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Abstract— Recently, the proliferation of commercial ML-based services has given rise to 

new job roles, such as ML engineers. Despite being highly sought-after in the job market, 

ML engineers are difficult to recruit, possibly due to the lack of specialized academic 

curricula for this position at universities. To address this gap, in the past two years, we 

have supplemented traditional Computer Science and Data Science university courses 

with a project-based course on MLOps focused on the fundamental skills required of ML 

engineers. In this paper, we present an overview of the course by showcasing a couple of 

sample projects developed by our students. Additionally, we share the lessons learned 

from offering the course at two different institutions. 
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As machine learning (ML)-based systems become 

increasingly complex, there is a growing demand from 

the industry for ML engineers, also known as “AI 

engineers” [1]. ML engineers are professionals – trained 

in both SE and ML – who can handle the end-to-end 

process of building and maintaining production-ready ML 

components; to accomplish this, they leverage a varied 

array of practices and tools generally recognized under 

the umbrella term of MLOps. 

Despite the growing job market demand, at present, there 

is almost no offer of specialized academic curricula for 

ML engineers.1 Indeed, most AI university programs – 

mainly concerned with teaching state-of-the-art ML 

techniques – miss the opportunity to train future ML 

specialists on building production-grade components out 

of ML prototypes. For this reason, aspiring ML engineers 

need to look beyond university programs to learn the new 

craft and, indeed, several specialized online courses have 

1 With a few notable exceptions, e.g., the Master’s of AI 

Engineering offered at Carnegie Mellon (CMU). 

been published lately, compensating for the absence of 

academic options. 

Even so, it is still challenging for companies to recruit 

qualified ML engineers, with costly repercussions on their 

ability to bring ML products to the market. For instance, 

in a recent survey conducted by Algorithmia, many firms 

acknowledged facing significant challenges in the 

deployment of their models, despite the substantial effort 

and significant investments [2]. Christian Kästner – 

author of the book “Machine Learning in Production” [3] 

and lecturer of the homonymous course at Carnegie 

Mellon – argues that “‘software engineering for ML’ is 

more of an education problem than a research problem” 

[4]: most blocking challenges that practitioners 

experience in the field would be solved by empowering 

data scientists with software engineering knowledge. In 

the same line of thought, as software engineering 

educators, we believe there is a pressing need to train ML 

specialists on SE best practices and tools. Hence – 

looking forward to having a specialized degree program 

on ML engineering offered at our universities – we have 

started exploring the feasibility and outcomes of teaching 

MLOps fundamentals in a 3-month university course. 
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[SIDEBAR] INDUSTRIAL 

TRENDS ON MLOPS 

 

ML engineers have been actively participating in MLOps 

communities, fostering mutual support as they tackle 

work challenges together. They have also contributed 

crowd-sourced lists of MLOps resources and tools, like 

“Awesome MLOps”2. “MLOps Community”3 is a 

prominent example of an online hub where MLOps 

professionals gather to share their practical experiences, 

learn new skills, and collaborate on projects. Visiting the 

community website is a great way to stay updated on the 

latest trends in MLOps. For instance, at present, the 

community is primarily focused on the challenge of 

managing Large Language Models (LLMs) in production. 

Regarding MLOps tools, the latest trends can be also 

inferred by checking curated lists like MLOps.toys.4 

Notably, several of the tools available there are publicly 

contributed on GitHub, which indicates an increasing and 

needed involvement of the open-source community in this 

space. 

DESIGNING A PROJECT-BASED 

COURSE ON MLOPS 
In 2021, we decided to explore if our students from the 

Master’s program on Computer Science at the University 

of Bari, Italy (hereafter “Uniba”) and the Bachelor’s 

program on Data Science at the Universitat Politècnica de 

Catalunya, Barcelona, Spain (hereafter “UPC”) could 

successfully build and deploy ML-based components 

while training on MLOps fundamentals. With this goal in 

mind, we designed a project-based course on MLOps [7], 

focused on the demonstration and hands-on experience 

with MLOps solutions for the end-to-end development of 

ML-based components. We offered the first edition of the 

course at Uniba in Fall 2021. Upon collecting 

encouraging feedback from the students, in Fall 2022, we 

offered a second edition at both Uniba and UPC. During 

this second edition, we decided to collect data from the 

students to evaluate our course, answering the following 

questions: 

 
2 https://github.com/visenger/awesome-mlops 
3 https://home.mlops.community/ 
4 https://mlops.toys 

Q1: How well does our MLOps course align with student 

expectations? 

Q2: How do students perceive the usefulness of the 

content and teaching methodology employed in our 

course? 

Course evaluation 

As general evidence of course effectiveness, we 

considered the ability of the students to carry out their 

project activities end-to-end, meeting all deadlines. 

To measure how the students perceived the benefits and, 

more in general, the experience of project-based learning 

of MLOps, we conducted a survey-based feedback study. 

Specifically, we administered a first survey at the 

beginning of the course – to gauge the students’ initial 

knowledge and expectations – and a second survey at 

project delivery – to evaluate final impressions.5  

We summarized quantitative answers with descriptive 

statistics and open-ended ones with thematic analysis. In 

the latter case, we adopted a focused coding approach: 

after familiarizing ourselves with the collected data, we 

defined a tentative set of codes. Then, we selectively 

coded relevant segments of text, constantly refining the 

initial codes and taking note of the most interesting 

excerpts. Finally, we grouped codes into themes and 

reviewed the analysis results with the whole team. 

Course design 

In both editions of the course, we focused on six core 

skills typically expected from ML engineers: 

1. scoping a real-world ML problem and 

coordinating teamwork; 

2. ensuring ML pipeline reproducibility; 

3. fostering quality assurance (QA); 

4. developing an API for ML; 

5. delivering an ML component; 

6. keeping the feedback loop. 

 
5 The two surveys used in this study are available at: 

10.5281/zenodo.8026803. 



HEAD 

 

 
 3 

 

We asked our students to work in teams of 3-5 people to 

turn a prototypical ML model into a production-ready ML 

component. Here, by “production-ready”, we mean a 

component that can be easily integrated into a production-

grade system and effortlessly maintained over time. As 

such, we expect it to: 

• be the product of a reproducible build process 

that can be fully automated with CI/CD tools; 

• have production-grade quality, i.e., to be 

properly tested and checked with QA tools; 

• expose a cross-platform API and be packaged 

in a portable way. 

One of the challenges we faced while designing the 

course was the selection of tools to exemplify MLOps 

implementation. Not only the related practices are still 

consolidating and far from being standardized, but also 

the multitude of available MLOps tools keeps evolving at 

a stunningly fast pace (see Figure 1). To reach our final 

selection, for each MLOps practice, we considered the 

following criteria: our picks had to be (1) preferably open 

source (2) popular in the MLOps community, (3) well-

documented, and (4) easy to learn. We left our students 

free to explore other options anyway and make their own 

informed decisions, regardless of our choices. 

We organized the course and projects into six milestones, 

corresponding to the ML engineering skills above. In the 

following paragraphs, we will go through each skill, 

motivating its importance and showing how a couple of 

student teams applied the related practices in their work. 

Their projects are just representative examples of several 

other projects developed by our students. Being based on 

particular ML models – freely selected by the teams at the 

course start – each project posed specific challenges and 

inspired distinct solutions. Often, the students went 

beyond our demonstrations, adopting additional or 

alternative tools to meet their specific project 

requirements. For the benefit of all, we asked each team 

to report their experience to the class in bi-weekly 

retrospective meetings. 

Scoping an ML Problem and Coordinating Teamwork 

At the beginning of the course, we asked all teams to set 

up communication and collaboration platforms to 

coordinate their work. Then, we tasked them with scoping 

a real-world problem to be solved with ML and selecting 

(or building) a prototypical model. 

Effective communication is crucial in collaborative 

software development. Defining clear guidelines in this 

regard helps team members stay consistent in how they 

share information, for the benefit of team awareness and 

information retrieval. In class, we demonstrated the use of 

Microsoft Teams6 (Uniba) and Slack7 (UPC), for 

synchronous communication, while for project 

coordination, we demoed a Kanban-style board using 

Trello.8 

Once all teams had selected or built their model, we 

demonstrated how to document it using “model cards”. 

This lightweight approach to model specification, 

originally proposed by Mitchel et al. [8] and lately 

popularized by Hugging Face9, consists of templates 

providing a structured description of models, including 

the ML algorithm, training dataset, and use cases. A 

similar approach can be employed for the specification of 

datasets.10 We chose this solution because, with 

sustainable effort, it allows for concise reporting of all 

relevant aspects of an ML project. 

Example projects 

Here we briefly introduce a couple of sample projects – as 

reported in the corresponding model cards – that will be 

referenced throughout this article. 

“Math Symbol CNN” (hereafter “MS”), a team of 

students from Uniba, built a computer vision (CV) system 

for the classification of mathematical symbols (e.g., +, 

sin, and log) in low-resolution images (i.e., 28x28 pixels) 

of handwritten text. To this aim, they leveraged the 

refined version of a convolutional neural network built for 

another course. 

“Crystal Gazers” (hereafter “CG”), a team of students 

from UPC, built a natural language processing (NLP) 

application aimed at predicting the omitted word in a 

sentence based on the context provided by surrounding 

words. The students employed a transformer model 

trained from scratch on a dataset of Wikipedia articles in 

Catalan. 

Ensuring ML Pipeline Reproducibility 

Reproducibility is a key requirement in ML projects: not 

only it is important to get consistent performances – in 

production as in the lab – but also to enable the recovery 

and timely retraining of deployed models. However, 

achieving reproducibility in ML is challenging. We 

 
6 https://www.microsoft.com/en-us/microsoft-teams/group-chat-
software 
7 https://slack.com 
8 https://trello.com 
9 https://huggingface.co/docs/hub/model-cards 
10 https://huggingface.co/docs/hub/datasets-cards 
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address this topic in our second course milestone, aimed 

at providing students with the knowledge and skills 

required to build reproducible ML pipelines. 

A first step towards reproducibility is embracing version 

control. Concerning code, in class, we exemplified the 

use of git – the de-facto standard version control system – 

with GitHub, the most popular platform for git repository 

hosting. Also, we recommended using the GitHub flow 

[9], a lightweight, branch-based workflow for 

collaborative software development. Despite knowing git, 

several students admitted to not using version control in 

data science projects. For instance, they would normally 

ignore Jupyter notebooks as related diffs are hard to read. 

We emphasized the importance of versioning all code 

artifacts and recommended using modern editors or 

specialized Jupyter extensions, like nbdime, for improved 

notebook diff display. 

On the other hand, versioning data is more challenging 

than code. Different data formats (e.g., text, images) 

require specialized versioning mechanisms; moreover, 

storing and retrieving data is harder due to the larger file 

sizes. In class, we showed how these challenges can be 

overcome using specialized tools; a popular example is 

DVC11, an open-source platform used to version large 

data files (datasets and models) and back them up to 

cloud remotes. 

Experiment tracking is another reproducibility keystone. 

Being able to trace back experimental decisions is crucial 

to identify and reproduce the best experimental paths. To 

support this practice, we demonstrated MLflow 

Tracking12, a popular open-source solution. Besides the 

Tracking module, the “MS” team leveraged MLflow’s 

Registry module to save models in a centralized store; 

moreover, they employed DagsHub13 – a cloud hosting 

platform for data science projects – as a remote for both 

DVC and MLflow. Other teams preferred tracking their 

experiments with Tensorboard, mainly because of its tight 

integration with Tensorflow. 

Fostering QA 

Previous research has found that the quality of code in 

experimental ML artifacts is generally poor, especially in 

the case of computational notebooks [10], [11]. Similarly, 

model performance is known to be largely affected by the 

quality of training data, which is far from ideal in real-

 
11 https://dvc.org 
12 https://mlflow.org 
13 https://dagshub.com/about 

world scenarios. Our third course milestone focuses on 

QA, aiming to provide the students with practical 

guidance for quality improvement. 

To ensure production-grade quality for artifacts 

developed in the lab, data scientists need to modularize, 

test their code, and check it with static analyzers. Our 

students straightforwardly incorporated the recommended 

QA tools into their pipelines. For instance, after 

consolidating experimental notebooks into a pipeline of 

Python scripts, the “MS” team used Pylint to statically 

analyze their code and a combination of Pytest and 

unittest to test it. In addition, “CG” checked their 

repository with Pynblint [12] – a specialized static 

analyzer for Jupyter notebooks. Besides, to optimize 

energy efficiency, they tracked the CO2 emissions of 

their pipelines using Code Carbon. 

As versioning, quality assurance is more challenging for 

data than for code. Due to the variety of existing data 

formats, there is no tool covering all possibilities. In class, 

we demonstrated Great Expectations (GE), an open-

source framework allowing the definition of assertions on 

various properties of tabular data. However, since none of 

the teams had trained their model on tabular data, it was 

challenging for them to find workarounds. Some students 

resorted to testing only preprocessed data with GE (e.g., 

“CG” used GE to check if tokens extracted from a text 

were all integers). In contrast, other teams preferred using 

alternative solutions (e.g., the “MS” team used 

Deepchecks for its native support of image data). 

Concerning model QA, we showed how to complement 

the use of quantitative metrics, like precision and recall, 

with behavioral model testing. Behavioral tests assess the 

behavior of models when applied to specific categories of 

input data. In class, we exemplified them in the NLP 

domain, as inspired by [13]. Interestingly, some teams 

like “MS” showed how the same idea can be applied to 

different domains, like CV. 

API Development for ML 

To enable their seamless integration into larger systems, 

ML models typically expose their predictive capabilities 

through web APIs. We devote the fourth milestone of our 

course to showing how to wrap ML models with REST 

APIs using FastAPI. We selected this particular 

framework for its shallow learning curve, but also for its 

compliance with the OpenAPI standard. 

Most teams followed our recommendation and adopted 

FastAPI. Conversely, a few groups resorted to alternative 
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solutions; for instance, “CG” used AWS API Gateway – 

an AWS-managed service for web API development – to 

expose HTTP endpoints for their model. The students 

could also build a demo application to demonstrate their 

API. Despite not being trained in web development, 

several of them could build a client web app in no time 

with special-purpose front-end frameworks like Gradio 

(e.g., “MS”) and Streamlit (e.g., “CG”). 

Component Delivery 

Another crucial set of skills required of ML engineers 

concerns the delivery of ML-based components. Beyond 

exposing endpoints, models need to be packaged in a 

portable way and automatically deployed in cloud-based 

production environments. In our fifth course milestone, 

we show how to achieve this using containerization and 

CI/CD technologies. 

Being the de-facto standard, we used Docker to exemplify 

software containerization. The students found it relatively 

easy to understand and apply. For instance, “MS” 

straightforwardly employed Docker and Docker Compose 

to implement a 4-components microservices architecture. 

However, some students had a hard time setting up 

containers for models requiring a GPU at inference time. 

Some of them identified suitable base images to leverage 

full model performance with GPUs, while others 

packaged a simplified version of their model as a 

workaround. 

Next, we showed how to automate the whole build and 

deployment process with CI/CD tools. Due to its seamless 

integration with GitHub, we used GitHub Actions to 

demonstrate this practice. However, some teams preferred 

using the facilities offered by their cloud provider. For 

instance, “MS” deployed their multi-container system to 

Okteto and leveraged its native support for Docker 

Compose builds; differently, “CG” employed AWS 

facilities to run their components in EC2 instances. 

Keeping the Feedback Loop 

To ensure service availability and performance after 

deployment, it is crucial to continuously monitor ML-

enabled components. A monitoring system should track 

both the resource consumption of ML components as well 

as the performance of ML models themselves, as they are 

typically subject to performance degradation over time. 

By setting up a monitoring system, ML engineers ensure 

to keep the feedback loop, being able to timely replace 

their models as needed. Hence, we dedicated the final 

milestone of our course to monitoring practices for ML-

based systems. 

All teams were able to set up a monitoring system for 

their ML-based component. They mostly followed the 

examples provided in class, based on two popular open-

source solutions often used in tandem to track system 

metrics (Prometheus) and visualize them in a dashboard 

(Grafana). 

 

LESSONS LEARNED 
All teams could successfully turn their model prototype 

into a production-ready ML component. Also, they all 

coped well with the project deadlines and managed to 

deploy their product to the cloud. In the following 

paragraphs, we will examine the feedback collected from 

the students. The lessons learned by analyzing their 

course experience will help us improve the next course 

editions. 

Expectations of the students 

At the beginning of the course, we assessed the prior 

knowledge and learning expectations of our students. We 

conducted an anonymous survey, collecting 51 responses 

(23 at Uniba and 28 at UPC). 

To start, we asked each student to self-report their 

experience in both SE and ML using a 5-point Likert 

scale, where 1 represents a "very poor" experience and 5 

an "excellent" experience. Consistently across Uniba and 

UPC – the students exhibited greater confidence in ML, 

with 86.28% reporting an "average" or "above average" 

experience. Specifically, almost all of them (94.12%) had 

had previous experience with CV and most of them with 

NLP (e.g., 78.43% had worked on text classification). 

Conversely, only 58.8% of the students indicated an 

“average”/"above average" experience in SE. 

Then, we checked what the students were expecting to 

learn from the course. More than half of them (29) 

anticipated learning “engineering practices to build 

production-ready ML-based systems”. Eighteen of them 

mentioned the application of specific software 

engineering best practices to ML (e.g., versioning or 

containerization): 

“I am interested in understanding containerization, 

which is currently a very popular solution that I have 

never had the opportunity (and the time) to experiment 

with.” 

Eight students expected training on top-notch 

technologies to support the building process of ML-
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enabled systems; differently, five of them anticipated 

learning engineering best practices for better management 

of data science projects (9): 

“I expect to learn how to improve the way an ML 

project is carried out from the beginning to the end, 

through the different stages.” 

Five students expected to extend their knowledge of 

software engineering; conversely, six of them thought 

they were going to learn more about machine learning. 

Finally, only three students mentioned expecting to know 

more about the best practices for collaboration in ML 

projects and just a couple about big data management and 

privacy. 

Overall, our course was able to meet by design most of 

the student expectations, the main exceptions being 

extended knowledge about ML, and big data management 

and privacy. 

Perceived usefulness of the course contents 

and teaching methodology 

By the end of the course – and before the final exam – we 

asked the students to provide final feedback. Once again, 

we administered an anonymous survey; this time we 

collected 44 responses in total (18 at Uniba and 26 at 

UPC).  

To begin, we assessed student agreement on the 

usefulness of the MLOps practices presented in class 

using a 5-point Likert scale ranging from "Strongly 

disagree" (1) to "Strongly agree" (5). The most “strongly 

agreed” practices were code versioning (83.33%), API 

design for ML (61.90%), and experiment tracking 

(59.09%). Likewise, we surveyed student opinions about 

our teaching methodology. Most of them found the 

project-based nature of the course (63.64% “Strongly 

agree”, 29.55% “Agree”) and teamwork (52.27% 

“Strongly agree”, 29.55% “Agree”) helpful to learn. 

84.09% of the students considered the project feasible, 

and 90,91% agreed or strongly agreed about the 

appropriateness of the project milestones. Conversely, 

15.91% of the students were neutral about the 

appropriateness of workload distribution, while 22.73% 

disagreed or strongly disagreed. 

These encouraging results were confirmed by our manual 

analysis of the open-ended answers. We learned that most 

of the students (29) found the course useful and were 

willing to reuse some or most of the proposed practices 

and tools in their future projects.  

“I knew about some of these practices before, but 

never actually implemented them. Having to do so was 

useful and taught me a lot for future projects.” 

A couple of them claimed they had already started to do 

so by the end of the course. 

“I have already started applying what we have 

learned during this course to other ML projects. This 

kind of practice has solved a lot of problems that I 

encountered while developing ML models over the past 

year.” 

Eight students highlighted specific tools or categories 

thereof they found particularly useful while developing 

their project, e.g.: collaborative versioning with git and 

GitHub (4), experiments tracking with MLflow (3), the 

Cookiecutter project structure (2), or building data 

pipelines with DVC. A couple were willing to reuse 

especially the tools offering support for reproducibility. 

Finally, five students reported learning the advantages of 

using SE best practices when building ML-based systems. 

All in all, these results show that students already 

acquainted with ML enjoy learning state-of-the-art 

engineering practices and tools to improve their ML 

workflow. 

Suggestions for improvement 

Seven students expressed criticisms about the course or 

recommended changes for future editions. For instance, a 

couple of them would have appreciated more guidance on 

the use of Git (and GitHub) or the deployment of an ML-

based component to the cloud.  

Three students complained about the workload of the 

course, which they found too heavy: 

“I enjoyed the course, although it has taken most of 

my study time.” 

or about the general overhead of applying software 

engineering practices to ML projects: 

“All of this is important and the subject has made 

me realize it. However, applying these practices 

doubles the time spent to develop a project.” 
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Besides, a couple of students reported not being happy 

with some of the recommended tools; in particular, they 

complained about Great Expectation, either because its 

use is redundant in their project (“[Great Expectations] is 

used to ensure data quality standards, but by 

preprocessing data before using it for training we already 

ensure them.”) or because it does not scale to larger 

projects (“several of these tools are incomplete, in the 

sense that they can only be used in relatively small 

projects; for example, Great Expectations…”). 

Appreciation for the course 

Finally, we examined the willingness of the students to 

recommend our course to their colleagues using a 4-point 

Likert scale ranging from "Definitely not" to "Definitely." 

Most of the students declared to be likely (36.36%) or 

definitely likely (54.55%) to promote the class. Eleven of 

them also expressed explicit appreciation for the course in 

the open-ended items of the survey, confirming it has 

become a necessary addition to the traditional academic 

curriculums: 

“Nowadays, ML-based systems are everywhere, 

and it is necessary to have this course. It would be 

great if it could be extended into a 9-credit course.” 

“I found it really useful. I think having this type of 

subject in our degree is crucial. I have used and I will 

use what I have learned.” 

CONCLUSION 
In this article, we shared our experience in designing and 

delivering a project-based university course on MLOps 

aimed at training future ML engineers. After examining 

the practices addressed and a selection of tools used by 

our students to overcome engineering challenges in the 

development of their project works, we shared their 

feedback on the course. From our experience, we learned 

that students already acquainted with ML are eager to 

know more about engineering best practices for ML and 

that core competencies required of ML engineers can be 

successfully taught over the course of a semester. 
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FIGURE 1. This figure roughly depicts the vast technology landscape of MLOps. We group a small sample of the 

existing tools by the skills addressed in our course; for each skill, our picks are highlighted in color, while possible 

alternatives are in greyscale. 
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