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Abstract—Recent advances in web technologies make it more
difficult than ever to detect and block web tracking systems.
In this work, we propose ASTrack, a novel approach to web
tracking detection and removal. ASTrack uses an abstraction of
the code structure based on Abstract Syntax Trees to selectively
identify web tracking functionality shared across multiple web
services. This new methodology allows us to: (i) effectively
detect web tracking code even when using evasion techniques
(e.g., obfuscation, minification, or webpackaging); and (i:) safely
remove those portions of code related to tracking purposes
without affecting the legitimate functionality of the website. Our
evaluation with the top 10k most popular Internet domains
shows that ASTrack can detect web tracking with high precision
(98%), while discovering about 50k tracking code pieces and
more than 3,400 new tracking URLSs not previously recognized
by most popular privacy-preserving tools (e.g., uBlock Origin).
Moreover, ASTrack achieved a 36% reduction in functionality
loss in comparison with the filter lists, one of the safest options
available. Using a novel methodology that combines computer
vision and manual inspection, we estimate that full functionality
is preserved in more than 97% of the websites.

Index Terms—AST, web tracking, functionality loss, website
breakage

I. INTRODUCTION

During the last years, the research community has been
very active looking for new ways to detect and block web
tracking (e.g., [1]-[8]). Experts explored numerous online
services, finding all kinds of new and exotic ways of exploiting
protocols ([1]-[4]) or abusing programming language APIs
([5]-[7]) for user profiling purposes. Unfortunately, most of
the proposed solutions are very complex and hard to deploy
in a real browsing session, limiting their application to offline
studies. Currently, the most popular solution to protect against
web tracking is the use of content-filtering extensions in web
browsers (e.g., uBlock Origin [9], Adblock Plus [10]). These
tools are based on filter lists, manually curated pattern lists
containing known tracking domains that are matched against
the URLSs visited in a browsing session.

However, content-filtering extensions as well as most of the
previously proposed approaches suffer from several limita-
tions: (¢) They require significant manual work to keep the
filter lists up to date (e.g., new methods constantly emerge
under different URLs); (i) URL-based detection and protec-
tion methods are easy to evade just by changing the hosting
domain or dynamically modifying their URL parameters;
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(#i1) obfuscation, minimization, and webpackaging techniques
automatically modify the internal website code, breaking many
detection systems (e.g., [11], [12]); and (#v) current URL and
resource-based blocking methods result in significant website
functionality loss ([13], [14]). Some previous works (e.g., [7],
[8], [15], [16]) proposed partial solutions to some of these
limitations, usually through the use of machine learning meth-
ods. However, these solutions present a trade-off, advancing
in some aspects but giving up in others (see Section II).

In this paper, we present ASTrack, a new method that
addresses all the limitations described above. Unlike previous
proposals, ASTrack focuses on the code structure instead of
the code itself. For this purpose, ASTrack uses an abstraction
of the JavaScript code based on Abstract Syntax Trees (AST).
An AST is simply a tree representation of the abstract syntactic
structure of the source code, regardless of its particular con-
tents (e.g., variable or function names). An AST can represent
the entire code as well as the different functional portions of it
(e.g., functions). Our proposal is based on the observation that
most websites use common analytics or fingerprinting libraries
to collect private information. Thus, when the same code
structure (i.e., AST) is used across multiple domains, the AST
becomes suspicious for performing tracking, especially if some
of the domains were previously known to be tracking domains.
By using a syntactic abstraction instead of the code itself, our
system is more robust to common evasion techniques, such
as minimization or obfuscation. Moreover, this abstraction
allows us to selectively prune individual tracking ASTs (e.g.,
functions) while maintaining the rest of the (legitimate) code
unmodified. This increase in blocking granularity compared
to previous methods, which usually block URLs or complete
resources, can better preserve website functionality and detect
tracking code under different URLs or within different files.

Our evaluation of the top 10k most popular websites shows
that ASTrack maintains a detection precision of more than
98%. During our experiments, ASTrack found more than
3,400 new tracking URLs and automatically classified about
50k tracking code pieces, including obfuscated fragments that
could not be easily detected with other techniques. Finally,
we estimate that website functionality is preserved in approx-
imately 97.7% of websites.

In summary, the key contributions of this paper are:

1) A syntactic approach to the detection of web tracking
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code that is highly adaptive and robust against minimiza-
tion and obfuscation.

2) A high grade of detection granularity, permitting se-
lective code removal while maintaining the functionality
of the website in most cases.

3) A new methodology to detect website functionality
breakage by means of computer vision techniques.

4) An evaluation of the tracking blocking performance
as well as the website functionality loss for the top
10k most popular websites in the Tranco List.

The rest of the paper is organized as follows: Section II
presents an overview of web tracking detection systems and
the limitations of existing methodologies. Section III describes
ASTrack, our new web tracking detection and removal pro-
posal. Section IV presents the evaluation of the web tracking
detection and removal process. Finally, Section V concludes
the paper and presents future work.

II. BACKGROUND AND RELATED WORK

A. Web tracking

Traditional web tracking systems are usually stateful tech-
nologies. They use different techniques to save an identifier
inside the storage of the device browsing the web. The
identifier will be read again every time the device accesses
the same website service. The most common method are
the infamous cookies, but there are more exotic approaches
such as embedding identifiers in cached documents [17], in
the HTTP redirect cache [18], in the HTTP authentication
cache [19], or inside the HTMLS storage [20]. However, new
privacy regulations (e.g. [21]-[23]) impose multiple restric-
tions on most of these systems. Moreover, many mainstream
browsers have implemented countermeasures to this kind of
web tracking. For instance, Safari now blocks all third-party
cookies [24], and Firefox blocks third-party cookies from
known trackers by default [25]. Chrome will also ban third-
party cookies in the near future [26].

Stateless technologies, on the other hand, do not save
information inside the device. They directly identify the user
based on other measurable properties, such as the IP address
or the device configuration exposed by the browser. Stateless
technologies are also known as fingerprinting methods. Most
simple techniques look at numerous properties, such as the
screen resolution [27], the version of the browser [28] or
the fonts installed in the system [29], to combine them and
create a unique identifier. However, the latest functionalities
added to web technologies in the form of new JavaScript
APIs [30] permit stateless web tracking algorithms to collect
much more precise information. Rendering differences due to
specific hardware and software combinations can be abused
by means of those APIs to precisely identify the browser
being used to explore the web [31]-[35]. This kind of web
tracking is far more intrusive than the traditional cookies, as
it is completely transparent to the user, and there is no easy
way to control when, where, or by whom they are being used.

B. Detection

Most of the solutions proposed in the literature, such as
the works from Wu et al. [11] or Ikram et al. [12], apply
machine learning (ML) algorithms over the website code to
find specific features identifying tracking methods. However,
the underlying static analysis used is prone to fail under
techniques such as obfuscation, that can modify those features.

Igbal et al. [7] present a browser fingerprinting detection
system using a combination of two independent machine
learning algorithms, one trained with features extracted from
a static analysis of the JavaScript code and the other from
a dynamic analysis. The second ML complements the first
one in case obfuscation or minimization techniques have been
used in the code. They also present a way to reduce the
breakage of website functionality by means of the replacement
of the tracking code with mock versions of it. The system
presents high accuracy in detecting browser fingerprinting and
a functionality loss reduction of about 20% whenever the mock
functions can be used. However, the system only detects one
kind of tracking, and the functionality breakage improvement
system does not work on webpackaged files [36], a common
practice on today’s Internet. The breakage system is only
evaluated on a population of 50 websites.

Our previous work at [8] proposes a web tracking detection
system based on a deterministic code partition algorithm and
a tripartite network representation that allows us to propagate
the probability of containing tracking for each piece of code.
The system presents high accuracy in finding unknown web
tracking. However, the static analysis nature of the system by
using directly the code for identification makes it vulnerable
to obfuscation or randomized content renaming techniques.
Moreover, the partition algorithm makes it impossible to block
tracking code without breaking website functionality.

C. Mitigation

Many of the detection systems presented above include
some kind of solution to block the detected web tracking
algorithms. However, those solutions are usually complex and
difficult to deploy by the common user. In practice, the most
commonly used mitigation systems are filter lists. These lists
include a collection of patterns identifying URLs suspicious
of performing tracking. There is no easy way to create the
lists, and usually they are manually curated by the members of
an online community. EasyList [37] and EasyPrivacy [38] are
both examples of such lists. Many popular content blockers,
such as AdBlock Plus [10] and uBlock Origin [9] use those
lists to block URLs during loading.

Smith et al. present in [16] an alternative approach: tracking-
free resource replacements. Some content blockers allow for
resource replacements in real-time. Smith et al. automatically
generate clean versions of some of the most popular tracking
resources to be used as replacements. Similar to [7], they
clean the code using a mock replacement for some of the API
functions used to track the user. However, this approximation
is not scalable, as the inspected scripts are selected manually,
and many tracking systems work with dynamic custom files



that are different for each website. Moreover, new tracking
resources are created daily.

Some browsers also implement partial solutions to stateless
tracking. In particular, the TOR browser and Firefox, by
means of an experimental feature [39], automatically block
some of the API functions commonly used for tracking [40].
Unfortunately, this approach breaks every website where the
API is used for legitimate purposes.

ITII. ASTRACK

In this section, we introduce ASTrack, a new adaptive
method to detect and selectively remove web tracking systems
while minimizing the functionality loss associated with them.
Our proposal is based on the observation that most websites
share code and functionality, usually in the form of popular
frameworks and useful libraries. For instance, JQuery libraries
or social network interaction buttons are common to many
different websites. Web tracking is no different. Most websites
use common analytics or fingerprinting libraries (e.g., Google
Analytics) to collect user information. It is rare to find websites
with completely customized tracking libraries not present on
other websites. Thus, web tracking functionality is also shared
by many websites. Our proposal is to search for this shared
functionality between multiple websites and automatically
identify web tracking systems among them.

A. Functionality identification

As its name implies, ASTrack tracks shared Abstract Syntax
Trees (AST) between different websites. An AST represents
the code as a tree, whose nodes are its elements, and edges the
relation between them. However, ASTrack does not look for
the actual elements included in the AST but for the structure
of the AST as a whole, looking only at the node types and
their relations. The structure of the tree is independent of the
names and values of the code, representing the functionality
itself. Minimized or obfuscated ASTs share the same structure.
Independent trees with exactly the same structure necessarily
share the same functionality, despite the different results they
may obtain depending on the input values. In summary,
looking at AST’s structure, we will find functionality shared
by different web services.

In order to define a representation of the AST structure, we
decided to follow two principles: consistency and simplicity. In
our case, consistency means that different codes with the same
structure must always be represented equally. On the other
hand, simplicity is a key factor in favoring a system that can
be deployed in reality, where complex implementations can
result in performance constraints. The selected representation
corresponds to a simple label chain. The identifier label chain
is created by traversing the AST, descending recursively into
each branch, and concatenating integer identifiers for each
node type found. Fig. 1 shows a simple AST and the process
to obtain its identifier for illustration purposes. Each node
receives one aperture label (left integer) and one closure label
(right integer), except operator nodes, which only have the
aperture label. The dotted arrows indicate their concatenation
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Fig. 1. AST identification example: Integer values represent the aperture
(left) and closure (right) labels of each node. The dotted arrow indicates the
concatenation order to generate the ID. Looking for pairs of aperture and
closure labels of function nodes, we find their corresponding identifiers.

order. When the algorithm enters a node, it concatenates its
aperture label into the AST label chain. If the node has
branches, it explores them recursively. Finally, if present, it
also concatenates the closure label and finishes. The resultant
label chain, composed of an ordered node identification chain,
is the simplest representation that allows us to unambiguously
identify the AST structure. However, not only the main AST
identifies functionality, but each nested function or method also
contains partial isolated functionality. Thus, we will generate
identifiers for their branches as well. Fig. 1 shows three
identifiers in different colors, one corresponding to the entire
AST and two for internal nested function declarations. In order
to find the identifier of the nested branches, we only need to
look for the pair of labels that enclose them (988 and 989 in
our example) within the main AST identifier. Finally, to fix the
maximum length of the identifiers, a hash function is applied
to each of their label chains. For purposes of simplification,
during the rest of the paper we will refer to AST identifiers
simply as ASTs.

B. Web tracking detection

ASTrack detects web tracking code by independently clas-
sifying the detected ASTs for each inspected URL. To this
end, we initially label the URLs as tracking or not based
on the most up-to-date filter lists. The classification is done
by looking at the overall number of URLs that contain the
identified functionality and are already known to perform
tracking. The underlying idea is that, if one AST structure
is mostly present in tracking URLs, its functionality is most
probably used for tracking purposes. Thus, an unknown URL
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New safe URL detected with shared AST.
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Tracking URL detected.
Initial safety level -1 (blocked).

New tracking URL detected with shared AST.
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Fig. 2. ASTrack tracking detection and removal conceptual process: By computing safety values for each AST loaded by URLSs, ASTrack decides which
code to remove or not. The safety is calculated by accounting for the number of already-known tracking URLs that include the AST. When the evidence is
enough to consider the AST a tracking one, the URLSs containing it are reclassified as tracking, and their safety values propagate.

that shares the same functionality (i.e., the same AST) with
other tracking URLs will also be a tracking URL, and we can
automatically classify it as such.

Fig. 2 conceptually shows the process of the ASTrack au-
tomatic identification system during a usual browsing session.
In the first step, the user opens a domain that loads a safe URL
(i.e., not labeled as tracking). ASTrack automatically computes
its inner AST identifiers. The circle represents the URL, and its
inner hexagons are the ASTs internally loaded. As ASTrack
does not have information about this URL, it will consider
its inner ASTs as safe (green color and positive value). In
the second step, a new safe URL is detected, and shares one
AST with the previous URL. Their shared AST safety level
becomes the sum of their individual safety levels, increasing
it to 2. The third step introduces an already-known tracking
URL. Its ASTs are considered unsafe (negative safety value
and light red color) and consequently blocked. In the fourth
step, a new tracking URL is detected, but this time it shares
one AST with an URL that until now was considered safe.
This shared AST safety value becomes zero. ASTrack does
not have enough evidence to decide if it should be blocked
or not. In this case, ASTrack allows its execution to maintain
website functionality as much as possible. In the fifth step, a
new tracking URL is detected and shares the same AST as
the last URL. The safety value for the AST becomes negative.

From now on, whenever the first URL is opened, ASTrack will
block this specific AST but not the rest of them. In the sixth
and seventh steps, new tracking URLs are detected sharing the
same AST, thus decreasing its safety value again. The resultant
safety value is considered enough evidence to autoclassify the
AST as a tracking AST (red color). Consequently, each URL
containing this piece of code is also a tracking URL. In the last
step, ASTrack classifies the first safe URL as tracking. From
now on, whenever it is detected, it will decrease the safety of
all its internal ASTs propagating the information.
Performance-wise, ASTrack should be implementable inside
the browser’s internal JavaScript engine. The AST identifiers
are simple enough to be computed during the initial DOM
construction time. Once computed, comparing them to the
subset of tracking ASTS is a set membership type of problem,
whose implementation can be done, for instance, by means of
a bloom filter. However, for practical reasons, in this research
we will compute them and perform the comparison offline.

C. Web tracking removal

Maintaining the functionality of the website is a key el-
ement for the adoption of any privacy protection method,
as many users like the idea of improving their privacy but
are discouraged by the associated website breakage. The
high granularity obtained by ASTrack, which looks at the



TABLE I
DATA SET & EVALUATION

Static evaluation Dynamic evaluation

Domains 8,179

URLs 615,780
JavaScript URLs 161,593
Tracking URLs 41,274

Unique ASTs 7,015,542

Shared ASTs 2,683,586

New tracking URLs 3,409 2,183
New tracking JavaScript files 3,109 2,093
Tracking ASTs 49,453 41,114
Precision 98.52% 98.47%

inner ASTs instead of the file itself, allows the method to
minimize the functionality loss related to privacy protection
purposes. In the worst-case scenario, for URLs with no shared
ASTs, ASTrack performs equal to the filter lists. It blocks
the complete code pertaining to that URL. However, if shared
ASTs are present within the code, common as we will see in
the next section, ASTrack automatically adapts to distinguish
between them, selectively classifying tracking AST branches
and URLs. For instance, in step 5 of Fig. 2, ASTrack has
one safe URL within whose ASTs one is identified as unsafe.
Thus, ASTrack can selectively prune the branch of this AST
without compromising the rest of the code. This progressive
detection achieves more detail than the traditional alternatives
and minimizes the functionality loss usually suffered as a
trade-off for privacy protection.

IV. EVALUATION

To evaluate ASTrack, we collected a labeled snapshot of
all the URLs and resources pertaining to the top 10k most
popular websites according to the Tranco List [41]. We used
Selenium [42] in combination with Mozilla Firefox and a
customized version of uBlock Origin [9] to collect it. Our
customized uBlock intercepts all the HTTP requests, labels
them according to its included lists, but allows them to pass
through. To compute the ASTs, we used the JavaScript code
parser Esprima [43]. For HTML files containing JavaScript,
we automatically extract the code and compute its ASTs.
Table I contains information about the obtained data set. From
the initial population of 10k websites, 8,179 domains were
successfully inspected using a timeout of 60 seconds. The rest
were not accessible at the time of the collection or made
the timeout expire. The labeling process classified 41,274
JavaScript URLs as tracking. From the collected data, we
precomputed the inner ASTs of each URL. More than 38%
of them are shared between different websites, validating our
observation that many domains share common services.

With the collected data set, we feed ASTrack in order to
classify the labeled ASTs and detect unknown tracking URLs.
The evidence threshold, used to automatically classify an AST
as tracking, was manually validated to maximize precision and
minimize false positives that would break the functionality.
Its value is dynamically computed as the 90% of the total
URLs containing the AST. Similarly, to avoid classifying

Obfuscated code matching example #1

function a0_0x4172(_0x3dcddc, _0x3f9388){return a0_0x4172=
function (_0x5a6727 ,7Ox4172bc){70x5a6727=70x5a6727 -0x19d
;var _0x22acl18=a0_0x5a67[_0x5a6727]; return _0x22acl8 ;} s
a0_0x4172(_0x3dcddc, _0x3f9388);}

function u(g,0){return u=function(a,y){a=a-475;var b=m[a];
return b},u(g,0)}
Obfuscated code matching example #2
function (_0x210d59, 0x4d8907, 0x1f76d2, Ox4fffef){return
_0x210d59 (_0x4d8907 , _0x1f76d2, _Ox4fffef);}

function (api,id,key,location){return _callStorageFunction (
_getltem ,arguments , location)}

Fig. 3. Obfuscated code detection: ASTrack was able to match obfuscated
functions (top) with their alternative clear code (bottom) in different files by
looking at their structure.

ASTs without enough evidence, we empirically fixed a mini-
mum of 10 different URLs containing the AST to propagate
the tracking information. In order to evaluate ASTrack, we
compare two different scenarios: a static evaluation with the
complete interconnected graph before propagating the safety
values, and a dynamic evaluation with no previous information
about the ASTs available, forcing ASTrack to fill the graph.

A. Static evaluation

This experiment is composed of two phases. In the first
phase, we create the complete graph, including all the relations
and initial safety values for the shared ASTs. In the second
phase, we run the ASTrack algorithm in order to identify
tracking ASTs and propagate them to find new tracking URLs.
This experiment is used to validate ASTrack’s ability to find
false negatives inside the filter lists. URLs not present in
the filter lists but sharing a tracking AST (more than 90%
of the URLs containing it are known to be tracking) are
most probably false negatives. Table I includes the obtained
results. ASTrack classified as tracking 49,453 ASTs and found
3,409 new tracking URLs, a 7.62% increase with respect to
the initially labeled data set. Inspecting those URLs, most of
them pertained to the usual suspects (e.g., Google, Facebook,
Twitter), while some others were files hosted in CDNs, which
are hard to block without breaking page functionality on many
websites. To validate them, we looked at the subset of files
loaded by those URLs, composed of 3,109 JavaScript files.
None of the files were already known to perform tracking (i.e.,
loaded by a different tracking URL). To study them, we first
automatically checked their content for the inclusion of some
frequent keywords used for tracking. The list of keywords
is formed by the keywords previously found by Lerner et
al. in [6] and by Igbal et al. in [7] for common stateless
web tracking methods. We added some additional keywords
for stateful tracking mechanisms (e.g. getCookie, setCookie,
localStorage or sessionStorage). From the initial 3,109 files,
2,916 contained some of those keywords, with a median of
4 keywords per file. From the remaining 193 files, 50 were
randomly selected and manually inspected. Approximately
76% of them (38 out of 50) were recognized as tracking, while



JavaScript URLs
39%

Webpackaged
42%

6%
26%
Tracking

Fig. 4. Webpack and tracking presence: 6% of the JavaScript URLSs contain
tracking code inside webpackaged files. Traditional privacy-protecting tools
suffer from functionality loss when blocked. ASTrack granularity allows us
to selectively block only the tracking portions.

for the rest there was not enough evidence. Overall, the method
presented more than 98% of precision and automatically found
about 3,400 false negatives.

Three of the manually inspected files presented obfuscation
techniques. ASTrack was able to automatically find structure
coincidences with already known tracking files and correctly
classify them. Fig. 3 shows some examples of obfuscated
code and their alternative clear code found by ASTrack in
different files. On the other hand, 1,564 (50.32%) of the newly
detected tracking files are webpackaged files. Webpack [36] is
a framework to easily pack different scripts inside only one
file. It automatically looks for the needed dependencies and
inserts them inside the file to allow for self-contained dynamic
content. However, if the resource includes tracking libraries,
privacy-protection tools cannot block it without suffering the
functionality loss associated with blocking the rest of the
included code. In contrast, ASTrack is able to detect inside
them code portions used exclusively for tracking purposes.

Listing 1 shows four examples of the first lines of webpack-
aged files. Although their code seems different, the structure of
the code is always the same. Thus, thanks to ASTrack’s ability
to find shared AST structures, we can easily discover webpack-
aged files in the wild. To this end, we compared the initial
portions of the AST identifiers of a subset of webpackaged
files, and automatically extracted some patterns to identify
them. Searching for those patterns in our collected AST data
set, we accounted for the total number of webpackaged files
and how many of them are classified as tracking. Fig. 4
shows the obtained results. About 39% of files were safe,

(window . webpackJsonp=window . webpackJsonp | |[]) . push ([[261],{
XygZ: ...

(self.webpackChunk_N_E=self .webpackChunk_N_E | |[]) . push
([14367],{4367: ..

(self . _LOADABLE_LOADED_CHUNKS_ =self .
__LOADABLE_LOADED_CHUNKS__| | []) . push ([[76429],{122954:

(window . webpackJsonpwebpackLogReporter=window .
webpackJsonpwebpackLogReporter | |[]) .push ([[5],{93:

Listing 1. Webpack files structure
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Fig. 5. Tracking AST distribution: Distribution of the number of tracking
ASTs included in tracking URLs. Most URLs contain only a few of them.
Between all the ASTs included in the file (38 by median), ASTrack was able
to discover the few ASTs whose code is used for tracking purposes.

non-packaged files. On the other hand, approximately 48% of
the JavaScript files are webpackaged files, and 32% include
tracking. About a 6% of the files are both webpackaged and
include tracking. This represents 20% of all the tracking URLs.
Unfortunately, filter lists and other methods blocking complete
resources will cause websites using those URLs to lose
functionality. In contrast, ASTrack permits us to selectively
block only the tracking ASTs while maintaining functionality
in most cases. To discover if ASTrack is blocking complete
files or only portions of them, we accounted for the number of
tracking ASTs present in each tracking file. Fig. 5 shows the
distribution of the number of tracking ASTs included inside
tracking URLSs. According to our results, more than 60% of the
detected tracking files include only one or two tracking ASTs
(the median is 6). In comparison, the median of ASTs per
file, including non-tracking ones, is 38 ASTs per file (35 for
non-tracking URLSs). Thus, ASTrack is selectively classifying
only the branches identifying web tracking.

B. Dynamic evaluation

Our second experiment allows us to evaluate the adaptation
properties of ASTrack’s algorithm. We run the system with the
AST graph empty. Only the URL tracking information in the
filter lists is available. In this case, we can study if, by applying
the method to a common browsing session, the system is able
to gradually discover new web tracking and correctly identify
tracking ASTs. To this end, we consecutively feed ASTrack
with data from one URL at a time. This forces the algorithm
to progressively compute the connections between the ASTSs
loaded and their safety values. The URL insertion order is set
to match the website rank of the Tranco List. As it is based
on domain popularity, it is a good representation of a common
browsing session, where pages that are very popular are more
likely to be accessed before websites with a lower rank. For
each domain, its accessed URLs are introduced arbitrarily, as
online resources are mostly loaded asynchronously.

Table I includes the obtained results. After the 8,179 domain
insertions, ASTrack labeled as tracking 41,114 ASTs. This
represents a reduction of about 16% in comparison to the



static evaluation process presented in the last section. However,
ASTrack found 43,457 tracking URLs, a decrease of less than
3% with respect to the complete model approach. Between
them, 2,183 (5%) were not previously included in the initial
filter lists. Once more, we studied the 2,093 JavaScript files
loaded by those URLs. Interestingly, comparing them with
the subset of files found during the static evaluation, about
35% of them were new resources, not previously classified
as tracking. This highlights the main weakness of the filter
lists: good precision but low recall. Many URLs incorrectly
classified as safe can increase the overall safety value of
their inner ASTs and not be detected as tracking using the
complete graph. In contrast, progressively feeding ASTrack
can help find them. Following the same methodology, we
automatically checked for the inclusion of frequent tracking
keywords inside the files. 1,868 files included at least one of
them, with a median of 5 keywords per file. From the subset of
files that do not include keywords and were not detected during
the complete graph experiment, we randomly selected 50
files and manually inspected them. The inspection discovered
only seven of them mistakenly classified as tracking (mainly
reddit.com static scripts). Finally, in line with our previous
finding, 46.67% of them were webpackaged files. Overall, as
in the static evaluation, more than 98% of the detected URLs
were correctly classified, validating the adaptation properties
of ASTrack to automatically discover web tracking.

C. Tracking removal and website breakage

To evaluate the tracking removal efficiency of ASTrack we
measure the functionality loss associated with it. In this work,
for practical reasons, we use file replacements to test and
validate our new web tracking removal methodology, similar
to the proposal in [16]. To generate the file replacements,
we automatically remove all the code pertaining to tracking
ASTs from the tracking files detected during the static and
dynamic evaluations (25,840 files). Unfortunately, although
web technologies have been around for about 30 years, there
is not yet a defined method to evaluate website breakage.
Proposals such as [44] and [45] were focused on breakage
due to JavaScript engine rendering differences, looking at
DOM discrepancies. However, cleaning web tracking systems
modifies the DOM structure of the website, but may not
deteriorate its functionality as they are additional systems
that are usually not related to the website content. Until
now, subjective manual analysis has been used to detect
functionality loss (e.g. [7], [15], [16]). However, this approach
does not scale, limiting the number of evaluated websites to the
manual labor you can afford (a few dozens in previous works).
In this work, we introduce a new alternative methodology,
using computer vision techniques in order to discover website
breakage suspicious websites prior to the manual inspection.

The idea is to compute the similarity between screenshots
taken with and without the modifications introduced in our
process. Note that, as many websites include animations and
other dynamically modified content, we need to take care of
the expected variability of a website. If the obtained screen-
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Fig. 6. Similarity comparison (CDF): Distribution of websites in function
of their visual similarity percentage (Normalized Cross Correlation). Five
data sets comparing two vanilla browsers and one more comparing a vanilla
browser with our file replacements were taken.

shots are not similar enough, we consider them suspicious of
functionality loss. The proposed process is:

1) Collect multiple independent screenshot data sets
from two vanilla browsers in pairs for the desired
population. Each pair has to be collected in parallel to
minimize the impact of external events between them
(e.g., network congestion, periodic maintenance).

2) Collect one more data set by replacing one vanilla
browser with our modified approach. In our case, we
will use the file replacements created by removing the
branches found in the last section.

3) Compare the obtained pairs of screenshot data sets
using Normalized Cross Correlation (NCC) [46] or
another equivalent technique to detect the percentage of
similarity between them.

4) Compute the expected similarity deviation per website
by means of the standard deviation and its confidence
intervals between the multiple similarity measures ob-
tained from the vanilla browsers.

5) Check if our modified output similarity is within the
expected deviation for each website.

6) For websites that are not similar enough, generate a diff
file between both screenshots, highlighting the pixels
that are different between them. In a posterior phase, an
expert can visually inspect the diff file along with the
screenshots to better classify the suspicious websites.

Applying this methodology, we collected a new data set of
the top 10k most popular websites with one vanilla browser
alongside another browser using our file replacements. The
resulting crawl contains information about 8,050 Internet
domains, and our plugin replaced almost 23k elements with
their clean versions. Surprisingly, although we are not actively
blocking URLSs, the vanilla browser loaded about 22k more
than our system. Thus, this excess of traffic can be directly at-
tributed to tracking purposes. Approximately 72% of domains
(5,751 out of 8,050) benefited from a privacy improvement
thanks to our removal system. On average, 4.05 JavaScript files
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Fig. 7. Visualizer: Self-developed visualization tool to easily inspect and
compare screenshots. A diff mask can be applied to highlight the differences
(red pixels).

were replaced in websites where tracking was detected. This
represents a median of 62% tracking reduction in comparison
with the vanilla browser.

Next, we collected five independent screenshot data sets of
two vanilla browsers in parallel for the same 10k websites.
We used ImageMagick [47] to compute the NCC similarity
values and the diff files between all the pairwise obtained data
sets. Finally, we computed the expected similarity deviation
as well as the 95% confidence intervals for each website
from the measures collected in the vanilla comparisons. Fig. 6
shows the cumulative distribution function (CDF) values for
each of the pairwise data set comparisons. The difference
obtained by comparing two vanilla browsers is very similar
for all five collected data sets. Only about 62% of websites are
completely equal between both vanilla browsers, with another
30% of them having similarity values higher than 80%. The
remaining 8% present a difference bigger than 20% due to
dynamic content and animations. In contrast, in our privacy-
friendly browser, there are about 6% to 7% of websites that
present similarity values lower than their counterparts in the
vanilla browser. Overall, looking at the expected deviation,
1,753 websites using file replacements (21.7%) were classified
as suspicious of website breakage.

In order to explore them, we developed a small visualization
tool that allows us to easily switch between the screenshots. It
also allows us to imprint the pixel differences between them as
a mask over any of the pictures. Fig. 7 shows a screenshot of
the tool. We included a set of checkboxes to easily classify the
reason for the similarity gap and also filters to group them by
type. Using the tool, we were able to inspect all the suspicious
websites in less than one day. The classification is divided
into 9 groups, highlighting the main reasons for the screenshot
difference:

e Animation: Elements with animations or changing at
defined intervals, such as timed sliding banners.

o Banner: Advertisements or other banners.

« Broken: Functionality loss or website breakage.

o Cookie: Missing cookie banners.
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Fig. 8. Visual difference reason: Main reason for the similarity gap between
the vanilla browser and ASTrack (yellow). The figure also includes the same
results but blocking URLSs instead of only ASTs (blue). ASTrack reduces the

broken websites by a 36% (192 vs. 301) removing only the tracking AST and
maintaining the rest of the file intact.

o Fonts: The original font is not available, and a default
one is used instead (minimal impact).

e Media: Dynamically modified media content (e.g.,
videos, pictures, logos, icons).

e Minor: Minor dynamic content that usually varies with
time, such as clocks, numbers of visits, views, etc.

o Text: Dynamically modified text content.

o Tracking: Visually visible tracking elements such as
missing social network icons, captchas, anti-adblockers,
or country detection pop-ups.

The only category considered as website breakage is the
“broken” one. Note that it does not only contain functionality
loss but also usability problems and aesthetically unpleasant
modifications that would be obvious for the common user
(e.g. missing icons, pictures, or broken animations). Websites
have been classified in more than one group when needed. In
particular, some anti-adblocking systems detected our system
and blocked the website. In this case, the website has been
considered both, “tracking” and “broken”.

Fig. 8 shows the classification of the 1,753 suspicious
websites. In order to compare the results with the traditional
tools, the figure also includes the classification for the same
subset of websites, but blocking URLs instead of using the
files cleaned by ASTrack. The results show that using ASTs
to selectively remove tracking code decreases the number of
broken websites by 36% (192 pages vs 301 pages). Most
of the websites broken by blocking URLs but functional by
blocking ASTs include broken animations (43.7%) or missing
media files (39.4%). Overall, using ASTrack only 10.9% of
the suspicious websites presented functionality loss or visual
problems. The rest were mostly due to dynamic content
modifications (60.58%), missing cookie banners (16.77%) or
different fonts (3.59%). Fig. 9 contains heatmaps highlighting
the visual difference distribution for each of the categories. The
figure presents clear patterns for the “cookie” and “banner”
positioning as well as for the animation category, which is
mainly composed of sliding animations in the center of the
page. As expected, dynamic “text” and “media” are mostly
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Fig. 9. Difference heatmaps: Heatmaps containing the pixel distribution of the difference between the vanilla browser and our system. Some of them, such
as the cookie or banner removal heatmap, present clear patterns. Animation heatmap highlights the usual main sliding-banner position. Others, like media an

broken heatmaps, share many characteristics.

distributed in the content portion of the website. “Minor” cate-
gory only has a few instances, making them very recognizable.
In total, ASTrack functionality loss was only present in 2.3%
of websites (192 out of 8,050).

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented ASTrack, a new methodology to
detect and selectively remove web tracking systems. To this
end, it uses an abstraction of the website’s JavaScript AST
structure that represents its functionality. The method works by
identifying tracking functionality shared by multiple websites.
The abstraction from the actual code makes the system robust
against obfuscation and other similar renaming techniques, a
common problem in many other solutions. Moreover, the high
granularity achieved by the method allows the system to auto-
matically prune only the code pieces exclusively dedicated to
tracking purposes, minimizing the functionality loss. We also
presented a new methodology to discover website breakage
that compares the visual differences of the websites in order
to highlight those suspicious of being broken.

Our results show that ASTrack presents a detection preci-
sion higher than 98%. Moreover, thanks to its adaptability, in
the evaluation of the top 10k most popular websites, ASTrack
found more than 3,400 new tracking URLs (7.62% increase)

and identified almost 50k tracking ASTs. Using the selective
tracking removal to clean tracking files, ASTrack achieved
a 62% tracking removal in more than 72% of the websites.
Moreover, it also obtained a 36% decrease in functionality
loss in comparison with the filter lists. We estimate that almost
98% of the websites maintained full functionality due to the
high granularity of working with AST’s structure, the main
contribution of this work. Our future work includes improving
the ASTrack tracking removal system to intelligently substitute
branches instead of completely removing them, decreasing
even more the functionality loss. We also plan to improve web
tracking detection by studying simple AST transformations
useful to find mostly equivalent ASTs but presenting small
differences in their structure. Finally, we also expect to im-
prove the website breakage detection method by applying ML
to automatically classify the visual differences of suspicious
websites using the obtained heatmaps and data sets. The data
sets and source code of ASTrack are publicly available at [48].
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