
1

Training future ML engineers: a project-

based course on MLOps

Filippo Lanubile, University of Bari, Bari, Italy

Silverio Martínez-Fernández, Universitat Politècnica de Catalunya, Barcelona, Spain

Luigi Quaranta, University of Bari, Bari, Italy

Abstract— Recently, the proliferation of commercial ML-based services has given rise to

new job roles, such as ML engineers. Despite being highly sought-after in the job market,

ML engineers are difficult to recruit, possibly due to the lack of specialized academic

curricula for this position at universities. To address this gap, in the past two years, we

have supplemented traditional Computer Science and Data Science university courses

with a project-based course on MLOps focused on the fundamental skills required of ML

engineers. In this paper, we present an overview of the course by showcasing a couple of

sample projects developed by our students. Additionally, we share the lessons learned

from offering the course at two different institutions.

Keywords— machine learning, data science, software engineering for AI

As machine learning (ML)-based systems become

increasingly complex, there is a growing demand from

the industry for ML engineers, also known as “AI

engineers” [1]. ML engineers are professionals – trained

in both SE and ML – who can handle the end-to-end

process of building and maintaining production-ready ML

components; to accomplish this, they leverage a varied

array of practices and tools generally recognized under

the umbrella term of MLOps.

Despite the growing job market demand, at present, there

is almost no offer of specialized academic curricula for

ML engineers.1 Indeed, most AI university programs –

mainly concerned with teaching state-of-the-art ML

techniques – miss the opportunity to train future ML

specialists on building production-grade components out

of ML prototypes. For this reason, aspiring ML engineers

need to look beyond university programs to learn the new

craft and, indeed, several specialized online courses have

1 With a few notable exceptions, e.g., the Master’s of AI

Engineering offered at Carnegie Mellon (CMU).

been published lately, compensating for the absence of

academic options.

Even so, it is still challenging for companies to recruit

qualified ML engineers, with costly repercussions on their

ability to bring ML products to the market. For instance,

in a recent survey conducted by Algorithmia, many firms

acknowledged facing significant challenges in the

deployment of their models, despite the substantial effort

and significant investments [2]. Christian Kästner –

author of the book “Machine Learning in Production” [3]

and lecturer of the homonymous course at Carnegie

Mellon – argues that “‘software engineering for ML’ is

more of an education problem than a research problem”

[4]: most blocking challenges that practitioners

experience in the field would be solved by empowering

data scientists with software engineering knowledge. In

the same line of thought, as software engineering

educators, we believe there is a pressing need to train ML

specialists on SE best practices and tools. Hence –

looking forward to having a specialized degree program

on ML engineering offered at our universities – we have

started exploring the feasibility and outcomes of teaching

MLOps fundamentals in a 3-month university course.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/MS.2023.3310768

THEME/FEATURE/DEPARTMENT

2

[SIDEBAR] INDUSTRIAL

TRENDS ON MLOPS

ML engineers have been actively participating in MLOps

communities, fostering mutual support as they tackle

work challenges together. They have also contributed

crowd-sourced lists of MLOps resources and tools, like

“Awesome MLOps”2. “MLOps Community”3 is a

prominent example of an online hub where MLOps

professionals gather to share their practical experiences,

learn new skills, and collaborate on projects. Visiting the

community website is a great way to stay updated on the

latest trends in MLOps. For instance, at present, the

community is primarily focused on the challenge of

managing Large Language Models (LLMs) in production.

Regarding MLOps tools, the latest trends can be also

inferred by checking curated lists like MLOps.toys.4

Notably, several of the tools available there are publicly

contributed on GitHub, which indicates an increasing and

needed involvement of the open-source community in this

space.

DESIGNING A PROJECT-BASED

COURSE ON MLOPS
In 2021, we decided to explore if our students from the

Master’s program on Computer Science at the University

of Bari, Italy (hereafter “Uniba”) and the Bachelor’s

program on Data Science at the Universitat Politècnica de

Catalunya, Barcelona, Spain (hereafter “UPC”) could

successfully build and deploy ML-based components

while training on MLOps fundamentals. With this goal in

mind, we designed a project-based course on MLOps [7],

focused on the demonstration and hands-on experience

with MLOps solutions for the end-to-end development of

ML-based components. We offered the first edition of the

course at Uniba in Fall 2021. Upon collecting

encouraging feedback from the students, in Fall 2022, we

offered a second edition at both Uniba and UPC. During

this second edition, we decided to collect data from the

students to evaluate our course, answering the following

questions:

2 https://github.com/visenger/awesome-mlops
3 https://home.mlops.community/
4 https://mlops.toys

Q1: How well does our MLOps course align with student

expectations?

Q2: How do students perceive the usefulness of the

content and teaching methodology employed in our

course?

Course evaluation

As general evidence of course effectiveness, we

considered the ability of the students to carry out their

project activities end-to-end, meeting all deadlines.

To measure how the students perceived the benefits and,

more in general, the experience of project-based learning

of MLOps, we conducted a survey-based feedback study.

Specifically, we administered a first survey at the

beginning of the course – to gauge the students’ initial

knowledge and expectations – and a second survey at

project delivery – to evaluate final impressions.5

We summarized quantitative answers with descriptive

statistics and open-ended ones with thematic analysis. In

the latter case, we adopted a focused coding approach:

after familiarizing ourselves with the collected data, we

defined a tentative set of codes. Then, we selectively

coded relevant segments of text, constantly refining the

initial codes and taking note of the most interesting

excerpts. Finally, we grouped codes into themes and

reviewed the analysis results with the whole team.

Course design

In both editions of the course, we focused on six core

skills typically expected from ML engineers:

1. scoping a real-world ML problem and

coordinating teamwork;

2. ensuring ML pipeline reproducibility;

3. fostering quality assurance (QA);

4. developing an API for ML;

5. delivering an ML component;

6. keeping the feedback loop.

5 The two surveys used in this study are available at:

10.5281/zenodo.8026803.

HEAD

 3

We asked our students to work in teams of 3-5 people to

turn a prototypical ML model into a production-ready ML

component. Here, by “production-ready”, we mean a

component that can be easily integrated into a production-

grade system and effortlessly maintained over time. As

such, we expect it to:

• be the product of a reproducible build process

that can be fully automated with CI/CD tools;

• have production-grade quality, i.e., to be

properly tested and checked with QA tools;

• expose a cross-platform API and be packaged

in a portable way.

One of the challenges we faced while designing the

course was the selection of tools to exemplify MLOps

implementation. Not only the related practices are still

consolidating and far from being standardized, but also

the multitude of available MLOps tools keeps evolving at

a stunningly fast pace (see Figure 1). To reach our final

selection, for each MLOps practice, we considered the

following criteria: our picks had to be (1) preferably open

source (2) popular in the MLOps community, (3) well-

documented, and (4) easy to learn. We left our students

free to explore other options anyway and make their own

informed decisions, regardless of our choices.

We organized the course and projects into six milestones,

corresponding to the ML engineering skills above. In the

following paragraphs, we will go through each skill,

motivating its importance and showing how a couple of

student teams applied the related practices in their work.

Their projects are just representative examples of several

other projects developed by our students. Being based on

particular ML models – freely selected by the teams at the

course start – each project posed specific challenges and

inspired distinct solutions. Often, the students went

beyond our demonstrations, adopting additional or

alternative tools to meet their specific project

requirements. For the benefit of all, we asked each team

to report their experience to the class in bi-weekly

retrospective meetings.

Scoping an ML Problem and Coordinating Teamwork

At the beginning of the course, we asked all teams to set

up communication and collaboration platforms to

coordinate their work. Then, we tasked them with scoping

a real-world problem to be solved with ML and selecting

(or building) a prototypical model.

Effective communication is crucial in collaborative

software development. Defining clear guidelines in this

regard helps team members stay consistent in how they

share information, for the benefit of team awareness and

information retrieval. In class, we demonstrated the use of

Microsoft Teams6 (Uniba) and Slack7 (UPC), for

synchronous communication, while for project

coordination, we demoed a Kanban-style board using

Trello.8

Once all teams had selected or built their model, we

demonstrated how to document it using “model cards”.

This lightweight approach to model specification,

originally proposed by Mitchel et al. [8] and lately

popularized by Hugging Face9, consists of templates

providing a structured description of models, including

the ML algorithm, training dataset, and use cases. A

similar approach can be employed for the specification of

datasets.10 We chose this solution because, with

sustainable effort, it allows for concise reporting of all

relevant aspects of an ML project.

Example projects

Here we briefly introduce a couple of sample projects – as

reported in the corresponding model cards – that will be

referenced throughout this article.

“Math Symbol CNN” (hereafter “MS”), a team of

students from Uniba, built a computer vision (CV) system

for the classification of mathematical symbols (e.g., +,

sin, and log) in low-resolution images (i.e., 28x28 pixels)

of handwritten text. To this aim, they leveraged the

refined version of a convolutional neural network built for

another course.

“Crystal Gazers” (hereafter “CG”), a team of students

from UPC, built a natural language processing (NLP)

application aimed at predicting the omitted word in a

sentence based on the context provided by surrounding

words. The students employed a transformer model

trained from scratch on a dataset of Wikipedia articles in

Catalan.

Ensuring ML Pipeline Reproducibility

Reproducibility is a key requirement in ML projects: not

only it is important to get consistent performances – in

production as in the lab – but also to enable the recovery

and timely retraining of deployed models. However,

achieving reproducibility in ML is challenging. We

6 https://www.microsoft.com/en-us/microsoft-teams/group-chat-
software
7 https://slack.com
8 https://trello.com
9 https://huggingface.co/docs/hub/model-cards
10 https://huggingface.co/docs/hub/datasets-cards

THEME/FEATURE/DEPARTMENT

4

address this topic in our second course milestone, aimed

at providing students with the knowledge and skills

required to build reproducible ML pipelines.

A first step towards reproducibility is embracing version

control. Concerning code, in class, we exemplified the

use of git – the de-facto standard version control system –

with GitHub, the most popular platform for git repository

hosting. Also, we recommended using the GitHub flow

[9], a lightweight, branch-based workflow for

collaborative software development. Despite knowing git,

several students admitted to not using version control in

data science projects. For instance, they would normally

ignore Jupyter notebooks as related diffs are hard to read.

We emphasized the importance of versioning all code

artifacts and recommended using modern editors or

specialized Jupyter extensions, like nbdime, for improved

notebook diff display.

On the other hand, versioning data is more challenging

than code. Different data formats (e.g., text, images)

require specialized versioning mechanisms; moreover,

storing and retrieving data is harder due to the larger file

sizes. In class, we showed how these challenges can be

overcome using specialized tools; a popular example is

DVC11, an open-source platform used to version large

data files (datasets and models) and back them up to

cloud remotes.

Experiment tracking is another reproducibility keystone.

Being able to trace back experimental decisions is crucial

to identify and reproduce the best experimental paths. To

support this practice, we demonstrated MLflow

Tracking12, a popular open-source solution. Besides the

Tracking module, the “MS” team leveraged MLflow’s

Registry module to save models in a centralized store;

moreover, they employed DagsHub13 – a cloud hosting

platform for data science projects – as a remote for both

DVC and MLflow. Other teams preferred tracking their

experiments with Tensorboard, mainly because of its tight

integration with Tensorflow.

Fostering QA

Previous research has found that the quality of code in

experimental ML artifacts is generally poor, especially in

the case of computational notebooks [10], [11]. Similarly,

model performance is known to be largely affected by the

quality of training data, which is far from ideal in real-

11 https://dvc.org
12 https://mlflow.org
13 https://dagshub.com/about

world scenarios. Our third course milestone focuses on

QA, aiming to provide the students with practical

guidance for quality improvement.

To ensure production-grade quality for artifacts

developed in the lab, data scientists need to modularize,

test their code, and check it with static analyzers. Our

students straightforwardly incorporated the recommended

QA tools into their pipelines. For instance, after

consolidating experimental notebooks into a pipeline of

Python scripts, the “MS” team used Pylint to statically

analyze their code and a combination of Pytest and

unittest to test it. In addition, “CG” checked their

repository with Pynblint [12] – a specialized static

analyzer for Jupyter notebooks. Besides, to optimize

energy efficiency, they tracked the CO2 emissions of

their pipelines using Code Carbon.

As versioning, quality assurance is more challenging for

data than for code. Due to the variety of existing data

formats, there is no tool covering all possibilities. In class,

we demonstrated Great Expectations (GE), an open-

source framework allowing the definition of assertions on

various properties of tabular data. However, since none of

the teams had trained their model on tabular data, it was

challenging for them to find workarounds. Some students

resorted to testing only preprocessed data with GE (e.g.,

“CG” used GE to check if tokens extracted from a text

were all integers). In contrast, other teams preferred using

alternative solutions (e.g., the “MS” team used

Deepchecks for its native support of image data).

Concerning model QA, we showed how to complement

the use of quantitative metrics, like precision and recall,

with behavioral model testing. Behavioral tests assess the

behavior of models when applied to specific categories of

input data. In class, we exemplified them in the NLP

domain, as inspired by [13]. Interestingly, some teams

like “MS” showed how the same idea can be applied to

different domains, like CV.

API Development for ML

To enable their seamless integration into larger systems,

ML models typically expose their predictive capabilities

through web APIs. We devote the fourth milestone of our

course to showing how to wrap ML models with REST

APIs using FastAPI. We selected this particular

framework for its shallow learning curve, but also for its

compliance with the OpenAPI standard.

Most teams followed our recommendation and adopted

FastAPI. Conversely, a few groups resorted to alternative

HEAD

 5

solutions; for instance, “CG” used AWS API Gateway –

an AWS-managed service for web API development – to

expose HTTP endpoints for their model. The students

could also build a demo application to demonstrate their

API. Despite not being trained in web development,

several of them could build a client web app in no time

with special-purpose front-end frameworks like Gradio

(e.g., “MS”) and Streamlit (e.g., “CG”).

Component Delivery

Another crucial set of skills required of ML engineers

concerns the delivery of ML-based components. Beyond

exposing endpoints, models need to be packaged in a

portable way and automatically deployed in cloud-based

production environments. In our fifth course milestone,

we show how to achieve this using containerization and

CI/CD technologies.

Being the de-facto standard, we used Docker to exemplify

software containerization. The students found it relatively

easy to understand and apply. For instance, “MS”

straightforwardly employed Docker and Docker Compose

to implement a 4-components microservices architecture.

However, some students had a hard time setting up

containers for models requiring a GPU at inference time.

Some of them identified suitable base images to leverage

full model performance with GPUs, while others

packaged a simplified version of their model as a

workaround.

Next, we showed how to automate the whole build and

deployment process with CI/CD tools. Due to its seamless

integration with GitHub, we used GitHub Actions to

demonstrate this practice. However, some teams preferred

using the facilities offered by their cloud provider. For

instance, “MS” deployed their multi-container system to

Okteto and leveraged its native support for Docker

Compose builds; differently, “CG” employed AWS

facilities to run their components in EC2 instances.

Keeping the Feedback Loop

To ensure service availability and performance after

deployment, it is crucial to continuously monitor ML-

enabled components. A monitoring system should track

both the resource consumption of ML components as well

as the performance of ML models themselves, as they are

typically subject to performance degradation over time.

By setting up a monitoring system, ML engineers ensure

to keep the feedback loop, being able to timely replace

their models as needed. Hence, we dedicated the final

milestone of our course to monitoring practices for ML-

based systems.

All teams were able to set up a monitoring system for

their ML-based component. They mostly followed the

examples provided in class, based on two popular open-

source solutions often used in tandem to track system

metrics (Prometheus) and visualize them in a dashboard

(Grafana).

LESSONS LEARNED
All teams could successfully turn their model prototype

into a production-ready ML component. Also, they all

coped well with the project deadlines and managed to

deploy their product to the cloud. In the following

paragraphs, we will examine the feedback collected from

the students. The lessons learned by analyzing their

course experience will help us improve the next course

editions.

Expectations of the students

At the beginning of the course, we assessed the prior

knowledge and learning expectations of our students. We

conducted an anonymous survey, collecting 51 responses

(23 at Uniba and 28 at UPC).

To start, we asked each student to self-report their

experience in both SE and ML using a 5-point Likert

scale, where 1 represents a "very poor" experience and 5

an "excellent" experience. Consistently across Uniba and

UPC – the students exhibited greater confidence in ML,

with 86.28% reporting an "average" or "above average"

experience. Specifically, almost all of them (94.12%) had

had previous experience with CV and most of them with

NLP (e.g., 78.43% had worked on text classification).

Conversely, only 58.8% of the students indicated an

“average”/"above average" experience in SE.

Then, we checked what the students were expecting to

learn from the course. More than half of them (29)

anticipated learning “engineering practices to build

production-ready ML-based systems”. Eighteen of them

mentioned the application of specific software

engineering best practices to ML (e.g., versioning or

containerization):

“I am interested in understanding containerization,

which is currently a very popular solution that I have

never had the opportunity (and the time) to experiment

with.”

Eight students expected training on top-notch

technologies to support the building process of ML-

THEME/FEATURE/DEPARTMENT

6

enabled systems; differently, five of them anticipated

learning engineering best practices for better management

of data science projects (9):

“I expect to learn how to improve the way an ML

project is carried out from the beginning to the end,

through the different stages.”

Five students expected to extend their knowledge of

software engineering; conversely, six of them thought

they were going to learn more about machine learning.

Finally, only three students mentioned expecting to know

more about the best practices for collaboration in ML

projects and just a couple about big data management and

privacy.

Overall, our course was able to meet by design most of

the student expectations, the main exceptions being

extended knowledge about ML, and big data management

and privacy.

Perceived usefulness of the course contents

and teaching methodology

By the end of the course – and before the final exam – we

asked the students to provide final feedback. Once again,

we administered an anonymous survey; this time we

collected 44 responses in total (18 at Uniba and 26 at

UPC).

To begin, we assessed student agreement on the

usefulness of the MLOps practices presented in class

using a 5-point Likert scale ranging from "Strongly

disagree" (1) to "Strongly agree" (5). The most “strongly

agreed” practices were code versioning (83.33%), API

design for ML (61.90%), and experiment tracking

(59.09%). Likewise, we surveyed student opinions about

our teaching methodology. Most of them found the

project-based nature of the course (63.64% “Strongly

agree”, 29.55% “Agree”) and teamwork (52.27%

“Strongly agree”, 29.55% “Agree”) helpful to learn.

84.09% of the students considered the project feasible,

and 90,91% agreed or strongly agreed about the

appropriateness of the project milestones. Conversely,

15.91% of the students were neutral about the

appropriateness of workload distribution, while 22.73%

disagreed or strongly disagreed.

These encouraging results were confirmed by our manual

analysis of the open-ended answers. We learned that most

of the students (29) found the course useful and were

willing to reuse some or most of the proposed practices

and tools in their future projects.

“I knew about some of these practices before, but

never actually implemented them. Having to do so was

useful and taught me a lot for future projects.”

A couple of them claimed they had already started to do

so by the end of the course.

“I have already started applying what we have

learned during this course to other ML projects. This

kind of practice has solved a lot of problems that I

encountered while developing ML models over the past

year.”

Eight students highlighted specific tools or categories

thereof they found particularly useful while developing

their project, e.g.: collaborative versioning with git and

GitHub (4), experiments tracking with MLflow (3), the

Cookiecutter project structure (2), or building data

pipelines with DVC. A couple were willing to reuse

especially the tools offering support for reproducibility.

Finally, five students reported learning the advantages of

using SE best practices when building ML-based systems.

All in all, these results show that students already

acquainted with ML enjoy learning state-of-the-art

engineering practices and tools to improve their ML

workflow.

Suggestions for improvement

Seven students expressed criticisms about the course or

recommended changes for future editions. For instance, a

couple of them would have appreciated more guidance on

the use of Git (and GitHub) or the deployment of an ML-

based component to the cloud.

Three students complained about the workload of the

course, which they found too heavy:

“I enjoyed the course, although it has taken most of

my study time.”

or about the general overhead of applying software

engineering practices to ML projects:

“All of this is important and the subject has made

me realize it. However, applying these practices

doubles the time spent to develop a project.”

HEAD

 7

Besides, a couple of students reported not being happy

with some of the recommended tools; in particular, they

complained about Great Expectation, either because its

use is redundant in their project (“[Great Expectations] is

used to ensure data quality standards, but by

preprocessing data before using it for training we already

ensure them.”) or because it does not scale to larger

projects (“several of these tools are incomplete, in the

sense that they can only be used in relatively small

projects; for example, Great Expectations…”).

Appreciation for the course

Finally, we examined the willingness of the students to

recommend our course to their colleagues using a 4-point

Likert scale ranging from "Definitely not" to "Definitely."

Most of the students declared to be likely (36.36%) or

definitely likely (54.55%) to promote the class. Eleven of

them also expressed explicit appreciation for the course in

the open-ended items of the survey, confirming it has

become a necessary addition to the traditional academic

curriculums:

“Nowadays, ML-based systems are everywhere,

and it is necessary to have this course. It would be

great if it could be extended into a 9-credit course.”

“I found it really useful. I think having this type of

subject in our degree is crucial. I have used and I will

use what I have learned.”

CONCLUSION
In this article, we shared our experience in designing and

delivering a project-based university course on MLOps

aimed at training future ML engineers. After examining

the practices addressed and a selection of tools used by

our students to overcome engineering challenges in the

development of their project works, we shared their

feedback on the course. From our experience, we learned

that students already acquainted with ML are eager to

know more about engineering best practices for ML and

that core competencies required of ML engineers can be

successfully taught over the course of a semester.

THEME/FEATURE/DEPARTMENT

8

FIGURE 1. This figure roughly depicts the vast technology landscape of MLOps. We group a small sample of the

existing tools by the skills addressed in our course; for each skill, our picks are highlighted in color, while possible

alternatives are in greyscale.

ACKNOWLEDGMENTS
This work is partially supported by the NRRP Initiative –

Next Generation EU ("FAIR - Future Artificial

Intelligence Research", code PE00000013, CUP

H97G22000210007); the Complementary National Plan

PNC-I.1 ("DARE - DigitAl lifelong pRevEntion

initiative", code PNC0000002, CUP B53C22006420001),

and the project TED2021- 130923B-I00, funded by

MCIN/AEI/10.13039/50110001 1033 and the European

Union Next Generation EU/PRTR.

REFERENCES

[1] I. Ozkaya, “An AI Engineer Versus a Software Engineer,”

IEEE Softw., vol. 39, no. 6, pp. 4–7, Nov. 2022, doi:

10.1109/MS.2022.3161756.

[2] Algorithmia, “2020 state of enterprise machine learning,”

2020.

[3] C. Kästner, Machine Learning in Production. 2021. Accessed:

Jan. 31, 2023. [Online]. Available:

https://ckaestne.medium.com/machine-learning-in-

production-book-overview-63be62393581

HEAD

 9

[4] MSR’22 Keynote: From Models to Systems: Rethinking the

Role of Software Engineering for ML, (May 20, 2022).

Accessed: Feb. 09, 2023. [Online Video]. Available:

https://www.youtube.com/watch?v=_m-m90S_4Gg

[5] D. Sato, A. Wider, and C. Windheuser, “Continuous Delivery

for Machine Learning - Automating the end-to-end lifecycle

of Machine Learning applications,” Sep. 19, 2019.

https://martinfowler.com/articles/cd4ml.html

[6] Q. Lu, L. Zhu, X. Xu, Z. Xing, and J. Whittle, “Towards

Responsible AI in the Era of ChatGPT: A Reference

Architecture for Designing Foundation Model-based AI

Systems.” arXiv, May 23, 2023. Accessed: Jun. 05, 2023.

[Online]. Available: http://arxiv.org/abs/2304.11090

[7] F. Lanubile, S. Martínez-Fernández, and L. Quaranta,

“Teaching MLOps in Higher Education through Project-

Based Learning.” arXiv, Feb. 02, 2023. Accessed: Feb. 09,

2023. [Online]. Available: http://arxiv.org/abs/2302.01048

[8] M. Mitchell et al., “Model Cards for Model Reporting,” in

Proceedings of the Conference on Fairness, Accountability,

and Transparency, Atlanta GA USA: ACM, Jan. 2019, pp.

220–229. doi: 10.1145/3287560.3287596.

[9] GitHub, “GitHub flow,” GitHub Docs.

https://docs.github.com/en/get-started/quickstart/github-flow

(accessed Jan. 31, 2023).

[10] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A

Large-Scale Study About Quality and Reproducibility of

Jupyter Notebooks,” in Proc. of the 16th International

Conference on Mining Software Repositories, 2019, pp. 507–

517. doi: 10.1109/MSR.2019.00077.

[11] J. Wang, L. Li, and A. Zeller, “Better code, better sharing: On

the need of analyzing jupyter notebooks,” in Proc. of the

ACM/IEEE 42nd International Conference on Software

Engineering: New Ideas and Emerging Results, ACM, 2020,

pp. 53–56. doi: 10.1145/3377816.3381724.

[12] L. Quaranta, F. Calefato, and F. Lanubile, “Pynblint: a Static

Analyzer for Python Jupyter Notebooks.” May 24, 2022. doi:

10.1145/3522664.3528612.

[13] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond

Accuracy: Behavioral Testing of NLP models with

CheckList,” Association for Computational Linguistics, 2020,

doi: 10.48550/ARXIV.2005.04118.

FILIPPO LANUBILE is a full professor

of Computer Science and head of the

Department of Informatics at the

University of Bari, Italy, where he also

leads the Collaborative Development

Research Group. His research interests

include human factors in software engineering, collaborative

software development, software engineering for AI/ML

systems, social computing, and emotion detection. Contact

him at filippo.lanubile@uniba.it.

SILVERIO MARTÍNEZ-FERNÁNDEZ

is an assistant professor at the Universitat

Politècnica de Catalunya (UPC)-

BarcelonaTech. His research interests

include empirical software engineering,

software engineering for AI/ML-based

systems, and green AI.

Contact him at silverio.martinez@upc.edu.

LUIGI QUARANTA is a research fellow

in the Collaborative Development

Research Group at the University of Bari,

Italy. His research interests include

software engineering for AI/ML-based

systems, MLOps, and computational

notebooks. Contact him at luigi.quaranta@uniba.it

