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Abstract. The use of large-scale supercomputing architectures is a hard
requirement for scientific computing Big-Data applications. An example
is genomics analytics, where millions of data transformations and tests
per patient need to be done to find relevant clinical indicators. Therefore,
to ensure open and broad access to high-performance technologies, gov-
ernments, and academia are pushing toward the introduction of novel
computing architectures in large-scale scientific environments. This is
the case of RISC-V, an open-source and royalty-free instruction-set ar-
chitecture. To evaluate such technologies, here we present the Variant-
Interaction Analytics use case benchmarking suite and datasets. Through
this use case, we search for possible genetic interactions using computa-
tional and statistical methods, providing a representative case for heavy
ETL (Extract, Transform, Load) data processing. Current implementa-
tions are implemented in x86-based supercomputers (e.g. MareNostrum-
IV at the Barcelona Supercomputing Center (BSC)), and future steps
propose RISC-V as part of the next MareNostrum generations. Here we
describe the Variant Interaction Use Case, highlighting the characteris-
tics leveraging high-performance computing, indicating the caveats and
challenges towards the next RISC-V developments and designs to come
from a first comparison between x86 and RISC-V architectures on real
Variant Interaction executions over real hardware implementations.

Keywords: RISC-V, Scientific Computing, HPC applications, Epistasis, Ge-
nomics, EPI

1 Introduction

Scientific applications depending on Big-Data processing rely on large-scale su-
percomputers to ingest large amounts of data towards the discovery of relevant
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clinical, environmental, social, or economics indicators at large and small scales
(e.g. 1 PetaByte on genomics datasets [13]). This evidences the need for govern-
ments and research institutions’ investment in supercomputing infrastructures
to provide high-performance computing on efficiently managed resources. Cur-
rent computing architectures are based on x86 and ARM, both proprietary and
closed-source technologies. The limited access to such technologies for open re-
search and hardware development generates a lack of trustworthiness regarding
both privacy and security. To solve the mentioned issues, here we propose using
RISC-V, an open-source and royalty-free instruction-set architecture. During the
last few years, there has been an increased interest in industry and academia
to adopt RISC-V, mostly incentivized by strategic national/international ben-
efits. As an example, the European Commission is pushing towards a mature
RISC-V development, building an entire ecosystem around the European Pro-
cessor Initiative [17] (EPI), seeking technological sovereignty over the reduced
group of non-European designers and manufacturers. The EPI project intends
to design and manufacture the first entirely European chip based on an open
standard, in collaboration with the local and international industry as well (i.e.,
Intel). The software industry has already started to support RISC-V architec-
tures, like Red Hat providing support for Linux Fedora distributions [3, 15] or
Google announcing Android support for such [2]. Meanwhile, the hardware in-
dustry is moving towards adopting the RISC-V standard, collaborating with the
design and manufacturing of newly RISC-V-based chips [8]. At the current time,
functional prototypes are already on the market: for instance, HiFive [5] is a
manufacturer of commercially available implementations of chip + board based
on RISC-V, among others.
RISC-V is becoming a natural alternative and a de facto standard for a new
era of hardware, replacing current commodity chips. However, there is not yet a
manufactured chip with equivalent characteristics to x86. Current RISC-V im-
plementations lack fundamental extensions, and many applications lack support
for specific hardware-depending features. Furthermore, other languages only sup-
port a subset of the RISC-V extensions, lacking vectorization or floating-point
operations, for example. Therefore, benchmarking the proposed implementa-
tions requires new benchmarks focusing on the current state-of-art, which on
one hand, are able to compare the existing capabilities and to point out the
open challenges towards non-implemented ones, and on the other hand, are re-
alistic towards their applicability in both academia and industry. The lack of
standardization regarding how to benchmark workloads under this new archi-
tecture opens a new field of research in high-performance computing. As existing
benchmarks on classic x86 architectures would not be fair for comparison against
RISC-V in their state of implementation, here we propose a standard benchmark
reaching the current capabilities of the architecture based on the real genomic
analyses performed in supercomputing infrastructures for research. The goal is
to be able to fairly compare the progress of the RISC-V development, identify
the challenges and possibilities of improvement, and extract conclusions on the
progress toward a complete and fully comparable RISC-V implementation. In



this paper, we present the Variant Interaction Analysis workload, proposed as
a performance benchmark to explore the differences between the x86 and cur-
rently implemented RISC-V architecture, identifying the areas of improvement
for the latter one regarding our scientific-based real HPC workload. We analyze
the challenges RISC-V has to solve to perform as well as x86, also highlight-
ing the principal to-do’s. Such analysis has not been done so far, and gathering
this knowledge is crucial for the ongoing design of RISC-V prototypes as sci-
entific HPC bound applications are one of the main targets that will benefit
from such novel architectures. The Variant-Interaction Analytics (VIA) work-
load, proposed here as a benchmark suite, is a genomics use case where a large
number of pairwise combinations of genomic variants need to be analyzed to find
its association with the disease [26], one of the goals of human computational ge-
nomics. Typically, the effect of each variant with the complex disease is studied
one at a time. In variant interaction studies, the focus is on variants that inter-
act with the complex disease depending on at least a second variant (see fig.1).
Methodologies such as Multifactor Dimensionality Reduction (MDR) combined
with HPC technologies allow us to study the effect of pairwise combinations in
large genomic datasets, helping us understand these diseases. The number of

Fig. 1: An example representation using CIRCOS [18] of different pairwise variant com-
binations.

combinations in this type of study can ascend to more than 1012. Due to the high
number of tests to perform and the requirements in terms of resources consump-
tion, performance, and volume of data (from storage to in-memory processing),
we can consider that such an analytics application is HPC-oriented, along with
a genomics background and a sensitive use case to analyze as a reference for
Key performance Indicators (KPIs) evaluating real HPC workloads on RISC-V
architectures. The main contributions of this presented work are:



– Contribution 1: A Benchmark for Scientific HPC-based Analytics Applica-
tion for RISC-V, adapted to the capabilities of current RISC-V implemen-
tations and designs, towards comparing with other established architectures
and tracking its progress.

– Contribution 2: The identification of the challenges explaining the perfor-
mance differences between RISC-V implementations and x86 on real HPC
applications.

– Contribution 3: A discussion and recommendations on the progress and im-
provement in RISC-V towards next step designs.

– Contribution 4: The creation of a publicly available open-data repository of
benchmarks to run on RISC-V platforms [4].

The rest of the paper is structured as follows: section 2 introduces the state of
the art, section 3 discusses the standard datasets and benchmarking methodol-
ogy, section 4 shows the performed evaluation. Finally, section 5 concludes with
a discussion and recommendations of challenges found and the next steps.

2 Related Work

In the context of European sovereignty, the EU built an ecosystem around de-
signing and manufacturing its chips. For this, they elected RISC-V as it is an
open-source ISA. The cornerstone element is the European Processor Initia-
tive (EPI) [17]. Around it, the MareNostrum Experimental Exascale Platform
(MEEP) [14] project proposes an open-source platform based on RISC-V to
experiment on a RISC-V-based HPC ecosystem. MEEP is an open-source dig-
ital laboratory providing an ideal experimentation platform for RISC-V-based
workloads. It integrates an accelerator that allows disaggregate computation
from memory operations, optimizing the accelerator for dense (compute-bound)
and sparse (memory-bound) workloads. MEEP invites software and hardware
engineers to solve future challenges in the HPC, AI, ML, and DL domains.

In the context of the ”Designing RISC-V-based Acccelerators for next gen-
eration Computers” (DRAC) [11] project, authors on [23] implement a RISC-V
vector instructions pipeline on the gem5 processor. Then they run a standard
benchmark suite for HPC applications [19] and adapt it to benchmark perfor-
mance of vector instructions on RISC-V with a vector-length agnostic mechanism
so that it is easily comparable with any other SIMD-compatible ISA (e.g., x86,
ARM).

RISER [9], OpenCUBE [6], Vitamin-V [7], and AERO [1] are four new EU-
HORIZON projects that, combined together will provide a mature cloud en-
vironment for RISC-V. RISER will integrate low-power components and build
an accelerator platform that includes the Arm-based Rhea processor from EPI
and a PCIe acceleration board. OpenCUBE will provide a full-stack solution
of a cloud computing blueprint deployed on European infrastructure, whereas
Vitamin-V will deploy a complete hardware-software stack for cloud services
based on cutting-edge and cloud open-source technologies for RISC-V and par-
ticularly focusing on EPI. Finally, the AERO project aims to bring and optimize



the open-source software ecosystem to compile, runtimes, and auxiliary software
deployment services on the cloud. Vitamin-V will as well port a relevant bench-
mark suite for Big Data applications developed by the industry under the um-
brella of the TPC council [10] and their Big Data Analytics TPC-H benchmark.

Furthermore, RISC-V is also starting to be used for genomics. Wu et al. [27],
implement a RISC-V-based design on an FPGA that is later used for base-calling
in DNA sequencing. DNA sequencing is the base method to obtain the genome
sequence of an individual, thus making it fundamental for many bioinformatic
applications, such as genomics. In this paper, they analyze using RISC-V as a
better energy-efficient platform to sequence DNA. They achieve a 1.95x energy
efficiency ratio compared to x86 architectures while being 38% more energy-
efficient than ARM architectures.

In the genomics field, the search for significant associations between genomic
variants and complex diseases has been primarily studied using Genome-Wide
Asociation Studies (GWAS) [25]. These studies focus on the discovery of vari-
ants associated with the risk of developing the disease. This implies the use of
a wide variety of methods including the logistic regression [16], Bayesian parti-
tioning [29], and other statistical methods [12].

While GWAS focuses on the detection of disease-susceptibility loci in a single
independent manner, in variant interaction studies, the search is broadened to
inspect the effects from the interaction of variants, which can be both additive or
epistatic [20]. To tackle variant interactions, different methods, tools, and strate-
gies have then arisen, focusing mainly on pairwise interactions [21]. Importantly,
Multifactor Dimensionality Reduction (MDR) [24] is a supervised classification
approach based on contingency tables that has become a reference in the field
to reduce the dimension of the problem and to identify variant combinations
associated with complex diseases.

3 Benchmarking Methods

3.1 Variant Interaction Analytics (VIA) Workload

The method we are applying in the Variant-Interaction Analytics (VIA) Work-
load is the MDR: a statistical method that, based on contingency tables, reduces
the dimension of the problem. The variant-variant analysis, converts the counts
obtained for the cases and controls into a simple binary variable by classifying
all the possible allelic combinations for each pair in high-risk/low-risk, therefore,
reducing the analysis to only one dimension. It follows a naive Bayes approach,
building a probabilistic classifier from every variant-variant interaction and sum-
marizing the best combinations for prediction. Figure 2 shows the 5 steps of the
algorithm. The process of computing a pair of variants does not imply a lot of
memory or computational power. However, the high volume of pairs of variant
combinations that we need to process demands the use of High-Performing Com-
puting (HPC) technologies to make it feasible (see the description of the data at
the end of this section). Since processing a pairwise combination of variants is



Fig. 2: Multifactor Dimensionality Reduction algorithm steps. Step 1 is the cross-
validation division. Step 2 is the building of contingency tables. In step 3, the dimension
of the contingency tables is reduced to 1. In step 4, each multifactor is tested. Steps
2-4 are repeated for each cross-validation set and in Step 5, the top pairs are selected.

computationally independent of the rest of the combinations, we can leverage the
use of parallel computation frameworks. Furthermore, due to this independence
of the combinations, we can also scale it down to test it in different architectures
and extrapolate the results to real-case scenarios.

3.2 Framework

The method has been developed using Python and leveraging Apache Spark
framework for parallel computation [28]. Apache Spark is an open-source dis-
tributed processing system for high-volume workloads. Thanks to its in-memory
caching and a system of optimized queries, it can be used against data of any
size. It has a master-slave architecture, combining a single master with multiple
slaves.

3.3 Dataset

The dataset used for the benchmarking experiments is a synthetic dataset based
on the Northwestern NuGENE project cohort [22]. Maintaining the structure
and the number of patients we have recreated a single part of a chromosome
using randomized values for the new synthetic patients. The data is stored in
compressed CSV format, following the structure in table 1.

The labels of the data are saved in a different file, including the patient ID and
a binary marker that indicates if the patient is a case or a control. A cohort such
as NuGENE is composed of 11,297,253 variants, forming a dataset of 11,297,253
rows x 3,389 columns. In a variant interaction analysis, we are studying the
association between each pairwise interaction with the disease, which means
that in the most simple case, we are going to process every possible pair. This
means that the number of combinations ascends approximately to (11,297,253
x 11,297,252)/2 = 63,813,957,024,378. The synthetic dataset created for the



chromosome variant pos. Ref hom Alt hom AA Aa aa AA Aa aa ... AA Aa aa

22 16231367 A G 1 0 0 1 0 0 0 1 0
22 17052123 G A 0 1 0 0 0 1 0 0 1
22 17055458 G A 0 1 0 1 0 0 0 1 0

Table 1: First three rows of synthetic chromosome 22. The first four columns contain
the identification of the variant while the rest of the columns contain the value of the
variant per each patient of the 1,128 patients.

benchmark is a reduced version, generating 10 files of 50 SNPs with all the
patients. We have not decreased the number of patients because maintaining
the same structure allows us to easily extrapolate the computation time just by
multiplying the number of combinations that need to be processed.

4 Experiments
4.1 Evaluation Infrastructure

To perform the evaluation, we have deployed a cluster of up to four HiFive Un-
matched development boards (figure 3a), comprising a quad-core RISC-V chipset
operating at 1.2 GHz. The chip supports extensions IMAFDC, thus not includ-
ing vectorial extensions. Each board has 16 GB of DDR4 and is interconnected
with a 1Gbps ethernet network.

On the other hand, our x86 cluster was composed of an OpenStack envi-
ronment with four virtual machines with the following characteristics: 8 cores,
16GB of DDR3, and interconnected using an OpenStack Neutron network. Un-
like the development boards, the actual hardware on the OpenStack is much
more mature and is a production environment. The infrastructure (figure 3b)
consists of SandyBridge-EP E5-2670, with eight cores at 2.6 GHz and 64GB
DDR3 memory. The interconnection between nodes is comprised of an FDR10
InfiniBand network at 40Gbps. This has a relevant impact on understanding the
performance divergences discussed in the next section. Notice that this is an
outdated platform. However, we are comparing with a low-performance RISC-V
infrastructure. Consequently, the comparison still allows us to understand the
challenges that we need to solve to bring RISC-V to become commodity hard-
ware.

We built a Java Zero VM 11 into RISC-V to support Apache Spark. When
developing this work, no Java was fully ported to RISC-V. This was the reason
for choosing Zero VM as the only feasible option. On the other hand, version
11 was chosen as it was the version some other workloads in the context of our
project depended upon. Moreover, support for Python runtime was enabled in
RISC-V. This allowed us to run PySpark, a Python library to call Spark runtime
(based on Java), on which the workload depends.

4.2 Scalability Analysis

To study the scalability of the workload in terms of data volume, we have per-
formed experiments varying the Snumber of files. We have performed the ex-
pected 1, 3, and 5 files. Since we perform a pairwise combination of every file,



(a) Execution cycles (b) Slow-down graph

Fig. 3: Figure 3a shows Unmatched development architectures. While figure 3b shows
Nord3 architecture, managed by OpenStack.

each increment of files is more than a linear increment of the number of combina-
tions processed, resulting in 2,500, 22,500, and 37,500 combinations respectively
per case.

To study the behavior in different environments, experiments have also been
performed varying the number of nodes and cores available, simulating up to
twelve different combinations.

We scale per node and per core.

– Per cores scalability: we scale up to four cores, as the RISC-V Unmatched
boards only have up to four cores available.

– Per nodes scalability: we scale up to three nodes as worker nodes (under
Spark point of view). That is because we had up to four RISC-V devel-
opment boards. We could not test it using four nodes as workers because
that would imply one node would need to share its resources with the mas-
ter node. Doing so did not allow the experiments to run because of a lack
of resources due to Spark runtime being a memory-intensive and compute-
intensive runtime. It is designed for Big Data, but on RISC-V we have a more
limited platform. Thus, we must adapt the execution tests to our platform’s
capabilities without sacrificing the process of the experiments.

Consequently, multiplying three combinations to scale nodes and up to four
cores to scale production up to twelve simulations. Those simulations have been
run on all the experiments described below (when relevant).

We have compared the performance of both architectures in terms of time
consumption using similar resources. Given the goal of the workload is to com-
pute as many variant combinations as possible in the lesser time possible, execu-
tion time is an appropriate KPI. However, since the chipsets operating at each
architecture uses different frequencies, execution time might give the false idea
that x86 is always much better than RISC-V. Consequently, instead of compar-
ing the execution time in the experiments, we have normalized from seconds to
cycles, achieving a fairer comparison. To do so, we have to multiply the execution
time (seconds) by the frequency of each processor (Hertzs).



Regarding the dimension of the experiments, the selected number of files
computed is up to five. This is because RISC-V takes an exponential time to
compute a bigger amount of files. One could believe this is not realistic as, in a
real-case scenario, the number of files will be much greater than that. However,
the obtained metrics are valid and reasonable because each file is computed
independently. Therefore, the times obtained are easily extrapolated to a real-
case dataset.

The experiments performed are explained below.

4.3 Vectorial vs Non-Vectorial
Initially, we run different experiments on both x86 and RISC-V platforms. In
Figure 4 can be seen the comparison between the performance using two different
versions for x86:

– Vectorial: the original implementation for x86 architecture using vectorial
operations leveraging numpy libraries. All the experiments performed in the
12 environments show that x86 performs at least more than 5 times faster
than RISC-V.

– Non-vectorial: since RISC-V chipset is not supporting vectorial operations
yet, we have tested and implemented a non-vectorial version of the workload
for x86 to make a more fair comparison. The results show that the gap in
cycles between both architectures gets smaller using this version. However,
x86 is still at least three times faster than RISC-V. Most of the workload
computational part relies on numpy to do the operations. Our non-vectorial
x86 version disables it and attempts to use as many scalar operations as
possible, achieving a suboptimal performance.

In both cases, the difference increase when the number of files is smaller.
The reasons for this are, on one hand, because in RISC-V the time needed to
load Spark and deploy the nodes is about 535 seconds (2.6 x 1010 cycles), 25
times slower in terms of cycles than in x86, which is less than 10 seconds (6.4
x 1111 cycles). On the other hand, we have disabled the vectorization on x86
via disabling numpy. However, this does not prevent the Python just-in-time
(JIT) compiler from doing some optimizations of its own and using some vector
instructions. Moreover, the Apache Spark runtime was not re-compiled without
vector instructions, therefore, on the context initialization and some internal
calls to it, there will be the presence of vector instructions as well. The reason
for not to re-compile the Spark runtime is its complex build system, added to
the complexity of disabling vector instructions on Java, having to do so both in
the compiler and the JIT compiler.

4.4 Cores scalability

Based on our prior results, we set the non-vectorial x86 version as the fairer
comparison version with our RISC-V boards. Looking into the performance as
we increase the number of cores, it can be seen in Figure 5a how the cycles needed
decrease as the cores do for both x86 and RISC-V. However, the gap between x86



Fig. 4: Slow-down graph of x86 using vector operations against RISC-V and x86 without
vector operations against RISC-V. This example has been done using four cores and 2
workers, performing the runs for 1,3, and 5 files.

and RISC-V is maintained and increased: x86 scales better in cores than RISC-
V, as depicted in Figure 5b. The reasons for this gap increase are yet to be
determined. To find out the reason one would need to examine the chip designs
of both the x86 chipset and the RISC-V one. We know they are different, as one
is a production chipset while the other is a development and rather immature.
Their purposes are different. Hence would expect different capabilities in terms
of cores-to-memory communication as well as cores-to-cache, and many other
design elements. This exploration is left as future work, given this paper wants
to focus more on the software side.

(a) Execution cycles (b) Slow-down graph

Fig. 5: Runtime (in cycles) comparison between non-vectorial x86 and RISC-V using
different amounts of cores using 1,3 and 5 files.

4.5 Nodes scalability

In figures 6a and 6b, we show the scalability on the number of nodes (i.e, the
number of worker nodes) on x86 and RISC-V platforms respectively. It is seen
that when we increase the number of nodes, in x86 the number of cycles is
decreased, scaling in nodes. This increase in performance is more notable as more
files are processed. However, in RISC-V, we do not see any notable improvement
in using more nodes. There is a slight decrease in cycles using more than one



node processing five files, but no improvement at all when we go from 2 to 3. In
fact, in most of the tests performed, going from two to three nodes produces a
performance degradation on RISC-V.

(a) Execution cycles in x86 (b) Execution cycles in risc-v

Fig. 6: Execution cycles using a different number of nodes in x86 and RISC-V.

To make a deeper analysis of what is happening in RISC-V, we have measured
the execution time of the different steps of the algorithm. Figure 7 depicts the
execution time of the different stages when running the VIA workload. While the
run time of the workload is indeed slightly decreasing as we increase the number
of nodes (i.e, workers), the total time is increasing due to the time expended in
loading the data and saving the results. One potential reason for this increased
load time is that, in the current implementation, Spark produces the data splits
and sends it to each of the worker nodes during execution time. Thus, prior to
computing the real work, the node must have received the data previously. This
split is done in the master node, so it does not matter whether or not we place
the data into the local disks. In x86 we do have a production and powerful net-
work interconnection, however, in RISC-V this network is more limited and not
fitting so well for a Big Data use case. One solution for this would be placing
a Hadoop Distributed File System (HDFS) below the runtime. This way, we
would first load the data into HDFS, and at that point, the data would be split
between the worker nodes. This would achieve the effect that when running the
workload, the data would be already split and in place onto the worker nodes.
So the time spent on the data loading stage would be minimal, and not have the
impact we are currently experiencing. Finally, we have included all the results of
the aforementioned experiments in an open-data repository, provisionally avail-
able at [4]. In the near future, we plan to move it into a proper website with
visualization of the different charts and metrics online. Moreover, the repository
includes access to download the VIA workload as well as descriptions on how to
reproduce it on your own platforms, either x86 or RISC-V. The repository and
the workload are published under Apache License 2.0.

5 Recommendations and Discussion
From the conducted benchmarking experiments, RISC-V still presents an ex-
pected significant gap in terms of performance compared to x86 architectures.



Fig. 7: RISC-V Execution time for the different steps of the algorithm. For this exper-
iment, 5 files were processed using 4 cores for each worker.

The principal challenge comes from the lack of vectorial extensions to be yet
introduced or properly enabled on the RISC-V development boards. When dis-
abling such extensions up to the feasible extent, the performance gap narrows.
The remaining gap, below an order of magnitude, relies on the fact that avail-
able RISC-V platforms are in the research and development stages while x86 is
already a trustworthy production environment. Thus, becoming the immediate
next step to close the gap.

When benchmarking node scalability, we observe that data loading becomes
a bottleneck for the tested RISC-V boards. Performed experiments show that
RISC-V implementations scale properly as expected, but time improvement is
eclipsed by the overhead of data loading. The proposed benchmark runs on
Spark, which leverages in-memory data distribution, so when the blocking logic
of data distribution is available, e.g., by using HDFS, worker nodes can quickly
fetch data blocks concurrently. However, if such blocking logic is not available,
e.g., reading a file in a regular File System, data must be fetched by the master
node (first I/O bottleneck) and then shuffled across working nodes (second I/O
bottleneck). The next step would be to port and enable HDFS or an equivalent
format or DFS to allow us to observe the node scalability regardless of cur-
rent differences in I/O performance between architectures. This includes as well
network communication.

Summarizing, at this time the main challenge in comparing architectures
is that there is no one-to-one match between instructions in x86 and the in-
structions available on currently implemented RISC-V chips. Moreover, other
differences in design between chipsets challenge performing absolutely fair com-
parisons between platforms. For this reason, we are forced to use different metrics
focusing more on metrics related to cycles/operation-per-analytics/data.

The next steps towards refining the benchmarking process are, first, to iso-
late the data load time from the execution itself of the workload. And second,
to have a compiled runtime and workload with equivalent instructions on both
architectures, comparing the best implementation of the workload for both ar-
chitectures.
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