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Abstract

Natural Language Processing has been revolutionized by the Transformer architec-
ture, as can be seen by the impact of Chat-GPT. On the other hand, High Frequency
Trading (HFT) is a type of financial trading that takes place within the order of
minutes or even less, unlike other types of trading which take place in the order of
days or months. One way of storing this High Frequency information is the Limit
Order Book (LOB), where one can see pending bid and ask orders. In this project,
we will try to apply this new Deep Learning NLP architecture to the world of HFT.
We first introduced and explained the Transformer architecture and its characteris-
tic attention mechanism. Then, we explained several financial concepts relating to
HFT. Finally, we applied the transformer architecture to try to solve two financial
problems: predicting the hourly closing price of Bitcoin and predicting the mid-price
movement of a Limit Order Book.

Keywords : Deep learning, Transformers, Quantitative Finance, High Frequency
Trading.

MSC2020 : 91G60, 91B25, 68T99

Resumen

El Procesamiento de Lenguajes Naturales se revolucionó con la introducción del
“Transformer”, tal y como se puede ver con el impacto de Chat-GPT. Por otro lado,
la Negociación de Alta Frecuencia es un tipo de negociación financiera que se lleva
a cabo en el orden de minutos, o hasta menos, a diferencia de otros tipos de nego-
ciación que ocurren en el orden de d́ıas o meses. Una manera de guardar información
sobre la Negociación de Alta Frecuencia es con un Libro de Órdenes Ĺımites, en el
que uno puede ver las órdenes pendientes. En este proyecto, intentamos aplicar esta
nueva arquitectura de Deep Learning de Procesamiento de Lenguajes Naturales al
mundo de la Negociación de Alta Frecuencia. Primero, introducimos y explicamos
el Transformer y su caracteŕıstico mecanismo de atención. Después, explicamos
algunos conceptos financieros relativos al Libro de Órdenes Ĺımites. Finalmente,
aplicamos el Transformer para resolver dos problemas financieros: predecir el precio
de cierre horario del Bitcoin y predecir el movimiento del precio medio de un Libro
de Órdenes Ĺımites.

Palabras clave: Deep Learning, Transformers, Finanzas Cuantitativas, Negociación
de Alta Frecuencia

MSC2020 : 91G60, 91B25, 68T99



Resum

El Processament de Llenguatges Naturals es va revolucionar amb la introducció del
“Transformer”, tal i com es pot veure amb l’impacte de Chat-GPT. D’altra banda,
la Negociació d’Alta Freqüència és un tipus de negociació que es du a terme en
l’ordre dels minuts, o encara menys, a diferència d’altres tipus de negociacions que
es fan en l’ordre de dies o mesos. Una manera de guardar informació sobre la Nego-
ciació d’Alta Freqüència és amb un Llibre d’Ordres Ĺımits, en el que un pot veure
les ordres pendents. En aquest projecte, intentem aplicar aquesta nova arquitectura
de Deep Learning de Processament de Llenguatges Naturals al món de la Nego-
ciació d’Alta Freqüència. Primer, introdüım i expliquem el Transformer i el seu
caracteŕıstic mecanisme d’atenció. Després, expliquem alguns conceptes financers
relatius al Llibre d’Ordres Ĺımits. Finalment, apliquem el Transformer per resoldre
dos problemes financers: predir el preu de tancament horari del Bitcoin i predir el
moviment del preu mitjà d’un Llibre d’Ordres Ĺımits.

Paraules clau: Deep Learning, Transformers, Finances Quantitatives, Negociació
d’Alta Freqüència

MSC2020 : 91G60, 91B25, 68T99
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1 Motivation

The Transformer has revolutionized the world of Deep Learning. At the time of
writing this paper, Chat-GPT has already been released for a few months (since
November of 2022) and GPT-4 has been recently released to the public. GPT stands
for “Generative Pre-trained Transformer”. The chat-bots, developed and offered by
OpenAI, can answer with extreme precision almost any question it is posed (with
some limitations, of course, such as personal opinions on topics). This ability has
encouraged people to experiment with the bots, resulting in exponential growth of
interest in both Artificial Intelligence and the Transformer architecture.

The Transformer architecture was first introduced in 2017 in the paper “At-
tention is all you need”, by Vaswani et al. It has proven to be a revolution in
Natural Language Processing models, displaying a higher efficiency and accuracy
than previos architectures, such as Long Short-Term Memory (LSTM) networks or
Convolutional Neural Networks (CNN). Nonetheless, this architecture can also be
used to attempt to solve other problems, such as time series predictions or image
processing, with various results.

The idea of this paper is to first understand the Transformer architecture and its
attention method, and the apply it to the field of Finance and Financial Engineering.
This paper will thus present attempts to use this architecture to predict the hourly
closing price of Bitcoin and then to predict the virtual mid-price movement of Limit
Order Book data.
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2 Transformers background

First, we must understand the Transformer architecture, how and why it works.
As stated before, this architecture was first introduced by Vaswani et al. in the
“Attention is all you need” paper [1]. In the paper, authors provided this diagram
to exemplify how the architecture is structured:

Figure 1: The Transformer architecture [1]

This architecture is compromised of several sub-parts and processes, such as,
tokenization, embedding, positional encoding, an encoder (seen on Figure 1 as the
left block), which consists of a multi-head attention mechanism, and a feed-forward
network, and a decoder (seen on Figure 1 as the right block), consisting of a masked
multi-head self attention mechanism, a multi-head attention mechanism, and a feed
forward network. Thus, each process must be explained.
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2.1 Tokenization

This first process is only necessary if the inputs of the Transformer are not numer-
ical, as is the case of Chat-GPT and GPT-4, whose inputs are sentences made out
of characters. Tokenization essentially consists of converting a series of characters
into numbers. [4]

Let Ω be a dictionary, that is, a collection of all the possible combinations of
characters that one may choose. Consider then the following injective (one-to-one)
function:

T : Ωn −→ Nn (1)

where n is the number of dictionary elements. This function will map each element
of the dictionary, to an associated natural number. The function T depends on the
chosen dictionary. If the language of the input sentence is English written in lower-
case letters, one can naively choose the dictionary to be the set of the 26 lowercase
letters in the English alphabet, and then map each letter to its relative position in
the alphabet (T (a)=1, T (b)=2, ..., T (z)=26). If we apply this tokenization to the
word “earth”, the result would be

T (earth)) = [5, 1, 18, 20, 8] (2)

There are several possible tokenizations, alternatively, using the English alpha-
bet as the alphabet and then associating each word with its positional order in the
alphabet. Chat-GPT (as well as all of the GPT models by OpenAI), use a tokeniza-
tion method which considers the token as common sequences found in text, after
analyzing several texts and discovering several statistical relationships between those
sequences. As such, full words may consist of more than one token. Approximately,
each 4 characters will be a different token. To exemplify this, the tokenization of
the word “indivisible” is [521, 452, 12843], as “ind” becomes 521, “iv” becomes 452
and “isible” becomes 12843.

The tokenization mapping must be injective as, after performing every process
and training the model, the outputs must be translated from numbers back to char-
acters and words, which is a result of applying the inverse of the mapping, T−1, to
the set of tokens.

2.2 Token embedding

The embedding process consists on turning each input token (already a number)
into a vector. Positional embedding consists on adding a positional component to
the embedding process.

The idea behind embedding is, in the case of Natural Language Processing (the
original objective of the Transformer architecture), to represent in each vector com-
ponent some linguistic feature of the token. Given that, during training, the values
in the embeddings will be modified by the model, the meaning of each component
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may become apparent. For example, the value in the first position could be prox-
imity in meaning, resulting in similar words having very similar embedding values,
while very dissimilar words having very different values. The core idea of embedding
is to receive a number (a token), and return a vector of a given dimension, which we
will call d, with different values in each position of the vector. In the case that the
problem to be solved has absolutely nothing to do with Language Processing, the
values of each position of the embedding will not have such an obvious meaning.

2.3 Positional encoding

The positional encoding is an essential part of Natural Language Processing through
the Transformer architecture. Other architectures, such as LSTMs or CNNs, do fol-
low the order of the given language sequence, and thus, no positional encoding is
required. The Transformer, however, does not have this intrinsic ordering ability.
The order of words in sentences is essential to extract the meaning of the sentence,
otherwise it is just a random collection of words, thus, when presented with a sen-
tence, the Transformer requires that the order be explicitly shown.

The first idea that may come to mind is a naive approach of adding an extra
layer to the embedding of each token with its absolute position in the sentence, the
first token gets a 1, the second gets a 2... This approach, however, presents some
flaws: first, that the length of the sentences may get increasingly large, and that
during testing, the model may get sentences longer than it had during training.

The solution, proposed by the authors of the original Transformers paper, was to
used another vector to apply the positional encoding. Let t be the position of a word
in a sentence, d the encoding dimension (as mentioned before), with the condition
that d be even. Then,

pt(i) =

{
sin(ωkt) if i = 2k

cos(ωkt) if i = 2k + 1
(3)

with ωk = 1
100002k/d

and i ∈ {1, ..., d} the position of each value within pt. This
vector is then added to the original embedding, which is why the dimension d of the
embedding must be the same as the dimension of the positional encoding layer. We
can thus visualize this vector as pairs of sine and cosine functions, each with its own
paired frequency,

pt =



sin(w1t)
cos(w1t)
sin(w2t)
cos(w2t)

...
sin(wd/2t)
cos(wd/2t)


(4)
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which is why d must be divisible by 2.

The positional encoding layer is added to the original embedding, instead of just
concatenating it with the original encoding, and one could think that this may lead
to a modification or interference with the original encoding, resulting in the loss of
information. To see why this is not the case, an example of positional encoding is
shown in Figure 2.

Figure 2: Positional encoding vectors (rows) for a 50 token succession with d = 128

In Figure 2 we see represented in each row the vector pt for each position from
1 to 50 (vertical axis) with the values of each position shown by the color grid.
This Figure shows that the positional encoding vectors are only significant in the
first positions, meaning, the first values of the encoding. Therefore, the embedding
and the training can be done in such a way that the most relevant information is
stored only in the later positions of the embedding, so that there is no interference.
Also, Figure 2 shows an embedding of dimension 128, while the original transformer
proposed in the original paper had an embedding dimension of d = 512, which re-
sults in even more positions available in the embedding to store relevant information.

As stated before, there are alternatives to positional embedding, mainly when
the problem to be solved has nothing to do with Natural Language Processing,
for example, the study and prediction of Time Series. One proposed method of
representing time is through the Time2Vec process, which is very similar in concept
to the positional encoding layer. As its name suggests, Time2Vec provides a vector
representation of time, in order to make sense of “when” did an event happen within
a Time Series. The process is as follows: Let τ be a scalar time. Then, the Time2Vec
representation of this τ , t2v(τ), will be a vector of size k+1:

t2v(τ)(i) =

{
ωiτ + ϕi if i = 0

f(ωiτ + ϕi) if i = 1, ..., k
(5)
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where i ∈ {0, ..., k} is the position of each value within t2v(τ), f is a periodic
function (in the original Time2Vec paper, the sine function is considered) and ωi

and ϕi are learnable parameters. Therefore, there are several ways of building a
positional/time encoding layer, depending on the problem at hand.

2.4 Multi-Head Attention

As stated before, the Encoder and Decoder are made up of a Multi-Head Attention
layer and a Feed-Forward Network. Thus, we will begin by explaining what the
Multi-Head Attention layer does.

In order to understand Multi-Head Attention, we must first tackle Single-Head
Attention and then see how it generalizes to the Multi-Head case. Single-Head
Attention can be explained in the following Figure, also appearing in the original
Transformers paper.

Figure 3: Single-head dot product attention [1]

As we can see in Figure 3, there are several layers to the dot-product attention
mechanism, starting with the Q, K and V objects. The idea behind the encoder
attention is to extract the maximum possible information out of the input tokens.
Let’s consider a sequence of n tokens that form a sentence, and let e1, e2, ..., en be
the embedding vectors (already positionally encoded) of each token. To obtain the
Q, K and V objects of each vector, a linear layer is applied, which is the equivalent
of applying a linear transformation L, as
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L(ei) = Aei + b (6)

where A is a matrix and b is a vector. The values aij and bi are scalars originally ran-
domly distributed that the model will update during back-propagation as it learns.
Thus, we can define the following objects:

Qei = AQei + bQ (7)

Kei = AKei + bK (8)

Vei = AV ei + bV (9)

As each embedding vector gets its own Q, K and V vector, if we concatenate all the
ei vectors into a matrix E, we can define the Q, K and V matrices as

Q = LQ(E) (10)

K = LK(E) (11)

V = LV (E) (12)

These matrices are called the Queries (Q), Keys (K) and Values (V ) matrices.
In the original paper, they have dimensions dk (The Queries and Keys matrices)
and dv (the Values matrices). The idea behind these matrices is as follows: if we
imagine that we want to search for a particular item, we may put the essential things
we are looking for as the Queries of that item, and then each item of the list can
display its qualities as the Keys. Then, the proximity of the searched qualities and
the available qualities can be understood as the Values. Nonetheless, in this exam-
ple, the Queries, Keys and Values come from different places. In the transformer
encoder, the Queries, Keys and Values are all obtained from the embedding matrix.
This is what’s called Self-Attention. Self-Attention occurs when all the elements
of the attention layer come from the same place (in the case of Natural Language
Processing, from the training texts).

The idea is, then, to compute the similarities between the Queries (what we
search for) and the Keys (what is offered). The solution is to compute the dot
product between the two matrices. In Figure 3 this is represented as “MatMul”.
Thus, the idea of similarity is to compute

Similarity(Q,K) = QKT (13)

If we think in terms of vectors, this is the same idea behind finding the angle
between 2 vectors. If we consider two vectors v and w, we recall that

cos(θ) =
v · w
|v||w|

(14)
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This idea is very similar to a “Similarity” as described in Equation 13, as two
vectors are “most similar” when their cosine is 1 and “most dissimilar” when their
cosine is −1. We see that the similarity between the Queries and the Keys uses
the same idea as the cosine similarity between two vectors. In Equation 13, the
Keys matrix is transposed so as to make the dimensions make sense and properly
compute the dot product. We see a difference between the similarity described in
Equation (13) and the cosine similarity described in Equation (14): The scaling
factor. In computing cosine similarity, the result of the dot product is normalized
by the factor of the norms of the two vectors, in order to get a result between −1
and 1 (and then be able to apply the arccos operation and get the actual angle
between vectors), while the similarity described does not have a scaling factor. The
original transformer paper does have a scaling factor in the similarity computation.
In it, the similarity is defined as

Similarity(Q,K) =
QKT

√
dk

(15)

where dk is the dimension of the Q and K matrices. We see that, in this case,
the resulting values of the similarity may be larger than 1 and smaller than −1, but
that won’t be a problem because of the next operations in the Attention mechanism.

The next step is applying the SoftMax function (we will ignore Masking for
the moment, as it will be explained in the decoder part of the Transformer). The
SoftMax function is defined as follows:

S : RN −→ [0, 1]N

S(x)i =
exi∑N
k=1 e

xk

(16)

Applying the SoftMax function to a vector, then, turns every value of the vector
into a value between 0 and 1. Thus, the values can be understood as, for instante,
a discrete probability distribution. Applying the SoftMax function to the similarity
described in Equation 15 row-wise results in a matrix, as shown in the following
equation

SoftMax

(
QKT

√
dk

)
=


s11 s12 ... s1n
s21 s22 .
. .
. .
. .

sm1 sm2 ... smn

 (17)

Such that sij ∈ [0, 1] and
∑n

j=1 sij = 1 ∀i ∈ 1, ...,m.

The final step of the Single-Head Attention is to multiply the resulting matrix
described in equation 24 with the Values matrix. Thus, we can define the attention
as:
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Attention(Q,K, V ) = SoftMax

(
QKT

√
dk

)
V (18)

Now, as explained before, this process is a Single-Head Attention mechanism,
and now, we will see the generalization to a Multi-Head case. The Multi-Head case
can be visualized in Figure 4, as it was shown in the original Transformers paper.

Figure 4: Multi-Head Attention process [1]

The idea behind this is to get the Q, K and V matrices and then project them
h times using different learned linear functions. We then define an Attention Head
as

headi = Attention(QWQ
i , KWK

i , V W V
i ) (19)

where WQ
i , WK

i and W V
i are the different learned linear functions that project the

Queries, Keys and Values, with i ∈ 1, ..., h. These different projections can me un-
derstood as the modifiers of the Q, K and V matrices such that they “focus” on
different aspects of text, for example.

We may then define the Multi-Head Attention mechanism as

MultiHeadAttention(Q,K, V ) = concat(head1, head2, ..., headh)W
O (20)

whereWO is a matrix of Rhdv×d, a learned matrix applied also so that the dimensions
of the Multi-Head Attention mechanism match, as concatenating several matrices
will result in large dimensions.
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If we look at Figure 1, we will see a “Add and Norm” layer shown in yellow.
This step consists of normalizing each row of the resulting matrix, and helps in the
efficiency of the model, as normalizing the layers results in a better running time
and reduces the possibility of errors. The next layer is a Feed Forward Network.

2.5 Feed Forward Network layer

The last part of the encoder layer is passing the resulting data matrix through
a Feed Forward Neural Network (FFNN). A Feed Forward Neural Network is the
simplest type of Neural Networks, in which data is passed through the input nodes,
the hidden layer, and the output nodes without forming any cycles. Thus, the data
only moves in one direction, the forward direction (hence, the name) [2]. There
are other types of Neural Networks where nodes do form cycles, such as Recurrent
Neural Networks (RNNs). The flow of data of a FFNN can be visualized in Figure
5

Figure 5: Example of a Feed Forward Neural Network (the arrows mark the flow of
data)

In the original Transformers paper, the dimension of both the input layer and
the output layer is d = 512 (same as the output dimension of the Multi-Head At-
tention process) and the inner layer has a dimension of din = 2048. Of course, these
numbers can be changed depending on the problem at hand.

This network applies three operations to the inputs of the first layer. First, it
applies a linear transformation to the input x, as explained before and shown in
Equation 6. Then, it applies a ReLU activation to this result. The ReLU activation
function consists of the following:

10



ReLU(x) = max{0, x} (21)

meaning that the value will only be passed forward if it is positive. Otherwise, it
will pass 0. Then, the network applies another linear transformation to the result
of the activation. Thus, the output can be summarized as

FFNN(x) = L2(ReLU(L1(x))) (22)

This concludes the Encoder block of the Transformer. As Figure 1 indicates,
the encoder block can be stacked N times to maximize the model’s learning and
precision. The original Transformer was composed of N = 6 layers. Now we may
move to the decoder layer.

2.6 Masked Multi-Head Attention

If we look, once again, at Figure 1, we will notice that the left block (the encoder) is
very similar, in components, to the right block (the decoder). The main component
difference is the Masked Multi-Head Attention. If we return to Figure 3, there is
a layer of the Single-Head Attention called the Mask layer, and there is the key of
masked self attention.

If we follow the same process as before, we will calculate the scaled similarity,
as computed in Equation (15). Now, before applying the SoftMax function, we will
first add a masking matrix to the similarity matrix. This matrix will be

M =


0 −∞ −∞ ... −∞
0 0 −∞ ... −∞
. .
. .
. −∞
0 0 0 ... 0

 (23)

this is, a lower triangular matrix with all values equal to zero, and the rest of the
values equal to −∞. The reasoning behind this matrix is that, after applying the
SoftMax function to the similarity plus this matrix, the result will be

SoftMax

(
QKT

√
dk

+M

)
= SoftMax


s11 −∞ −∞ ... −∞
s21 s22 −∞ ... .
. .
. .
. −∞

sm1 sm2 sm3 ... smn

 (24)

If we recall Equation (16), the SoftMax function assigns to each position of the
vector the value of exi . In this case, as several values of the matrix are −∞, applying
the SoftMax will map them to 0, resulting in
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SoftMax

(
QKT

√
dk

+M

)
=


1 0 0 ... 0
ŝ21 ŝ22 0 ... .
. .
. .
. 0

ŝm1 ŝm2 ŝm3 ... ŝmn

 (25)

where ŝij ∈ [0, 1] and
∑n

j=1 ŝij = 1 ∀i ∈ 2, ...,m. The reason the value of ŝ11
automatically becomes 1 is that the entire row is composed only of ŝ11 and zeroes,
and applying the SoftMax function to this vector results in (1, 0, 0, ...0).

2.7 The Encoder and the Decoder

In this final subsection, after understanding each component of the model individu-
ally, we will review each block as a whole and explain why it is designed that way.

Beginning with the Encoder block, this block performs its operations on un-
masked data. This is, if it is fed a series of tokens, it will analyze all the relations
and possible interactions of all the tokens will each other, no matter their position.
This idea can be visualized in Figure 6

Figure 6: Example of the attention relations between tokens in the Encoder

In Figure 6, the vertices of the graph represent the tokens (the numbered vertices
represent the position of the tokens in the sequence), and the edges represent the
attention communication between these tokens. As we can see, this is a complete
graph (K5 in this case, it would be Kn in the case of n tokens). This exemplifies
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how, in the encoder attention mechanism, all the tokens receive information from
all the others, no matter the position of the sequence that they are in.

On the other hand, the masked attention of the Decoder makes it so that the
information can not be shared totally between all the positions. That is, each token
can only receive information from itself and the previous ones. This is exemplified
in Figure 7. Here, the communication between nodes is represented by the direction
of the graph. If node A is connected to node B, it means it can get information
from that node. Thus, node 1 is not connected to any other nodes, and can only get
information from itself. Recalling Equation (25), this is why the value of ŝ11 = 1
directly, as it can not get information from any future nodes. Likewise, node 2 is
only connected to node 1, and can only get information from itself and node 1.
This is the reason as to why the upper triangular part of the Attention matrix is
composed of zeros, so as to avoid communication with any future nodes.

Figure 7: Example of the attention relations between tokens in the Decoder

The reasoning behind this difference between the encoder and the decoder can be
understood with the following example: the original Transformer was trained and
tested on Machine Translation problems, mainly English-to-German and English-
to-French. Thus, after training, the Transformer was to be fed a sentence in English
and be able to output its translation in French. For example, if given the sentence
“I am terribly sorry”, it should return “je suis vraiment désolé”, but the process
as to how it reaches that answer is the key to understanding the Encoder/Decoder
relation. The input sentence is known, thus, un-masked attention can be applied to
it in order to fully understand it. The output sentence, on the other hand, is sequen-
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tially passed through the Decoder, which outputs the following token every time.
In summary, the model will first output “je”, then pass that sentence through the
decoder, output “suis”, then pass “je suis” through the decoder, output “vraiment”,
and so on. That’s why the Decoder has a masked self-attention layer, as the tokens
are only allowed to communicate with the past tokens, not the future ones. We
can also see in the Decoder layer that the un-masked Multi-Head Attention Layer
receives information from the encoder. In that layer, the Queries, Q matrices, are
obtained from the decoder, but the Keys and Values, K and V matrices, are ob-
tained from the encoder. Following the example of the translation, the Transformer
gets information from the input text in English in order to get the correct output
in French or German.

Thus, we now understand the Transformer architecture, and how the Attention
mechanism works in order to maximize learning.
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3 Finance background

Trading consist of exchanging securities, that is, buying or selling different market
options, such as stocks (Apple, Tesla...), commodities or futures of those commodi-
ties (such as oil) or currencies (such as Dollars (US$) or, nowadays, Bitcoin (B)).
When dealing with these kinds of financial data, we must consider several facts as
to why it acts that way. To better explain these facts, we will focus on the S&P 500
index and its stock prices. The S&P 500 index (Standard and Poor’s 500 index) is
an index based on the market capitalization of the 500 largest companies that trade
on the New York Stock Exchange (NYSE) or the National Association of Securities
Dealers Automated Quotation (NASDAQ), the two largest trading markets in the
United States. This index captures approximately 80% of the United States market,
and is thus considered as the most representative index for the market’s situation.
Firstly, we won’t work with the value of the prices, but with the log-prices. Let pt
be the price of any asset at time t. We then define the log-price as

yt = log(pt) (26)

The closing log-prices of the S&P 500 Index are shown in Figure 8

Figure 8: Closing log-prices of the S&P 500 Index from 01/01/2000 to 15/05/2023

After computing the log-prices, we can compute the log-returns, which are de-
fined as

rt = yt − yt−1 (27)
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With these concepts, we may list a few financial stylized facts. These are charac-
teristics of financial data which have been observed to happen by several independent
studies across markets and in different time periods.

Firstly, there is lack of stationarity: past returns do not necessarily reflect future
performance [5]. The second one is volatility clustering: high volatility events tend
to cluster in time, this is, high volatility events tend to cause high volatility events,
while low volatility events tend to cause low volatility events [6]. Volatility can be
seen by time events in which the log-returns are wider, more volatile. Figure 9 shows
the log-returns of the S&P-500.

Figure 9: Log-returns of the S&P 500 Index from 01/01/2000 to 15/05/2023

In the previous figure we can see the clusters of volatility (very high and very
low returns clumped together) as well as the periods of low volatility (small returns
in absolute value).

The final stylized fact that will be presented is the fact that the distributions of
log-returns are not Gaussian, but Heavy-Tailed [7]. A distribution is Heavy-Tailed
if its tails are not exponentially bounded, this is, it has a heavier tail than the
exponential distribution. Mathematically, a random variable X with distribution
function F (x) = P (X > x) is Heavy-Tailed if

lim
x→∞

extF (x) = +∞ (28)

The fact that financial data is usually Heavy-Tailed means that a Gaussian dis-
tribution (which isn’t Heavy-Tailed) will not fit the data correctly. We can see this
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fact by comparing a normal distribution to the log-returns seen in Figure 9.

Figure 10: Attempt to fit a Gaussian distribution to the log-returns

From both Figure 10 and the Q-Q plot shown in Figure 11, we can conclude that
the S&P 500 data is Heavy-Tailed.
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Figure 11: Q-Q plot of the fitted Gaussian distribution and the log-returns

After these financial data facts, we may now define what High Frequency Trading
is. High Frequency Trading refers to the frequency by which we obtain the data.
We may retrieve weekly, monthly or quarterly data. This would be considered low
frequency data. Daily data would be considered medium frequency data. Finally,
intra-day data, as hourly, half-hourly, 5 minute data or even tick-data would be con-
sidered high frequency data. Thus, High Frequency Trading consist on developing
strategies and conducting trades with high frequency data. Of course, each type of
data has its own characteristics. Lower frequency data is not as heavy-tailed, and
thus the Gaussian distribution may fit. Medium frequency data is Heavy-Tailed
and asymmetrical. High frequency data is Heavy-Tailed, and, when going below
5-minute data, the noise starts to interfere with the data. The first part of the pa-
per consists on working with high frequency Bitcoin (B) data, and the second part
consist on working with Limit Order Book Data. Thus, now we will explain the
basis of Limit Order Books and its relation to High Frequency Trading.

To start, we first must understand the market structure and its dynamics. A
market can be separated into two sides: the “buy” side and the “sell” side. The
buy side is driven by market agents who wish to purchase market options, be it
investors, borrowers, hedgers or speculators. The sell side is driven by agents who
wish to sell market options, be it dealers or brokers. We can then define an order
o as a commitment to either buy or sell a specified asset. Thus, an order can be
represented as a triplet
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ox = (px, qx, tx) (29)

If ox is a sell order placed at time tx, qx > 0 is the quantity of option the agent
is willing to sell, and px will be the minimum price the agent is willing to sell at.
On the other hand, if ox is a buy order placed at time tx, qx < 0 is the quantity of
option that the agent is willing to buy and px is the maximum price the agent is
willing to buy at. The highest bid price is called the best bid price or bid quote, we
will refer to it now as bt, while the lowest ask price is called the best ask price, at.
We can thus define a Limit Order Book (LOB) L(t) as the set of all active orders in
a market at each time t. [9]

Figure 12: Representation of a LOB snapshot

When a new order is introduced to the LOB, it is processed as follows: if it is
a buy order, the system will check if there are any active sell orders with a price
smaller than the offered buy price. If there are, the system will execute the trade.
It will continue to execute until the quantity qx is reached or until there are no
more possible trades. If it is a sell order, the system will check if there are any
active buy orders with a price larger that the offered sell price, and will execute the
trade until the quantity qx is reached or until there are no more possible trades. In
Figure 12, we can see a visual representation of the state of a Limit Order Book at
a particular moment in time. The figure also shows the virtual midprice, which will
be an important concept in Section 5. We define the mid-price as

mt =
at + bt

2
(30)
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4 Prediction of the hourly closing price of Bitcoin

As first approach to the use of transformers, we decided to code a transformer to
attempt to predict the closing price of Bitcoin using hourly data. The idea behind
this attempt is to test if the Transformer can extract information out of apparently
uncorrelated data, and use it to properly predict movements in prices.

4.1 Model and data

The data was obtained from [8], consisting of a csv file that contained the open, high,
low and closing price of Bitcoin in $US from the 15/05/2018 to the 28/02/2023. For
this paper, we chose to work only with the closing hourly data. This file, thus,
provided 41, 997 values, arranged in a vector. Figure 13 shows this data.

Figure 13: The evolution of the closing price of Bitcoin during the used time frame

In order to work with this data, first the logarithm of the prices must be com-
puted. Then, the log-returns can be computed. The log-returns are calculated via

rt = yt − yt−1 (31)

Figure 14 shows this result.
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Figure 14: Log-returns of Bitcoin during the used time frame

Using the log-returns, we can also compute the autocorrelation and partial au-
tocorrelation of the data. The autocorrelation function is the correlation of a signal
with a delayed copy of itself as a function of the delay, whereas the partial auto-
correlation function computes the conditional correlation between the signal and
its delayed copy, but conditioned on all other delayed copies [7]. We can see these
results in Figure 15.

As we can see, both the Autocorrelation and Partial Autocorrelation are practi-
cally zero when even the slightest lag is introduced, thus pointing to the fact that
the predictability of the next prices is extremely low. Nonetheless, the point of this
attempt is to test if the transformer architecture will be able to extract information
even with such a low autocorrelation.
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Figure 15: Autocorrelation and Partial Autocorrelation of the data used

The transformer was coded using the Python libraries TensorFlow and Keras, de-
signed specifically for Deep Learning architectures. The built-in MultiHeadAttention
function in Keras allows for the user to specify the parameters of the Transformer,
such as the number of heads in the Multi Head Attention part, the number of Feed
Forward Layers, and the number of transformers blocks that the model can work
with. To best see the evolution and the different accuracy of the prediction, the
transformer was compiled several times while modifying those parameters.

For this case, all the transformers were trained for 30 epochs. All had a fixed
Feed Forward dimension of 150, and the number of attention heads was set to 12.
The variable was the number of Transformer blocks N , as explained previously in
the Transformer section. This number of Transformer blocks was set to 5, 10, 20
and 30, to see if there was any improvement in the accuracy of the predictability.
The transformers were coded using the following algorithm:
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Algorithm 1 The transformer architecture

function Transformer(Inputs, HeadSize, NumHeads, FFdim)
x← LayerNorm(Inputs)
x←MultiHeadAttention(HeadSize, NumHeads)(x)
res← x+ Inputs ▷ LayerNorm & MultiHeadAttetion are Keras functions
x← LayerNorm(res)
x← FeedForward(FFdim)
return x+ res

end function

The way that the transformer was given the data is as follows: the vector of data
was sub-divided into several vectors of a determined length, and those were given as
the input data. The target data for each price vector was the price on the following
hour. To exemplify, let’s consider the following hourly closing prices:

[25, 000.00, 24, 900.50, 23, 798.09, 27, 986.99, 35, 677.55, 33, 345.67] (32)

Let’s assume that, in this case, the length of the subdivided vector is 3. Then,
the input data to the transformers and its corresponding target data would be:

[25, 000.00, 24, 900.50, 23, 798.09] −→ [27, 986.99] (33)

[24, 900.50, 23, 798.09, 27, 986.99] −→ [35, 677.55] (34)

[23, 798.09, 27, 986.99, 35, 677.55] −→ [33, 345.67] (35)

This way, the Transformer would attempt to predict the next closing price con-
sidering only the three previous closing prices.

In the real case, the first 41, 000 closing prices were used as training data and
vectorized as previously explained, and the remaining 997 values were used as test-
ing data. Figure 16 shows the distribution of this data.

The transformer will then perform 2 tasks: first, predict if the price will go up
or down, and then try to predict the exact price.

As for the accuracy of the up/down criteria, a naive method was implemented
to compare itself to the transformer. This benchmark method consisted of the
following: let pt be the closing price at time t. Let yt be the natural logarithm of pt,
that is,

yt = log(pt) (36)

We can then model the log-prices as a random walk:

yt = µ+ yt−1 + ϵt (37)

where µ is a fixed vector and ϵt is a Gaussian random variable with zero mean and
constant covariance matrix. We can calculate the sample mean of a batch of M
log-prices using the formula:
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Figure 16: Training and Testing data of the log-prices

µ̂ =
1

M

M∑
t=1

rt (38)

The idea of this method is to calculate µ̂ for each batch of test data (the same
sequence length as the transformer uses) and follow the same prediction:

Pred(t) =

{
up, if µ̂t−1 ≥ 0

down, if µ̂t−1 < 0
(39)

By comparing the transformer predictions to this method, we can see if it is
actually predicting at a good rate of if it is just “being lucky” because of the data
distribution. As for the accuracy of the predictability of the actual price, another
naive method was implemented, the exponential smoothing method. For this case,
the price at time t ŷt will be calculated as follows:

ŷt = αyt−1 + (1− α)ŷt−1 (40)

where α is a hyper-parameter such that 0 < α < 1. This method is itself equivalent
to the following formula:

ŷt = αyt−1 + α(1− α)yt−2 + α(1− α)2yt−3 + ...+ α(1− α)(m−1)yt−m (41)

thus the name of ”exponential” smoothing. This will be the method used to predict
the next closing price of Bitcoin. As α is not fixed, in this paper several different
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values were chosen, so as to see which one fit the data better. The chose values were
α = 0.25, α = 0.33, α = 0.50, α = 0.66, and α = 0.75. To compare these results
to the Transformer prediction, the Root Mean Squared Error (RMSE) will be used.
The RMSE is defined as

RMSE =

√∑M
i=1(ŷi − yi)2

M
(42)

where ŷi is the predicted value and yi is the measured value.

4.2 Results

The results of the accuracy of the “up/down” test is showed in Table 1 and Figure
17:

Seq length Benchmark T 5 blocks T 10 blocks T 20 blocks T 30 blocks

12 50.87% 48.01% 48.11% 48.73% 48.62%
24 50.77% 49.94% 52.22% 48.40% 49.95%
48 50.69% 51.10% 49.89% 51.85% 51.87%
72 49.58% 52.77% 49.40% 49.73% 49.58%

Table 1: Results of the accuracy of the methods

Figure 17: Results of the accuracy of the methods
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With respect to the prediction of the real prices, first the RMSE of the different
exponential smoothing methods was computed and plotted, as shown in Table 2 and
Figure 18.

Seq length α = 0.25 α = 0.33 α = 0.50 α = 0.66 α = 0.75

12 0.3186 0.0827 0.0061 0.0052 0.0050
24 0.0129 0.0068 0.0057 0.0052 0.0159
48 0.0076 0.0067 0.0056 0.0052 0.0051
72 0.0077 0.0068 0.0057 0.0053 0.0051

Table 2: RMSE of the benchmark methods with different values of α

Figure 18: RMSE of the benchmark methods for different values of α

To compare the results of the Transformer, only the benchmark method with a
value of α = 0.66 will be considered, as it is the most precise of all. Table 3 and
Figure 19 show the results of the RMSE of the different Transformers.
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Seq length T 5 blocks T 10 blocks T 20 blocks T 30 blocks

12 0.0279 0.0248 0.0220 0.0186
24 0.0159 0.0159 0.0240 0.0203
48 0.0286 0.0163 0.0211 0.0230
72 0.0321 0.0366 0.0210 0.0290

Table 3: RMSE of the Transformer predictions

Figure 19: RMSE of the Transformer predictions

4.3 Interpretation of Results

The first thing noticed from these results is that there appears to be no correlation
between increasing the number of transformer blocks and the increase of predictabil-
ity power or reducing the Root Mean Squared Error. As a final attempt to see how
much could the predictability power increase, we ran the best model, which, ac-
cording to Table 1 and Figure 5 is the Transformer with 5 blocks using a sequence
size of 72 hours, during 150 epochs instead of 30. The results of this transformer
was an accuracy of 53.75% and a RMSE of 0.0298. This, of course, constitutes
and improvement over the previous attempt, but not an amazing one. Assuming
that this “up/down” 53.75% accuracy was to hold from now on, an investor using
this information would eventually make money, but, given the disparity of results
obtained, it is unlikely that this accuracy will hold.

That being said, the conclusion of this attempt is that, while the transformer
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is an extremely potent tool when it comes to speech and pattern recognition and
prediction, it is not useful when it comes to the prediction of Bitcoin. By looking
at the figures, we can see that the maximum accuracy is not higher than 54%, thus
pointing to the fact that the model cannot extract information, and is only slightly
better than the naive method in very specific cases.

As expected, just as many other stock prices, Bitcoin can not be successfully
predicted using only its own data (as this model didn’t consider any external factors
that may also affect prices), and thus other methods will be required in order to
achieve an effective trading strategy.
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5 Prediction of the Mid-Price of Limit Order Book

data

5.1 Motivation

Previously, an unsuccessful attempt was made to predict the closing price of Bit-
coin. The attempt failed, mainly, because of the lack of autocorrelation of the data
and the fact that no other extra factors where considered into the decision making
process. For example, the prices of other stocks were not considered, or the effect
of international events, such as establishing Bitcoin as legal currency in a country.
Thus, other than the lack of autocorrelation, the lack of extra information was the
issue.

A Limit Order Book, as it contains previous orders, their price ask/bid, and the
amount to be bought/sold, contains a greater amount of information that can be
exploited by the models. Therefore, the transformer architecture should be better
at predicting changes in a Limit Order Book.

In this section, several models will be tested in the task to predict the change of
the mid-price of a Limit Order Book.

5.2 Data

The FI-2010 dataset is made up of 10 days of trading data from the Helsinki Stock
Exchange, operated by Nasdaq Nordic, consisting of 10 levels on each side of the
Limit Order Book. The possible order are executions, order submissions and order
cancelations, and are not uniformly distributed in time. The data set is restricted
only to normal trading hours (No Auction).

The data is organized such that there are 10 orders in the ask side, and 10 orders
in the buy side. These orders are organized as vectors. Let Et be an event of the
Limit Order Book at time t. Then, Et = {pia, via, pib, vib}10i=1, where pia(t) is the price
of sell orders at time t at level i, via(t) is the volume of sell orders at time t at level i,
pib(t) is the price of buy orders at time t at level i, vib(t) is the volume of buy orders
at time t at level i. The structure of the data can be seen in Figure 20.

The data was obtained from [10], and was already pre-processed by its authors.
Each event is normalized by the z-score, that is,

Ēt =
Et − ȳ

σȳ

(43)

where ȳ is the mean of the previous days’ data and σȳ is the standard deviation
of the previous days’ data. The data included other extra hand-crafted features, but
those were ignored.

The objective is to predict the mid-price movement. The mid-price is defined as:
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Figure 20: Structure of the data set through 10 ticks of time [13]

pm(t) =
p1a(t) + p1b(t)

2
(44)

That is, the average of the bid-price and ask-price of the first event. To calculate
the change and direction of the mid-price, the mean of the k next mid-prices was
calculated. This is:

mk(t) =
1

k

k∑
i=1

pm(t+ i) (45)

Thus, the direction of the mid-price is calculated according to the following ratio:

Rk(t) =
mk(t)− pm(t)

pm(t)
(46)

If Rk(t) > 0.002, then a value of 2 is assigned (the direction is “up”), If Rk(t) <
0.002, then a value of 0 is assigned (the direction is “down”), and a value of 1 is
assigned otherwise (the direction is “neutral”). The pre-processed FI-2010 data al-
ready had the following values added.

The dataset offered 4 different horizons, that is, values of k. These are k =
{10, 20, 50, 100}, meaning that the directions are calculated with 10, 20, 50 or 100
events into the future.

5.3 Models

The input data for each of the three models consisted of the 100 most recent events,
meaning that the data consisted of 100 × 40 matrices, each of them being 1 input
to the models. All the models were trained on the same data.

5.3.1 Model 1: Ridge Regression

The first model will be a Ridge Regression between the values of each event (which
will be represented by a vector x) and the target values (represented by a vector t)
[11]. The idea behind a Ridge Regression is to find a matrix M such that it maps
each event to its target, that is,

ti = M txi (47)
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for all i. This matrix M is calculated solving the following optimization problem:

M̂ = argmin
M

||MTX − T ||2 + λ||M ||2 (48)

where X is the matrix formed by the event vectors x as columns and T is the matrix
formed by the target vectors t as columns.

In this case, the vectors x are formed by the LOB data of each tick in the FI-2010
dataset. The target vectors, t, have 3 dimensions and a value of +1 or −1 depending
on the classification of x. For example, if the prediction of x is that the mid-price
will stay constant, that is, a 1, then t = (−1,+1,−1)t. If the prediction is classified
as up, that is, a 2, then t = (−1,−1,+1)t. If it is a 0, then t = (+1,−1,−1)t.

The solution of this Ridge Regression can be expressed in closed form, via the
following formula:

M̂ = (XX t + λI)−1)XT t (49)

This matrix can be best estimated using the training data, and then checked
using the testing data. That is, after obtaining M̂ , using xtest, we will calculate

p = M̂ txtest (50)

which will be a matrix of RC×3, to which we will apply the argmax function to
determine the classification into 0, 1 or 2:

p̂ = argmax
k

pk (51)

This model will serve as a Baseline model to which we can compare the Trans-
former model, and see if it outperforms it or not.

5.3.2 Model 2: Transformer

This model is very similar to the one used to try to predict the price of Bitcoin. The
idea is simple: use a transformer without any modifications.

Algorithm 2 The Transformer architecture

function Trans(Inputs, NumHeads, NumBlocks FFdim)
x← PosEcoding(Inputs)
x← LayerNorm(x)
x←MultiHeadAttention(NumBlocks, NumHeads)(x)
res← x+ Inputs

x← LayerNorm(res)
x← FeedForward(FFdim)
return x+ res

end function

In this case, given than the data is presented as Et = {pia, via, pib, vib}10i=1, where
the prices occupy the even positions (starting with zero) and the volumes the odd
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positions, the positional encoding was applied only to the odd positions. This is
due to the fact that the prediction has to be made on the mid-price, which the
volume does not affect. That way, we get both a positional encoding that still does
to modify the prices value. Recalling Equation (3), in this case, the encoding vector
is as follows:

pt =



0
cos(w1t)

0
cos(w2t)

...
0

cos(wd/2t)


(52)

The rest of the Algorithm is exactly the same idea as in Algorithm 1. The following
Table shows the chosen hyperparameters.

Hyperparameter Value

Num Heads 4
Num Blocks 4

FFdim 500
Dropout 0.1

Table 4: Hyperparameters of the Transformer model

5.3.3 Model 3: CNN+LSTM model

This model is based on the ”DeepLOB” model presented by Zihao Zhang, Stefan
Zohren and Stephen Roberts [12]. This model uses a convolutional neural network
structure to predict the Limit Order Book midprice followed by an LSTM. The
model architecture is explained in Figures 21 and 22. In those Figures, the notation
“1×2@16” indicates a convolutional layer of 16 filters of size 1×2, respectively with
the rest of possibilities.

The paper shows the results of the model, as already trained by the authors.
Nonetheless, we re-coded de model and trained it the same way as the rest of the
models, to have a better comparison. That way, the results shown, may differ from
the ones in the original paper [12]

5.3.4 Model 4: CNN+Transformer model

This model consists of the same Convolutional Neural Network as the previos model,
with the difference that in this case, a Transformer is applied instead of an LSTM.
The hyperparameters are shown in Table 5.
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Figure 21: Structure of the DeepLOB architecture

Figure 22: Structure of inception module presented in the DeepLOB architecture
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Hyperparameter Value

Num Heads 2
Num Blocks 5

FFdim 200
Dropout 0.1

Table 5: Hyperparameters of the CNN+Transformer model

5.4 Results

The results are displayed in the following tables. Four parameters were used to
examine the efficiency of the models: accuracy, precision, recall and F1 score.
Accuracy is defined as the number of correct predictions over the total number of
attempts.

Acc =
#correct

#total
(53)

Precision is defined as the number of true positives (PT ) over the number of true
positives (PT ) + false positives (PF ). Precision is thus the ability of the model not
to label as positive a sample that is negative.

Prec =
PT

PT + PF

(54)

Recall is defined as the number of true positives (PT ) over the number of true
positives (PT ) plus false negatives (NF ). Recall is thus the ability of the model to
find all positive samples.

Recall =
PT

PT +NF

(55)

The F1 score is defined as

F1 = 2
Prec ∗Recall

Prec+Recall
(56)

It can be interpreted as a type of harmonic mean between Precision and Recall.
All indicators reach a maximum value of 1 (indicating the best possible performance)
and a minimum value of 0 (indicating the worst possible performance).

In order to evaluate the model, the chosen loss function is the Sparse Categorical
Cross-Entropy function. We must first define the Entropy of a system. Let X be
a random variable, with p(x) its probability distribution function. Entropy H is
defined as

H(X) = −
∑
x

p(x)log2p(x) (57)

The entropy measures the degree of uncertainty of the probability distribution. The
bigger the entropy, the more uncertainty, an the smaller the entropy, the lesser the
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uncertainty.

The reason behind the negative sign is the fact that the probabilities p(x) are
always between 0 and 1, and, thus, the log2p(x) would return negative values. In
order to keep the entropy as a positive value, the negative sign is added.

The categorical cross-entropy is then defined as

HC = −
N∑
i=1

tilog2pi (58)

where N is the number of classes, ti is the true label and pi is the probability of each
class. The following example will clarify this formula. Suppose we have two vectors,
one made with probabilities, and one with the true labels. The first vector S=(0.87,
0.1, 0.01, 0.06) and the second vector T=(1, 0, 0, 0). Then, the cross-entropy value
will be

HC = −[1log2(0.87) + 0log2(0.1) + 0log2(0.01) + 0log2(0.06)] = 0.2 (59)

In this example, the value of the functions is 0.2. The idea is to minimize the
value of the cross-entropy. A model with a value of cross-entropy equal to 0, would
be a perfect model without error.

The Sparse Categorical Cross-Entropy, the one used in this problem, is defined
exactly as the Categorical Cross-Entropy, but the only difference is the type of data
used. The data must be in one-hot vector form (i.e., [1, 0, 0], [0, 1, 0] and [0, 0,
1] for three classes) to use the Categorical Cross-Entropy, and must be in integer
form ([0], [1], [2] for three classes) for the Sparse Categorical Cross-Entropy. The
objective is still to minimize it and try to get it as close to 0 as possible.

The results of the predictions can be seen in the following tables:

5.4.1 Case k=10

The data distribution is shown in the following table.

labeled 0 labeled 1 labeled 2 Total

Train data 40,957 (20.1%) 121,923 (59.8%) 40,919 (20.1%) 203,799
Val data 9,305 (18.3%) 32,282 (63.4%) 9,362 (18.3%) 50,949
Test data 21,167 (15.2%) 98,637 (70.7%) 19,782 (14.1%) 139,586

Table 6: Data distribution for k=10

We show here the different variations of Training & Validation Accuracy and
Training & Validation Loss of each of the 3 models and their evolution for a large
number of epochs.
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Figure 23: Train & Val Accuracy vs Epochs of the CNN+LSTM model when k=10
for 50 epochs

Figure 24: Train & Val Loss vs Epochs of the CNN+LSTM model when k=10 for
50 epochs
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Figure 25: Train & Val Accuracy vs Epochs of the Transformer model when k=10
for 100 epochs

Figure 26: Train & Val Loss vs Epochs of the Transformer model when k=10 for
100 epochs
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Figure 27: Train & Val Accuracy vs Epochs of the CNN+Transformer model when
k=10 for 50 epochs

Figure 28: Train & Val Loss vs Epochs of the CNN+Transformer model when k=10
for 50 epochs
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All the models were trained again up until the point where they reached the
minimum value of the Validation Loss. The results are shown below.

Model Accuracy Precision Recall F1

R Regression 0.48 0.42 0.44 0.41
CNN+LSTM 0.80 0.81 0.82 0.81
Transformer 0.77 0.75 0.77 0.74

CNN+Transformer 0.82 0.81 0.82 0.81

Table 7: Results of the predictions for k=10 [11]

Figure 29: Confusion matrix for the CNN+LSTM model when k=10

39



Figure 30: Confusion matrix for Transformer model when k=10

Figure 31: Confusion matrix for CNN+Transformer model when k=10
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5.4.2 Case k=20

The data distribution is shown in the following table.

labeled 0 labeled 1 labeled 2 Total

Train data 52,535 (25.6%) 99,043 (48.6%) 52,221 (25.8%) 203,799
Val data 12,074 (23.7%) 26,817 (52.6%) 12,058 (23.7%) 50,949
Test data 27,470 (19.7%) 86,617 (62.1%) 25,499 (18.2%) 139,586

Table 8: Data distribution for k=20

We show here the different variations of Training & Validation Accuracy and
Training & Validation Loss of each of the 3 models and their evolution for a large
number of epochs.

Figure 32: Train & Val Accuracy vs Epochs of the CNN+LSTM model when k=20
for 50 epochs
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Figure 33: Train & Val Loss vs Epochs of the CNN+LSTM model when k=20 for
50 epochs

Figure 34: Train & Val Accuracy vs Epochs of the Transformer model when k=20
for 100 epochs
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Figure 35: Train & Val Loss vs Epochs of the Transformer model when k=20 for
100 epochs

Figure 36: Train & Val Accuracy vs Epochs of the CNN+Trans model when k=20
for 50 epochs

43



Figure 37: Train & Val Loss vs Epochs of the CNN+Trans model when k=20 for 50
epochs

All the models were trained again up until the point where they reached the
minimum value of the Validation Loss. The results are shown below.

Model Accuracy Precision Recall F1

R Regression 0.50 0.44 0.44 0.44
CNN+LSTM 0.73 0.72 0.73 0.71
Transformer 0.67 0.64 0.67 0.63

CCN+Transformer 0.74 0.72 0.74 0.72

Table 9: Results of the predictions for k=20 [11]
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Figure 38: Confusion matrix for the CNN+LSTM model when k=20

Figure 39: Confusion matrix for the Transformer model when k=20
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Figure 40: Confusion matrix for the CNN+Transformer model when k=20

5.4.3 Case k=50

The data distribution is shown in the following table.

labeled 0 labeled 1 labeled 2 Total

Train data 71,482 (35.1%) 61,826 (30.3%) 70,491 (34.6%) 203,799
Val data 16,123 (31.6%) 18,846 (37.0%) 15,980 (31.4%) 50,949
Test data 38,467 (27.6%) 66,006 (47.3%) 35,113 (25.1%) 139,586

Table 10: Data distribution for k=50

We show here the different variations of Training & Validation Accuracy and
Training & Validation Loss of each of the 3 models and their evolution for a large
number of epochs.
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Figure 41: Train & Val Accuracy vs Epochs of the CNN+LSTM model when k=50
for 50 epochs

Figure 42: Train & Val Loss vs Epochs of the CNN+LSTM model when k=50 for
50 epochs
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Figure 43: Train & Val Accuracy vs Epochs of the Transformer model when k=50
for 100 epochs

Figure 44: Train & Val Loss vs Epochs of the Transformer model when k=50 for
100 epochs
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Figure 45: Train & Val Accuracy vs Epochs of the CNN+Trans model when k=50
for 50 epochs

Figure 46: Train & Val Loss vs Epochs of the CNN+Trans model when k=50 for 50
epochs
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All the models were trained again up until the point where they reached the
minimum value of the Validation Loss. The results are shown below.

Model Accuracy Precision Recall F1

R Regression 0.44 0.44 0.43 0.43
CNN+LSTM 0.75 0.75 0.75 0.75
Transformer 0.60 0.60 0.60 0.59

CNN+Transformer 0.73 0.73 073 0.73

Table 11: Results of the predictions for k=50 [11]

Figure 47: Confusion matrix for the CNN+LSTM model when k=50
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Figure 48: Confusion matrix for the Transformer model when k=50

Figure 49: Confusion matrix for the CNN+Trans model when k=50
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5.4.4 Case k=100

The data distribution is shown in the following table.

labeled 0 labeled 1 labeled 2 Total

Train data 84,486 (41.5%) 36,221 (17.8%) 83,092 (40.7%) 203,799
Val data 18,981 (37.2%) 13,214 (26.0%) 18,754 (36.8%) 50,949
Test data 47,976 (34.4%) 48,059 (34.4%) 43,551 (31.2%) 139,586

Table 12: Data distribution for k=100

We show here the different variations of Training & Validation Accuracy and
Training & Validation Loss of each of the 3 models and their evolution for a large
number of epochs.

Figure 50: Train & Val Accuracy vs Epochs of the CNN+LSTM model when k=100
for 50 epochs
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Figure 51: Train & Val Loss vs Epochs of the CNN+LSTM model when k=100 for
50 epochs

Figure 52: Train & Val Accuracy vs Epochs of the Transformer model when k=100
for 100 epochs
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Figure 53: Train & Val Loss vs Epochs of the Transformer model when k=100 for
100 epochs

Figure 54: Train & Val Accuracy vs Epochs of the CNN+Trans model when k=100
for 50 epochs
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Figure 55: Train & Val Loss vs Epochs of the CNN+Trans model when k=100 for
50 epochs

All the models were trained again up until the point where they reached the
minimum value of the Validation Loss. The results are shown below.

Model Accuracy Precision Recall F1

R Regression 0.43 0.43 0.43 0.42
CNN+LSTM 0.74 0.74 0.74 0.74
Transformer 0.56 0.57 0.56 0.56

CNN+Transformer 0.72 0.72 0.72 0.72

Table 13: Results of the predictions for k=100 [11]
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Figure 56: Confusion matrix for the CNN+LSTM model when k=100

Figure 57: Confusion matrix for the Transformer model when k=100
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Figure 58: Confusion matrix for the CNN+Transformer model when k=100



5.5 Interpretation of Results

We will go case by case in the interpretation of results. Firstly, we must notice that
all three Deep Learning models clearly and vastly out-perform the Ridge Regression.
Also, in order to help with the interpretation and analysis, we present the following
2 figures, which display the evolution of the accuracy (Figure 59) and the evolution
of the F1 score (Figure 60) through the horizons.

Figure 59: Accuracy vs horizon for each of the models presented

In the case k = 10, we see that the three Deep Learning models (CNN+LSTM,
Transformer and CNN+Transformer) show very similar results in all measures. The
CNN+Transformer architecture shows the highest accuracy of them all. The behav-
ior of the networks is very similar as well, we can see in their Confusion Matrices
in Figures 29, 31 and 30 that they usually predict “1” (steady mid-price) but they
confidence in the prediction is low. They predict “0” and “2” less often, but, when
they do, it is extremely likely that the prediction will be correct, especially with the
Transformer model, as the other models miss when predicting “2”.

In the case k = 20, we can see that, again, the CNN+Transformer model reaches
the highest accuracy and F1 score, followed closely by the CNN+LSTM model. The
Transformer model doesn’t achieve the same accuracy score as with the previous
horizon, similarly with the F1 score. Nonetheless, we see a similar behavior in the
Confusion Matrices as with the previous horizon. As we can see in Figures 38, 39
and 40, all the models predict most of the time the stability of the mid-price, and
then fewer times its movement. We can see, however, that when the Transformer
model predicts movement, it is very likely that the prediction is correct, while the
other models mis-predict “0” and “2” more often.
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Figure 60: F1 score vs horizon for each of the models presented

Moving to the case k = 50, the CNN+LSTM model achieves the highest accu-
racy of the three Deep Learning models, only two percentage points ahead of the
CNN+Transformer model. Here, we can not say the same thing as with the pre-
vious horizons, as the Transformer model doesn’t display any superiority in either
Accuracy or predicting mid-price movement. Here, from Figures 47, 48 and 49, we
see that the CNN+LSTM model just predicts each outcome with higher reliability,
slightly better than the CNN+Trans model.

Finally, the case k = 100. Here, the CNN+LSTM model shows the highest
accuracy and F1 score, slightly better than the CNN+Transformer model and ahead
of the Transformer model. From Figures 56, 57 and 58, The CNN+LSTM model
better predicts each output, while the CNN+Transformer is slightly worse, while
the Transformer model does not come close (its accuracy at predicting “1” is less
than 0.5).

58



6 Conclusions and further work

In this paper, we have first introduced the Transformer architecture from the Nat-
ural Language Processing perspective, so as to understand the architecture from its
original objective.

Then, we have used the Transformer encoder architecture to attempt to predict
the hourly closing price of Bitcoin. The attempt, while unsuccessful, does not inval-
idate the Transformer’s strength as a Deep Learning architecture. Rather, it shows
that the price of Bitcoin can not be successfully predicted.

Finally, we have used the Transformer encoder architecture to attempt to pre-
dict the movement of the virtual mid-price in a Limit Order Book, both by itself
and combined with a CNN, showing that the CNN+Transformer outperforms the
CNN+LSTM on some horizons.

Thus, we see that, while transformer can be used in HFT, though more research
is required on the topic. As future work, we may apply a different approach to
the prediction of the closing price of Bitcoin from a different perspective: as the
Transformer is excellent at NLP, we could use it to understand tweets and news by
influential people in the Cryptos Market to try to predict when the price is going
to move. Also, we may apply modifications to the transformer (for example, on
the activation functions or the similarity measures) to make it better suited for
high-noise data.
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