terms.

1. Input data:

(a) Physical data, such as geometry, initial values, physical properties, and boundary conditions.

(b) Numerical data, such as convergence parameter, time step, mesh size, etc.

2. Previous calculations: vector definitions and mesh generation.

3. Initial maps: ϕ0 = ϕ(t = 0, x, y)

4. Time-convergence starting point: t = t+∆t

(a) Initial estimated values: ϕest = ϕ0

(b) Convection and diffusion terms: ṁ,Dx, fx

(c) Discretization coefficients evaluation: aE , aW , aN , aS , aP , bP

(d) ϕ resolution:

aPϕnew = aEϕE + aWϕW + aNϕN + aSϕS + bP (4.36)

(e) Convergence analysis: if the result converges, |max(ϕnew − ϕest)|< δ the code goes to step 5. If

not, the code updates data, ϕest = ϕnew, and goes back to step 4a.

5. Time convergence analysis: t ⩾ tfinal

6. Data update: ϕ0 = ϕnew

7. Final computations ϕanalytical, and results printing

4.3 Code verification

The code verification is done by four different benchmark problems. Each problem has the same main

characteristics, listed below:

1. Steady-state convection-diffusion cases.

2. Velocity field is known.

3. 2D cases, with uniform mesh and cell-centered nodes.

4. Density and diffusion coefficients are known constant values. Source terms take null value for every

case.
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Particular treatment of the boundary conditions is done for each case. The following sections present these

boundary conditions and the obtained results for each case, along with the reference results and, when

possible, analytic solution.

4.3.1 Parallel flow

As said before, is a steady-state convection-diffusion case where ϕ has a one-dimensional variation in the

same direction as the flow in a L× L domain. The flow follows the equation below:

v⃗(x, y) = (v0, 0) (4.37)

The following boundary conditions are applied:

1. Left side: the Dirichlet boundary condition is applied, which establishes that all these nodes have a

constant ϕ = ϕin value.

2. Right side: the same Dirichlet boundary condition is applied, which also establishes that all these

nodes have a constant ϕ = ϕout value.

3. Upper and lower sides: the Neumann boundary condition is applied, which establishes the following

relation:
∂ϕ

∂y
= 0 (4.38)

Figure 4.5: Parallel flow scheme. Geometry and boundary conditions

This particular case has an analytic solution, described by the following equation [9]:

ϕ− ϕin
ϕout − ϕin

=
e

x Pe
L − 1

ePe − 1
(4.39)

As can be seen, the solution depends on the Péclet number of the problem. The obtained results for different

Péclet numbers are presented in the figure below:
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(a) Pe= −10 (b) Pe=0

(c) Pe=1 (d) Pe=10

Figure 4.6: Analytic solution for different Péclet numbers and 100× 100 mesh

Some significant conclusions can be extracted from the above-mentioned figure. For Pe = 0, (see Figure

(4.6b)), the case becomes a full conduction problem since the diffusion coefficient takes an infinite value and

the domain act as a solid. It is easy to see that the behavior of the ϕ is very similar to the one obtained in

the previous chapter, the second verification case. As the Péclet number increase or decreases, the diffusion

term becomes larger, and, thus, the conduction term is no longer the dominant term of the problem. Some

tests with Pe << 1 and Pe >> 1 have been done in order to see this growth of the diffusion influence (see

Figures (4.6a) and (4.6d)).

Since this analytic solution comes from the EDS, a comparison between analytical and numerical results

is done for the same Péclet numbers. As can be seen, the numerical results are pretty accurate with the

analytical ones:
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Figure 4.7: Comparison between analytical and numerical results for EDS

4.3.2 Vertical flow

This case is a modification of the previous one. Now the flow is vertical, as the equation shows:

v⃗(x, y) = (0, v0) (4.40)

The exact same boundary conditions as before are applied, where the left and right sides act as inlet and

outlet, and the upper and lower sides apply the Neumann condition (4.38).

Figure 4.8: Vertical flow scheme. Geometry and boundary conditions

This new case has another analytic solution, described by the following equation:

ϕ = ϕin +
ϕout − ϕin

L
x (4.41)

As can be seen, the solution does not depend on the Péclet number, and the results are expected to be the

same as the ones obtained for Pe = 0 in the previous case. The obtained results are the following:
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Figure 4.9: Analytic solution with 100× 100 mesh

As it was expected, the results obtained results with the different schemes are very similar to the analytical

ones. In order to better see the difference between each result, the absolute error compared with the analytic

solution is plotted below:
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Figure 4.10: Comparison between analytical and numerical results for EDS, UDS and CDS

Only a 0.35% of error is observed with UDS, while CDS and EDS provide the exact same values along the

domain, and are slightly lower than the ones provided by the UDS.

4.3.3 Diagonal flow

The third case has a diagonal flow, as the following equation shows:

v⃗(x, y) = (v0cos(α), v0sin(α)) (4.42)

where α = 45◦. The following boundary conditions are applied:

1. Left and upper sides: the Dirichlet boundary condition is applied, which establishes that all these

nodes have a constant ϕ = ϕlow value.
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2. Right and lower sides: the same Dirichlet boundary condition is applied, which also establishes that

all these nodes have a constant ϕ = ϕhigh value.

Figure 4.11: Diagonal flow scheme. Geometry and boundary conditions

This case is expected to be simulated for Pe = ∞. For this reason, UDS will only be used since EDS and

CDS present stability problems for high Péclet numbers. The expected results are the following ones:

1. ϕ = ϕlow above the diagonal.

2. ϕ = ϕhigh below the diagonal.

The following figure presents the obtained results for different Péclet numbers. For higher Péclet values, the

diagonal flow starts to stretch, reducing the transition area from the lowest to the highest value, which means

that the gradient of values between consecutive nodes increases rapidly.

As can easily be observed, no change in the results is appreciated between the last two Péclet number

simulations. This is due to the false diffusion. A coarse mesh is being used, and thus, bigger errors are

computed since the distances between nodes are not small enough to capture the smallest variations. For this

reason, the results for Pe = ∞ (Pe = 107) are recomputed using finer meshes. This way, the above-mentioned

gradients of values can be correctly computed. The new results are presented in Figure (4.13), where the

change can now be appreciated.

34



4.3. CODE VERIFICATION CHAPTER 4. CONVECTION AND DIFFUSION

(a) Pe=1 (b) Pe=100

(c) Pe=1000 (d) Pe= 107

Figure 4.12: Numerical solution for different Péclet numbers and 100× 100 mesh with UDS

(a) Pe= 107 and 500× 500 mesh (b) Pe= 107 and 1000× 1000 mesh

Figure 4.13: Numerical solution for Pe = ∞ (Pe = 107) with finer meshes and UDS
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4.3.4 Smith-Hutton problem

This case has a particular treatment, as it becomes a rectangular domain, 2L× L. Regarding the flow, the

velocity map is defined as the following equation shows:

v⃗(x, y) = (2y(1− x2),−2x(1− y2)) (4.43)

Figure 4.14: Smith-Hutton flow scheme. Geometry.

The following boundary conditions are applied:

1. Left, right, and upper sides: the Dirichlet boundary condition is applied, which establishes that all

these nodes have a constant ϕ value. This value is defined by the following equation:

ϕ = 1− tanh(10) (4.44)

2. Lower side: this side is divided into two parts. The inlet part, x ∈ [−1, 0], and the outlet part,

x ∈ [0, 1]. The inlet side has a Dirichlet boundary condition, while the outlet side has a Neumann

boundary condition. Both equations are presented below, respectively:

ϕ = 1 + tanh(10(2x+ 1)) (4.45)

∂ϕ

∂y
= 0 (4.46)

The results of this case will be compared with the ones provided by the CTTC, listed in the table below (see

Table (4.2)). The figures represent the obtained results for the three different ρ/Γ relations with the UDS

scheme.
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Table 4.2: Expected results for the Smith-Hutton problem. Extracted from [8]

x-position [m] ρ/Γ = 10 ρ/Γ = 103 ρ/Γ = 106

0.0 1.989 2.0000 2.000

0.1 1.402 1.9990 2.000

0.2 1.146 1.9997 2.000

0.3 0.946 1.9850 1.999

0.4 0.775 1.8410 1.964

0.5 0.621 0.9510 1.000

0.6 0.480 0.1540 0.036

0.7 0.349 0.0010 0.001

0.8 0.227 0.0000 0.000

0.9 0.111 0.0000 0.000

1.0 0.000 0.0000 0.000

(a) ρ/Γ =10 (b) ρ/Γ = 103

(c) ρ/Γ = 106

Figure 4.15: Numerical solution for different ρ/Γ values and 100× 100 mesh with UDS
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To compare the obtained numerical results with the reference values, the following plots have been done:
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Figure 4.16: Comparison between provided and obtained solutions for different ρ/Γ values and 100× 100
mesh

4.4 Discussion

For this chapter, it can be concluded that the code has been successfully verified since the numerical results

are according to the analytical solutions.

It is interesting to remark that all the tested convective schemes have successfully resulted in proper results.

First-order schemes have induced more error than second-order schemes, and high-resolution schemes provided

better results with coarser meshes than second-order schemes with finner meshes.

All the benchmark problems have been tested with the same algorithm, and the only difference between

them is the boundary conditions of each particular case. For this reason, it can be concluded that the code is

working perfectly and it is capable to deal with any convection-diffusion problem.
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Study for the computational resolution of conservation
equations of mass, momentum and energy.
Numerical analysis and turbulence models

Chapter 5

The Fractional Step Method

The FSM is usually used to solve the incompressible Navier-Stokes equations due to its good performance,

even with turbulence phenomena, and the simplicity of its code. It is commonly known as a projection

method since its use of an intermediate velocity. This velocity is an approximate solution of the momentum

equations but it cannot satisfy the incompressibility constraint. For this reason, the pressure Poisson equation

is also used, which determines the minimum perturbation that will accomplish the incompressibility of the

predictor velocity [10].

5.1 Mathematical formulation

Before diving into the subject, the previous step is to discuss the Helmholtz-Hodge theorem. It states as

follows:

A given vector field ω⃗, defined in a bounded domain Ω with smooth boundary ∂Ω, is uniquely decomposed in a

pure gradient field and divergence-free vector parallel to ∂Ω

ω⃗ = a⃗+∇ψ (5.1)

where

∇ · a⃗ = 0 a⃗ ∈ Ω (5.2)

The theorem also applies for periodic inflow/outflow conditions.

Taking this theorem into consideration, let’s start with the mathematical formulation. The first step is to

consider both mass and linear momentum Navier-Stokes equations for incompressible and constant viscosity

flows:

∇ · v⃗ = 0 (5.3)

ρ
∂v⃗

∂t
= R(v⃗)−∇p (5.4)
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where

v⃗ = u⃗i+ vj⃗ + wk⃗ (5.5)

and R(v⃗) is introduced to simplify equations, considering both convection and diffusion terms. It stands for:

R(v⃗) = −(ρv⃗ · ∇)v⃗ +∇ · (µ∇v⃗) (5.6)

Equation (5.3) must be verified at any time between tn and tn+1. Time integration of equations (5.3) and

(5.4) results in:

∇ · v⃗n+1 = 0 (5.7)

ρ
v⃗n+1 − v⃗n

∆t
= R(v⃗

n+1
2 )−∇pn+1 (5.8)

From equation (5.8), two considerations can be done:

1. Helmholtz-Hodge theorem is applied:

v⃗n+1 = v⃗P −
(
∆t

ρ
∇pn+1

)
(5.9)

2. R(v⃗
n+1
2 ) is interpolated as follows:

R(v⃗
n+1
2 ) =

3

2
R(v⃗n)− 1

2
R(v⃗n−1) (5.10)

Equation (5.8) can be rewritten:

ρ
v⃗P − v⃗n

∆t
=

3

2
R(v⃗n)− 1

2
R(v⃗n−1) (5.11)

From this equation (5.11), the predictor velocity can be computed, and introducing the results into equation

(5.9), the real velocity for the next time step can be computed, both computations are done node-by-node.

The pressure map is still unsolved. To do it, the same equation (5.9) is taken and its divergence is computed:

∇ · v⃗n+1 = ∇ · v⃗P −∇ ·
(
∆t

ρ
∇pn+1

)
(5.12)

Applying here equation (5.7), the Poison equation for pressure is found:

∆pn+1 =
ρ

∆t
∇ · v⃗P (5.13)

With this Poison equation, the incompressibility of the flow is always considered, and with a Gauss-Seidel

solver, the pressure map can be computed.

The whole FSM code can be summarised in the following lines:

1. Evaluation of R(v⃗n) with equation (5.6)

2. Evaluation of predictor velocity v⃗P with equation (5.11) node-by-node
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3. Gauss-Seidel solver for the pressure field pn+1 with Poison equation (5.13)

4. Evaluation of real velocity v⃗n+1 with equation (5.9) node-by-node

The code’s simplicity mentioned before is demonstrated with the previous scheme. Nonetheless, a more

in-depth study of some relevant aspects is ruled hereafter, and an extended algorithm is presented below.

5.2 Staggered meshes

Until this chapter, numerical discretization was done using non-overlapping control volumes with cell-centered

nodes, where scalar variables such as pressure and density were stored together with vector velocities at the

cell-centered nodes. Staggered meshes store the scalar variables at the cell-centered nodes, but velocities, or

momentum variables, are stored at the cell faces.

Figure 5.1: Staggered mesh

To better understand the need for a staggered mesh, it is mandatory to study the checkerboard problem and

understand the possible decoupling between velocity and pressure.

5.2.1 The Checkerboard problem

Let’s suppose an imaginary problem where only the next real velocity wants to be computed with the equation

(5.9) node-by-node. Simplifying the problem to a 1D spatial discretization, the mentioned equation can be

expressed in terms of current, west, and east nodes as follows:

un+1
P = upP − ∆t

ρ

(
pn+1
E − pn+1

W

2∆x

)
(5.14)

As can easily be seen, the solution of the velocity at the current node is independent of the pressure of

this node, which means that the convergence of the velocity can be obtained even with unphysical pressure

distributions. For example, let’s suppose the following pressure distribution:

pn+1
WW = 103 pn+1

W = 0 pn+1
P = 103 pn+1

E = 0 pn+1
EE = 103
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The velocity will converge since the condition ∇pn+1 = 0 is accomplished, but the results are not coupled.

This is why staggered meshes are needed; thus, the checkerboard problem is solved.

5.2.2 Staggered meshes in the FSM

The staggered mesh is a little bit trickier than the non-overlapping finite volume meshes seen before, but its

implementation is quite easy. To study its implementation together with spatial discretization, the previous

summarized code of four steps will be expanded.

1. The first step is to evaluate the R(v⃗n). For this purpose, the term is divided into R(un) and R(vn).

Each component of the velocity will be evaluated with the staggered mesh in the X and Y direction,

respectively.

(a) x-staggered mesh: equation (5.6) is particularized for the horizontal velocity and integrated

over the x-staggered CV, and the Gauss theorem is applied. It results in the following equation:

R(un)ΩxP = −conv + diff (5.15)

where ΩxP stands for the x-staggered volume, and conv and diff stand for convective and diffusive

terms, expressed as follows:

conv = ṁeue − ṁwuw + ṁnun − ṁsus (5.16)

diff = µe
uE − uP
dPE

Ae − µw
uP − uW
dPW

Aw + µn
uN − uP
dPN

An − µs
uP − uS
dPS

As (5.17)

Volumetric flow and velocities at the faces are the most tricky part of this method. The evaluation

of the velocities at the CV faces is done by convective numerical schemes (CDS, UDS, SUDS,

QUICK). For example, east face with CDS:

ue = uP +
dPe

dPE
(uE − uP ) (5.18)

The evaluation of the volumetric flow at the east and west faces is made by the arithmetic mean

of the horizontal velocities at the east and west nodes.

ṁe =
(ρu)E + (ρu)P

2
Ae (5.19)

Finally, the evaluation of the volumetric flow at the north and south faces is made by the following

equation:

ṁn = (ρv)AAAn + (ρv)BABn (5.20)

(b) y-staggered mesh: equation (5.6) is now particularized for the vertical velocity and integrated

over the y-staggered CV, and the Gauss theorem is applied. It results in the same equation as
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before but with the Y components:

R(vn)ΩyP = −conv + diff (5.21)

where ΩyP stands for the y-staggered volume. Convective and diffusive terms are the same as

before but with vertical velocities. Again, the evaluation of the velocities at the control volume

faces is done by convective numerical schemes. Then, the evaluation of the volumetric flow at the

north and south faces is made by the arithmetic mean of the vertical velocities at the north and

south nodes:

ṁn =
(ρu)N + (ρu)P

2
An (5.22)

And the evaluation of the volumetric flow at the east and west faces is made by the following

equation:

ṁe = (ρu)AAAe + (ρu)BABe (5.23)

The following scheme illustrates the previous distances, such as AAn, ABn, AAe or ABe and where

each value is evaluated, for x-staggered and y-staggered meshes:

(a) x-staggered mesh (b) y-staggered mesh

Figure 5.2: Distances and values evaluation positions

2. Once R(un) and R(vn) are computed with the x-staggered and y-staggered meshes, the predictory

velocity can be computed node-by-node. As before, it is split into the horizontal and vertical velocities:

uP = un +
∆t

ρ

(
3

2
R(un)− 1

2
R(un−1)

)
(5.24)

vP = vn +
∆t

ρ

(
3

2
R(vn)− 1

2
R(vn−1)

)
(5.25)

3. The pressure is computed with the Poison equation (5.13). After numerical integration and grouping of

the different terms, the obtained equation is the following one. It must be noted that the pressure is
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solved for the main mesh:

aP p
n+1
P = aEp

n+1
E + aW pn+1

W + aNp
n+1
N + aSp

n+1
S + bP (5.26)

where

aE =
Ae

dPE
aW =

Aw

dPW
aN =

An

dPN
aS =

As

dPS
(5.27)

aP = aE + aW + aN + aS (5.28)

bP =
−1

∆t

(
(ρuP )eAe − (ρuP )wAw + (ρvP )nAn − (ρvP )sAs

)
(5.29)

4. Finally, the next velocity v⃗n+1 can be computed node-by-node. Once again, the velocity is split into

horizontal and vertical components, and each component is solved with the x-staggered and y-staggered

meshes, respectively. The equations are the following:

un+1
P = uPP − ∆t

ρ

(
pn+1
B − pn+1

A

dBA

)
(5.30)

vn+1
P = vPP − ∆t

ρ

(
pn+1
B − pn+1

A

dBA

)
(5.31)

The following scheme illustrates where the previous pressures are located, and the distances for

x-staggered and y-staggered meshes:

(a) x-staggered mesh (b) y-staggered mesh

Figure 5.3: Pressure evaluation positions

5.2.3 Time step choice

Since the time integration is an explicit one, the time step must be low enough to ensure the stability of

the simulation. To do so, the time step choice is subject to the Courant-Friedrich-Levy condition (CFL

condition), which stands for the minimum time step to maintain the simulation stability. To do so, the
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minimum convective and diffusive time steps are computed:

∆tc = min

(
0.35

∆x

|v⃗|

)
(5.32)

∆td = min

(
0.2

ρ∆x2

µ

)
(5.33)

The minimum of these is used for the simulation. It must be noted that the time step is recomputed in each

time step:

∆t = min(∆tc,∆td) (5.34)

5.3 Code structure

The general FSM algorithm is the following one. The same code can be used to solve the different cases

by changing boundary conditions and adding additional equations to solve energy, or transport species, if

necessary.

1. Input data:

(a) Physical data, such as geometry, initial values, and physical properties.

(b) Numerical data, such as convergence parameter, mesh size, etc.

2. Previous calculations: vector definitions and mesh generation. Distances and areas for the x-staggered

and y-staggered meshes are computed, and the Block-off Method is applied, if necessary.

3. Initial maps: v⃗, R(v⃗n−1), and pressure map.

4. Discretization coefficients evaluation: aE , aW , aN , aS , aP

5. Time-convergence starting point: t = t+∆t

(a) CFL condition: minimum time step evaluation.

(b) R(v⃗n) evaluation

(c) Intermediate velocity evaluation v⃗P node-by-node.

(d) bP coefficient evaluation with the new time step and intermediate velocities.

(e) Pressure resolution with Gauss-Seidel solver:

aP p = aEp
est
E + aW pestW + aNp

est
N + aSp

est
S + bP (5.35)

(f) Next velocity evaluation v⃗n+1 node-by-node.

(g) Convergence analysis: if the result converges, |max(pn+1 − pn)|< δ the code goes to step 6. If not,

the code updates data, v⃗n−1 = v⃗n, v⃗n = v⃗n+1, R(v⃗n) = R(v⃗n+1), pn = pn+1, and goes back to

step 5a.
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6. Time convergence analysis: t ⩾ tfinal

7. Final computations and results printing

5.4 Code verification

The code verification is done by four different benchmark problems. Even though each problem has different

characteristics, the main code is almost the same since all problems implement the FSM.

Particular treatment of the boundary conditions is done for each case. The following sections present these

boundary conditions and the obtained results for each case, along with the reference results and their

comparison.

5.4.1 Lid-Driven Cavity

The first benchmark problem is the Lid-Driven Cavity case. Let’s suppose that an incompressible and laminar

flow is enclosed in a square cylinder [11]. The following boundary conditions are applied:

1. Left, right, and lower sides: these are considered static walls, and the Neumann boundary condition

for pressure is applied to the vertical component at the lower side, and to the horizontal component at

the other sides. Regarding velocities, both horizontal and vertical components take null values due to

the no-slip condition:
∂p

∂y
= 0 and

∂p

∂x
= 0 (5.36)

v⃗ = 0 (5.37)

2. Upper side: this side is also a wall, so the same Neumann boundary condition is applied for the

pressure field as it was for the lower side. Regarding velocities, this is a moving wall, so horizontal

velocity takes a constant known value:

u = uref (5.38)

Figure 5.4: Lid-Driven Cavity scheme. Geometry and boundary conditions
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The problem will be solved with a uniform mesh and constant known thermophysical properties for different

meshes, convective numerical schemes, and Reynolds values. The following list sums up the simulation

parameters for the obtained results:

1. 50×50 mesh: CDS, UDS and SUDS (SUDS only for Reynolds 100, 1000, and 5000)

2. 100×100 mesh: CDS

3. Reynolds numbers: 100, 400, 1000, 3200, 5000, 7500 and 10000

4. Steady-state convergence parameter: 10−4

5. Convergence parameter: 10−6

The reasons why CDS has been chosen to be the main scheme are the following:

1. CDS, as said in its respective chapter, is a 2nd-order accurate scheme. It presents stability problems

but these problems are solved thanks to the CFL condition. For this reason, CDS becomes a 2nd-order

accurate and stable scheme.

2. UDS is a much more stable scheme but it is only 1st-order accurate. For this reason, with the same

mesh, CDS results are expected to be much more accurate than the ones obtained via UDS.

3. SUDS takes both good parts of the previous schemes, being a stable and 2nd-order accurate scheme. In

return, its computational cost is significantly increased. For the coarse mesh, it returns results with an

accuracy close to the CDS results with the finner mesh, but the computational time is much greater.

For this reason, SUDS simulations with a fine mesh could take days.

For all the reasons mentioned above, CDS simulations will be ruled with 50× 50 and 100× 100 meshes. UDS

simulations will be done for 50× 50, as well as SUDS simulations, but this last scheme will only be applied to

low, medium, and high Reynolds, to illustrate the evolution of the accuracy with the Reynolds number.

The obtained results for different Reynolds are illustrated in the following pages, together with the reference

results [11]. At the end of the simulation results, a table with the computational times and time convergences

of every simulation can be found (see Table (5.1)):
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(a) Velocity map. CDS and 100×100 mesh (b) Pressure map. CDS and 100×100 mesh
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Figure 5.5: Numerical solutions for Re=100

From these results, some interesting conclusions can be extracted.

The first one is the singularity points in the pressure map. The whole cavity is considered to be at a null

pressure value, but the upper left and right corners are taking high positive and negative pressure values.

These singularity points occur due to the combination of two factors, which are the flow separation and the

boundary conditions. When the fluid near the corners of the cavity encounters an abrupt change in direction,

it tends to separate from the surface, creating a region of recirculation or stagnation. This flow separation

leads to the formation of vortices or eddies, which are commonly observed in the corners of the cavity. The

presence of these vortices near the corners results in localized pressure variations. In the upper left corner,

for example, the flow separation creates a region of low-pressure or suction, causing the pressure to drop to

negative values. Conversely, in the upper right corner, the flow separation results in a region of high pressure,

leading to positive pressure values.

The second one is the mesh study. It is clearly visible how almost the same results are obtained for the

different schemes and meshes. CDS with the coarse mesh, and UDS provide some error in the vertical velocity,

but the SUDS results with the coarse mesh, and CDS results with the fine mesh appear to be the same.
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(a) Velocity map. CDS and 100×100 mesh (b) Pressure map. CDS and 100×100 mesh
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Figure 5.6: Numerical solutions for Re=400

The Reynolds has slightly increased. The flow has developed a greater recirculation behavior. The pressure

map seems to be taking null pressure values for all the fluid domain. About the singularity points, the

suction corner has moderated its behavior, equalizing its pressure value with the rest of the cavity, but the

high-pressure corner has increased its value, becoming more aggressive.

About the meshes, in this case, a differentiation between results starts to be visible. UDS and CDS results

for the coarse mesh are differing more with respect to the reference ones. CDS results with the fine mesh are

still pretty accurate. It must be kept in mind that the reference results are extracted from a 129×129 mesh,

so there will always be a certain error.
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(a) Velocity map. CDS and 100×100 mesh (b) Pressure map. CDS and 100×100 mesh
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Figure 5.7: Numerical solutions for Re=1000

The recirculation behavior is still increasing, thus the recirculation zones at the corners are getting smaller.

The low-pressure singularity point has almost disappeared, and the high-pressure one is getting higher, as

long as the Reynolds increases.

About the mesh and schemes study, UDS has no longer a relevant accuracy compared to the CDS and SUDS

schemes. There are peaks of error up to 50% in the UDS. CDS results with a coarse mesh are starting to be

inaccurate, and SUDS results with coarse mesh together with CDS results with fine mesh are still almost

the same, and very similar to the reference ones, taking into consideration the base error due to the mesh

difference between reference and numerical results.
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(a) Velocity map. CDS and 100×100 mesh (b) Pressure map. CDS and 100×100 mesh
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Figure 5.8: Numerical solutions for Re=3200

At this point, a relation between the Reynolds number and the obtained results can be established. For the

velocity map, the recirculation is getting closer to the walls and the null-velocity zone at the center of the

cavity is getting wider. The high-pressure zone is also getting higher with the Reynolds, and the suction

point has already disappeared.

The error between reference results and UDS ones has increased too. This is no longer an accurate scheme,

and it is only valid for the lowest Reynolds. CDS results in a coarse mesh are also differing from the results,

and CDS results obtained with the fine mesh are also starting to differ from the reference ones. The nominal

error due to the numerical simulations together with the error due to the mesh size is starting to move away

the obtained results from the desired ones.
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(a) Velocity map. CDS and 100×100 mesh (b) Pressure map. CDS and 100×100 mesh
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Figure 5.9: Numerical solutions for Re=5000

The vertical recirculation stream of the right wall is getting narrower with the Reynolds increase. The same

stagnation point in the upper right corner is found, with a greater pressure value, and the center of the cavity

is beginning to be a low-pressure zone.

Following the tendency of the past simulations, UDS is inducing very big errors with respect to the reference

results. CDS for a coarse mesh is also no longer a credible result and the same scheme for fine mesh has also

decreased its accuracy. Only SUDS with coarse mesh is attached to the reference results. Despite that, the

computational cost makes it a nonsuitable option to simulate with even higher Reynolds.
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(a) Velocity map. CDS and 100×100 mesh (b) Pressure map. CDS and 100×100 mesh
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Figure 5.10: Numerical solutions for Re=7500

No differences between the previous simulation can be appreciated for this new Reynolds value. The narrowing

of the vertical recirculation in the right wall is continuing, and the singularity point of the pressure map is

taking even higher values.

About the schemes and meshes, as before, UDS and CDS with coarse mesh are no longer a reliable results,

and the error between reference results and CDS ones with fine mesh is getting higher as the Reynolds

increase.
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(a) Velocity map. CDS and 100×100 mesh (b) Pressure map. CDS and 100×100 mesh
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Figure 5.11: Numerical solutions for Re=10000

Finally, the last Reynolds number illustrates the narrowest vertical recirculation and the highest value of the

pressure singularity point.

The results obtained for the horizontal and vertical velocities are very similar to the ones obtained in the

previous simulation. The highest error between reference results and CDS ones with fine mesh is the highest

of all the previous ones.

Table 5.1: Computational and time convergence for the different simulations

Reynolds
Computational time [s] Convergence time [s]

(aproximation)UDS 50X50 SUDS 50X50 CDS 50X50 CDS 100X100

100 356 19500 4326 55860 15

400 241 - 7394 11640 30

1000 285 13560 3182 16080 45

3200 323 - 5996 31380 160

5000 364 24210 1817 38100 180

7500 424 - 1094 39060 200

10000 467 - 1273 50040 230
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5.4.2 Differential Heated Cavity

The second benchmark problem is the Differential Heated Cavity case. Let’s suppose the same incompressible

and laminar flow which is enclosed in a square cavity. This time, the goal of the case is to obtain the velocity,

pressure, and temperature maps generated by natural convection [12].

The following boundary conditions are applied:

1. Left side: this side is considered to be a constant temperature static wall. For this reason, a constant

T0 is applied to all the nodes of the wall, and null velocities due to the no-slip condition:

v⃗ = 0 (5.39)

2. Right side: this side is also considered to be a constant temperature static wall. For this reason, a

constant T1 is applied to all the nodes of the wall, and also null velocities.

3. Upper and lower sides: these are considered as adiabatic walls, and the Neumann boundary condition

is applied for the temperature. Regarding velocities, both horizontal and vertical components take null

values due to the no-slip condition:
∂T

∂y
= 0 (5.40)

v⃗ = 0 (5.41)

The following figure illustrates the geometry and boundary conditions of the problem:

Figure 5.12: Differential Heated Cavity scheme. Geometry and boundary conditions

As this case studies natural convection, a gravity term is added. In addition, an extra Navier-Stokes equation

must be added and, consequently, solved. This equation at hand is the energy equation. To better understand

the influence of these new parameters, a mathematical formulation section is introduced below before the

results are extracted.
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Mathematical formulation

As said before, gravitational forces are now considered. For this reason, the Boussinesq approximation is

introduced in the vertical component of the linear momentum equation. This approximation includes a

density variation as a function of the temperature flow and the expansion coefficient κ:

ρ = ρ0(1− κ(T − T0)) (5.42)

The new mass, linear momentum, and energy Navier-Stokes equations for incompressible and constant

viscosity flows are the following:

∇ · v⃗ = 0 (5.43)

ρ0
∂v⃗

∂t
= R(v⃗)−∇p (5.44)

∂T

∂t
= R(T ) (5.45)

where R(u) does not change from the general mathematical formulation, but R(v) and R(T ) are modified.

They stand for:

R(v) = −(ρ0v⃗ · ∇)v⃗ +∇ · (µ∇v⃗)− ρ0(1− κ(T − T0))g (5.46)

R(T ) = ∆T − (v⃗ · ∇)T (5.47)

On one hand, equation (5.46) is integrated as it was done in the general method. The resultant equation is

the same and only adds the Boussinesq equation at the end. On the other hand, equation (5.47) is integrated

in the same way. The result is the following:

R(Tn)ΩP = −conv + diff (5.48)

where ΩP stands for the volume, and conv and diff stand for convective and diffusive terms, expressed as

follows:

conv = ṁeTe − ṁwTw + ṁnTn − ṁsTs (5.49)

diff =
λ

ρ0cp

(
TE − TP
dPE

Ae −
TP − TW
dPW

Aw +
TN − TP
dPN

An − TP − TS
dPS

As

)
(5.50)

Once R(Tn) is computed, the new temperature can be computed node-by-node by time integration of equation

(5.45):

Tn+1 = Tn +
∆t

ρ0cp

(
3

2
R(Tn)− 1

2
R(Tn−1)

)
(5.51)

Finally, another time convergence criterion is added to the CFL condition:

∆tT = min

(
0.2

∆x2

λ
ρ0cp

)
(5.52)

The results are presented on the following pages. To compare them with the reference results, some additional
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code lines must be added to compute the Nusselt matrix. The Nusselt number is a dimensionless number, as

well as Reynolds or Péclet. It establishes the ratio between convective and conductive heat transfer, and it is

computed by means of dimensionless parameters, denoted by ∗ superscript:

Nu =
1

x∗L − x∗0

∑
i

Nux∆x
∗ (5.53)

The previous equation computes the average Nusselt number of the cavity. x∗L and x∗0 stand for the final

and initial horizontal dimensionless positions, which are L and 0. ∆x∗ is the dimensionless distance between

contiguous nodes, and Nux is the Nusselt number at a certain vertical line, and it is computed as follows:

Nux =
1

y∗L − y∗0

∑
j

(
u∗PT

∗
P − T ∗

E − T ∗
P

2dEP
+
T ∗
P − T ∗

W

2dPW

)
∆y∗ (5.54)

The dimensionless parameters are listed below:

x∗ =
x

L
y∗ =

y

L
T ∗ =

T − T0
T1 − T0

u∗ =
uλ

ρ0cpL
(5.55)

The problem will be solved with a uniform mesh and constant known thermophysical properties for different

Rayleigh numbers, except for the density, which is considered to be variable for the gravitational terms. The

chosen convective numerical scheme is CDS for both velocities and temperatures. In the end, two tables

comparing reference and numerical results can be found.
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(d) Vertical velocity map.

Figure 5.13: Numerical solutions for Ra=103

The first group of figures illustrates the results obtained for the first Rayleigh number. The temperature

map (see Figure (5.13a)) shows how the hot fluid tends to ascend and the cold one tends to descend, due to

gravitational forces and density variations.

This behavior translated into velocities results in a constant circulation of the fluid, as can be seen in the

velocity map (see Figure (5.13b)). This absolute velocity map is obtained due to the horizontal and vertical

components, illustrated in the subfigures below (see Figures (5.13c) and (5.13d)). From the velocity map, it

can be seen how the four corners are not affected by velocity and, thus stagnation points are found, likewise

the center of the cavity. In addition, is clearly visible how, due to the no-slip condition, the nodes at the

walls are taking null velocity values.
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Figure 5.14: Numerical solutions for Ra=104

In this second simulation, the Rayleigh number has increased. This increase is translated into a more

accentuated behavior of the temperatures and velocities.

The temperature map shows how the hot fluid has started to occupy a greater upper area, as well as the cold

fluid for the lower area. The center of the cavity seems to be at a constant temperature.

The velocity map verifies that the center of the cavity is in complete quietness. The circulation of the fluid is

no longer constant. It is observed how the vertical component is taking more importance than the horizontal

one. This phenomenon can be also seen in the individual velocity component maps, where the maximum

vertical velocity is bigger than the horizontal one. The stagnation points of the corners have become smaller,

and the center one has slightly increased.
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Figure 5.15: Numerical solutions for Ra=105

For this third simulation, an accentuation of the temperatures and velocities behavior is found. The hot fluid

is taking up even more space in the upper zone, and the cold one is in the lower cavity zone. The constant

temperature zone in the center has also increased in the horizontal direction.

About the velocity map, the increase of the vertical component concerning the increase of the horizontal one

is more significant than in the previous simulation. Even though the maximum value is increasing, the zone is

getting narrower for the vertical velocity, and wider for the horizontal one. This is due to the zone occupied

by the hot and cold fluids. Since more room is occupied by the hot or cold fluid, the zone of horizontal

velocity is also increasing, but the zone of transition is decreasing, causing a greater gradient of vertical

velocities.
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Figure 5.16: Numerical solutions for Ra=106

This last simulation illustrates the most aggressive behavior of the fluid. The greatest temperature gradients

are found near the walls and the null temperature value zone at the center of the cavity has increased up to a

third of the available space.

The velocity still seems to be a representation of fluid circulation, but this time it must be noted how the

vertical values are almost double the horizontal ones. For this reason, the vertical component is the dominant

one, with its narrowest zone of all the previous simulations. The horizontal velocity zones, as well as the

center temperature, are occupying two-thirds of the cavity, and the third left takes a null velocity value. The

corner stagnation points have the smallest zones of the previous simulations, and the walls are remaining

constant, due to the no-slip condition.
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Table 5.2: Results comparison for Ra=103 and Ra=104. Extracted from [13]

Rayleigh 103 103 104 104

Reference Numerical Reference Numerical

umax 3.649 3.645 16.178 15.595

y 0.813 0.810 0.823 0.81

vmax 3.697 3.665 19.617 17.988

x 0.178 0.190 0.119 0.11

Nu 1.118 1.079 2.243 2.078

Numid 1.118 1.155 2.243 2.216

Nu0 1.117 1.048 2.238 2.371

Numax 1.505 1.417 3.528 3.497

y 0.092 0.086 0.143 0.13

Numin 0.692 0.698 0.586 0.472

y 1.000 0.990 1.000 0.990

Table 5.3: Results comparison for Ra=105 and Ra=106. Extracted from [13]

Rayleigh 105 105 106 106

Reference Numerical Reference Numerical

umax 34.73 34.253 64.63 63.354

y 0.855 0.850 0.850 0.850

vmax 68.59 69.535 219.36 218.54

x 0.066 0.070 0.0379 0.033

Nu 4.519 4.382 8.800 8.430

Numid 4.519 4.383 8.799 8.427

Nu0 4.509 4.430 8.817 8.547

Numax 7.717 7.831 17.925 18.042

y 0.081 0.090 0.0378 0.035

Numin 0.729 0.675 0.989 0.865

y 1.000 0.990 1.000 0.970

It is verified that the obtained results are very similar to the reference ones. The induced error can be due to

the chosen convective scheme. As was seen in the previous benchmark problem, the Lid-Driven Cavity case,

convective schemes such as SUDS are much more accurate with the solutions than CDS. In addition, the

mesh size can also be an important parameter of error introduction. Finer meshes, with 100×100 of even

finer ones, can reduce the error significantly, in exchange for a considerable computational cost.
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5.4.3 Flow between Parallel Plates

This third benchmark problem is interesting due to its ease to be verified with an analytic solution. The

problem states that there is an incompressible and laminar flow between two plane parallel plates of length L

and infinite width, separated by an H distance. The flow is generated due to a known inlet velocity with a

hyperbolic profile.

The boundary conditions of the problem are the following:

1. Left side: as said before, an inlet velocity is imposed with only a horizontal component:

u = uref

(
1− 4y2

H2

)
(5.56)

2. Right side: this side has a Neumann boundary condition, both for horizontal velocity and for pressure.

∂u

∂x
= 0 (5.57)

∂p

∂x
= 0 (5.58)

3. Upper and lower sides: the no-slip condition is applied, together with a Neumann boundary

condition for pressure.

v⃗ = 0 (5.59)

∂p

∂y
= 0 (5.60)

The following figure illustrates the geometry and boundary conditions of the problem:

Figure 5.17: Flow between Parallel Plates scheme. Geometry and boundary conditions. Case 1

The analytical solution comes from the following procedure.

Considering the horizontal component for the Navier-Stokes mass conservation and momentum equation in
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2D, steady state, and incompressible flow, the resultant equations are the following:

∂u

∂x
+
∂v

∂y
= 0 (5.61)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(5.62)

Being a steady-state flow, the equation (5.61) can be simplified to:

∂v

∂y
= 0 (5.63)

Introducing the previous equation into equation (5.62), the resultant momentum equation is written as

follows:
∂p

∂x
= µ

∂2u

∂y2
(5.64)

The previous equation is integrated and the horizontal velocity equation is found:

u(y) =
1

2µ

∂p

∂x

(
y2 − H2

4

)
(5.65)

The obtained results are presented below:
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(a) Velocity and pressure maps for uref = 1
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tions

Figure 5.18: Numerical solutions for Case 1

It is visible that the numerical results almost match the analytical solution, due to spatial discretization. In

addition, the pressure map shows how an inlet velocity causes a pressure gradient along the domain.

Preparing the last benchmark problem, which corresponds to a square cylinder submerged in the same very

channel, some other cases are simulated, in order to verify the code and introduce the solid concept inside

the flow. The first variation is to add a solid plane of infinitesimal thickness along the channel (see Figure

(5.19a)). Taking the code a step further, the second variation considers that all the nodes of the horizontal

centerline are solid, and the contiguous nodes have the no-slip condition (see Figure (5.19b)). The same
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boundary conditions are applied and extended to the new solid plate.

As before, the following illustration shows the geometry and the boundary conditions of both cases.

(a) Case 2 (b) Case 3

Figure 5.19: Flow between parallel plates scheme. Geometry and boundary conditions. Cases 2 and 3

Translating the second case problem to a numerical scheme, it must be considered that there’s no solid

inside the fluid, but the two node centerlines must have null velocity due to the no-slip condition. Regarding

pressure, every node will have a pressure value. and Figure (5.20) shows the numerical results obtained for

this case.
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Figure 5.20: Numerical solutions for Case 2

For the third case problem, as said before there are two lines of nodes that are considered solid. Thus, the

velocity of those nodes will take a null value, together with the contiguous one, and the solid nodes will have

null pressure. The numerical results are the following:
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(a) Velocity and pressure maps for uref = 1
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(b) Comparison between analytical and numerical solu-
tions

Figure 5.21: Numerical solutions for Case 3

Again, the numerical results obtained match the analytical solutions. Last, but not least, an extension of the

same verification case is done, considering a vertical flow instead of a horizontal one. Regarding the boundary

conditions and the analytical solution, x and y components are respectively changed, and the obtained results

are the following:
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Figure 5.22: Numerical solutions for Case 3 - Vertical

5.4.4 Square Cylinder

This is the last benchmark problem. As said before, is an extension of the third case of the previous benchmark

problem, but this time an isolated square cylinder is considered [14].

The boundary conditions of the problem are exactly the same as before, but now extended to the solid

cylinder:
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1. Left side: hyperbolic inlet velocity is imposed with only a horizontal component:

u = uref

(
1− 4y2

H2

)
(5.66)

2. Right side: this side has a Neumann boundary condition, both for horizontal velocity and for pressure.

∂u

∂x
= 0 (5.67)

∂p

∂x
= 0 (5.68)

3. Upper and lower sides: the no-slip condition is applied, together with a Neumann boundary

condition for pressure.

v⃗ = 0 (5.69)

∂p

∂y
= 0 (5.70)

4. Solid walls: the same conditions are applied to the four walls of the solid. For velocity, the no-slip

condition is applied, and for pressure, the Neumann boundary condition.

5. Solid part: all the nodes which form the solid will take a null pressure value.

The following figure illustrates the geometry and boundary conditions of the problem:

Figure 5.23: Square Cylinder scheme. Geometry and boundary conditions.

The solutions are presented below. They have been obtained through a uniform mesh of 100× 50 elements in

X and Y , respectively. The simulations are ruled with different Reynolds values. From Re = 1 to Re = 60,

the solution is expected to be steady, but from then on, the solution becomes unsteady, so a certain time

convergence criterion is applied.
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Figure 5.24: Velocity map for different Reynolds. Steady solution

The image above illustrates the numerical solution obtained for different Reynolds numbers and uniform

mesh of 100× 50 elements. For the lowest Reynolds value, is clearly visible how the fluid surrounds the solid

and stays in the laminar regime. As the Reynolds increases, the trail of the fluid also increases its size, but in

all the simulations the solution appears to be in the laminar regime.

It is important to observe and understand the recirculation zone of the solid. This zone is expected to have a

recirculation of the fluid due to the separation of the boundary layer. It can be computed as follows [14]:

Lr

D
= −0.065 + 0.0554Re (5.71)

It can be verified that the obtained solution follows this behavior since the recirculation length also increases

with the Reynolds number. However, a more in-depth study can not be ruled since the coarse mesh does not

allow enough precise results.

Another important phenomenon that can be seen in the previous results is the stagnation point at the front

of the solid. The code is capable of computing this stagnation point, where the fluid stops at the front wall of

the cylinder.
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Figure 5.25: Pressure map for different Reynolds. Steady solution

Once the velocities are treated, the pressure maps can be observed here. All the simulations show a high-

pressure value at the flow inlet and a low-pressure value at the outlet of the flow. Three important zones of

these maps are the front wall zone or stagnation point, the solid itself, and the back wall, or recirculation

zone:

1. Stagnation point: at this zone, it has been said that the velocity takes a null value. Consequently, the

pressure map takes a high-pressure value at this zone. It can be observed how this maximum pressure

value increases with the Reynolds number.

2. Solid part: as it was imposed in the boundary conditions, the solid nodes take a null pressure value.

In the graphs, a square draft can be seen.

3. Recirculation zone: null or negative pressure values are expected to be found in this zone. This

zone also increases with the Reynolds value. It is also known as the suction zone.
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The above-mentioned results are the ones for the laminar regime. The following results are expected to have

an unsteady solution, thus vortexes are going to appear in the velocity and pressure maps.

Figure 5.26: Velocity map for different Reynolds. Unsteady solution

The velocity trail for Re = 70 is starting to curl, which means that the critical Reynolds has been exceeded

and, thus the problem becomes unsteady. As the Reynolds increases, vortexes are starting to appear.

For Re = 100, is clearly visible how the velocity tends to go up and down, creating the well-known Von

Karman vortexes. For Re = 200, this behavior is much more aggressive.

It must be kept in mind that the solutions are obtained with a coarse mesh. This mesh seems to be enough

precise for low Reynolds values but is visible how this mesh becomes insufficient for Re = 200 simulations.

For this reason, the vortexes are not clearly visible nor developed.
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Figure 5.27: Pressure map for different Reynolds. Unsteady solution

Regarding the pressure maps, for Re = 70 the same behavior as for the lowest Reynolds numbers is found. It

is also visible how the stagnation point has a higher pressure than the previous Reynolds simulation, and the

low pressure has also a lower pressure value. The solid remains at a null-pressure value.

For the other Reynolds values, the same velocity vortexes are expressed in low-pressure zones. For Re = 100

the solution is very clear and illustrates how the upper zone of the solid, where the flow is flowing at higher

speeds, has a higher pressure value with respect to the lower zone of the cylinder. For Re = 200, the same

problem found for the velocity map is translated into pressure values. Notwithstanding, the stagnation point

and the solid itself are pretty accurate.

Finally, the last tests are ruled in order to verify the solution with respect to the reference ones. The first

group of images illustrates the streamwise and cross-stream velocities at the centerline of the channel, y = 0

(see Figure (5.28)). The second group of images illustrates the same velocities at different longitudinal

positions, x = 0, x = 4 and x = 8 (see Figure (5.29)).
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(a) Reference results for Re=100 at y = 0. Extracted from [14]
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(b) u-velocity map at y = 0
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Figure 5.28: Streamwise and cross-stream velocities for Re=100. Reference and numerical solution comparison.

The numerical results are not perfectly matching with the reference ones for two main reasons. The first is

the coarse mesh used. It has been said that for high Reynolds values, the chosen mesh is not good enough to

precisely capture the flow gradients. For this reason, the solution seems to be not linear. The second reason

is the time convergence criterion. The simulations are ruled up to t = 350s, but the reference solutions are

ruled until the velocity goes from positive to a negative value at x = 10.

However, the streamwise representation follows the same behavior as the reference ones, with a negative

drop in the velocity after the solid and a curling tendency after the solid, where the vortexes appear. The

cross-stream velocity has also the same tendency due to the vortex generation.

From the group of figures below, the same mesh conclusions and time convergence criterion can be extracted.

It is curious to see that at the time that the simulation was stopped, the vortex was on the opposite side of

the reference ones. For this reason, the Figures (5.29b) and (5.29c) are the opposite solution of the reference

values at x = 4 and x = 8.
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(a) Reference results for Re=100 and different x positions. Extracted from [14]
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(b) u-velocity map for different x positions
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Figure 5.29: Streamwise and cross-stream velocities for Re=100 and different x positions. Reference and
numerical solution comparison.

5.5 Discussion

Throughout the obtained results in the previous sections, it can be concluded that the algorithm presented to

solve the FSM is working properly.

In the first case, the Lid-Driven Cavity, a general overview of the different convective schemes was provided,

concluding that CDS is the most suitable scheme for low Reynolds. The following cases were evaluated with

this scheme. In the second case, it can be also concluded that the energy equation has been successfully

solved. Finally, the Flow between Plates also agrees with the analytical solution, and the Square Cylinder

with the reference results.

Since all the problems have been tested with the same algorithm and the only differences between them are

the geometry and the boundary conditions, it can be concluded that the code is totally capable to deal with

any other problem.
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Chapter 6

Turbulence

This sixth chapter is focused on the study of the turbulence phenomenon. For this purpose, a previous

introduction to the phenomena’ characteristics and a short justification can be found. Then, a mathematical

study is done to better understand the formulation and physics behind Burgers’ equation and its transformation

into the Fourier space, and after that, it is applied to a theoretical case.

6.1 Introduction to Turbulence

Turbulent flow is encountered once the Reynolds number exceeds the critical Reynolds. Below this value,

the flow is defined as laminar, but beyond it, the flow becomes unstable, causing chaotic and continuously

changing velocity, pressure, density, and temperature maps. These fluctuations are three-dimensional and

can be interpreted as turbulent eddies [15].

The energy spectrum of the turbulent system is defined by the energy distribution of the eddies in front of

its wave number k. This wave number is also inversely proportional to the wavelength of the eddy. The

largest length scales, also known as driving scales, are found for the lowest wave numbers, and the Energetic

Range can be defined. The smallest length scales, also known as Kolmogorov’s length scales, are found for

the highest wave numbers, defining the Dissipation Range. Energy is transported from the largest to the

smallest scales, defining the Inertial Range. These dependencies and ranges can be seen in Figure (6.1).

It is considered that the Energetic Range is an input of energy, ϵin. The Inertial Range is considered to be a

transference of energy from the largest to the smallest scales. Is defined by a constant line with a negative

slope of −5/3, and Kolmogorov’s energy spectrum is defined by the following equation:

E(k) = Ckϵ
2/3k−5/3 (6.1)

where Ck takes the value of 1.4. This range is affected by the Reynolds number. When Reynolds number

increases, the range becomes larger because even smaller scales are developed. The last range, Dissipation

Range, is considered to be the output of energy, which is dissipated through the smallest eddies. By the
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equilibrium hypothesis, it can be assumed that ϵout = ϵin.

Figure 6.1: Energy cascade

It has been mentioned that the Inertial Range has a Reynolds dependency, so there is also a dependency

between the largest and the smallest scales. Considering ϵ as an input or output of energy per unit of time,

and assuming U for the largest scales and u for the smallest ones, being U >> u, both input and output

energies are the order of:

ϵin ∼ U
l
U

=
U3

l
(6.2)

ϵout ∼ ν

(
u

η

)2

(6.3)

And Reynolds numbers can be considered as:

Rel =
Ul

ν
(6.4)

Reη =
Uη

ν
(6.5)

Since Reynolds number is the relation between convection and diffusion, as the energy E(k) decreases, the

convective term becomes weaker and the diffusive one stronger. When the energy E(k) is the minimum,

the smallest scale is reached, so the convective and diffusive terms have the same order of magnitude, and

Reη ∼ 1.

U =
Relν

l
(6.6)

u =
Reην

η
∼ ν

η
(6.7)

Assuming equilibrium, ϵin = ϵout: (
Relν

l

)3
l

∼ ν

( ν
η

η

)2

(6.8)
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By operating the previous equation, the following relations can be found:

l

η
∼ Re

3/4
l (6.9)

U

u
∼ Re

1/4
l (6.10)

tl
tη

∼ Re
1/2
l (6.11)

Now that the relation between the largest and the smallest scales is already known, let’s consider a simple

three-dimensional case:

1. 3D space:
(

l
η

)3
∼ Re

9/4
l

2. Time: tl
tη

∼ Re
1/2
l

3. Space × Time:
(

l
η

)3
tl
tη

∼ Re
11/4
l

The computational complexity of the Navier-Stokes equations grows in the order of Re
11/4
l . This is the reason

why solving a turbulent field with even the smallest scale considered and a small enough time step is highly

expensive in terms of computational effort, and this is also the reason why turbulence models are used.

The simulations of turbulent fields are divided into three main parts:

1. DNS: Direct Numerical Simulations (DNS) are the ones that need high computational resources since

they solve from the largest to the smallest length scales and the time steps are small enough to solve

even the fastest fluctuations.

2. LES: Large Eddy Simulations (LES) are turbulent models that simplify Navier-Stokes equations and

only solve the largest scales. The computational cost is reduced regarding DNS.

3. RANS: Reynolds Averaged Navier-Stokes Simulations (RANS) have the lowest computational cost

and are obtained by averaging the fluid motion equations. This particular case is not applied in this

section.

6.2 Burgers’ equation in Fourier space

The Burgers’ equation is a simplified model that shares many of the aspects with the Navier-Stokes equations

[16]. In a one-dimensional domain, the equation in the physical space for the velocity field u(x, t) is defined

as:
∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
+ F (6.12)

This equation is going to be solved in Fourier space on an interval Ω with periodic boundary conditions. The

first step is to apply the Fast Fourier Transform (FFT) to the velocity field:

u(x, t) =

k=+∞∑
k=−∞

ûke
ikx (6.13)
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In the previous equation, k represents the wave number. Since u(x, t) ∈ R, the following relation is applied:

ûk = û−k (6.14)

Relation (6.13) is applied to each term of the equation (6.12):

1. Transient term:

∂u

∂t
=

k=+∞∑
k=−∞

∂ûk
∂t

eikx (6.15)

2. Convective term:

u
∂u

∂x
=

p=+∞∑
p=−∞

ûpe
ipx ·

q=+∞∑
q=−∞

(iq)ûqe
iqx =

+∞∑
p=q=−∞

ûp(iq)ûqe
i(p+q)x (6.16)

3. Diffusive term:

1

Re

∂2u

∂x2
=

k=+∞∑
k=−∞

ûk(ik)
2eikx and being i2 = −1, results in: − k2

Re

k=+∞∑
k=−∞

ûke
ikx (6.17)

4. Source term:

F =

k=+∞∑
k=−∞

F̂ke
ikx (6.18)

Since the summation can not be computed from −∞ to +∞, a discretization of N-modes is done, being the

new k range k = −N, ..., 0, ..., N . The Burgers’ equation in Fourier space stands for:

k=+N∑
k=−N

∂ûk
∂t

eikx +

+N∑
p=q=−N

ûp(iq)ûqe
i(p+q)x = − k2

Re

k=+N∑
k=−N

ûke
ikx +

k=+N∑
k=−N

F̂ke
ikx (6.19)

The previous equation can be solved by each mode separately, considering the condition p+ q = k for the

convective term. It can also be added that only positive modes are needed to be solved since negative ones

come directly from relation (6.14). The simplified equation is the following one:

∂ûk
∂t

+
∑

p+q=k

ûp(iq)ûq = − k2

Re
ûk + F̂k where k = 0, ..., N (6.20)

Regarding boundary conditions, the initial velocity for a generic k is defined as:

ûk =
1

|k|
(6.21)

and if the node is the null one, there is no interaction with other modes and, therefore, no mean flow is

assumed, so:

û0 = 0 (6.22)

Regarding the forcing term, F̂k = 0 for k > 1 and F1 such that ∂û1/∂t = 0 for t > 0.
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6.2.1 LES model

The implementation of a LES model is done to improve the results of the coarse meshes with no need to

dense them.

In this chapter, the spectral eddy viscosity model is implemented. An additional non-dimensional viscosity

multiplying the diffusive term is added, and it is determined by assuming some properties of the energy

spectrum. The turbulent viscosity is defined as follows:

νt = ν+∞
t

(
EkN

kN

)1/2

ν∗t

(
k

kN

)
(6.23)

being

ν+∞
t = 0.31

5−m

m+ 1

√
3−mC

−3/2
k (6.24)

ν∗t

(
k

kN

)
= 1 + 34.5e−3.03(kN/k) (6.25)

In the previous equations, m stands for the slope of the energy spectrum, EkN is the energy at the cutoff

frequency, kN , and Ck is the Kolmogorov constant. With these equations, the simplified Burgers’ equation

(6.20) is slightly modified:

∂ûk
∂t

+
∑

p+q=k

ûp(iq)ûq = −
(
k2

Re
+ νt

)
ûk + F̂k where k = 0, ..., N (6.26)

6.2.2 Burgers’ equation resolution

Before time integration of the Burgers’ equation (6.20), a rearrangement is done, introducing an R(ûk)

coefficient:
∂ûk
∂t

= R(ûk) where R(ûk) = − k2

Re
ûk + F̂k −

∑
p+q=k

ûp(iq)ûq (6.27)

Time integration must be verified at any time between tn and tn+1, so it results as follows:

ûn+1
k − ûnk

∆t
=

3

2
R(ûnk )−

1

2
R(ûn−1

k ) (6.28)

Due to the implicit scheme, time stability conditions must be taken into account. As in the previous chapter,

the CFL condition is applied:

∆t ≤ C
Re

N2
(6.29)

C stands for a relaxation factor between 0 and 1.

Another consideration must be taken into account regarding the convective term. Due to the Fourier

transform symmetry, it has been said that positive modes are the only ones needed to be solved. In addition,

contributions to the convective term that verify p+ q > N are also discarded because the Fourier series is

truncated for |k|≤ N . Notice that some of these interactions involve modes with p < 0 or q < 0. In this

case, negative modes are related to positive ones via equation (6.14). The following image represents all the
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possible triadic interactions between modes.

Figure 6.2: Representation of all possible triadic interactions between modes. Extracted from [17]

6.3 Code structure

The algorithm to solve the proposed problem is presented below.

1. Input data:

(a) Physical data, such as Reynolds number and LES parameters.

(b) Numerical data, such as convergence parameter, modes number, time step, etc.

2. CFL condition: minimum time step evaluation.

3. Initial maps for t = 0: ûk(t = 0)

4. R(ûn−1
k ) evaluation

5. Time-convergence starting point: t = t+∆t

(a) R(ûnk ) evaluation

(b) Next velocity evaluation ûn+1
k

(c) Convergence analysis: if the steady state is reached, |ûn+1
k − ûnk )|< δ the code goes to step 6. If

not, the code updates data, R(ûn−1
k ) = R(ûnk ), û

n−1 = ûn, ûn = ûn+1, and goes back to step 5a.

6. Kinetic energy computation: Ek = ûkûk

7. Final computations and results printing
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6.4 Numerical results

6.4.1 Code verification. Re=40

The Burgers’ equation is solved for Re = 40 for N = 100 (DNS) and N = 20, which solution is clearly

underresolved. In addition, the LES model is applied for N = 20, m = −2, and Ck = 0.4523 or Ck = 0.050:
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Figure 6.3: Energy spectrum of the steady-state solution of the Burgers equation for Re=40

The results can be compared with the ones provided by the CTTC:

Figure 6.4: Energy spectrum of the steady-state solution of the Burgers equation. Extracted from [17]

The code can be verified since the obtained results are exactly the same provided by the CTTC report.

Regarding the DNS results, with N = 100, it can be seen that the energy decreases with a constant negative
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slope line in the logarithmic scale until k = 40 approximately. This range can be identified as the Inertial

Range. From here on, the energy decreases faster due to the increase in the dissipation of energy at the

smallest scales. This last range can be identified as the Dissipation Range.

The simulation without a LES implementation and N = 20 is clearly underresolved. The results become

unstable due to the lack of the smallest scales able to dissipate the energy. Here it reaffirmed the need for the

small scales simulation and, therefore, the huge computational effort needed to carry out the simulations.

This computational effort can be significantly reduced by the LES implementation, as the simulation shows.

Implementing a LES model and maintaining the low number of modes N = 20, the obtained results are

significantly more stable. For Ck = 0.4523, the results are barely modified with respect to the DNS ones,

even though the smallest scales are not considered. This is because the increase in the kinematic viscosity

allows a bigger energy dissipation at larger scales. Regarding the solution for Ck = 0.05, it can be seen that

the inertial range is significantly decreased. For the same reason as before, the decrease in the Kolmogorov

constant is translated into a notable kinematic viscosity, and then, the dissipation effect is larger than the

real one (DNS).

6.4.2 Extension to Re=200

In order to visualize the dependency of the Inertial Range with the Reynolds number, it has been increased

up to Re = 200. With this new value, the same simulations with N = 100 for the DNS solution, N = 20, and

the implementation of the LES model with N = 20, m = −2, and Ck = 0.4523 and Ck = 0.05 are ruled. The

results are the following:
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Figure 6.5: Energy spectrum of the steady-state solution of the Burgers equation for Re=200
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As expected, the constant negative slope line is extended up to k = 70 modes for the DNS solution. From

here can be also verified the code, since the Inertial Range has increased with the Reynolds number. It must

be noted that for k = 100, a damping energy appears. This is the energy left for the higher modes that

are not considered in the simulation. The need for the increase of the modes is logical since the Reynolds

increases, and the number of modes must increase to capture the fluctuations of the turbulent flow.

Regarding the simulation with N = 20, the solution is highly much more unstable than the one obtained for

Re = 40. The reason is the same as before, which is since the Reynolds has increased, much more modes are

needed to capture the different fluctuations of the flow. In this case, N = 20 is even less valid than for the

last simulation.
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Chapter 7

Turbulent Flow between Parallel

Plates

This seventh chapter is focused on the theoretical introduction to the study of the turbulence phenomenon

applied to the flow between parallel plates problem of the previous chapter. This new case is an extension to

three dimensions with two periodic directions, streamwise and spanwise. For this reason, the mathematical

formulation of this chapter is only focused on the dimension extension since the FSM does not change, and

the algorithm follows the same structure.

7.1 Problem definition

The main goal is the numerical resolution of a turbulent flow enclosed between ideally infinite parallel plates.

Due to the lack of time before the final deadline, the problem is only studied from a theoretical point of view.

The problem states that there is an incompressible flow between two ideally infinite parallel plates [18]. Since

it is desired to obtain a fully developed turbulent flow, some considerations must be done beforehand.

1. This problem operates with the friction Reynolds Reτ . It is defined by the equation below. It is

important to note that it depends on the half-width of the channel, denoted by δw, and also depends

on the shear velocity uτ , which takes unitary value:

Reτ =
δwuτ
ν

(7.1)

The value of the shear velocity and the half-width, and also the value of the friction Reynolds number

are imposed. Therefore, the value of the kinematic viscosity is computed.

2. The geometry of the problem relies on the half-width of the channel, but also the friction Reynolds

number (see Table (7.1)).

3. To obtain the ideally infinite parallel plates, the concept of periodic inlet conditions must be introduced.
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Since it is not affordable to simulate infinite lengths from the computational point of view, it is declared

that the outlet values of the properties from the previous time step are the inlet values for the next

time step. This condition is applied in the streamwise and spanwise directions.

4. Due to the previous condition of the periodic inlet conditions, it can not be defined an inlet velocity.

For this reason, a force term is added to the horizontal momentum equation.

The following table sums up the geometry of the problem, depending on the value of the Reynolds:

Table 7.1: Geometry of the problem. Extracted from [19]

Reτ L H W

180 4πδw 4/3πδw 2δw

395 2πδw πδw 2δw

590 2πδw πδw 2δw

As said before, inlet conditions for streamwise and spanwise directions are declared as periodic inlet conditions.

The rest of the problem boundary conditions are the following:

1. Left side: periodic inlet velocity:

v⃗n+1[x = 0] = v⃗n[x = L] (7.2)

2. Right side: this side has a Neumann boundary condition for velocity, and pressure is imposed to take

a null value.
∂v⃗

∂x
= 0 (7.3)

p = 0 (7.4)

3. Upper and lower sides: the no-slip condition is applied, together with a Neumann boundary

condition for pressure.

v⃗ = 0 (7.5)

∂p

∂y
= 0 (7.6)

4. Front side: periodic inlet velocity:

v⃗n+1[k = 0] = v⃗n[k =W ] (7.7)

5. Back side: this side has a Neumann boundary condition for horizontal:

∂v⃗

∂x
= 0 (7.8)

The following figure illustrates the geometry and boundary conditions of the problem:
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Figure 7.1: Turbulent Flow between Parallel Plates scheme. Geometry and boundary conditions.

7.2 3D extension

The extension of the FSM algorithm to three dimensions is quite easy. The following list sums up all the

changes and additions that must be done to the code

1. The R(v⃗n) computation is the same, adding the third dimension components to the R(un) and R(vn)

coefficients, and creating the new R(wn) coefficient:

(a) x-staggered mesh: apart from the new dimension coefficients, this R(un) must include the force

term that will generate the flow motion:

R(un)ΩxP = −conv + diff + F (7.9)

where convective and diffusive terms are computed as it was done in the FSM code, but adding

the third dimension coefficients. Note that f and b stand for front and back :

conv = ṁeue − ṁwuw + ṁnun − ṁsus + ṁbub − ṁfuf (7.10)

diff = µe
uE − uP
dPE

Ae − µw
uP − uW
dPW

Aw + µn
uN − uP
dPN

An − µs
uP − uS
dPS

As+

+µb
uB − uP
dPB

Ab − µf
uP − uF
dPF

Af (7.11)

Volumetric flow and velocities at the faces are computed the same way as before.

(b) y-staggered mesh: the same addition of the third dimension is done. Convective and diffusive

terms are the same as before but with vertical velocities. The evaluation of the velocities is done

the same way as in the FSM code.
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(c) z-staggered mesh: analogous to the previous R(un) and R(vn), an R(wn) coefficient is computed:

R(wn)ΩzP = −conv + diff (7.12)

This time, convective and diffusive terms are evaluated with the spanwise component of the velocity,

w.

2. Once R(un), R(vn), and R(wn) are computed with the x-staggered, y-staggered, and z-staggered

meshes, the predictory velocity can be computed node-by-node. uP and vP are computed the same

way as before (see equations (5.24) and (5.25)), and wP follows the same scheme:

wP = wn +
∆t

ρ

(
3

2
R(wn)− 1

2
R(wn−1)

)
(7.13)

3. The pressure is computed the same way as it was in equation (5.26), and also adding the new components

due to the dimension extension:

aP p
n+1
P = aEp

n+1
E + aW pn+1

W + aNp
n+1
N + aSp

n+1
S + aBp

n+1
B + aF p

n+1
F + bP (7.14)

where

aE =
Ae

dPE
aW =

Aw

dPW
aN =

An

dPN
aS =

As

dPS
aB =

Ab

dPB
aF =

Af

dPF
(7.15)

aP = aE + aW + aN + aS + aB + aF (7.16)

bP =
−1

∆t

(
(ρuP )eAe − (ρuP )wAw + (ρvP )nAn − (ρvP )sAs + (ρwP )fAf − (ρwP )bAb

)
(7.17)

4. Finally, the next velocity v⃗n+1 can be computed node-by-node. Once again, the horizontal and vertical

components don’t change from the previous expression (see equations (5.30) and (5.31) ). The new

spanwise next velocity is computed following the same scheme:

wn+1
P = wP

P − ∆t

ρ

(
pn+1
B − pn+1

A

dBA

)
(7.18)

7.3 Future work

As said before, due to the lack of time before the final deadline, this case has not been finished. Notwithstanding,

the list down below sums up the scheme that must be followed to achieve the solution:

1. The first could be the introduction of the streamwise periodic condition to the 2D code in the laminar

regime. The same code used to solve the flow between parallel plates could be modified, and the

obtained results must be the same.

2. Once the streamwise periodic condition is introduced, the 3D extension can be done including the steps
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abovementioned. Then, the spanwise periodic condition has to be introduced also.

3. Finally, the solution for Reτ=180 and others can be found. It must be kept in mind that the solution is

found in the turbulent regime. For this reason, the time convergence criterion can no longer be the

same. Instead, a certain time achievement must be imposed.
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Chapter 8

Budget summary

The total budget of the thesis can be split into three parts.

The first part is the equipment and energy resources costs, which include the price of the computer and the

energy consumption. The second part is the working hours’ costs, which take into account the 600 hours

of work applied to this thesis and the salary of a technical engineer. The third part includes the software

licenses’ costs. Since all the software used for this thesis is free, no costs are computed in this part.

The following table sums up the general costs of each part mentioned previously. A detailed overview of each

one, along with its own cost table can be found in the budget report.

Table 8.1: Total budget of the thesis

Concept Total cost

Equipment and Energy resources costs 87.43e

Working hours costs 8457.90e

Software costs 0e

TOTAL 8545.33e
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Chapter 9

Analysis and assessment of

environmental and social implications

The present chapter focuses on the analysis and assessment of the environmental impact associated with

this CFD thesis. The objective is to evaluate the environmental implications resulting from the usage of

a computer system and the energy source required to power the computer’s battery throughout the thesis

development.

To conduct this analysis, various factors related to energy consumption and environmental impact will be

considered. These factors include:

1. Energy Consumption: the amount of energy consumed by the computer system during the thesis

research can be quantified. An estimated value of 45.6W of power is consumed by the computer, and

600 hours of work have been needed to develop this thesis.

2. Energy Source: based on the hired energy service of the house, 27% comes from renewable sources,

24.6% comes from natural gas, 4.9% from coal, 29.5% comes from nuclear sources, and 14% from other

nonrenewable sources.

3. Greenhouse Gas Emissions: also based on the hired energy service of the house, 0.2kg/kW·h of

C02 are emitted. Taking into account the energy consumption, a total of 5.47kg of C02 are emitted.

It is important to note that this analysis is specific to the energy consumption of the computer system used

in the thesis and does not encompass other potential environmental impacts such as the manufacture of the

computer.
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Chapter 10

Conclusions

A brief overview of the obtained results is presented down below, along with some future actions that could

be carried out if an expansion of the present thesis is desired.

10.1 Conclusions

The aim of the project was the development of a set of codes capable of solving heat and mass transfer

problems involving fluid dynamics. Using the C ++ language, these codes have been programmed, verified,

and validated.

The first approach to the subject was the heat conduction phenomena. After that, an extension to the general

Convection-Diffusion equation was ruled. Therefore, the FSM was addressed with well-known benchmark

problems and, finally, an introduction to the turbulence field was ruled by studying the Burgers’ equation.

Every chapter included a mathematical formulation and code structure and different verification cases which

allowed the validation of the code.

At this point, it could be affirmed that the main objective of the thesis has successfully been satisfied since

every code developed provided excellent results compared to the reference ones.

Some general conclusions can be drawn from the previous studies. The different theoretical demonstrations

provided a general overview of the Navier-Stokes equations along with their particular hypothesis to simplify

the cases. In addition, an in-depth knowledge acquisition about numerical schemes has been covered, along

with spatial discretization and mesh types, and convective schemes and their main aspects. The importance

of the mesh selection along with the convective scheme has been reflected throughout the whole verification

process of every case. This thesis also provided the opportunity to improve the programming skills in every

sense, from the simplest variable type and declaration up to the importance of code optimization, vector

definitions, and the use of functions. Notwithstanding, the code debug process was slower than desired, thus

final Turbulent Flow case was not finished.
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10.2 Future actions

There are several aspects that, due to the duration of the work, have not been able to be addressed or studied

with sufficient depth. Hereafter, a brief list with future actions is presented if the present thesis wants to be

improved and expanded:

1. Programming skills have been a crucial factor in this thesis. For this reason, some formation in the

field of C ++ language would be a great help.

2. From the theoretical point of view, the Navier-Stokes equations study could be continued in order to

expand the thesis to new interesting cases.

3. Regarding the numerical schemes, other solvers such as TDMA or others could be implemented to

compare the solutions and performance of the codes.

4. This thesis introduced the turbulent phenomenon. It could be very interesting to continue this line.

Firstly, finishing the Turbulent Flow code and obtaining the solutions and, then, implementing turbulent

models such as LES or RANS to compare the obtained results.
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