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Abstract

Let R a polynomial ring over a field k. An algebraic variety over k is a set of points given
as the zero loci of polynomials in R. In order to study these varieties and their singularities,
a common practice is to construct algebraic invariants to quantify how singular the variety is.
This is precisely one of the goals of Bernstein-Sato theory. In characteristic p > 0, the theory
has seen unparalleled growth and development for the last twenty years. In this project we
compute algebraic invariants of this theory for determinantal ideals, that is, ideals generated
by the determinants of submatrices of generic matrices of indeterminates.
Keywords: commutative algebra, algebraic geometry, characteristic p > 0, singularity theory,
Bernstein-Sato theory, determinantal ideals.
MSC2020: 14B05, 14F10, 13C40.

Resumen

Sea R un anillo de polinomios sobre un cuerpo k. Una variedad algebraica sobre k es un
conjunto de puntos donde se anulan algunos polinomios de R. A fin de estudiar estas variedades
y sus singularidades, una práctica común es construir invariantes algebraicos para cuantificar
cómo de singular es la variedad. Este es precisamente uno de los objetivos de la teoría de
Bernstein-Sato. Durante los últimos veinte años, la teoría en característica p > 0 ha visto un
crecimiento y desarrollo sin parangón. En este proyecto calculamos invariantes de la teoría
para ideales determinantales, a saber, ideales generados por los determinantes de submatrices
de matrices genéricas de indeterminadas.
Palabras clave: álgebra conmutativa, geometría algebraica, característica p > 0, teoría de
singularidades, teoría de Bernstein-Sato, ideales determinantales.

Resum

Sigui R un anell de polinomis sobre un cos k. Una varietat algebraica sobre k és un conjunt
de punts on s’anul·len alguns polinomis de R. Amb la finalitat d’estudiar aquestes varietats i les
seves singularitats, una pràctica comuna és construir invariants algebraics per a quantificar com
de singular és la varietat. Aquest és precisament un dels objectius de la teoria de Bernstein-
Sato. Durant els últims vint anys, la teoria en característica p > 0 ha vist un desenvolupament
i creixement sense parangó. En aquest projecte calculem invariants de la teoria per ideals
determinantals, és a dir, ideals generats pels determinants de submatrius de matrius genèriques
d’indeterminades.
Paraules clau: àlgebra commutativa, geometria algebraica, característica p > 0, teoria de
singularitats, teoria de Bernstein-Sato, ideals determinantals.
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Chapter 1

Introduction

Among the open questions that motivate and drive mathematics, one finds classification prob-
lems, and algebra and geometry are no strangers to this.

Fix an algebraically closed field k and let R = k[x1, . . . , xn] be a polynomial ring over
k. An algebraic variety over k is set of points given as the solution to a set of polynomials
f1, . . . , fr ∈ R. In this context, the ultimate goal is to classify, up to isomorphism, all the
algebraic varieties.

A first distinction that can be made is to discern between non-singular varieties and singular
varieties. Roughly speaking, a non-singular algebraic variety does not change its direction
suddenly and does not intersect itself, whereas singular algebraic varieties do, therefore they
are said to have singularities. At the computational level, if a variety X is determined by
polynomials f1, . . . , fr ∈ R, then X is said to have a singularity at a point x ∈ kn if the
differential of the function (f1, . . . , fr) : kn → kr does not have maximal rank at x. In order to
classify singular varieties, one may first consider their singularities and, if they “look” different,
then the varieties cannot be isomorphic. In consequence, the problem of classifying varieties
has now become the problem of classifying singularities of algebraic varieties. To do so, one
constructs algebraic invariants from singularities and compares them.

For the moment, let k = C be the field of complex numbers and set R = C[x1, . . . , xn]. The
first way to quantify singularities is the multiplicity or order of vanishing, defined as follows:
let f ∈ R be a polynomial and x ∈ Cn a point where f(x) = 0. The multiplicity of f at x is the
least integer d ≥ 0 such that (∂f)(x) = 0 for all differential operators ∂ of order < d. Although
useful at first, the multiplicity is too coarse to measure singularities. Instead, a well-known
measure of singularity is the following:

Definition 1.1. The log-canonical threshold or complex singularity exponent of a polynomial
f ∈ C[x1, . . . , xn] at a point x ∈ Cn where f(x) = 0 is

lctx(f) := sup
{
λ ∈ R>0

∣∣∣∣∣
∫
B

1
|f |2λ

< ∞ for some neighborhood B of x
}
.

Example 1.2. The polynomials x2 and y2 + x3 in the ring C[x, y] both have singularities of
multiplicity 2 at the origin. In contrast, the log-canonical thresholds are 1 and 5/6, respectively.

1



1. Introduction

In this setting, one can show that 0 < lctx(f) < 1. The example above suggests that the
log-canonical threshold is capable of distinguishing between singularities.

Several other algebraic invariants may be constructed from singularities. Denote by DR|C

the set of C-linear differential operators on R = C[x1, . . . , xn], which has a non-commutative
ring structure. Given a polynomial f ∈ R, Bernstein in the context of zeta functions [B72],
and Sato in the context of prehomogeneous vector spaces [SS90], discovered the following fact:
there exists a differential operator P (s) ∈ DR|C[s] and a polynomial b(s) ∈ C[s] such that
P (s) · f s+1 = b(s)f s for all integers s ≥ 0. This motivates the following:

Definition 1.3. The Bernstein-Sato polynomial of f ∈ C[x1, . . . , xn], denoted by bf (s) ∈ C[s],
is the minimal monic generator of the ideal generated by the polynomials b(s) ∈ C[s] satisfying
equations as the one above.

Since its inception, a wealth of connections have been discovered between the log-canonical
threshold, the Bernstein-Sato polynomial and other invariants, giving rise to Bernstein-Sato
theory. Furthermore, in [BMS06], Budur, Mustaţă and Saito generalized the constructions
described so far to non-principal ideals in the polynomial ring C[x1, . . . , xn].

An analogous theory of singularities can be developed when R is a ring of characteristic
p > 0, that is, R contains the finite field Fp. Every such ring is equipped with the Frobenius
endomorphism F : R → R, which sends f 7→ fp. In this context, one often starts by asking the
ambient space R to have no singularities. This is given by the following celebrated result:

Theorem 1.4 (Kunz’s theorem, [K69, Theorem 2.1]). A ring R of characteristic p > 0 is
regular if and only if the Frobenius endomorphism F : R → R is flat.

For a down-to-earth outline of the theory, let R = F[x1, . . . , xn] be a polynomial ring over a
field F of characteristic p > 0 and fix a homogeneous polynomial f , i.e. f lies in the homogeneous
maximal ideal m = (x1, . . . , xn) of R. For each positive integer e ≥ 0, let m[pe] := (xp

e

1 , . . . , x
pe

n ).
To define how singular is f at the origin, one needs a way around analysis techniques, since
these do not work in characteristic p > 0. To begin with, note that the ideal m corresponds to
the origin in affine n-space over F. The naive approach, which consists in computing how long
it takes to the function 1/fn to blow up at the origin, turns out the be right one:

Definition 1.5. The F -pure threshold of a homogeneous polynomial f ∈ F[x1, . . . , xn] at the
maximal ideal m (i.e. at the origin) is

fpt0(f) := sup
{
n

pe

∣∣∣∣∣ fn ̸∈ m[pe], for e, n ∈ Z≥0

}
.

Via a change of coordinates, the F -pure threshold can be defined at any point where f vanishes.
When the point where the F -pure threshold is not mentioned, it is understood to be the origin.

2



Example 1.6. The F -pure threshold of f = x2 + y3 ∈ Fp[x, y] at the origin is:

fpt(f) :=



1/2 if p = 2,
2/3 if p = 3,
5/6 if p ≡ 1 (mod 6),

5/6 − 1
6p if p ≡ 5 (mod 6).

Observe that as the characteristic p > 0 grows, the F -pure threshold approaches the log-
canonical threshold of the “same” polynomial.

Similarly, differential operators are extremely valuable for the study of singularities in posi-
tive characteristic. Furthermore, one can construct the b-function of a polynomial f ∈ R, which
is the analogue of the “Bernstein-Sato polynomial”. In this case, however, the b-function is an
ideal in the algebra C(Zp,Fp) of continuous functions Zp → Fp; its “zeros” are the Bernstein-
Sato roots, which are p-adic integers α ∈ Zp. As before, the constructions described so far for
polynomials can be generalized to non-principal ideals a in a polynomial ring.

Surprisingly enough, Bernstein-Sato theories in characteristic zero and in positive charac-
teristic are closely related. Let A = Z[a−1], where a > 0 is an integer, and fix a non-zero ideal
a ⊆ A[x1, . . . , xn]. Denote by aC the expansion of a to C[x1, . . . , xn], and by ap the reduction
modulo p to Fp[x1, . . . , xn], where p does not divide a. In this setting, one has the following
beautiful theorems:

Theorem 1.7 ([MTW05, Theorem 3.4]). One has that

lct(aC) = lim
p→∞

fpt(a).

Theorem 1.8 ([QG21b, Theorem VI.3]). Suppose that α ∈ Q is a Bernstein-Sato root of ap
for infinitely many p > 0. Then α is a root of the Bernstein-Sato polynomial ba(s) ∈ C[s] of aC.

Tempting as it may be to study arbitrary algebraic varieties or an arbitrary ideals, it is
often advantageous to restrict one’s attention to a particular class of ideals. In our case, we are
primarily interested in determinantal ideals:

Definition 1.9. Let X = (xij) be a generic matrix of indeterminates of size m × n, with
m ≤ n, and consider the polynomial ring R = k[X] := k[x11, . . . , x1n, . . . , xm1, . . . , xmn] over a
field k.

(i) Given an integer 1 ≤ t ≤ m, the ideal It of t-minors of X is the ideal of R generated by
the determinants of all the t× t submatrices of X.

(ii) When t = m, Im is the ideal of maximal minors.

In the positive characteristic case, the F -pure threshold of It was computed by Miller, Singh
and Varbaro in [MSV14]:

3



1. Introduction

Theorem 1.10 ([MSV14, Theorem 1.2]). Let k = F be a field of characteristic p > 0 and
R = F[X] a polynomial ring. Then the F -pure threshold of the ideal It of t-minors is

fpt(It) = min
{

(m− k)(n− k)
t− k

∣∣∣∣∣ k = 0, 1, . . . , t− 1
}
.

Note that fpt(It) does not depend on p. On the other hand, when k = C, Lőrincz, Raicu,
Walther and Weyman computed the Bernstein-Sato polynomial in [LRWW17]:

Theorem 1.11 ([LRWW17, Theorem 4.1]). Let k = C and R = C[X] a polynomial ring.
The Bernstein-Sato polynomial of the ideal of maximal minors is

bIm(s) =
n∏

i=n−m+1
(s+ i).

The goal of this thesis is to compute algebraic invariants relevant to Bernstein-Sato theory
in positive characteristic for determinantal ideals, namely, Frobenius roots of powers of the
ideal, ν-invariants and Bernstein-Sato roots. In particular, we aim to give an analogous result
to Theorem 1.11 in positive characteristic:

Theorem 1.12 (Consequence of Theorem 5.47). Let X = (xij) be a matrix of indeterminates
of size m× n, m ≤ n. Fix an integer e ≥ 0 and let Im be the ideal of maximal minors of X in
the polynomial ring R = F[X]. The only Bernstein-Sato root of Im is α = −(n−m+ 1).

A by-product of the previous theorem is the computation of Bernstein-Sato roots for a large
class of polynomials, to which we refer as determinantal-type polynomials:

Definition 1.13. Let R = B[x1, . . . , xn] be a polynomial ring over a commutative ring B.
(1) A square-free monomial is non-trivial monomial xa1

1 · · ·xan
n ∈ R, i.e. not a unit of R, such

that 0 ≤ a1, . . . , an ≤ 1.
(2) A determinantal-type polynomial is a non-zero polynomial whose monomials are square-

free.

In this context, we prove the following result:

Theorem 1.14 (Consequence of Theorem 5.58). Let R = F[x1, . . . , xn] be a polynomial ring
over a perfect field F of characteristic p > 0 and let f ∈ R be a determinantal-type polynomial.
The only Bernstein-Sato root of f is α = −1.

This thesis is structured as follows:
• Chapter 2 collects background, namely, commutative algebra in characteristic p > 0.
• Chapter 3 deals with the construction of differential operators, as well as with the pecu-

liarities in characteristic p > 0.
• Chapter 4 introduces the basics of Bernstein-Sato theory in characteristic zero and char-

acteristic p > 0, as well as the construction of invariants key to us.
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• Chapter 5 is devoted to determinantal ideals and the computations of algebraic invariants
for the case of maximal minors.

• Appendix A contains algorithms written in Python and Macaulay2, which have proven
useful for the development of this project.

Throughout the text, we assume that all the rings are unitary and, unless otherwise stated,
are commutative. Given any ideal a in a ring R, we take a0 = R.
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Chapter 2

Commutative Algebra in Prime Characteristic

Commutative algebra in prime characteristic has some peculiarities that make the theory richer.
In this chapter, we begin by discussing the Frobenius endomorphism, which is exclusive to the
characteristic p > 0 world, and allows one to construct subrings of p-th powers and overrings
of p-th roots. Afterwards, we study F -finite rings and polynomial rings over perfect fields of
prime characteristic. These include some finiteness conditions that allow for a deeper study of
rings and its modules.

2.1. The Frobenius endomorphism

For each prime number p ∈ Z, the quotient ring Fp := Z/pZ has a natural field structure. It is
the finite field in p elements and is unique up to isomorphism.

Definition 2.1. A commutative ring R has characteristic p > 0 if it contains the field Fp,
that is to say, R is an Fp-algebra.

We will use the terms “R has characteristic p > 0”, “R has prime characteristic” and “R has
positive characteristic” interchangeably. Denote by Z the ring of integers with the usual addition
and multiplication. For each commutative ring R, there exists a unique ring homomorphism
Z → R sending 1 7→ 1, that is, Z is an initial object in the category CRing of commutative
rings. In turn, this induces a unique Z-algebra structure on R given by n · x = ∑n

i=1 x, with
n ∈ Z and x ∈ R. This allows one to give an characterize rings having prime characteristic:

Proposition 2.2. Let R be a non-zero commutative ring. Then R has characteristic p if and
only if ker(Z → R) = pZ.

Proof. Let f : Z → R be the unique ring homomorphism from Z to R. If R has characteristic
p, then pZ ⊆ ker f since p 7→ 0. As the ideal pZ ⊆ Z is maximal and R is non-zero, it follows
that ker f = pZ. Conversely, f defines a surjection f : Z → f(Z) ⊆ R and by assumption,
f(Z) ∼= Z/pZ = Fp, therefore R contains Fp.

Every ring of prime characteristic comes equipped with a p-th power map, the Frobenius

7



2. Commutative Algebra in Prime Characteristic

endomorphism, whose study is essential for singularities.

Definition 2.3. Let R be a ring of characteristic p > 0. The Frobenius endomorphism
F : R → R is the map defined by r 7→ rp. For each integer e ≥ 0, the e-th iterated Frobenius
is the map F e : R → R given by r 7→ rp

e . By convention, the 0-th iterated Frobenius is the
identity.

In order for the definition to make sense, one needs to prove that the Frobenius endomorphism
is, in fact, a ring endomorphism.

Lemma 2.4. If p ∈ Z is prime, then for each 1 ≤ k ≤ p− 1,(
p

k

)
≡ 0 (mod p).

Proof. The expansion of the binomial coefficient gives(
p

k

)
= p(p− 1) · · · (p− k + 1)

k! .

Since p is prime and 1 ≤ k ≤ p− 1, p does not appear in the prime factorization of k!, thereby
p divides the binomial coefficient.

Proposition 2.5. Let R be a ring of characteristic p > 0. For each integer e ≥ 0, the e-th
iterated Frobenius F e : R → R is a ring homomorphism. In particular, for each x, y ∈ R,

(x+ y)pe = xp
e + yp

e

.

Proof. As the composition of ring homomorphisms is again a ring homomorphism, it suffices
to prove that F : R → R is, in fact, a homomorphism. It is clear that F (1) = 1 and F (xy) =
xpyp = F (x)F (y) for all x, y ∈ R. Furthermore, since

(
p
0

)
=
(
p
p

)
= 1, it follows from Lemma 2.4

that
F (x+ y) = (x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k = xp + yp = F (x) + F (y).

Proposition 2.6. For each integer e ≥ 1, the Frobenius endomorphism F e : Fpe → Fpe is the
identity of Fpe . More generally, if d ≥ 1 divides e, then F e : Fpd → Fpd is the identity of Fpd .

Proof. The multiplicative group F×
pe of the finite field Fpe has order pe−1. Since the order of an

element a ∈ F×
pe divides the order of the group, it follows that ape−1 = 1, thus F e(a) = ap

e = a.
Moreover F e(0) = 0, hence F e leaves Fpe fixed. The second statement follows from iterating
e/d times the endomorphism F d.

Every commutative ring R is naturally an R-module over itself. However, in the positive
characteristic setting, one can restrict scalars along the Frobenius endomorphism in order to
define an alternative R-module structure on an R-module:

8



2.2. Rings of pe-th powers and rings of pe-th roots

Definition 2.7. Let R be a ring of characteristic p > 0, M an R-module and e ≥ 0 an integer.
Define the R-module F e

∗M as follows: its elements are denoted by F e
∗m, where m ∈ M , and

F e
∗M is isomorphic to M as an abelian group with respect to addition, that is

F e
∗m+ F e

∗n := F e
∗ (m+ n)

for F e
∗m,F

e
∗n ∈ F e

∗M . The action of R on F e
∗M is given via restriction of scalars along the e-th

iteration of the Frobenius endomorphism, i.e.

r · F e
∗m := F e

∗ r
pe

m

for r ∈ R and F e
∗m ∈ F e

∗M .

The elements of the R-modules M and F e
∗M are “the same”, but the R-module structures are

different. This construction yields a covariant additive functor F e
∗ : Mod(R) → Mod(R) in the

category of modules over a commutative ringR, sending a moduleM 7→ F e
∗M , and an R-module

homomorphism φ ∈ Hom(M,N) to the R-module homomorphism F e
∗φ ∈ Hom(F e

∗M,F e
∗N)

defined by
(F e

∗φ)(F e
∗m) := F e

∗φ(m),

where F e
∗m ∈ F e

∗M . We shall be mostly interested in the case when M is a ring.

Definition 2.8. Let R be a ring of characteristic p > 0 and e ≥ 0 an integer. We define the
ring F e

∗R as follows: its elements are denoted by F e
∗x for x ∈ R, and F e

∗R is isomorphic to R
as a ring, that is

F e
∗x+ F e

∗ y := F e
∗ (x+ y),

F e
∗x · F e

∗ y := F e
∗ (xy),

where F e
∗x, F

e
∗ y ∈ F e

∗R. The action of R on F e
∗R is given via restriction of scalars along the

e-th iterated Frobenius, i.e.
r · F e

∗x := F e
∗ r

pe

x

for r ∈ R and F e
∗x ∈ F e

∗R.

It is clear from the definition that F e
∗R is a ring of characteristic p, although we will be

primarily interested in its R-module structure. As before, the elements of the rings R and F e
∗R

are “the same”, but the R-module structures are different. Note that in the case e = 0, one
has F 0

∗M
∼= M and F 0

∗R
∼= R.

2.2. Rings of pe-th powers and rings of pe-th roots

Definition 2.9. Let R be a ring of characteristic p > 0 and let e ≥ 0 be an integer. The ring
of pe-th powers of R is

Rpe := F e(R) = {xpe | x ∈ R}.

9



2. Commutative Algebra in Prime Characteristic

By convention, Rp0 = R. Note that each Rpe is a subring of R. In addition, for every e ≥ 0
one has that Rpe+1 is a subring of Rpe since F (Rpe) = F e+1(R) = Rpe+1 . This results in the
following chain of rings:

· · · ⊆ Rpe ⊆ · · · ⊆ Rp2 ⊆ Rp ⊆ R.

Example 2.10. Let R = Fp[x] be a polynomial ring. By Proposition 2.6, F e leaves Fp fixed
and sends x 7→ xp

e , whence Rpe = Fp[xp
e ]. More generally, if R = Fp[x1, . . . , xn] is a polynomial

ring in n variables, then Rpe = Fp[xp
e

1 , . . . , x
pe

n ], and the descending chain of rings reads

· · · ⊆ Fp[xp
e

1 , . . . , x
pe

n ] ⊆ · · · ⊆ Fp[xp1, . . . , xpn] ⊆ Fp[x1, . . . , xn].

Proposition 2.11. Let R be a reduced ring (i.e. with no nilpotents) of characteristic p > 0.
Then for each e ≥ 0, the e-th iterated Frobenius defines an isomorphism F e : R → Rpe .

Proof. It suffices to prove that for every e ≥ 0, F : Rpe → Rpe+1 is an isomorphism of rings. If
xp

e ∈ Rpe is such that xpe+1 = 0, it follows that x = 0 because R is reduced, thus F is injective.
An element xpe+1 ∈ Rpe+1 is the image of xpe ∈ Rpe under F , hence F is surjective and an
isomorphism of rings.

Observe that the ring of powers Rpe may be used to give an alternative definition of the
R-module F e

∗M . Indeed, given r ∈ R and m ∈ M , one has that

r · F e
∗m = F e

∗ r
pe

m in F e
∗M ⇐⇒ rp

e ·m = rp
e

m in M,

therefore viewing F e
∗M an R-module is equivalent to view M as an Rpe-module. This charac-

terization will become useful later on when discussing F -finite rings.
From the point of view of Rpe , the ring R can be interpreted as the ring of pe-th roots.

Indeed, since the pe-th root of xpe ∈ Rpe is the element x ∈ R. A natural question arises: can
one find pe-th roots for elements in R? The answer is yes, although it requires more work.

Recall that given a ring R, the total ring of fractions of R, denoted by K(R), is the local-
ization U−1R where U ⊆ R is the set of non-zero-divisors of R. It is the “biggest” localization
such that the localization map R → U−1R is injective.

Theorem 2.12. Let R be a reduced Noetherian ring. Then the total ring of fractions K is
isomorphic to a finite product of fields.

Proof. As R is reduced, the nilradical of R coincides with the zero ideal (0) ⊆ R, thus it may
be expressed as the intersection of all the primes of R. However, note that in such intersection
only the minimal primes p1, . . . , pn of R are required, thus (0) = p1 ∩ · · · ∩ pn, and this is
a minimal primary decomposition. Furthermore, these are the associated primes of (0), thus
U = R − (p1 ∪ · · · ∪ pn) is the set of non-zero-divisors of R. It follows that in the localization

10



2.2. Rings of pe-th powers and rings of pe-th roots

K(R) = U−1R, the only prime ideals are U−1pi, which are different and maximal. By the
Chinese Remainder Theorem,

K(R) = U−1R = U−1R

(0) = U−1R⋂n
i=1 U

−1pi
∼=

n∏
i=1

U−1R

U−1pi
,

where each (U−1R)/(U−1pi) is a field, from where the result follows.

Let R be a reduced Noetherian ring and write K := K(R) = ∏n
i=1 Ki. For every field Ki fix

an algebraic closure Ki and let K = ∏n
i=1 Ki. Note that K is not a domain, as the direct product

of domains is never a domain. Nonetheless, there is an inclusion morphism R ↪−→ K ↪−→ K, thus
each x ∈ R may be seen as (x1, . . . , xn) ∈ K. For each coordinate xi ∈ Ki choose a pe-th root
x

1/pe

i and define the pe-th root of x as

x1/pe := (x1/pe

1 , . . . , x1/pe

n ).

Definition 2.13. Let R be a reduced Noetherian ring of characteristic p > 0 and let e ≥ 0
be an integer. The ring of pe-th roots of R is

R1/pe := {x ∈ K | xpe ∈ R}.

By convention, we set R1/p0 = R.

The construction of the ring of pe-th of R has a several hiccups: to begin with, the primary
decomposition used in Theorem 2.12 is not unique in general, nor is the product of fields in
which the total ring of fractions of R decomposes. Furthermore, K depends on the choice of
algebraic closures, although any two algebraic closures of the same field are isomorphic. These
setbacks are fixed by the following proposition:

Proposition 2.14. Let R be a reduced Noetherian ring of characteristic p > 0 and e ≥ 0
an integer. Then the ring R1/pe of pe-th roots is a ring and R ⊆ R1/pe . Furthermore, the e-th
iterated Frobenius defines an isomorphism F e : R1/pe → R.

Proof. For each x ∈ R we have that xpe ∈ R, hence R ⊆ R1/pe , thus R1/pe has characteristic
p > 0. For each pair of elements α, β ∈ R1/pe , (α−β)pe = αp

e +(−1)pe
βp

e ∈ R, thus proving that
R1/pe is closed under addition. Furthermore, both addition and multiplication are commutative,
and the distributive property holds in R1/pe because it is a subset of K, therefore it is a ring.

It is clear that the image of Rpe under F e is R by construction, hence F e : R1/pe → R is a
well-defined surjective ring homomorphism. As R is reduced, by Theorem 2.12 the total ring
of fractions K of R can be written as K = ∏n

i=1 Ki, where the Ki are fields. As before, let
K = ∏n

i=1 Ki. If F e(α) = 0 for some α ∈ R1/pe , it follows that αi = 0 ∈ Ki for all i = 1, . . . , n,
whence α = 0. This shows that F e is injective and thus gives an isomorphism R ∼= R1/pe .

11



2. Commutative Algebra in Prime Characteristic

It readily follows from Proposition 2.14 that any two rings S and T of pe-th roots of R are
isomorphic, hence the ring of R1/pe is well-defined up to isomorphism. Furthermore, one readily
verifies that R1/pe ⊆ R1/pe+1 for each integer e ≥ 0. In consequence, a reduced Noetherian ring
R of characteristic p > 0 gives rise to a chain of rings

· · · ⊆ Rpe ⊆ · · · ⊆ Rp ⊆ R ⊆ R1/p ⊆ · · · ⊆ R1/pe ⊆ · · · ,

which are pairwise isomorphic via an iteration of the Frobenius endomorphism. Moreover, as
the following proposition shows, there exists a canonical isomorphism between F e

∗R and R1/pe .

Proposition 2.15. Let R be a reduced Noetherian ring of characteristic p > 0 and e ≥ 0 an
integer. Then the map

φ : R1/pe −→ F e
∗R

x1/pe 7−→ F e
∗x

is a ring isomorphism.

Proof. The map is well defined since x = (x1/pe)p
e

∈ R, and clearly gives a ring homomorphism.
Surjectivity of φ is due to the fact that each x ∈ R has a pe-th root in R1/pe , and injectivity
follows from R being reduced. As a result, φ is a ring isomorphism.

2.3. F -finite rings

Definition 2.16. A Noetherian ring R of characteristic p > 0 is an F -finite ring if F∗R is a
finitely generated R-module.

As previously noted, viewing F∗R as an R-module is equivalent to viewing R as an Rp-
module. Since the image of the Frobenius endomorphism F : R → R is Rp, the fact that F∗R is
a finitely generated R-module implies that the Frobenius endomorphism is finite. This allows
us to characterize F -finite fields:

Example 2.17. Let K be a field of characteristic p > 0. By Proposition 2.11, the Frobenius
map defines an isomorphism K ∼= Kp, hence there is an extension of fields Kp ⊆ K.

Saying that K is F -finite is equivalent to [K : Kp] < ∞. Indeed, if we assume F -finiteness
then K is finitely generated over Kp, thus K ∼= (Kp)⊕n/N for some integer n ≥ 1 and submodule
N ⊆ (Kp)⊕n. As a result, the dimension of K as a Kp-vector space is at most n. The converse
is immediate.

In the definition of F -finite ring, one only asks F∗R to be finitely generated over R. This is
equivalent, however, to F e

∗R to be finitely generated for some (equivalently, for all) e ≥ 1.

Proposition 2.18. Let R be a Noetherian ring of characteristic p > 0. The following are
equivalent:

12



2.3. F -finite rings

(1) R is F -finite.
(2) F∗R is a finitely generated R-module.
(3) F e

∗R is a finitely generated R-module for all e ≥ 1.
(4) F e

∗R is a finitely generated R-module for some e ≥ 1.

Proof. (1) and (2) are equivalent by definition of F -finite ring, and (3) clearly implies (4).
(2) ⇒ (3). By assumption the Frobenius endomorphism F : R → R is finite. Since the

composition of finite morphisms is finite, one has that F e : R → R is finite for all e ≥ 1,
thereby R is a finitely generated Rpe-module, i.e. F e

∗R is a finitely generated R-module.
(4) ⇒ (2). Suppose that F e

∗R is a finitely generated R-module, that is R is a finitely
generated module over Rpe , and let {x1, . . . , xn} ⊂ R be a set of generators. Then for each
a ∈ R we have a = ap

e

1 x1 + · · · + ap
e

n xn for some a1, . . . , an ∈ R. Define αi = ap
e−1

i ∈ Rpe−1 ⊂ R

so that a = αp1x1 + · · · + αpnxn. From the point of view of F∗R, we have

F∗a = F∗(αp1x1 + · · · + αpnxn) = α1F∗x1 + · · · + αnF∗xn,

thus F∗R is a finitely generated R-module.

In the following propositions we present a few examples of F -finite rings, namely, that if
R is F -finite, then quotients and localizations of R, as well as polynomial and power series
rings over R, are F -finite. This may be summarized by saying that doing algebraic geometry
preserves F -finiteness.

Proposition 2.19. Let R be an F -finite ring of characteristic p > 0 and I ⊆ R a proper
ideal. Then the quotient ring R/I is F -finite.

Proof. The quotient ring R/I is Noetherian because R is Noetherian. Furthermore, I ∩Fp = ∅
because I is a proper ideal, hence the quotient ring R/I contains Fp.

Let F e
∗x1, . . . , F

e
∗xn be a generating set for F e

∗R over R. We claim that the set F e
∗x1, . . . , F

e
∗xn

generates F e
∗ (R/I) as an (R/I)-module. Indeed, given f ∈ R there exist f1, . . . , fn ∈ R such

that f = ∑
i f

pe

i xi. Projecting to the quotient ring gives f = ∑
i fi

pe

xi, hence

F e
∗ f =

∑
i

f iF
e
∗xi,

which shows that F e
∗ (R/I) is finitely generated over R/I.

Proposition 2.20. Let R be an F -finite ring and W ⊆ R a multiplicative subset not con-
taining zero. Then the localization W−1R is F -finite.

Proof. A localization of a Noetherian ring is Noetherian. Since 0 ̸∈ W , it follows that W−1R

has characteristic p > 0. Indeed, we have a composition of morphisms Fp ↪−→ R → W−1R

which can be either the zero morphism or injective. In the former case, this would imply that

13



2. Commutative Algebra in Prime Characteristic

W−1R = 0, but this is a contradiction since the multiplicative subset W does not contain zero.
Therefore the composition is injective, which shows that W−1R contains Fp.

Suppose that the set F e
∗x1, . . . , F

e
∗xn generates F e

∗R as an R-module. We claim that the
same set generates F e

∗ (W−1R) over W−1R. Indeed, pick elements f ∈ R and u ∈ W . Then
there exist g1, . . . , gn ∈ R such that upe−1f = ∑

i g
pe

i xi, thus

f

u
= 1
upe u

pe−1f =
∑
i

gp
e

i

upe xi,

and
F e

∗
f

u
=
∑
i

gi
u
F e

∗xi,

thus proving that F e
∗ (W−1R) is a finitely generated (W−1R)-module.

Proposition 2.21. Let R be an F -finite ring of characteristic p > 0. Then a polynomial ring
R[x1, . . . , xn] in finitely many variables over R is F -finite.

Proof. The polynomial ring R[x1, . . . , xn] is Noetherian by Hilbert’s basis theorem, and it
has characteristic p > 0 because the composition Fp ↪−→ R ↪−→ R[x1, . . . , xn] injects Fp in
R[x1, . . . , xn].

Let F∗r1, . . . , F∗rm be a set of generators for F∗R as an R-module. In order to show that
F∗R[x1, . . . , xn] is finitely generated over R[x1, . . . , xn], we proceed by induction on the number
of variables. For n = 1, let f = atx

t + · · · + a1x+ a0 ∈ R[x] and write t = qp+ s, where q ∈ N
and 0 ≤ s ≤ p− 1. Then f can be rewritten as

f =
t∑
i=0

aix
i =

p−1∑
j=0

q∑
k=0

akp+jx
kp+j =

p−1∑
j=0

xj
q∑

k=0
akp+jx

kp,

where we set aqp+j = 0 for s + 1 ≤ j ≤ p − 1. Since R is finitely generated over Rp, for each
akp+j ∈ R one can write akq+j = ∑m

i=1 a
p
ijkri for some aijk ∈ R. As a result,

f =
p−1∑
j=0

xj
q∑

k=0

m∑
i=0

apijkrix
kp =

m∑
i=0

p−1∑
j=0

( q∑
k=0

aijkx
k

)p
rix

j,

or equivalently,

F∗f =
m∑
i=0

p−1∑
j=0

( q∑
k=0

aijkx
k

)
F∗rix

j,

which proves that the set {F∗rix
j | 1 ≤ i ≤ m, 0 ≤ j < p} generates F∗R[x] as module over

R[x].
For the inductive step, let S := R[x1, . . . , xn] and assume that F∗S is a finitely generated S-

module. Then R[x1, . . . , xn, xn+1] = S[xn+1], and the base case shows that F e
∗S[xn+1] is finitely

generated over S[xn+1].
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2.4. Polynomial rings over perfect fields

Proposition 2.22. Let R be an F -finite ring of characteristic p > 0. Then a power series
ring RJx1, . . . , xnK in finitely many variables over R is F -finite.

Proof. Analogous to the proof of Proposition 2.21.

Definition 2.23. A ring homomorphism R → S is essentially of finite type if S is the local-
ization of an R-algebra of finite type.

Proposition 2.24. Let R be an F -finite ring of characteristic p > 0. Then any R-algebra S
that is essentially of finite type over R is F -finite.

Proof. By assumption S is of the form S = W−1(R[x1, . . . , xn]/I), where I ⊆ R[x1, . . . , xn]
is an ideal and W ⊆ R[x1, . . . , xn]/I is a multiplicative set. It follows from Propositions 2.19
to 2.21 that S is F -finite.

2.4. Polynomial rings over perfect fields

Next we study a particularly well-behaved case of F -finite rings, namely, polynomial rings over
perfect fields of positive characteristic. In this case, not only is F e

∗R finitely generated over R,
but also free. We begin recalling some facts about perfect fields.

Definition 2.25. A field K is perfect if every irreducible polynomial is separable, i.e. its roots
are distinct in a fixed algebraic closure of K.

Definition 2.26. Let R[x] be a polynomial ring and f = anx
n + · · · + a1x + a0 ∈ R[x] a

polynomial. The formal derivative of f is defined to be the polynomial

f ′ = nanx
n−1 + (n− 1)an−1x

n−1 + · · · + 2a2x+ a1.

Lemma 2.27. Let K be a field and f ∈ K[x] an irreducible polynomial. Then f is separable
if and only if f and f ′ are coprime.

Proof. If f is separable, it has distinct roots in an algebraic closure of K, thus f and f ′ do not
share common roots. Indeed, in a fixed algebraic closure K, f factors as a product of distinct
linear factors f = a

∏
i(x− αi), and its formal derivative reads

f ′ = a
∑
i

∏
j ̸=i

(x− αj).

Choose a root αk of f . Note that all summands except ∏j ̸=k(x−αj) have x−αk. Thereby, by
evaluating f ′ at αk, one gets f ′(αk) = a

∏
j ̸=k(αk −αj), i.e. f and f ′ do not have common roots.

As f is irreducible, the ideal (f) is maximal in K[x] and f ′ ̸∈ (f), hence (f) + (f ′) = K[x], thus
f and f ′ are coprime.

15



2. Commutative Algebra in Prime Characteristic

Conversely, suppose that f and f ′ are coprime. Then there exist λ, µ ∈ K[x] such that
λf + µf ′ = 1. If f was not separable, f and f ′ would share a common root α ∈ K in a fixed
algebraic closure. Evaluating λf + µf ′ at α gives a contradiction, hence f is separable.

Lemma 2.28. Let K be a field of characteristic p > 0 and f ∈ K[x] a non-constant polyno-
mial. Then f ′ = 0 if and only if f − β ∈ (xp) ⊆ K[x] for some β ∈ K.

Proof. Write f = anx
n + · · · + a1x+ a0 and suppose that

f ′ =
n∑
k=1

kakx
k−1 = 0.

It follows that ak = 0 when k is not a multiple of p, therefore f − a0 ∈ (xp). The converse is
clear.

Theorem 2.29. Let K be a field of characteristic p > 0. Then K is perfect if and only if the
Frobenius endomorphism F : K → K is an automorphism of K.

Proof. Suppose that K is a perfect field. It is clear that F : K → K is injective, thus we only
need to show that it is surjective, i.e. that f = xp − a ∈ K[x] has a root in K. Suppose it does
not. If α ∈ K is a root of f in a fixed algebraic closure of K, then αp = a, hence f = (x− α)p.
Moreover f factors as a product of irreducibles since K[x] is a UFD. Let g = (x − α)n be one
of the irreducibles. Then

g =
n∑
k=0

(
n

k

)
xn−k(−α)k = xn − nαxn−1 + · · · + (−α)n−1x+ (−α)n,

which implies that nα ∈ K. By assumption α ̸∈ K, so n = p. As a result f = g, thus f is
irreducible but inseparable, contradicting the fact that K is perfect.

Conversely, suppose that F is an automorphism of K and that K is not perfect. Then there
exists an irreducible polynomial f in K[x] with a multiple root α in an algebraic closure of K.
We may assume that f is the minimal polynomial of α, which is irreducible. By Lemma 2.27,
the polynomials f and f ′ are not coprime, thus f ′ ∈ (f), but by degree considerations one has
f ′ = 0. It follows from Lemma 2.28 that f = anx

pn + · · · + a1x
p + a0. Furthermore each ak has

a p-th root in K, thereby
f = (a1/p

n xn + · · · + a
1/p
1 x+ a0)p,

but this contradicts the irreducibility of f .

A major example of F -finite rings are perfect fields of positive characteristic. This is an
immediate consequence of Theorem 2.29.

Example 2.30. If K is a perfect field of characteristic p > 0 and e ≥ 1 is an integer, then
F e

∗ K is a K-vector space of dimension 1. Indeed, each α ∈ K has a pe-th root α1/pe ∈ K.
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2.4. Polynomial rings over perfect fields

As a result, F e
∗α = α1/pe

F e
∗ 1 ∈ F e

∗ K. This induces a field homomorphism F e
∗ K → K sending

F e
∗α 7→ α1/pe , which is clearly injective. Furthermore, given β ∈ K one has that F e

∗β
pe 7→ β, thus

the homomorphism is surjective. In consequence, we have an isomorphism F e
∗ K ∼= KF e

∗ 1 ∼= K.

Corollary 2.31. Let K be a perfect field of characteristic p > 0. Then for all integers e ≥ 0,

F e
∗ K ∼= K.

Proof. It is clear from the construction of F e
∗ K that it is a field. By Theorem 2.29 every

α ∈ K has a pe-th root, namely α1/pe . As a result, for each element in F e
∗ K one can write

F e
∗α = α1/pe

F e
∗ 1. This yields an injective map of fields φ : F e

∗ K → K sending F e
∗α 7→ α1/pe .

Furthermore, given β ∈ K one has that F e
∗β

pe 7→ β, thus the map is surjective and an isomor-
phism.

Proposition 2.32. Let {Mi}i be a collection of modules over an F -finite ring R of charac-
teristic p > 0 and let e ≥ 1 be an integer. Then there is an isomorphism

⊕
i

F e
∗Mi

∼= F e
∗
⊕
i

Mi.

Proof. The set F e
∗
⊕

iMi has a natural R-module structure, with action defined by rF e
∗ (mi)i :=

F e
∗ (rpe

mi)i, where r ∈ R and (mi)i ∈ ⊕
iMi. For each k define an R-module homomorphism

F e
∗Mk → F e

∗
⊕

iMi by sending F e
∗m 7→ F e

∗ (mi)i, where mi = m if i = k and mi = 0 otherwise.
By the universal property of the direct sum, this induces a unique homomorphism⊕

i

F e
∗Mi −→ F e

∗
⊕
i

Mi

(F e
∗mi)i 7−→ F e

∗ (mi)i

It follows at once that the map is injective, as (F e
∗mi)i 7→ 0 if and only if mi = 0 for all i. In

addition, given F e
∗ (mi)i ∈ F e

∗
⊕

iMi, one has that (F e
∗mi)i 7→ F e

∗ (mi)i, thus it is surjective as
well, and therefore an isomorphism.

Proposition 2.33. Let K be a perfect field of characteristic p > 0, R = K[x1, . . . , xn] a
polynomial ring and e ≥ 1 an integer. Then

F e
∗R

∼=
⊕

0≤i1,...,in<pe

RF e
∗x

i1
1 · · ·xinn ,

thus {F e
∗x

i1
1 · · ·xinn | 0 ≤ i1, . . . , in < pe} is a basis for F e

∗R as an R-module.

Proof. The ring R can be viewed a K-vector space, with direct sum decomposition

R ∼=
⊕

k1,...,kn≥0
Kxk1

1 · · ·xkn
n

∼=
⊕

0≤i1,...,in<pe

⊕
j1,...,jn≥0

Kxj1p
e+i1

1 · · ·xjnpe+in
n ,

17



2. Commutative Algebra in Prime Characteristic

where the second isomorphism follows from the fact that each integer k ≥ 0 can be written
uniquely as k = jpe + i with j ≥ 0 and 0 ≤ i < pe. By Example 2.30 one has that K ∼= F e

∗K,
and the functor F e

∗ commutes with direct sums by Proposition 2.32, whence

F e
∗R

∼= F e
∗

⊕
0≤i1,...,in<pe

⊕
j1,...,jn≥0

Kxj1p
e+in

1 · · ·xjnpe+in
n

∼=
⊕

0≤i1,...,in<pe

⊕
j1,...,jn≥0

F e
∗ (Kxj1p

e+in
1 · · ·xjnpe+in

n )

∼=
⊕

0≤i1,...,in<pe

⊕
j1,...,jn≥0

Kxj11 · · · xjnn F e
∗x

i1
1 · · ·xinn

∼=
⊕

0≤i1,...,in<pe

RF e
∗x

i1
1 · · · xinn .

Definition 2.34. Let R = K[x1, . . . , xn] be a polynomial ring over a perfect field K of char-
acteristic p > 0 and let e ≥ 1 be an integer. We let

Be(R) := {F e
∗x

i1
1 · · ·xinn | 0 ≤ i1, . . . , in < pe}

be the standard basis for F e
∗R as a free R-module.

We shall be mostly interested in polynomial rings, however we note that the same fact, with
some tweaks, is true for power series rings over perfect fields of prime characteristic.

Proposition 2.35. Let {Mi}i be a collection of modules over an F -finite ring R of charac-
teristic p > 0 and let e ≥ 1 be an integer. Then there is an isomorphism

∏
i

F e
∗Mi

∼= F e
∗
∏
i

Mi.

Proof. The set F e
∗
∏
iMi has a natural R-module structure given by rF e

∗ (mi)i := F e
∗ (rpe

mi)i,
where r ∈ R and (mi)i ∈ ∏

iMi. Note that for each k there is an R-module homomorphism
F e

∗
∏
iMi → F e

∗Mk sending F e
∗ (mi)i 7→ F e

∗mk, thereby inducing a unique R-module homomor-
phism

F e
∗
∏
k

Mk −→
∏
k

F e
∗Mk

F e
∗ (mi)i 7−→ (F e

∗mi)i.
The same argument given in the proof of Proposition 2.32 shows that this map is, in fact, an
isomorphism.

Proposition 2.36. Let K be a perfect field of characteristic p > 0, R = KJx1, . . . , xnK a
power series ring and e ≥ 1 an integer. Then

F e
∗R

∼=
⊕

0≤ii,...,in<pe

RF e
∗x

i1
1 · · ·xinn ,

thus {F e
∗x

i1
1 · · ·xinn | 0 ≤ i1, . . . , in < pe} is a basis for F e

∗R as an R-module.
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2.4. Polynomial rings over perfect fields

Proof. The power series ring R admits a decomposition,

R ∼=
∏

k1,...,kn≥0
Kxk1

1 · · ·xkn
n

∼=
∏

0≤i1,...,in<pe

∏
j1,...,jn≥0

Kxj1p
e+i1

1 · · ·xjnpe+in
n

∼=
⊕

0≤i1,...,in<pe

∏
j1,...,jn≥0

Kxj1p
e+i1

1 · · ·xjnpe+in
n

where the second isomorphism follows from the direct product being taken over a finite set,
thus it is equivalent to a direct sum over the same set. By Propositions 2.32 and 2.35, the
functor F e

∗ commutes with direct sums and direct products, hence

F e
∗R

∼= F e
∗

⊕
0≤i1,...,in<pe

∏
j1,...,jn≥0

Kxj1p
e+i1

1 · · ·xjnpe+in
n

∼=
⊕

0≤i1,...,in<pe

∏
j1,...,jn≥0

F e
∗ (Kxj1p

e+i1
1 · · ·xjnpe+in

n )

∼=
⊕

0≤i1,...,in<pe

∏
j1,...,jn≥0

Kxj11 · · ·xjnn F e
∗x

i1
1 · · ·xinn

∼=
⊕

0≤i1,...,in<pe

RF e
∗x

i1
1 · · ·xinn .
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Chapter 3

Rings of Differential Operators

Let X be an algebraic variety over an algebraically closed field K, and let O(X) be the ring of
regular functions on X. Choose a point x ∈ X and let mx ⊆ O(X) be the ideal of functions
vanishing at x. It is a widely known fact that the localization of O(X) at the maximal ideal
mx, or the completion with respect to mx, both convey a wealth of information about the
behavior of the variety around x; for instance, see [H77, Sections 1.3 and 1.5]. Similarly, among
the applications of rings of differential operators one finds the study of the local behavior of
algebraic varieties.

In this chapter we describe the construction of rings of differential operators, which was orig-
inally given by Grothendieck [G66]. These operators can be defined in great generality: given
a scheme X, differential operators arise as morphisms F → G of OX-modules. Nonetheless,
for our purposes it will suffice to study the construction in the affine case, where differential
operators admit a down-to-earth description. Afterwards, we restrict ourselves to the positive
characteristic world, where these rings admit an even more pleasant characterization. To con-
clude the chapter, we shall prove that in positive characteristic, differential operators can be
factored as the composition of two particular morphisms.

3.1. Construction of the ring of differential operators

Throughout this section, let B denote a commutative ring.

Proposition 3.1 ([AM69, Chapter 2]). Let R and S be B-algebras. Then R ⊗B S has a
natural B-algebra structure with multiplication given by

(r ⊗ s) · (r′ ⊗ s′) = rr′ ⊗ ss′.

Proof. Define the map ϕ : R × S × R × S → R ⊗B S that sends (r, s, r′, s′) 7→ rr′ ⊗ ss′. It is
B-linear in each coordinate, that is,

ϕ(r + u, s, r′, s′) = ϕ(r, s, r′, s′) + ϕ(u, s, r′, s′) = rs⊗ r′s′ + ur′ ⊗ ss′, · · ·
ϕ(br, s, r′, s′) = ϕ(r, bs, r′, s′) = · · · = brr′ ⊗ ss′,
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3. Rings of Differential Operators

where b ∈ B, r, r′, u ∈ R and s, s′ ∈ S. As a result, ϕ induces a unique B-module homo-
morphism φ : (R ⊗B S) ⊗B (R ⊗B S) → R ⊗B S sending (r ⊗ s) ⊗ (r′ ⊗ s′) 7→ rr′ ⊗ ss′. By
defining multiplication on R ⊗B S via φ, the B-module R ⊗B S becomes a commutative ring
with identity 1 ⊗ 1, and therefore a B-algebra.

Let R be a B-algebra. Then the diagonal map µ : R ⊗B R → R sending r ⊗ s 7→ rs is
well-defined. Indeed, it is immediate to check that the map R × R → R sending (r, s) 7→ rs

is B-linear, and thus factors uniquely through µ. We denote its kernel by JR|B ⊆ R ⊗B R, or
simply by J when B and R are understood from the context. For each r ∈ R we let

dr := 1 ⊗ r − r ⊗ 1 ∈ R ⊗B R.

Proposition 3.2. Let R be a commutative B-algebra, then J = (dr | r ∈ R).

Proof. The inclusion (dr | r ∈ R) ⊆ J is clear. For the converse, suppose that µ(∑i ri ⊗ si) =∑
i risi = 0. For each ri ⊗ si one can write ri ⊗ si = (ri ⊗ 1)dsi + risi ⊗ 1, hence summing over

all i gives ∑
i

ri ⊗ si =
∑
i

(ri ⊗ 1)dsi +
(∑

i

risi

)
⊗ 1 =

∑
i

(ri ⊗ 1)dsi,

which proves that J ⊆ (dr | r ∈ R).

Definition 3.3. Let B be a commutative ring and let M and N be R-modules. A B-linear
homomorphism from M to N is a map φ : M → N such that

φ(x+ y) = φ(x) + φ(y),
φ(bx) = φ(bx),

for all b ∈ B and x, y ∈ M . The set of B-linear homomorphisms M → N is denoted by
HomB(M,N). When M = N , a B-linear homomorphism φ : M → M is said to be a B-linear
endomorphism of M . The set of B-linear endomorphisms of M is denoted by EndB(M).

Proposition 3.4. Let B be a commutative ring and let M and N be B-modules. The set
HomB(M,N) has a natural B-module structure with addition and action defined as

(φ+ ψ)(x) = φ(x) + ψ(x),
(b · φ)(x) = bφ(x),

where φ, ψ ∈ HomB(M,N), b ∈ B and x ∈ M .

Proof. We begin by showing that HomB(M,N) is an abelian group with respect to addition.
The zero morphism 0: R → R is the neutral element, as for any φ ∈ EndB(R) one has that
(φ+0(x) = (0+φ)(x) = φ(x). Given φ ∈ EndB(R), the map −φ defined by (−φ)(x) = −φ(x) is
again in EndB(R), and is the opposite of φ. Furthermore, addition of morphisms is associative
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3.1. Construction of the ring of differential operators

and commutative because it is performed point-wise in N , which is an abelian group with
respect to addition. To finish, given a homomorphism φ ∈ HomB(M,N), one has

(b · φ)(x+ y) = bφ(x+ y) = bφ(x) + bφ(y) = (b · φ)(x) + (b · φ)(y)
(b · φ)(λx) = bφ(λx) = λbφ(x) = λ(b · φ)(x)

for all b, λ ∈ B and x, y ∈ M , which shows that b · φ ∈ HomB(M,N). It is immediate to see
that this defines an action, thus HomB(M,N) is a B-module.

Proposition 3.5. Let R be a commutative algebra over B. Then the set EndB(R) of B-linear
endomorphisms of R has a non-commutative ring structure with respect to point-wise addition
and multiplication of endomorphisms, i.e.

(φ+ ψ)(x) := φ(x) + ψ(x),
(φψ)(x) := φ(ψ(x)),

with φ, ψ ∈ EndB(R) and x ∈ R.

Proof. By Proposition 3.4, the set EndB(R) = HomB(R,R) is a B-module. It is clear that the
neutral element with respect to point-wise composition is the identity Id : R → R. Composition
of morphisms in EndB(R) is again a morphisms of EndB(R). Indeed, given φ, ψ ∈ EndB(R),
b ∈ B and x, y ∈ R, one has

(φψ)(x+ y) = φ(ψ(x) + ψ(y)) = (φψ)(x) + (φψ)(y),
(φψ)(bx) = φ(ψ(bx)) = φ(bψ(x)) = b(φψ)(x),

and the associativity of composition is clear. Non-commutativity follows from the fact that, in
general, φ(ψ(x)) ̸= ψ(φ(x)). To conclude, given φ, ψ, θ ∈ EndB(R),

(φ(ψ + θ))(x) = φ((ψ + θ)(x)) = φ(ψ(x)) + φ(θ(x))

for all x ∈ R, hence φ(ψ + θ) = φψ + φθ. This shows, composition distributes over addition,
which proves that EndB(R) is a non-commutative ring.

Proposition 3.6. Let R be a commutative algebra over a ring B. Then the map

ϕ : R −→ EndB(R)
f 7−→ [ϕf : x 7−→ fx]

is an injective homomorphism of rings and of B-algebras. In particular, it identifies R with a
commutative subring of EndB(R).
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3. Rings of Differential Operators

Proof. The unit 1 ∈ R is sent to the identity morphism of R, which is R-linear and thus
B-linear. Given f, g ∈ R, one has ϕf+g = ϕf + ϕg and ϕfg = ϕfϕg since

ϕf+g(x) = fx+ gx = ϕf (x) + ϕg(x),
ϕfg(x) = fgx = (ϕfϕg)(x),

for all x ∈ R, hence ϕ is a ring homomorphism. If f ∈ R is sent to the zero morphism, then
ϕf (1) = f = 0, which proves that ϕ is injective. As the image of a commutative ring under a
ring homomorphism is again a commutative ring, it follows that ϕ maps R to a commutative
subring of EndB(R).

The ring R⊗B R has a natural action on the underlying abelian group of EndB(R) given by

((r ⊗ s) · φ)(x) := rφ(sx),

where r⊗ s ∈ R⊗B R, thus endowing EndB(R) with an (R⊗B R)-module structure. Note that
for an integer n ≥ 0, the n-th power of the ideal J is

Jn = (dr1 · · · drn | r1, . . . , rn ∈ R).

Definition 3.7. Let R be a commutative algebra over a ring B, let φ ∈ EndB(R) and fix an
integer n ≥ 0.

(1) The endomorphism φ is a B-linear differential operator of order ≤ n if Jn+1 ·φ = 0, that
is to say, for all r1, . . . , rn+1 and x ∈ R,

((dr1 · · · drn+1) · φ)(x) = 0.

The set of B-linear differential operators of order ≤ n is denoted by Dn
R|B.

(2) The endomorphism φ is a B-linear differential operator if it is a B-linear differential
differential operator of order ≤ n for some integer n ≥ 0. The set of B-linear differential
operators is denoted by DR|B.

When B is understood from the context, we shall write these sets as Dn
R and DR.

Some examples of differential operators on familiar rings are convenient to better understand
the abstract definition:

Example 3.8. Let R be a commutative algebra over a ring B and let ϕ : R → EndB(R) be
the map defined in Proposition 3.6. Then each ϕf is a B-linear differential operator of order
≤ 0. Indeed, for all r, g ∈ R one has that

(dr · ϕf )(g) = ((1 ⊗ r) · f)(g) − ((r ⊗ 1) · f)(g) = frg − rfg = 0.

Furthermore, as ϕ : R → EndB(R) is an injective ring homomorphism, R is identified with a
subring of D0

R. In fact, as we will show later on in Proposition 3.17, D0
R = EndR(R) ∼= R.
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3.1. Construction of the ring of differential operators

Example 3.9. Let B = K be a field and R = K[x1, . . . , xn] a polynomial ring. The first-order
partial derivatives

∂1 := ∂

∂x1
, . . . , ∂n := ∂

∂xn
,

are K-linear differential operators on R of order ≤ 1. Indeed, the action of dr ∈ J on ∂i reads

(dr · ∂i)(f) = ((1 ⊗ r) · ∂i)(f) − ((r ⊗ 1) · ∂i)(f) = f∂(r) = ϕ∂i(r)(f),

whence dr · ∂i = ϕ∂i(r), and Example 3.8 shows that dr · ∂i is a differential operator of order
≤ 0.

Example 3.10. Following the previous example, the second-order partial derivatives

∂ij := ∂i∂j = ∂2

∂xi ∂xj
,

are K-linear differential operators on R of order ≤ 2. Let f ∈ R, then

(dr · ∂i∂j)(f) = (∂ir)(∂jf) + (∂if)(∂jr) + f∂i∂j(r)

for all dr ∈ J , thus dr · ∂i∂j = ϕ∂i(r)∂j + ϕ∂j(r)∂i + ϕ∂i∂j(r). Note that given u ∈ R, the K-linear
endomorphism ϕu∂i satisfies

(ds · ϕu∂i)(f) = ϕu(∂i(sf)) − sϕu(∂i(f)) = ϕu(∂i(sf) − s∂i(f)) = ϕu(f∂i(s)) = ϕu∂i(s)(f),

hence ds · ϕu∂i = ϕu∂i(s) for all ds ∈ J . Because ϕ∂i∂j(r) is a K-linear differential operator of
order ≤ 0, one has that

ds dr · ∂i∂j = ds · ϕ∂i(r)∂j + ds · ϕ∂j(r)∂i + ds · ϕ∂i∂j(r) = ϕ∂i(r)∂j(s) + ϕ∂i(s)∂j(r),

Since ϕ∂i(r)∂j(s) and ϕ∂i(s)∂j(r) are differential operators of order ≤ 0, it follows that dt ds dr ·
∂i∂j = 0 for all dt ∈ J , thus ∂i∂j is a differential operator of order ≤ 2.

Example 3.11. The first-order partial derivatives in the previous example commute with
each other, that is

∂ij = ∂i∂j = ∂j∂i = ∂ji

for all 1 ≤ i, j ≤ n. Since the partial derivatives are K-linear endomorphisms of R, it suffices
to show this fact for monomials xa1

1 · · ·xan
n ∈ R. Furthermore, we may assume that i = 1

and j = 2, otherwise one can rename the variables and reduce to this case. If a1 = 0 then
∂1x

a1
1 · · ·xan

n = 0, thus ∂1∂2x
a1
1 · · · xan

n = ∂2∂1x
a1
1 · · ·xan

n = 0. The same is true when a2 = 0,
thus suppose a1, a2 ≥ 1. In this case,

∂1∂2(xa1
1 · · ·xan

n ) = ∂1(a2x
a1
1 x

a2−1
2 x3 · · ·xn)

= a1a2x
a1−1
1 xa2−1

2 x3 · · ·xn
= ∂2(a1x

a1−1
1 xa2

2 x3 · · ·xn)
= ∂2∂1(xa1

1 · · ·xan
n ).
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3. Rings of Differential Operators

A word of caution on the previous example is in order. Although first-order partial derivatives
commute with each other, and, more generally, partial derivatives of any order commute with
each other, this is not always the case with differential operators, as the example below shows:

Example 3.12. Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let ∂i = ∂/∂xi

be the partial derivative with respect to xi. In view of Proposition 3.6, we may identify the
indeterminate xi with the map ϕxi

. On the one hand, for all f ∈ R,

(∂i xi) f = ∂i(xif) = f + (xi∂i) f.

On the other hand, whenever i ̸= j,

(∂i xj) f = ∂i(xjf) = (xj∂i) f.

This computation shows that in the subring K[x1, . . . , xn, ∂1, . . . , ∂n] of EndK(R),

∂ixj − xj∂i =
1 if i = j,

0 otherwise.

As shown in Example 3.10, the second-order partial derivatives ∂ij are differential operators
of order ≤ 2. Note that these arise as the composition of two differential operators of order
≤ 1, that is, ∂ij = ∂i ∂j. This fact is generalized as follows:

Proposition 3.13. Let R be a commutative algebra over a ring B. Then for each pair of
integers m,n ≥ 0, one has that

Dm
R ◦ Dn

R := {φ ◦ ψ | φ ∈ Dm
R , ψ ∈ Dn

R} ⊆ Dm+n
R .

Proof. For a proof of the fact, see [QG21b, Proposition II.15].

Proposition 3.14. Let R be a commutative algebra over a ring B.
(1) The sets of B-linear differential operators give an ascending filtration

D0
R ⊆ D1

R ⊆ D2
R ⊆ · · · .

(2) The set DR of B-linear differential operators is a non-commutative ring.

Proof. (1) Let n ≥ 0 be an integer and fix φ ∈ Dn
R, that is, Jn+1 · φ = 0. Since Jn+2 ⊆ Jn+1 it

follows that Jn+2 · φ = 0, thus φ ∈ Dn+1
R , which shows that Dn

R ⊆ Dn+1
R .

(2) It is clear that the zero and the identity endomorphisms of R are differential operators of
order ≤ 0. It follows from Proposition 3.5 that the zero morphism is the neutral element with
respect to addition, and the identity is the neutral element with respect to composition. Given
φ, ψ ∈ DR, there exist integers m,n ≥ 0 such that φ ∈ Dm

R and ψ ∈ Dn
R, and Proposition 3.13

shows that φ◦ψ is a differential operator of order ≤ m+n, hence DR is closed under composition.
Furthermore, composition distributes over addition because the operations are performed in
EndB(R), thus proving that DR is a non-commutative ring.
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3.2. Construction of the ring of differential operators

It is possible to give an alternative construction of the ring of differential operators on a
commutative B-algebra R in terms of the commutator:

Definition 3.15. Let R be a ring (not necessarily commutative). The commutator of two
elements r, s ∈ R is defined by

[r, s] := rs− sr.

Example 3.16. Let R = K[x1, . . . , xn] be a polynomial ring over a field K. In Example 3.12,
we showed that

∂ixj − xj∂i = [∂i, xj] =
1 if i = j,

0 otherwise.

Proposition 3.17. Let R be a commutative algebra over a ring B. Then D0
R|B = EndR(R).

Proof. Let φ ∈ D0
R|B be a B-linear differential operator of order ≤ 0. Then (dr · φ)(1) =

φ(r) − rφ(1) = 0, which yields φ(r) = rφ(1) for all r ∈ R, thus φ is R-linear. Conversely, given
φ ∈ EndR(R), one has (dr · φ)(x) = φ(rx) − rφ(x) = 0 for all r, x ∈ R, so J · φ = 0.

Every R-linear endomorphism of R is in particular B-linear since φ(br) = brφ(1) = bφ(r),
therefore D0

R|B = EndR(R) ⊆ EndB(R).

Proposition 3.18. Let R be a commutative B-algebra and let n ≥ 1 be an integer. The
following are equivalent:

(1) One has that φ ∈ Dn
R|B.

(2) One has that φ ◦ δ − δ ◦ φ ∈ Dn−1
R|B for all δ ∈ D0

R|B.

Proof. Let φ ∈ Dn
R|B and δ = ϕf for some f ∈ R. We have φ ◦ δ − δ ◦ φ = df · φ since, for each

x ∈ R, (φ ◦ δ− δ ◦φ)(x) = φ(fx) − fφ(x) = (df ·φ)(x). For any r1, . . . , rn ∈ R, it follows that
dr1 · · · drn df ∈ Jn+1 and (dr1 · · · drn) · (df · φ) = (dr1 · · · drn df) · φ = 0, whence df · φ ∈ Dn−1

R|B .
Conversely, take an arbitrary element f ∈ R and let δ = ϕf . Suppose that φ ◦ δ − δ ◦ φ =

df ·φ ∈ Dn−1
R|B , that is, Jn ·(df ·φ) = 0. Then for any r1, . . . , rn ∈ R we have dr1 · · · drn df ·φ = 0

and, since f ∈ R can take any value, we deduce φ ∈ D0
R|B.

Observation 3.19. It follows from Propositions 3.17 and 3.18 that one may define the ring
of B-linear differential operators on a commutative B-algebra R as follows:

(a) The ring of B-linear differential operators of order ≤ 0 is given by

D0
R|B := HomR(R,R) ⊆ EndB(R).

(b) For each n ≥ 1, define the set of B-linear differential operators of order ≤ n as

Dn
R|B :=

{
φ ∈ EndB(R)

∣∣∣ [φ, δ] = φ ◦ δ − δ ◦ φ ∈ Dn−1
R|B for all δ ∈ D0

R|B

}
.

(c) The ring of B-linear differential operators on R is

DR|B :=
⋃
n≥0

Dn
R|B.
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3. Rings of Differential Operators

3.2. Differential operators in positive characteristic

In the positive characteristic setting, the ring of differential operators admits a particularly
nice description due to Yekutieli [Y92]. Throughout this section we let B = F be a perfect
field of characteristic p > 0 and R a commutative F-algebra, thus we shall study F-linear
endomorphisms and F-linear differential operators on R. As we shall prove, there is no loss of
generality by taking B = Fp rather than any other field of characteristic p > 0 contained in R.

Definition 3.20. Let R be a commutative ring of characteristic p > 0 and let b ⊆ R be an
ideal. For each integer e ≥ 0, the e-th Frobenius power of b is the ideal

b[pe] := F e(b)R = (fpe | b ∈ I).

Proposition 3.21. Let R be a commutative ring of characteristic p > 0. Then the e-th
Frobenius power of an ideal b ⊆ R is a well-defined operation for each integer e ≥ 0, that is,
it does not depend on the choice of generators of b. Furthermore, if b = (fi | i ∈ I) for some
indexing set I, then b[pe] = (fp

e

i | i ∈ I).

Proof. Let b = (fi | i ∈ I) = (gj | j ∈ J) be two generating sets for b, where I and J are
arbitrary indexing sets. Each generator fi can be expressed as a finite sum of the form fi =∑
j fijgj for some fij ∈ R. By Proposition 2.5, fp

e

i = ∑
j f

pe

ij g
pe

j thus (fp
e

i | i ∈ I) ⊆ (gp
e

j | j ∈ J).
By symmetry, the reverse inclusion holds as well, thereby the operation is well-defined.

Proposition 3.22. Let R be a Noetherian ring of characteristic p > 0 and let I ⊆ R be an
ideal. Then the chains of ideals {In}n≥0 and {I [pe]}e≥0 are cofinal.

Proof. Let I = (f1, . . . , fr) be a set of generators for I. As I [pe] = (fp
e

1 , . . . , f
pe

r ) and each
generator is in Ip

e , it follows that I [pe] ⊆ Ip
e .

For the converse fix an integer e ≥ 0. Note that the power In is generated by elements
of the form fn1

1 · · · fnr
r with n1 + · · · + nr = n. Set n = r(pe − 1) + 1. Then for any choice

of exponents with sum equal to n, there is some ni ≥ pe. Indeed, for if all ni ≤ pe − 1
then n1 + · · · + nr ≤ r(pe − 1). As a result, for any choice one has fn1

1 · · · fnr
r ∈ I [pe], hence

In ⊆ I [pe].

Example 3.23. The Noetherian hypothesis cannot be removed in Proposition 3.22. For a
counterexample, consider the polynomial ring R = Fp[x1, x2, . . .] in infinitely many variables
and let m = (x1, x2, . . .) be the homogeneous maximal ideal. While it is always true that
m[pe] ⊆ mpe , given an integer n ≥ 0, there is no e ≥ 0 satisfying mn ⊆ m[pe]. Indeed, choose
integers 1 ≤ i1 < i2 < · · · < in. Then the monomial xi1xi2 · · ·xin is in mn but not in m[pe].

We emphasize that when no relations among the generators f1, . . . , fr of I are known, the
bound n = r(pe − 1) + 1 is optimal. If one sets n = r(pe − 1) instead, the element (f1 · · · fr)p

e−1
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3.2. Differential operators in positive characteristic

is a generator of In, but a priori it is not known whether or not it lies in I [pe]. As we shall
see later on in Chapters 4 and 5, for some classes of ideals it is possible to explicitly compute
the optimal bounds. In turn, these bounds are extremely useful to compute certain algebraic
invariants of the ideals.

Theorem 3.24 ([Y92, Theorem 1.4.9]). Let R be an F -finite ring of characteristic p > 0.
Then the ring of F-linear differential operators on R is

DR|F =
∞⋃
n=0

EndRpe (R).

In particular, the ring of differential operators on R does not depend on the choice of perfect
field F, thus we shall denote it simply by DR.

Proof. To show (⊆) let ξ ∈ DR be a differential operator, so that Jn+1 · ξ = 0 for some integer
n ≥ 0. As the ideal J ⊆ R⊗FR is finitely generated because R is an F -finite ring, it follows from
Proposition 3.22 that there exists an integer e ≥ 0 such that J [pe] ⊆ Jn+1, whence J [pe] · ξ = 0.
This means that for all r, f ∈ R,

(drpe · ξ)(f) = ξ(rpe

f) − rp
e

ξ(f) = 0,

thus ξ is an Rpe-linear endomorphism of R.
As for (⊇), given ξ ∈ EndRpe (R) it follows that drpe ·ξ = 0 for each r ∈ R, hence J [pe] ·ξ = 0.

Again by Proposition 3.22, there is an integer n ≥ 0 such that Jn+1 ⊆ J [pe], so ξ is a differential
operator of order ≤ n.

Definition 3.25. Let R be an F -finite ring of characteristic p > 0. For each integer e ≥ 0,
we define the set of differential operators of level e on R by

D(e)
R := EndRpe (R).

To conclude this section, we give an alternative characterization of the set D(e)
R as the R-

module of R-linear endomorphisms of F e
∗R. This will prove particularly useful towards the end

of the chapter.

Proposition 3.26. Let R be an F -finite ring of characteristic p > 0 and e ≥ 0 an integer.

(1) The set D(e)
R of differential operators of level e is an R-module with action (r · ξ)(f) :=

rp
e
ξ(f), where ξ ∈ D(e)

R and r, f ∈ R.
(2) There is an isomorphism D(e)

R
∼= EndR(F e

∗R).

Proof. (1) As differential operators of level e are additive endomorphisms of R, the set D(e)
R

is an abelian group with respect to point-wise addition of morphisms. Furthermore, r · ξ is
additive by definition of the action, and Rpe-linear as (r · ξ)(spe

f) = rp
e
sp

e
ξ(f) = sp

e(r · ξ)(f)
for all s ∈ R.
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3. Rings of Differential Operators

(2) Consider the map D : D(e)
R → EndR(F e

∗R) given by ξ 7→ [Dξ : F e
∗ f 7→ F e

∗ ξ(f)]. The
morphism Dξ is additive because ξ is, and for all r ∈ R, F e

∗ f ∈ F e
∗R, one has that

Dξ(rF e
∗ f) = Dξ(F e

∗ r
pe

f) = F e
∗ ξ(rp

e

f) = F e
∗ r

pe

ξ(f) = rF e
∗ ξ(f) = rDξ(F e

∗ f),

hence Dξ is R-linear. Given ξ, ξ′ ∈ EndRpe (R) and

D(ξ + ξ′)(F e
∗ f) = F e

∗ (ξ + ξ′)(f) = F e
∗ ξ(f) + F e

∗ ξ
′(f) = Dξ(F e

∗ f) + Dξ′(F e
∗ f),

D(r · ξ)(F e
∗ f) = F e

∗ r
pe

ξ(f) = rF e
∗ ξ(f) = r(Dξ)(F e

∗ f),

therefore D is an R-module homomorphism. In order to show that D is an isomorphism, let
ξ ∈ ker D. Then Dξ(F e

∗ f) = F e
∗ ξ(f) = 0 for all f ∈ R, but this means that ξ = 0, which proves

that D is injective. To show surjectivity, pick a morphism ξ ∈ EndR(F e
∗R) and define ξ ∈ D(e)

R

point-wise as follows: if ξ(F e
∗ f) = F e

∗ y, let ξ(f) := y. Then one can write ξ as ξ(F e
∗ f) = F e

∗ ξ(f).
By construction, it follows that ξ is additive because ξ is and, for all r, f ∈ R one has

F e
∗ ξ(rp

e

f) = ξ(F e
∗ r

pe

f) = ξ(rF e
∗ f) = rξ(F e

∗ f) = rF e
∗ ξ(f) = F e

∗ r
pe

ξ(f),

thus ξ is an Rpe-linear endomorphism of R. This implies that D is surjective, and thus defines
an isomorphism of R-modules.

3.3. The pe-linear and p−e-linear maps

Next we introduce two classes of maps R → R for an F -finite ring R, namely, pe-linear and
p−e-linear maps, which will allow for a better understanding of the ring of differential operators
in positive characteristic.

Definition 3.27 ([B13, Definition 2.1]). Let R be an F -finite ring of characteristic p > 0 and
e ≥ 0 an integer.

(1) An additive map ψ : R → R is a pe-linear map if ψ(rf) = rp
e
ψ(f) for every r, f ∈ R. The

set of pe-linear maps on R is denoted by F e
R.

(2) An additive map φ : R → R is a p−e-linear map if φ(rpe
f) = rφ(f) for every r, f ∈ R.

The set of p−e-linear maps on R is denoted by CeR.

Proposition 3.28. Let R be an F -finite ring of characteristic p > 0. A pe-linear map ψ on
R is of the form ψ = rF e for some r ∈ R, that is to say, ψ(f) = rf p

e .

Proof. A pe-linear operator ψ is determined by its image on 1, since ψ(f) = fp
e
ψ(1) = rf p

e =
rF e(f) for each f ∈ R.

Proposition 3.29. Let ψ : R → F e
∗R be an R-linear map. Then ψ = F e

∗ f ◦ F e for some
F e

∗ f ∈ F e
∗R, that is to say, ψ(f) = F e

∗ (rf pe) for f ∈ R. In particular, R ∼= HomR(R,F e
∗R).
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Proof. Let F e
∗ r = ψ(1); by assumption ψ is R-linear, thus for each f ∈ R, ψ(f) = fψ(1) =

fF e
∗ r = F e

∗ (rf pe) = (F e
∗ r ◦ F e)(f), whence ψ = F e

∗ r ◦ F e as desired.
To show the last statement, define G : R → HomR(R,F e

∗R) by r 7→ F e
∗ r ◦ F e. If G(r) = 0

then G(r)(1) = F e
∗ r = 0, which shows G is injective because r = 0. Surjectivity is due to

the fact every ψ ∈ HomR(R,F e
∗R) is of the form ψ = F e

∗ r ◦ F e. Consequently G defines an
isomorphism R ∼= HomR(R,F e

∗R).

Proposition 3.30. Let R be an F -finite ring of characteristic p > 0 and fix an integer e ≥ 0.
(1) The set F e

R of pe-linear maps is an R-module with action (r ·ψ)(f) := rp
e
ψ(f), for r, f ∈ R

and ψ ∈ F e
R.

(2) There is an isomorphism F e
R

∼= HomR(R,F e
∗R).

Proof. (1) It is clear that F e
R is an abelian group with respect to addition of morphisms.

Moreover it is closed under the action defined above since the map r · ψ : R → R is additive
and (r · ψ)(sf) = rp

e
ψ(sf) = rp

e
sp

e
ψ(f) for each f ∈ R.

(2) Define the morphism F : F e
R → HomR(R,F e

∗R) sending ψ 7→ [F(ψ) : f 7→ F e
∗ψ(f)]. As

ψ is an additive map, so is F(ψ) : R → F e
∗R. Moreover, F(ψ)(rf) = F e

∗ψ(rf) = F e
∗ r

pe
ψ(f) =

rF e
∗ψ(f) = rF(ψ)(f) thus F(ψ) is R-linear. To verify that F is an R-module map, fix mor-

phisms ψ, ψ′ ∈ F e
R and let r ∈ R. Then for all f ∈ R we find

F(ψ + ψ′)(f) = F e
∗ (ψ + ψ′)(f) = F e

∗ψ(f) + F e
∗ψ

′(f) = F(ψ)(f) + F(ψ′)(f),
F(r · ψ)(f) = F e

∗ (r · ψ)(f) = F e
∗ r

pe

ψ(f) = rF e
∗ψ(f) = rF(ψ)(f),

thus F(ψ + ψ′) = F(ψ) + F(ψ′) and F(r · ψ) = rF(ψ). It remains to show that F is an
isomorphism. If ψ ∈ F e

R is such that F(ψ) = 0 is the zero map, then F e
∗ψ(1) = 0, thus ψ = 0,

which shows that F is injective. As for surjectivity, fix a morphism Ψ ∈ HomR(R,F e
∗R). By

Proposition 3.29 there exists r ∈ R such that Ψ = F e
∗ r ◦ F e. By defining ψ : R → R by

ψ(f) = rf p
e . It is clear that ψ is pe-linear and, by construction, F(ψ) = Ψ, which concludes

the proof.

Proposition 3.31. Let R be an F -finite ring of characteristic p > 0 and fix an integer e ≥ 0.
(1) The set CeR of p−e-linear maps is an R-module with action (r · φ)(f) := rφ(f), where

r, f ∈ R and φ ∈ CeR.
(2) There is an isomorphism CeR ∼= HomR(F e

∗R,R).

Proof. (1) With respect to point-wise addition of morphisms, it is clear that CeR is an abelian
group. Furthermore, the action defined above yields a p−e-linear map since (r · φ)(spe

f) =
rφ(rpe

sp
e
f) = sφ(rpe

f) = s(r · φ)(f) for all f ∈ R, thus proving that CeR is an R-module.
(2) Let C : CeR → HomR(F e

∗R,R) be the morphism that sends φ 7→ [C(φ) : F e
∗ f 7→ φ(f)].

Then C(φ) is R-linear since for all r ∈ R and F e
∗ f ∈ F e

∗R, we find C(φ)(rF e
∗ f) = C(φ)(F e

∗ r
pe
f) =
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φ(rpe
f) = rφ(f) = rC(φ)(f), and additivity follows from φ being additive. To show that C is

an R-module map, fix morphisms φ, φ′ ∈ CeR and r ∈ R. The following equalities hold for all
F e

∗ f ∈ F e
∗R and r ∈ R:

C(φ+ φ′)(F e
∗ f) = (φ+ φ′)(f) = φ(f) + φ′(f) = C(φ)(F e

∗ f) + C(φ′)(F e
∗ f),

C(r · φ)(F e
∗ f) = (r · φ)(f) = φ(rpe

f) = rφ(f) = rC(φ)(F e
∗ f).

As a result C(φ+ φ′) = C(φ) + C(φ′) and C(r · φ) = rC(φ). To conclude, we show that C is an
isomorphism. It is injective since if C(φ) = 0, then C(φ)(F e

∗ f) = 0 for all F e
∗ f ∈ F e

∗R, but this
means φ = 0. Given Φ ∈ HomR(F e

∗R,R) define φ : R → R by φ(f) = Φ(F e
∗ f). As Φ is additive,

so is φ, and for all r, f ∈ R one has that φ(rpe
f) = Φ(F e

∗ r
pe
f) = Φ(rF e

∗ f) = rΦ(F e
∗ f) = rφ(f),

thus proving that C is surjective and an isomorphism of R-modules.

The following theorem shows that, in characteristic p > 0, a differential operator of level
e ≥ 0 can be expressed as the composition of a pe-linear and a p−e-linear map. In view of
Propositions 3.30 and 3.31, and in order to make the proof more straightforward, we shall
identify F e

R = HomR(R,F e
∗R) and CeR = HomR(F e

∗R,R).

Theorem 3.32 ([AMJNB21, Remark 2.17]). Let R be regular F -finite ring and let e ≥ 0 be
an integer. Then the map

Λ: F e
R ⊗R CeR −→ D(e)

R

ψ ⊗ φ 7−→ ψφ

defines an isomorphism of R-modules.

Proof. We start by verifying that Λ is well-defined. The morphism Λ′ : F e
R × CeR → D(e)

R that
sends (ψ, φ) 7→ ψφ is well-defined because the composition is an R-linear homomorphism
F e

∗R → F e
∗R. As the category Mod(R) of modules over a commutative ring R is an abelian

category, composition of morphisms distributes over addition, hence Λ′ is a additive in each
coordinate. Now given ψ ∈ F e

R and φ ∈ CeR, for all r ∈ R and F e
∗ f ∈ F e

∗R one has that

Λ′(r · ψ, φ)(F e
∗ f) = ((r · ψ)φ)(F e

∗ f) = rψ(φ(F e
∗ f)) = (ψ(r · φ))(F e

∗ f) = Λ′(ψ, r · φ)(F e
∗ f),

hence Λ′(r · ψ, φ) = Λ′(ψ, r · φ), thus proving that Λ′ is R-bilinear. It follows that Λ′ factors
uniquely through the morphism Λ.

The fact that Λ is an isomorphism can be checked locally, i.e. Λ is an isomorphism if and
only if for each prime ideal p ∈ Spec R, the map

Λp : HomRp(Rp, F
e
∗Rp) ⊗Rp HomRp(F e

∗Rp, Rp) −→ HomRp(F e
∗Rp, F

e
∗Rp)

induced on the localization at p is an isomorphism. As a result, we may assume that R is a local
ring. Since F e

∗R is a flat R-module by Kunz’s theorem, and finitely generated by assumption,
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it follows that F e
∗R is projective. Altogether, this implies that F e

∗R is locally free, that is,
F e

∗R
∼= R⊕n for some n ≥ 1.

We construct a two-sided inverse for Λ. For each integer 1 ≤ i ≤ n, let αi : R → R⊕nand
βi : R⊕n → R be the injection and projection on the i-th coordinate. Then αiβi : R⊕n → R⊕n

is an R-linear map and ∑i αiβi is the identity of R⊕n. Define the following homomorphism:

Ω: HomR(R⊕n, R⊕n) −→ HomR(R,R⊕n) ⊗R HomR(R⊕n, R),

ξ 7−→
n∑
i=1

ξαi ⊗ βi.

Given a differential operator ξ ∈ HomR(R⊕n, R⊕n), one has

(ΛΩ)(ξ) = Λ
(

n∑
i=1

ξαi ⊗ βi

)
=

n∑
i=1

ξαiβi = ξ
n∑
i=1

αiβi = ξ,

thus Ω is a right-inverse for Λ. Conversely, take ψ ∈ HomR(R,R⊕n) and φ ∈ HomR(R⊕n, R).
Note that φαi is an R-linear endomorphism of R, thus φαi ∈ EndR(R) ∼= R. As a result,

(ΩΛ)(ψ ⊗ φ) = Ω(ψφ) =
n∑
i=1

ψφαi ⊗ βi =
n∑
i=1

ψ ⊗ φαiβi = ψ ⊗ φ

(
n∑
i=1

αβi

)
= ψ ⊗ φ.

Since the elements of the form ψ ⊗ φ generate the tensor product, this shows that Ω is a
left-inverse for Λ, therefore Λ is an isomorphism.
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Chapter 4

Bernstein-Sato Theory in Positive Characteristic

One of the guiding problems in algebraic geometry is the classification of algebraic varieties.
Consider the simplest case: fix an algebraically closed field K, let R = K[x1, . . . , xn] be a
polynomial ring and let X = V (I) ⊆ Kn be an affine algebraic variety, where I ⊆ R is an ideal.
If I is generated by polynomials f1, . . . , fr ∈ R, we say that X is singular at a point x ∈ X

if the differential of the function (f1, . . . , fr) : Kn → Kr does not have maximal rank at x. If
Y = V (J) ⊆ Kn is another affine algebraic variety, in order to tell if X and Y are isomorphic,
one may look at their singularities.

One of the goals of Bernstein-Sato theory is to construct algebraic invariants from varieties
and their singularities, in order to distinguish and classify them.

In this chapter we start by giving the basic definitions and results of the theory over the
complex numbers. Then in the positive characteristic setting, we describe in greater depth the
most relevant algebraic invariants that will be of interest to us in Chapter 5.

4.1. Bernstein-Sato theory in characteristic zero

Bernstein-Sato theory in characteristic zero can be developed in great generality, for instance,
for any regular algebra over a field K of characteristic zero. For the sake of simplicity and since
considering an arbitrary field of characteristic zero other than the complex numbers does not
provide further insight, we shall take K = C. We refer the reader interested in the general case
to [AMJNB21, Sections 3 and 5].

Let R = C[x1, . . . , xn], fix a polynomial f ∈ R and let x ∈ Cn be a point where f(x) = 0. A
manner to measure how singular is f at x is to study how fast the function 1/f blows up at x.
This motivates the following definition:

Definition 4.1. The log-canonical threshold of f at x is

lctx(f) := sup
λ ∈ R>0

∣∣∣∣∣∣
∫
B(x)

1
|f |2λ

< ∞ for some neighborhood B(x) of x


One can show that 0 < lctx(f) ≤ 1. Roughly speaking, the smaller the log-canonical
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threshold of f at x, the faster the function 1/|f | blows up at x, hence the more singular it is.
In particular, when f is smooth at x, the log-canonical threshold is 1.

Example 4.2 ([BFS13, Example 2.3]). Let f = xa1
1 · · ·xan

n ∈ R be a monomial and let B ⊆ Cn

be an open neighborhood of the origin. In order to compute the supremum of λ ≥ 0 such that
the integral ∫

B

1
|xa1

1 · · ·xan
n |2λ

converges, one may use the change of variables theorem. Altogether, the convergence of the
previous integral is equivalent to the convergence of∫ r1 · · · rn

r2λa1
1 · · · r2λan

n

=
∫ 1
r2λa1−1

1 · · · r2λan−1
n

in a neighborhood of the origin. This occurs if and only if 2λai − 1 < 1 for all i = 1, . . . , n,
therefore

lct0(f) = min
{ 1
a1
, . . . ,

1
an

}
.

Rings of differential operators are helpful as well to construct algebraic invariants. For
example, set f = x1 ∈ R and let ∂x1 be the partial derivative with respect to x1, which is a
C-linear differential operator on R. Then one has that ∂x1x

s+1
1 = (s + 1)xs1 for each integer

s ≥ 0, which suggests that the polynomial b(s) = s + 1 is an invariant associated to f . This
same construction can be repeated for any polynomial.

Let DR|C be the ring of C-linear differential operators on R and f ∈ R a polynomial. Bern-
stein [B72] and Sato [SS90], independently and in different contexts, discovered the following
fact: there exists a differential operator P (s) ∈ DR|C[s] and a polynomial b(s) ∈ C[s] such that

P (s) · f s+1 = b(s)f s.

This results in the following definition:

Definition 4.3. The Bernstein-Sato polynomial of a polynomial f ∈ C[x1, . . . , xn], denoted
by bf (s), is the minimal monic generator of the ideal{

b(s) ∈ C[s]
∣∣∣ ∃P (s) ∈ DR[s] such that P (s) · f s+1 = b(s)f s for all s ∈ Z≥0

}
⊆ C[s].

This polynomial is also known as the b-function of f .

Example 4.4. Let f = x2 + y3 ∈ C[x, y], which exhibits a singularity at the origin since the
differential has rank zero. One can verify that( 1

12y∂
2
x∂y + 1

27∂
3
y + 1

4∂xs+ 3
8∂

2
x

)
· f s+1 =

(
s+ 5

6

)
(s+ 1)

(
s+ 7

6

)
f s.

Furthermore, in this case, bf (s) = (s+ 5
6)(s+ 1)(s+ 7

6).
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The Bernstein-Sato polynomial exhibits a number of particularly nice properties. For in-
stance, Kashiwara proved that the roots of the Bernstein-Sato polynomial are rational and
negative [K76], and Kollár showed that the largest among these is equal to the negative log-
canonical threshold [K97].

A closely related invariant to the log-canonical threshold is the multiplier ideal of a polyno-
mial, defined as follows:

Definition 4.5. Let f ∈ C[x1, . . . , xn]. For each real number λ ≥ 0, the multiplier ideal of f
with exponent λ is

J (fλ) =
{
g ∈ C[x1, . . . , xn]

∣∣∣∣∣
∫
B(x)

|g|2

|f |2λ
< ∞ for some neighborhood B(x) of x

}
.

Roughly speaking, the ideal J (fλ) consists of polynomials that dampen the growth of 1/|f |2λ

on a neighborhood of the chosen point. Some well-known properties of these ideals are listed
below:

Proposition 4.6 ([BFS13, Proposition 2.23]). Let f ∈ C[x1, . . . , xn], then:
(1) For a real number λ > 0 sufficiently small, J (fλ) = R.
(2) If λ′ > λ, then J (fλ′) ⊆ J (fλ).
(3) The log-canonical threshold of f is lct(f) = sup {λ ∈ R≥0 | J (fλ) = R}.
(4) For each real number λ > 0, there exists ε = ε(λ) > 0 such that J (fλ) = J (fλ+ε).
(5) There exist λ ∈ R>0 such that J (fλ−ε) ⊋ J (fλ) for all ε > 0.

The proposition above shows that the multiplier ideals of a polynomial are right semicontin-
uous, and that there are real numbers where these ideals jump, thus motivating the following:

Definition 4.7. The jumping numbers of f ∈ C[x1, . . . , xn] are real numbers c ≥ 0 such that
J (f c) ⊊ J (fλ−ε) for all ε > 0.

In addition, as the theorem below states, in order to know the jumping numbers of a poly-
nomial, it suffices to compute those in the interval [0, 1] ⊆ R:

Theorem 4.8. Let f ∈ C[x1, . . . , xn], then for each real number λ ≥ 1,

J (fλ+1) = (f)J (fλ).

Consider the more general setting of an ideal a = (f1, . . . , fr) ⊆ C[x1, . . . , xn]. It was shown
by Budur, Mustaţă and Saito in [BMS06] that one can construct the corresponding Bernstein-
Sato polynomial ba(s) ∈ C[s], and that it satisfies the same properties as the Bernstein-Sato
polynomial of a principal ideal. Likewise, for each real number λ ≥ 0, it is possible to define
the multiplier ideal J (aλ).

It is worth mentioning that we have presented the definition of these ideals using tools from
analysis. Instead, one can define these using algebraic or algebro-geometric tools, thus opening
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the theory to fields of characteristic zero other than the complex numbers. See, for instance,
the survey by Benito, Faber and Smith [BFS13], or the survey by Àlvarez-Montaner, Jeffries
and Núñez-Betancourt [AMJNB21].

4.2. Frobenius powers and Frobenius roots

In this section we introduce two well-known operations on the ideals of a ring of characteristic
p > 0 which are essential for the study of singularities. The first of such operations is the
Frobenius power, which we have already introduced in Section 3.2, but we repeat it here for
the sake of completeness.

Definition 4.9. Let R be a ring of characteristic p > 0 and let I ⊆ R be an ideal. For an
integer e ≥ 0, the e-th Frobenius power of I is the ideal

I [pe] := F e(I)R = (fpe | f ∈ I).

By convention, we set I [p0] = I.

Proposition 4.10. Let R be a ring of characteristic p > 0 and let I = (f1, . . . , fn) ⊆ R be
an ideal generated by n elements.

(1) The Frobenius power I [pe] is generated by the elements fp
e

1 , . . . , f
pe

n .
(2) One has that In(pe−1)+1 ⊆ I [pe] for each integer e ≥ 0.
(3) The families of ideals {Is}s≥0 and {I [pe]}e≥0 are cofinal.

Proof. (1) The ideal I [pe] is generated by the elements gpe where g ∈ I, thus g = g1f1+· · ·+gnfn
for some g1, . . . , gn ∈ R and gpe = gp

e

1 f
pe

1 + · · · + gp
e

n f
pe

n , which proves a[pe] ⊆ (fp
e

1 , . . . , f
pe

n ). The
converse inclusion is clear.

(2) The ideal In(pe−1)+1 is generated by elements of the form f s1
1 · · · f sn

n , where s1, . . . , sn ≥ 0
and s1 + · · · + sn = n(pe − 1) + 1. If all the si are ≤ pe − 1, one reaches a contradiction since
s1 + · · · + sn ≤ n(pe − 1) < n(pe − 1) + 1. Therefore there is some si ≥ pe, which proves that
an(pe−1)+1 ⊆ a[pe].

(3) By part (2) one has In(pe−1)+1 ⊆ I [pe] for all integers e ≥ 0 and, from the definition of
Frobenius power, it follows that I [pe] ⊆ Ip

e .

As we showed in Example 3.23, the assumption that I is a finitely generated ideal of R
cannot be removed.

Proposition 4.11. Let R be a ring of characteristic p > 0. Let I, J ⊆ R be ideals and let
e ≥ 0 be an integer.

(1) For each integer s ≥ 0, Is[pe] = I [pe]s.
(2) One has that (I + J)[pe] = I [pe] + J [pe].
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(3) One has that (I · J)[pe] = I [pe] · J [pe].
(4) If d ≥ 0 is an integer, I [pd+e] = (I [pd])[pe].

Proof. Since the e-th iteration of the Frobenius is a ring endomorphism of R,
(1) Is[pe] = F e(Is)R = F e(I)sR = I [pe]s

(2) (I + J)[pe] = F e(I + J)R = F e(I)R + F e(J)R = I [pe] + J [pe]

(3) (I · J)[pe] = F e(I · J)R = F e(I)R · F e(J)R = I [pe] · J [pe]

(4) I [pd+e] = F d+e(I)R = F e(F d(I)R)R = (I [pd])[pe].

The second operation that we define on an ideal I of a regular F -finite ring is the Frobenius
root, denoted by I [1/pe]. This class of ideals was first defined in [AMBL05] for principal ideals,
and afterwards generalized to arbitrary ideals in [BMS08]

Definition 4.12 ([AMBL05], [BMS08, Definition 2.2]). Let R be a regular F -finite ring of
characteristic p > 0 and let I ⊆ R be an ideal. For an integer e ≥ 0, the e-th Frobenius root of
I, denoted by I [1/pe], is the smallest ideal of R in the sense of inclusion such that I ⊆ (I [1/pe])[pe].
By convention, we set I [1/p0] = a.

Our next task is to show that Frobenius roots are well-defined:

Lemma 4.13. Let M be a finitely generated projective module over a ring R.
(1) Let {Nλ}λ be a collection of R-modules. Then there is an isomorphism (∏λR/Jλ)⊗RM ∼=∏

λ(M/JλM).
(2) Let {Jλ}λ be a collection of ideals of R. Then there is an equality ⋂λ(JλM) = (⋂λ Jλ)M .

Proof. (1) As M is a finitely generated projective module, it is finitely presented (for instance,
see [Stacks, Lemma 10.78.2]), thus there exist integers m,n ≥ 0 such that R⊕m → R⊕n → M →
0. Tensoring with ∏

λNλ is a right-exact functor, thereby one obtains the following diagram
with exact rows:

(∏
λ

Nλ

)
⊗R R

⊕m
(∏

λ

Nλ

)
⊗R R

⊕n
(∏

λ

Nλ

)
⊗RM 0

∏
λ

(Nλ ⊗R R
⊕m)

∏
λ

(Nλ ⊗R R
⊕n)

∏
λ

(Nλ ⊗RM) 0.

u v

The map u : (∏λNλ) ⊗R R
⊕m → ∏

λ(Nλ ⊗R R
⊕m) is easily seen to be an isomorphism as it

sends (nλ)λ⊗R (r1, . . . , rm) 7→ (nλ⊗R (r1, . . . , rm))λ, and similarly for v. Extending on the right
with zeros and applying the five lemma, it follows that (∏λNλ) ⊗RM ∼=

∏
λ(Nλ ⊗RM).

(2) Consider the map φ : R → ∏
λR/Jλ sending f 7→ (fλ)λ, where fλ denotes the equivalence

class of f in R/Jλ. An element f ∈ R is sent to zero by φ if and only if f is in each Jλ, thus
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one has the following short exact sequence:

0
⋂
λ

Jλ R
∏
λ

R

Jλ
0.φ

Because M is, in particular, a flat R-module, the functor − ⊗R M is exact, thus one obtains
the following diagram with exact rows:

0
(⋂
λ

Jλ
)

⊗RM M

(∏
λ

R

Jλ

)
⊗RM 0

0
(⋂
λ

Jλ
)
M M

(∏
λ

M

JλM

)
0.

∼

φ⊗M

∼

ψ

The map ψ : M → ∏
λ(M/JλM) sends m 7→ (mλ)λ, thus its kernel is kerψ = ⋂

λ(JλM). By
exactness, it follows that (⋂λ Jλ)M = ⋂

λ(JλM).

Proposition 4.14. Let R be a regular F -finite ring of characteristic p > 0 and let I ⊆ R be
an ideal. For each integer e ≥ 0, the e-th Frobenius root of I exists.

Proof. Consider the collection of ideals A = {J | J is an ideal of R and I ⊆ J [pe]}. We claim
that: ( ⋂

J∈A
J
)[pe]

=
⋂
J∈A

J [pe].

The R-module F e
∗R is flat by Kunz’s theorem and, in particular, it is projective. Then by

Lemma 4.13,

F e
∗

( ⋂
J∈A

J
)[pe]

=
( ⋂
J∈A

J
)
F e

∗R =
⋂
J∈A

(JF e
∗R) =

⋂
J∈A

(F e
∗J

[pe]),

which proves the equality. By construction of the collection A, it follows that I ⊆ (⋂J∈A J)[pe]

and that ⋂J∈A J is the smallest ideal containing I in its Frobenius power. As a result, the
Frobenius root of I exists and is equal to ⋂J∈A J .

In Section 3.3 we introduced p−e-linear maps, namely, additive maps φ : R → R such that
φ(rpe

x) = rφ(x) for all r, x ∈ R. Furthermore, we showed that the set of p−e-linear maps is
isomorphic to HomR(F e

∗R,R). We give these maps a name of their own:

Definition 4.15 ([B13, Definition 2.1]). Let R be an F -finite ring of characteristic p > 0.
For an integer e ≥ 0, the set of Cartier operators of level e on R is

CeR := HomR(F e
∗R,R).

In particular, when e = 0 one has F 0
∗R

∼= R, hence C0
R

∼= EndR(R) ∼= R.
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4.2. Frobenius powers and Frobenius roots

As proven in Proposition 3.31, for each integer e ≥ 0 the set of Cartier operators of level e
has an R-module structure given by (r · φ)(F e

∗ f) := rφ(F e
∗ f), where r, f ∈ R, and φ ∈ CeR.

Next we define the algebra of Cartier operators on R. Although we will not make use of this
algebra, it is interesting in its own right.

Definition 4.16 ([B13, Definition 2.2]). Let R be an F -finite ring of characteristic p > 0.
The algebra of Cartier operators on R is

CR :=
∞⊕
e=0

CeR.

By the proposition below, this algebra admits, in fact, an R-algebra structure.

Proposition 4.17. Let R be a regular F -finite ring of characteristic p > 0.
(1) Let α ∈ CdR and β ∈ CeR be Cartier operators of levels d and e, respectively. Then the

composition α ◦ β is a Cartier operator of level d+ e, defined by

(α ◦ β)(F d+e
∗ f) = α(F d

∗ β(F e
∗ f)).

In particular, CdR ◦ CeR = {α ◦ β | α ∈ CdR, β ∈ CeR} ⊆ Cd+e
R .

(2) The algebra of Cartier operators on R is a non-commutative R-algebra.

Proof. (1) Use the characterization of Cartier operators as p−e-linear maps. The composition
α◦β is an additive map R → R, as is every composition of additive maps, and for each r, f ∈ R,
one has that

(α ◦ β)(rpd+e

f) = α(β(rpd+e

f)) = α(rpd

β(f)) = r(α ◦ β)(f),

thus α ◦ β is a p−(d+e)-linear map.
(2) As previously noted, C0

R
∼= R, therefore the structure map R → CR is the injection

R
∼−→ C0

R ↪−→ CR. It follows from the definition of CR that it is an abelian group with respect to
point-wise addition of morphisms, with the zero map as the neutral element. Multiplication on
CR is defined by composition of morphisms as given in part (1), where the neutral element is
the identity map of R, which is a Cartier operator of level 0. As composition of morphisms is
in general not commutative, CR is a non-commutative R-algebra.

For an ideal I ⊆ R, denote by CeR · I the following ideal of R:

CeR · I = (φ(F e
∗ f) | φ ∈ CeR, f ∈ I).

Cartier operators and the ideals of the form CeR · I prove useful to give a characterization of the
Frobenius roots.

Proposition 4.18 ([BMS08, Proposition 2.5]). Let R be an F -finite ring of characteristic p >
0. Fix an integer e ≥ 0 and suppose that F e

∗R is a free R-module with basis {F e
∗x1, . . . , F

e
∗xn}.
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4. Bernstein-Sato Theory in Positive Characteristic

Let I = (f1, . . . , fr) be an ideal of R and for each generator write

F e
∗ fi =

n∑
j=1

fijF
e
∗xj.

Then the e-th Frobenius root of I is generated by the fij, that is to say,

I [1/pe] = CeR · I = (fij | 1 ≤ i ≤ r, 1 ≤ j ≤ n).

In particular, CeR · I does not depend on the basis.

Proof. For each basis element F e
∗xi, let (F e

∗xi)∗ : F e
∗R → R be the map given by

(F e
∗xi)∗(F e

∗xj) =
1 if i = j,

0 otherwise,

and extend it linearly to F e
∗R. It follows that (F e

∗xi)∗ is the dual of F e
∗xi, and that it is a Cartier

operator of level e. Furthermore, each Cartier operator φ ∈ CeR is an R-linear combination of
the (F e

∗xi)∗, thus the second equality follows and we need only prove that

I [1/pe] = (fij | 1 ≤ i ≤ r, 1 ≤ j ≤ n).

On the one hand, by assumption one has fi = ∑n
j=1 f

pe

ij xj for each generator fi of I, therefore
I ⊆ (fij | 1 ≤ i ≤ r, 1 ≤ j ≤ n)[pe]. It follows from the minimality of the Frobenius root that
I [1/pe] ⊆ (fij | 1 ≤ i ≤ r, 1 ≤ j ≤ n). For the converse inclusion, choose generators for the ideal
I [1/pe], that is I [1/pe] = (g1, . . . , gm). Then since I ⊆ (I [1/pe])[pe], one can write fi = ∑m

k=1 f̃ikg
pe

k

for some f̃ik ∈ R. In turn, write F e
∗ f̃ik = ∑n

j=1 hijkF
e
∗xj for some hijk ∈ R. Then F e

∗ fi reads

F e
∗ fi =

m∑
k=1

gkF
e
∗ f̃ik =

n∑
j=1

(
m∑
k=1

hijkgk

)
F e

∗xj,

and since the F e
∗xj are a basis, it follows that fij = ∑m

k=1 hijkgk ∈ I [1/pe], thus proving that
(fij | 1 ≤ i ≤ r, 1 ≤ j ≤ n) ⊆ I [1/pe].

Let R be a regular F -finite ring containing a perfect field F of characteristic p > 0. Recall
that given an integer e ≥ 0, D(e)

R = HomRpe (R,R) denotes the set of F-linear differential
operators on R of level e (see Section 3.2). Given an ideal I ⊆ R, we denote by D(e)

R · I the
following ideal of R:

D(e)
R · I = (ξ(f) | ξ ∈ D(e)

R , f ∈ I).

As Theorem 3.32 suggests and the proposition below confirms, there is a close interplay between
differential operators, pe-linear maps and Cartier operators.

Proposition 4.19 ([QG21a, Lemma 2.3]). Let R be a regular F -finite ring, let I, J ⊆ R be
ideals and fix an integer e ≥ 0. Then:
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4.2. Frobenius powers and Frobenius roots

(1) One has that D(e)
R · I = (CeR · I)[pe].

(2) One has that CeR · I ⊆ J if and only if I ⊆ J [pe].
(3) One has that D(e)

R · I = D(e)
R · J if and only if CeR · I = CeR · J .

Proof. (1) For the proof of this statement it will be convenient the characterization of Cartier
operators as p−e-linear maps φ : R → R. To show (CeR · I)[pe] ⊆ D(e)

R · I, we note that the
ideal (CeR · I)[pe] is generated by elements of the form φ(f)pe = (F eφ)(f), where f ∈ R and
φ ∈ CeR. Now the e-th iteration of the Frobenius is a pe-linear map and, by Theorem 3.32, the
composition F eφ is a differential operator of level e, whence the inclusion follows.

As for D(e)
R · I ⊆ (CeR · I)[pe], a differential operator ξ ∈ D(e)

R = HomRpe (R,R) can be factored
as ξ = ψφ, where ψ is a pe-linear map and φ ∈ CeR. Furthermore, ψ is of the form ψ(f) = rf p

e

for some r ∈ R by Proposition 3.28; in particular each r ∈ R induces a pe-linear map. As
a result, D(e)

R · I is generated by elements of the form (ψφ)(f) = rφ(f)pe , which proves the
containment.

(2) Suppose that CeR · I ⊆ J ; then by definition of Frobenius root, I ⊆ (CeR · I)[pe] ⊆ J [pe].
Conversely, if I ⊆ J [pe], by the minimality of Frobenius roots one has CeR · I ⊆ J .

(3) Suppose that D(e)
R · I = D(e)

R ·J , which by part 4.19.(1) is equivalent to (CeR · I)[pe] = (CeR ·
J)[pe]. Applying Frobenius roots to both sides and using Proposition 4.21 yields CeR · I = CeR ·J .
The reverse implication folllows from part 4.19.(1).

The proposition above allows us to give a characterization of Frobenius roots in terms of
Cartier operators in a more general setting than when F e

∗R is a free R-module:

Proposition 4.20. Let R be a regular F -finite ring of characteristic p > 0 and let I ⊆ R be
an ideal. Denote by DR the ring of F-linear differential operators on R, where F is a perfect
field of characteristic p > 0 contained in R. For each integer e ≥ 0,

CeR · I = I [1/pe].

Proof. As the identity map of R is a differential operator of level zero and D(0)
R ⊆ D(e)

R , one
has that I ⊆ D(e)

R · I = (CeR · I)[pe], where the second equality is due to Proposition 4.19. The
minimality of Frobenius roots implies that I [1/pe] ⊆ CeR·I. In order to show that the containment
is in fact an equality, it suffices to verify it locally, i.e. check that it holds for every localization
of R at a prime ideal p ⊆ R. At the local ring Rp, the ideal I extends to the ideal IRp, hence
without loss of generality we may assume that R is a regular local ring. Now F e

∗R is flat by
Kunz’s theorem, and is defined over a a local ring, thus it is locally free, which puts us in the
situation of Proposition 4.18, from where the equality follows.

In view of the proposition above, the notations I [1/pe] and CeR · I for Frobenius roots coincide.
Hereinafter, we shall almost exclusively use second notation. To conclude this section we prove
several handy properties of Frobenius roots.
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Proposition 4.21. Let R be a regular F -finite ring of characteristic p > 0 and let I, J ⊆ R

be ideals. For each integer e ≥ 0,

I · (CeR · J) = CeR · (I [pe] · J).

In particular, CeR · I [pd+e] = I · (CeR · I [pd]).

Proof. The ideal I · (CeR · J( is generated by elements of the form fφ(F e
∗ g), with f ∈ I, g ∈ J

and φ ∈ CeR. As φ is R-linear, one has fφ(F e
∗ g) = φ(F e

∗ f
pe
g), which is an element in the ideal

CeR · (I [pe] · J). The other inclusion follows from the same observation. The second statement is
a consequence of the first and Proposition 4.11.

Proposition 4.22 ([QG21b, Proposition II.48]). Let R be a regular F -finite ring of charac-
teristic p > 0 and I ⊆ R an ideal. Let d, e ≥ 0 be integers.

(1) One has that CeR · CdR · I = Cd+e
R · I.

(2) One has that CeR · I = Cd+e
R · I [pd].

Proof. (1) The inclusion (⊆) follows from Proposition 4.17 because CeR ◦ CdR ⊆ Cd+e
R . For the

converse, let F d : R → F d
∗R be the d-th iteration of the Frobenius, i.e. the homomorphism

f 7→ F d
∗ f

pd = fF d
∗ 1. Fix an splitting σ : F d

∗R → R of F d, that is to say, a map satisfying
σ ◦ F d = IdR, which exists by [QG21b, Proposition II.6]. Note that the right-hand side is
generated by elements of the form φ(F d+e

∗ f), where φ ∈ Cd+e
R and f ∈ R, therefore φ(F d+e

∗ f) =
(σ ◦ F d ◦ φ)(F d+e

∗ f). The containment follows from the observation that F d ◦ φ ∈ CeR is a
p−e-linear map and, by definition of the splitting, one has that σ ∈ CdR.

(2) The equality follows from Proposition 4.21 and (1), since

CeR · I = CeR · (I · CeR ·R) = CeR · CdRI [pd] = Cd+e
R · I [pd].

Proposition 4.23. Let R be a regular F -finite ring of characteristic p > 0 and let I ⊆ R be
an ideal.

(1) If f : R → S is a homomorphism of regular F -finite rings, CeS · (f(I)S) ⊆ f(CeR · I)S.
(2) If f : R ∼−→ S is an isomorphism of regular F -finite rings, CeS · (f(I)S) = f(CeR · I)S.

Proof. (1) By definition of Frobenius root, I ⊆ (CeR · I)[pe], hence

f(I)S ⊆ f((CeR · I)[pe])S = f(CeR · I)[pe]S = (f(CeR · I)S)[pe]

and, by the minimality, one concludes that CeS · (f(I)S) ⊆ f(CeR · I)S.
(2) The containment (⊆) is due to part (1). For the converse consider the ideal J = f(I)S;

then applying part (1) gives CeR · (f−1(J)R) ⊆ f−1(CeS · J)R, that is to say,

CeR · I ⊆ f−1(CeS · f(I)S)R ⊆ f−1(f(CeR · I)S) = CeR · I,

whence CeR · I = f−1(CeS · f(I)S)R, and the assertion follows.
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4.3. Frobenius powers and Frobenius roots

Proposition 4.24 ([BMS08, Lemma 2.7]). Let R be a regular F -finite ring and I ⊆ R an
ideal. If W ⊆ R is a multiplicative subset, then for each integer e ≥ 0,

W−1(CeR · I) = CeW−1R · (W−1I).

Proof. The ideal CeR · I may be viewed as the image of the map Φ: CeR ⊗R R → R sending
φ⊗ f 7→ φ(F e

∗ f). This gives a short exact sequence of R-modules

CeR ⊗R I CeR · I 0Φ

and, since localization is an exact functor, by localizing at the multiplicative set W one obtains
an exact sequence of W−1R-modules:

CeW−1R ⊗W−1RW
−1I W−1(CeR · I) 0.W−1Φ

The isomorphism of the left piece follows from W−1(CeR ⊗R I) ∼= CeW−1R ⊗W−1RW
−1I and

W−1CeR = W−1 HomR(F e
∗R,R) ∼= HomW−1R(F e

∗W
−1R,W−1R) = CeW−1R.

Now the localized map W−1Φ sends ψ ⊗ g 7→ ψ(F e
∗ g), hence its image is CeW−1R · (W−1I). As

the sequence is exact, there is an equality of W−1R-modules CeW−1R · (W−1I) = W−1(CeR · I),
and thus an equality of ideals in the ring W−1R, which proves the proposition.

Proposition 4.25. Let R = F[x1, . . . , xm] and S = F[x1, . . . , xm, . . . , xn] be polynomial rings
over a perfect field F of characteristic p > 0, and let I ⊆ R be an ideal. For each integer e ≥ 0,

(CeR · I)S = CeS · (IS).

Proof. By Proposition 2.33, F e
∗R is a free R-module and F e

∗S is a free S-module. Let B(F e
∗R) =

{F e
∗x

a1
1 · · ·xam

m | 0 ≤ a1, . . . , am ≤ pe} and B(F e
∗S) = {F e

∗x
b1
1 · · ·xbn

n | 0 ≤ b1, . . . , bn ≤ pe} be the
standard bases, which satisfy B(F e

∗R) ⊆ B(F e
∗S). For the sake of simplicity in notation, denote

by F e
∗x

a an element in the basis B(F e
∗R).

Let f1, . . . , fr ∈ R be generators for the ideal I; note that the extension IS is generated by
the same elements. Since R ⊆ S and B(F e

∗R) ⊆ B(F e
∗S), the expression of the F e

∗ fi in both
basis is the same, namely

F e
∗ fi =

∑
F e

∗xa

fiaF
e
∗x

a.

On the one hand, CeR · I = (fia | 1 ≤ i ≤ r, F e
∗x

a ∈ B(F e
∗R)) by Proposition 4.18, and the

extension (CeR · I)S is generated by the same elements. On the other hand, CeS · I is generated
by the fia as well, from where the equality (CeR · I)S = CeS · (IS) follows.
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4.3. The ν-invariants

In this and subsequent sections, we present some well-known algebraic invariants involved in the
positive characteristic setting of Bernstein-Sato theory. The first invariant that we study are
the ν-invariants of an ideal a of a regular ring of characteristic p > 0. These were introduced by
Mustaţă , Takagi and Watanabe in [MTW05], with the purpose of studying the non-vanishing
of the direct summands of a local cohomology module associated to the ideal a.

Given an ideal I in a ring R, the powers of I give a descending filtration · · · ⊆ I3 ⊆ I2 ⊆ I.
In a well-behaved situation, such as when I ̸= 0 and R is reduced ring with no nilpotents, the
powers of I are all different. Suppose, in addition, that R is a regular F -finite ring. Then one
can compute the e-th Frobenius root of each power of I, giving in turn a descending chain

· · · ⊆ CeR · I3 ⊆ CeR · I2 ⊆ CeR · I.

In this situation, however, Frobenius roots of consecutive powers of I may be equal, or different,
i.e. there is a “jump”. This behavior is illustrated by the following example:

Example 4.26. Let R = F[x1, . . . , xn] be a polynomial ring over a perfect field F of charac-
teristic p > 0, and let m = (x1, . . . , xn) be the homogeneous maximal ideal. Fix an integer e ≥ 0
and let N = n(pe − 1); we claim that CeR · mN = R. Indeed, one has that (x1 · · ·xn)pe−1 ∈ mN

and F e
∗ (x1 · · ·xn)pe−1 is an element in the standard basis of F e

∗R as given in Proposition 2.33
and Definition 2.34. It follows from Proposition 4.18 that 1 ∈ CeR ·mN , which proves the claim.
In particular,

CeR · mN = CeR · mN−1 = · · · = CeR · m2 = CeR · m = R.

In contrast, CeR · mN+1 = m. By Proposition 4.19 the containment CeR · mN+1 ⊆ m is equivalent
to mN+1 ⊆ m[pe], and the latter holds by Proposition 4.10. Regarding the converse, for each
indeterminate xi that generates m one has xi(x1 · · ·xn)pe−1 ∈ mN+1, and F e

∗xi(x1 · · ·xn)pe−1 =
xiF

e
∗ (x1 · · · x̂i · · ·xn)pe−1, where x̂i denotes that xi is not in the product. Again by Proposi-

tion 4.18, it follows that xi ∈ CeR · mN+1, which shows that CeR · mN+1 = m.

Proposition 4.27. Let R be a Noetherian ring of characteristic p > 0, and let a, J ⊆ R be
ideals such that a ⊆ rad J . For each integer e ≥ 0, there exists ℓ ∈ Z≥0 such that aℓ ⊆ J [pe].

Proof. By assumption the ideals a and J are finitely generated, hence there exists an integer
n ≥ 0 such that an ⊆ J . Furthermore, the families of ideals {Js}s≥0 and {J [pe]}e≥0 are cofinal
by Proposition 4.10, thus one can choose m ≥ 0 large enough so that Jm ⊆ J [pe]. By letting
ℓ = mn, it follows that aℓ ⊆ J [pe].

Definition 4.28 ([MTW05]). Let R be a regular F -finite ring and fix an ideal a ⊆ R. Let
J ⊆ R be an ideal containing a in its radical. Given an integer e ≥ 0, define

νJa (pe) := max
{
ℓ ≥ 0 | aℓ ̸⊆ J [pe]

}
.
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The set of ν-invariants of a of level e, denoted by ν•
a (pe), is the set of integers νJa (pe) obtained

as J ranges through the ideals of R containing a in its radical, that is

ν•
a (pe) :=

{
νJa (pe)

∣∣∣ J ⊆ R such that a ⊆ rad J
}
.

Example 4.29. Following Example 4.26, we have shown that

νmm(pe) = n(pe − 1).

In fact, the application of Theorem 5.47 to m viewed as the ideal of maximal minors of a row
matrix shows that the set of ν-invariants of m of level e is

ν•
m(pe) = {spe + n(pe − 1) | s ∈ Z≥0} .

Proposition 4.30 ([QG21b, Proposition IV.12]). Let R be a regular F -finite ring and a ⊆ R

be an ideal. Then the set of ν-invariants of a of level e ≥ 0 is

ν•
a (pe) =

{
ℓ ∈ Z≥0

∣∣∣ CeR · aℓ+1 ̸= CeR · aℓ
}

=
{
ℓ ∈ Z≥0

∣∣∣ D(e)
R · aℓ+1 ̸= D(e)

R · aℓ
}
.

Proof. The second equality follows from Proposition 4.19, thus we need only show that ν•
a (pe) ={

ℓ ∈ Z≥0

∣∣∣ CeR · aℓ+1 ̸= CeR · aℓ
}
. Let ℓ = νJa (pe), that is to say, aℓ ̸⊆ J [pe] and aℓ+1 ⊆ J [pe]. By

Proposition 4.19, this is equivalent to CeR · aℓ ̸⊆ J and CeR · aℓ+1 ⊆ J . Since CeR · aℓ+1 ⊆ CeR · aℓ

and there exists an element f ∈ CeR · aℓ − J , it follows that the containment is strict.
Conversely, let ℓ ∈ Z≥0 be an integer such that CeR · aℓ+1 ⊊ CeR · aℓ, which is equivalent to

aℓ+1 ⊊ (CeR · aℓ)[pe] by Proposition 4.19, and let J := CeR · aℓ+1. As the identity map of R is a
differential operator of level 0, it follows that aℓ+1 ⊆ D(e)

R · aℓ+1, which implies aℓ+1 ⊆ J [pe]. In
particular, J contains a in its radical. Moreover, aℓ ̸⊆ J [pe], for otherwise CeR ·aℓ ⊆ J = CeR ·aℓ+1,
but this contradicts the original assumption, thereby ℓ = νJa (pe).

Proposition 4.31. Let R be a regular F -finite ring and let I = (f1, . . . , fn) ⊆ R be an ideal
generated by n elements. For each integer e ≥ 0,

νII (pe) ≤ n(pe − 1).

Proof. This follows from Proposition 4.10 since In(pe−1)+1 ⊆ I [pe].

To finish the section and to illustrate how the computations work, we compute the ν-
invariants of a monomial ideal in a polynomial ring, that is, an ideal generated by monomials.

Example 4.32. Let R = F[x, y] be a polynomial ring over a perfect field F of characteristic
p > 0, consider the ideal a = (x2, y3) and fix an integer e ∈ Z≥0. For n ∈ Z≥0, one has that
an = (x2iy3j | i+ j = n), thus the Frobenius root CeR · an is generated by monomials of the form
xayb. Given integers a, b ≥ 0, one can compute ν(a, b) = max{ℓ ≥ 0 | xayb ∈ CeR · aℓ}. Since
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xayb ̸∈ CeR · aν(a,b)+1, it follows that ν(a, b) is ν-invariant of a of level e. Since the ideals CeR · an

are generated by the monomials xayb, it follows that all the ν-invariants are of this form, that
is, ν•

a (pe) = {ν(a, b) | a, b ∈ Z≥0}. Fix some integers a, b ∈ Z≥0, then xayb ∈ CeR · an if and only
the following conditions are met:

(a) There exist integers 0 ≤ r, s < pe such that xape+rybp
e+s ∈ an.

(b) There exist non-negative integers i+ j = n with 2i ≤ ape + r and 3j ≤ bpe + s.
As the sum i+ j = n must be maximized, one takes r = s = pe− 1, thus the conditions become
2i ≤ (a+ 1)pe − 1 and 3j ≤ (b+ 1)pe − 1, therefore

i =
⌊

(a+ 1)pe − 1
2

⌋
, j =

⌊
(b+ 1)pe − 1

3

⌋
,

and the optimum is n = ν(a, b) = i+ j. The values of i and j depend on a, b, p and e.
First take p = 2. Then (a+1)pe−1 ≡ 1 (mod 2), hence i = (a+1)pe−2

2 . The value of j depends
on the choice of e ∈ Z≥0:

• If 2 | e, one has pe ≡ 1 (mod 3).

– When b ≡ 0 (mod 3), (b+ 1)pe − 1 ≡ 0 (mod 3), thus j = (b+1)pe−1
3 .

– When b ≡ 1 (mod 3), (b+ 1)pe − 1 ≡ 1 (mod 3), thus j = (b+1)pe−2
3 .

– When b ≡ 2 (mod 3), (b+ 1)pe − 1 ≡ 2 (mod 3), thus j = (b+1)pe−3
3 .

• If 2 ∤ e, one has pe ≡ 2 (mod 3).

– When b ≡ 0 (mod 3), (b+ 1)pe − 1 ≡ 1 (mod 3), thus j = (b+1)pe−2
3 .

– When b ≡ 1 (mod 3), (b+ 1)pe − 1 ≡ 0 (mod 3), thus j = (b+1)pe−1
3 .

– When b ≡ 2 (mod 3), (b+ 1)pe − 1 ≡ 2 (mod 3), thus j = (b+1)pe−3
3 .

The sum n = ν(a, b) = i+ j can be arranged in table form as follows:

b ≡ 0 (mod 3) b ≡ 1 (mod 3) b ≡ 2 (mod 3)

2 | e (3a+ 2b+ 5)pe − 8
6

(3a+ 2b+ 5)pe − 10
6

(3a+ 2b+ 5)pe − 12
6

2 ∤ e (3a+ 2b+ 5)pe − 10
6

(3a+ 2b+ 5)pe − 8
6

(3a+ 2b+ 5)pe − 12
6

Table 4.1. The ν-invariants of a = (x2, y3) when p = 2.

When p = 3, (b + 1)pe − 1 ≡ 2 (mod 3), thus j = (b+1)pe−3
3 for all b ≥ 0. Since pe ≡ 1 (mod 2),

one has:
• When a ≡ 0 (mod 2), (a+ 1)pe − 1 ≡ 0 (mod 2), thus i = (a+1)pe−1

2 .
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4.4. Bernstein-Sato roots

• When a ≡ 1 (mod 2), (a+ 1)pe − 1 ≡ 1 (mod 2), thus i = (a+1)pe−2
2 .

The remaining cases to study are when p ≡ 1 (mod 6) or p ≡ 5 (mod 6). A similar analysis to
the ones before show that the ν-invariants are given by:

b ≡ 0 (mod 3) b ≡ 1 (mod 3) b ≡ 2 (mod 3)

a ≡ 0 (mod 2) (3a+ 2b+ 5)pe − 9
6

(3a+ 2b+ 5)pe − 9
6

(3a+ 2b+ 5)pe − 9
6

a ≡ 1 (mod 2) (3a+ 2b+ 5)pe − 12
6

(3a+ 2b+ 5)pe − 12
6

(3a+ 2b+ 5)pe − 12
6

Table 4.2. The ν-invariants of a = (x2, y3) when p = 3.

b ≡ 0 (mod 3) b ≡ 1 (mod 3) b ≡ 2 (mod 3)

a ≡ 0 (mod 2) (3a+ 2b+ 5)pe − 5
6

(3a+ 2b+ 5)pe − 7
6

(3a+ 2b+ 5)pe − 9
6

a ≡ 1 (mod 2) (3a+ 2b+ 5)pe − 8
6

(3a+ 2b+ 5)pe − 10
6

(3a+ 2b+ 5)pe − 12
6

Table 4.3. The ν-invariants of a = (x2, y3) when p ≡ 1 (mod 6).

b ≡ 0 (mod 3) b ≡ 1 (mod 3) b ≡ 2 (mod 3)

2 | e
a ≡ 0 (mod 2) (3a+ 2b+ 5)pe − 5

6
(3a+ 2b+ 5)pe − 7

6
(3a+ 2b+ 5)pe − 9

6

a ≡ 1 (mod 2) (3a+ 2b+ 5)pe − 8
6

(3a+ 2b+ 5)pe − 10
6

(3a+ 2b+ 5)pe − 12
6

2 ∤ e
a ≡ 0 (mod 2) (3a+ 2b+ 5)pe − 7

6
(3a+ 2b+ 5)pe − 5

6
(3a+ 2b+ 5)pe − 9

6

a ≡ 1 (mod 2) (3a+ 2b+ 5)pe − 10
6

(3a+ 2b+ 5)pe − 8
6

(3a+ 2b+ 5)pe − 12
6

Table 4.4. The ν-invariants of a = (x2, y3) when p ≡ 5 (mod 6).

4.4. Bernstein-Sato roots

The next algebraic invariant that we introduce are Bernstein-Sato roots. To begin with, we
recall some definitions concerning the p-adic integers. We refer the interested reader to [P] for
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a more detailed construction. Throughout this section, let p ∈ Z denote a prime number.

Definition 4.33. The p-adic valuation on Z is the map vp : Z → Z ∪ {+∞} given by

vp(n) = max
{
k ∈ Z≥0

∣∣∣ pk |n
}

for n ̸= 0,

and vp(0) = +∞. One may extend this to a map vp : Q → Z ∪ {+∞} as follows:

vp

(
a

b

)
:= vp(a) − vp(b).

Definition 4.34. The p-adic absolute value is the function |·|p : Q → R≥0 given by

|x|p :=
p

−vp(x) if x ̸= 0,
0 if x = 0.

This induces the p-adic metric, which is the function dp : Q × Q → R≥0 defined by

dp(x, y) := |x− y|p.

In the same way that one constructs the field R of real numbers as the completion of Q with
respect to the Eucliden distance, one can complete Q with respect to a p-adic metric, which
results in the field of p-adic numbers.

Definition 4.35. The field Qp of p-adic numbers is the completion of Q with respect to the
p-adic metric. The ring of p-adic integers is

Zp :=
{
x ∈ Qp

∣∣∣ |x|p ≤ 1
}
.

In Section 4.1, we introduced the Bernstein-Sato polynomial or b-function of a polynomial
f ∈ C[x1, . . . , xn], which is a polynomial bf (s) ∈ C[s]. Moreover, we mentioned that the same
polynomial ba(s) may be constructed for an ideal a ⊆ C[x1, . . . , xn]. These b-functions and,
as every polynomial with complex coefficients, come equipped with a set of roots and for each
root a multiplicity.

Bernstein-Sato roots are the positive characteristic analogue of the b-function roots. More
precisely, let R be a regular F -finite ring of characteristic p > 0. To an ideal a ⊆ R, one
associates the b-function, which is an ideal in the algebra C(Zp,Fp) of continuous functions
Zp → Fp. The Bernstein-Sato roots of a are precisely the roots of its b-function. In this
context, however, there is no notion of multiplicity of a root. An alternative characterization
of Bernstein-Sato roots in terms of ν-invariants was given by Quinlan-Gallego [QG21b]. It is
this definition to which we adhere:

Definition 4.36 ([QG21b, Theorem IV.17]). Let R be a regular F -finite ring of characteristic
p > 0 and let a ⊆ R be an ideal a ⊆ R. A p-adic integer α ∈ Zp is a Bernstein-Sato root of a
if and only if α is the p-adic limit of a sequence of ν-invariants (νe)∞

e=0 ⊆ Z≥0 with νe ∈ ν•
a (pe).
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4.5. Bernstein-Sato roots

Observation 4.37. As a remark to the definition above, we say that α ∈ Z is the p-adic limit
of the sequence (νe)∞

e=∞ ⊆ Z≥0 if and only if for every integer k ≥ 0, there exists e0 = e0(k) ≥ 0
such that pk |α−νe for all e ≥ e0. In terms of the p-adic metric, this means that dp(α, νe) ≤ p−k

for all e ≥ e0 and, since k can be taken to be arbitrarily large, dp(α, νe) → 0 as e → ∞.

Furthermore, it is possible to relate Bernstein-Sato roots to the roots of the b-function in
characteristic zero in the sense made precise below. Fix an ideal a ⊆ Z[x1, . . . , xn], denote by aC

its extension to the polynomial ring C[x1, . . . , xn] and let ba(s) be the corresponding b-function.
For a prime number p ∈ Z, let ap be the reduction modulo p to the ring Fp[x1, . . . , xn]. One
then has the following theorem:

Theorem 4.38 ([QG21b, Theorem VI.3]). Suppose that α ∈ Zp is a Bernstein-Sato root of
ap for infinitely many prime numbers p ∈ Z. Then α is a root of the b-function ba(s).

Example 4.39. Let R = Fp[x1, . . . , xn] be a polynomial ring over a perfect field of charac-
teristic p > 0 and let m be the homogeneous maximal ideal. In Example 4.26 we showed that
νmm(pe) = n(pe − 1) for each integer e ≥ 0. By letting νe = n(pe − 1), one obtains a sequence
(νe)∞

e=0 ⊆ Z≥0 of ν-invariants with p-adic limit νe → α = −n. It follows that α = −n is a
Bernstein-Sato root of m and, in view of [QG21b, Theorem VI.3], a root of the b-function in
characteristic zero as well.

Example 4.40. Let F be a perfect field of characteristic p > 0, R = F[x, y] a polynomial
ring and fix the ideal a = (x2, y3). In Example 4.32 we computed the ν-invariants of a of level
e ∈ Z≥0, which are given by formulas of the type

ν(a, b, e) = (3a+ 2b+ 5)pe − k(a, b, e)
6 ,

where a, b, k(a, b) ∈ Z≥0. Furthermore, we argued as a, b ∈ Z≥0 range over the non-negative
integers, one obtains all the ν-invariants of a of level e ≥ 0.

Let (νe)∞
e=0 be a sequence of ν-invariants of a, with νe ∈ ν•

a (pe). Each term in the sequence
is of the form νe = ν(ae, be, e) and, in order for it to have a p-adic limit, it is clear that there
must be an integer e0 ≥ 0 such that k(ae0 , be0 , e0) = k(ae, be, e) for all e ≥ e0. It follows that
the Bernstein-Sato roots of a are of the form −k(a, b, e)/6. Depending on the characteristic,
one finds the following:

• When p = 2, BSR(a) = {−2,−5/3,−4/3}

• When p = 3, BSR(a) = {−2,−3/2}

• When p ≡ 1 (mod 6), BSR(a) = {−2,−5/3,−3/2,−4/3,−7/6,−5/6}.

• When p ≡ 5 (mod 6), BSR(a) = {−2,−5/3,−3/2,−4/3,−7/6,−5/6}.
In particular, for all primes p ≥ 5, the sets of Bernstein-Sato roots coincide.
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4. Bernstein-Sato Theory in Positive Characteristic

4.5. The F -pure threshold and test ideals

The log-canonical threshold of a polynomial f ∈ C[x1, . . . , xn] at a point x ∈ Cn where f(x) = 0,
is defined as the supremum of λ ∈ R>0 such that the function 1/|f |2λ is integrable on a
neighborhood of the point x (see Section 4.1).

Let R be a ring of characteristic p > 0. In this setting it is not possible to use analysis tools
to measure the singularities of polynomials or ideals in R. Instead, one uses algebraic tools to
define the F -pure threshold, which is the measure of singularity analogous to the log-canonical
threshold. It was introduced by Takagi and Watanabe [TW04], and thereafter related to the
Bernstein-Sato polynomial by Mustaţă , Takagi and Watanabe [MTW05]. Recall that if I, J
are ideals of R satisfying I ⊆ rad J , for each integer e ≥ 0 one defines

νJI (pe) = max
{
ℓ ≥ 0

∣∣∣ Iℓ ̸⊆ J [pe]
}
.

Definition 4.41 ([MTW05]). Let R be a regular F -finite ring of characteristic p > 0. Let
I ⊆ R be an ideal and let m ⊆ R be a maximal ideal such that I ⊆ m. The F -pure threshold
of I with respect to m is

fptm(I) := lim
e→∞

νmI (pe)
pe

.

When m is understood from the context, we shall denote it simply by fpt(I).

The F -pure threshold of I may be defined at any ideal J ⊆ R containing I in its radical.
Nonetheless, for our purposes, it suffices to consider the case when J = m is a maximal ideal.The
proposition below shows that the definition is well-defined.

Proposition 4.42. Let R be a regular F -finite ring of characteristic p > 0 and fix an ideal
I ⊆ R. Let m ⊆ R be a maximal ideal such that I ⊆ m. For each integer e ≥ 0,

νmI (pe+1) ≥ pνmI (pe).

In particular, (νmI (pe)/pe)∞
e=0 is a bounded monotone sequence.

Proof. Let ℓ = νmI (pe); then there exists f ∈ Iℓ − m[pe], thus CeR · f ̸⊆ m by Proposition 4.19.
It follows from Proposition 4.22 that CeR · f = CeR · CR · fp = Ce+1

R · fp ⊊ m, hence fp ̸∈ m[pe+1]

and fp ∈ Ipℓ − m[pe+1]. As a result, νmI (pe+1) ≥ pℓ = pνmI (pe), which proves that the sequence
(νmI (pe)/pe)∞

e=0 is monotone. By letting N be the number of generators of I, one has that
νmI (pe) ≤ N(pe − 1) as a consequence of Proposition 4.31, therefore the sequence is bounded
above by N .

Moreover, we have the following connection between the characteristic zero and the positive
characteristic settings:
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Theorem 4.43 ([MTW05, Theorem 3.4]). Let A = Z[a−1] be the localization of Z at some
non-zero integer a ∈ Z and fix a non-zero ideal a ⊆ A[x1, . . . , xn] such that a ⊆ (x1, . . . , xn).
Let aQ := a · Q[x1, . . . , xn] be the extension of a and, for each prime p ∈ Z, let ap = a ·
Fp[x1, . . . , xn](x1,...,xn) be the reduction of a modulo p. Then

lct(a) = lim
p→∞

fpt(a).

A family of invariants closely related to the F -pure threshold are the test ideals, which are
the counterparts of the multiplier ideals defined in Section 4.1. Test ideals were introduced in
the context of tight closure theory by Hara and Yoshida [HY03]. Afterwards, Blickle, Mustaţă
and Smith [BMS08] gave an alternative definition in terms of Frobenius roots.

Recall that, given a real number x ∈ R, the ceiling of x, denoted by ⌈x⌉, is the smallest
integer greater or equal to x.

Definition 4.44 ([BMS08, Definition 2.9]). Let R be a regular F -finite ring of characteristic
p > 0 and let a ⊆ R be an ideal. For a real number λ ≥ 0, the test ideal of a with exponent λ
is defined as

τ(aλ) :=
∞⋃
e=0

CeR · a⌈λpe⌉.

One may view the test ideals as a family of ideals of R indexed by the positive real numbers.

Proposition 4.45. Let R be a regular F -finite ring of characteristic p > 0 and let a ⊆ R be
an ideal. Then for each integer e ≥ 0,

CeR · a⌈λpe⌉ ⊆ Ce+1
R · a⌈λpe+1⌉.

In particular, τ(aλ) = CeR · a⌈λpe⌉ for some integer e ≫ 0.

Proof. Let n = ⌈λpe⌉, that is to say, n − 1 < λpe ≤ n. Then (n − 1)p < λpe+1 ≤ pn, thus
⌈λpe+1⌉ ≤ ⌈λpe⌉p. It follows from [QG21b, Proposition II.48] that

CeR · a⌈λpe⌉ = Ce+1
R · (a⌈λpe⌉)[p] ⊆ Ce+1

R · a⌈λpe⌉p ⊆ Ce+1
R · a⌈λpe+1⌉.

The second statement follows from the fact that R is a Noetherian ring.

Proposition 4.46. Let R be a regular F -finite ring of characteristic p > 0 and f ∈ R. Then
for each pair of integers n ≥ 0 and e ≥ 0,

τ(fn/pe) = CeR · fn.

Proof. The inclusion (⊇) is clear. For the converse, fix an integer E ≥ e. By Proposition 4.19,
the containment CER ·fnpE−e ⊆ CeR ·fn is equivalent to fnpE−e ∈ (CeR ·fn)[pE ]. As a consequence of
Proposition 4.11, the latter may be written as (CeR ·fn)[pE ] = (CeR ·fn)[pe][pE−e] = (D(e)

R ·fn)[pE−e].
As the identity of R is a differential operator of level 0 and D(0)

R ⊆ D(e)
R , one has that fn ∈

D(e)
R · fn, from where the inclusion follows.
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Proposition 4.47 ([BFS13, Proposition 3.26]). Let R be a regular F -finite ring of charac-
teristic p > 0 and let I ⊆ R be a non-zero ideal.

(1) For a real number λ > 0 sufficiently small, τ(Iλ) = R.
(2) If λ′ ≥ λ, then τ(Iλ′) ⊆ τ(Iλ).
(3) The F -pure threshold of I is fpt(I) = sup {λ ∈ R≥0 | τ(Iλ) = R}.

Proof. (1) We claim that there exists an integer e0 ≥ 0 such that νmI (pe) ≥ 1 for all e ≥ e0. For
the sake of contradiction, suppose that νmI (pe) = 0 for all e ≥ 0, that is, I ⊆ m[pe] for all e ≥ 0.
The families of ideals {ms}s≥0 and {m[pe]}e≥0 are cofinal by Proposition 4.10, therefore

I ⊆
∞⋂
e=0

m[pe] ⊆
∞⋂
s=0

ms = 0,

where the last equality follows from Krull’s interesection theorem, but this contradicts the
assumption that I be a non-zero ideal.

Now let e ≫ 0 be large enough so that νmI (pe) ≥ 1, and choose λ > 0 small enough so that
λpe ≤ νmI (pe). It follows that R = CeR · IνmI (pe) ⊆ CeR · I⌈λpe⌉, so τ(Iλ) = R.

(2) For each integer e ≥ 0, CeR · I⌈λ′pe⌉ ⊆ CeR · I⌈λpe⌉, therefore τ(Iλ′) ⊆ τ(Iλ).
(3) Choose ε > 0 and define λ = fpt(I) − ε. Since (νmI (pe)/pe)∞

e=0 is a monotone sequence
with limit fpt(I), there exists an integer e0 = e0(ε) ≥ 0 such that for all e ≥ e0,

λ <
νmI (pe)
pe

≤ fpt(I).

In consequence, ⌈λpe⌉ ≤ νmI (pe) and R = CeR · IνmI (pe) ⊆ CeR · I⌈λpe⌉, thus τ(Iλ) = R, which
implies sup

{
λ ∈ R≥0 | τ(Iλ) = R

}
≤ fpt(I). On the other hand, for µ > fpt(I) one has that

νmI (pe) < ⌈µpe⌉ for all integers e ≥ 0, thereby CeR · I⌈µpe⌉ ⊊ CeR · IνmI (pe) = R and τ(Iµ) ⊊ R,
which gives the converse inequality.

It follows from Proposition 4.47 that the F -pure threshold of an ideal is its smallest F -
jumping number. As multiplier ideals, test ideals form a right semi-continuous family of ideals
of R. This motivates the following definition:

Definition 4.48. Let R be a regular F -finite ring of characteristic p > 0 and let I ⊆ R be
an ideal. A real number λ ∈ R≥0 is an F -jumping number of I if τ(Iλ) ̸= τ(Iλ−ε) for all ε > 0.
The set of F -jumping numbers of I is denoted by FJN(I).

When I is an ideal in a regular F -finite algebra essentially of finite type over a field of
characteristic p > 0, it is known that the set of F -jumping numbers is rational and discrete
[BMS08, Theorem 3.1]. As we shall see in Chapter 5, the same is true when one studies ideals
of maximal minors in polynomial rings over field of prime characteristic.

As the proposition below states, it suffices to compute the test ideals τ(Iλ) and the F -jumping
numbers for λ in a bounded interval of the real line:
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Proposition 4.49. Let R be an F -finite ring of characteristic p > 0 and let I = (f1, . . . , fr)
be an ideal generated by r elements. For each real number λ ≥ r,

τ(Iλ+1) = Iτ(Iλ).

Proof. See [QG21b, Proposition II.54].

For further properties of the F -pure threshold, test ideals and F -jumping numbers, we invite
the interested reader to consult [AMJNB21; BFS13]. We conclude the chapter by completing
the calculations started in Examples 4.32 and 4.40.

Example 4.50. Let R = F[x, y] be a polynomial ring over a perfect field F of characteristic
p > 0 and let a = (x2, y3). In Example 4.32, given e ∈ Z≥0 we computed the integers ν(a, b, e) =
max{ℓ ∈ Z≥0 | xayb ∈ CeR · aℓ}, given by formulas of the form

ν(a, b, e) = (3a+ 2b+ 5)pe − k(a, b, e)
6

where k(a, b, e) ∈ Z≥0 with k(a,b,e)
pe → 0 as e → ∞. In addition, we showed that the set of

ν-invariants is given by the ν(a, b, e), that is, ν•
a (pe) = {ν(a, b, e) | a, b ∈ Z≥0}.

Fix some integers a, b ∈ Z≥0 and choose a real number 0 ≤ λ < 3a+2b+5
6 . Since the sequence

(ν(a, b, e)/pe)∞
e=0 ⊆ Z≥0 is monotone for e ≫ 0 and has limit 3a+2b+5

6 , there exists e0 ≥ 0
depending on λ such that λpe < ν(a, b, e) for all e ≥ e0. Letting e ≥ 0 be large enough, one has
that xayb ∈ CeR · a⌈λpe⌉ = τ(aλ). It follows that

FJN(a) =
{

3a+ 2b+ 5
6

∣∣∣∣∣ a, b ∈ Z≥0

}
.

In particular, fpt(a) = 5
6 and the set of F -jumping numbers of a is independent of the charac-

teristic, whereas the ν-invariants are not. Based on the characterization of the ν-invariants of
a, the computation of the test ideals τ(aλ) is immediate. These are depicted in Fig. 4.1:

λ

τ(aλ)

5
6

1 7
6

4
3

3
2

5
3

11
6

2 13
6

R

(x, y)
(x, y2)

(x2, xy, y2)
(x2, xy, y3)

(x2, x2y, xy2, y3)
(x3, x2y, xy2, y4)

aτ(a)

For λ ≥ 2 use
τ(aλ) = aτ(aλ−1).

· · ·

Figure 4.1
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Chapter 5

Bernstein-Sato Theory for Determinantal Ideals

5.1. Determinantal rings and determinantal ideals

Throughout this chapter let B denote a Noetherian commutative ring. Choose integers m,n ≥ 1
and consider the polynomial ring R = B[x11, . . . , x1n, . . . , xm1, . . . , xmn] in mn indeterminates.
These can be arranged in matrix form as

X = (xij) =


x11 · · · x1n
... . . . ...

xm1 · · · xmn

 .
We say that X = (xij) is a generic matrix of indeterminates over the ring B but, since we
deal exclusively with these kind of matrices, we shall refer to them simply as matrices of
indeterminates. For brevity, we denote the polynomial ring by R = B[X].

Definition 5.1. Let X = (xij) be an n × n matrix of indeterminates over a ring B. The
determinant of X is the polynomial

detX =
∑
σ∈Sn

sgn(σ)x1σ(1) · · ·xnσ(n),

in the ring B[X], where Sn denotes the symmetric group of degree n and sgn(σ) is the sign of
the permutation σ ∈ Sn.

Definition 5.2. Let X = (xij) be an m× n matrix of indeterminates over a ring B, and let
R = B[X] be a polynomial ring. Fix an integer 1 ≤ t ≤ min(m,n).

(1) A t× t submatrix of X is a matrix of the form
xa1b1 · · · xa1bt

... . . . ...
xatb1 · · · xatbt

 ,
where 1 ≤ a1, . . . , at ≤ m and 1 ≤ b1, . . . , bt ≤ n are integers.

(2) A t-minor of X, or minor of size t of X, is the determinant of a t× t submatrix of X.
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(3) The ideal of t-minors of X, denoted by It(X), is the ideal of R generated by the t-minors
of X. When X is understood from the context, we shall simply write It.

By convention, a 0-minor is an empty product, thus it is equal to 1 ∈ B.

Observation 5.3. Let B be a ring and let X = (xij) and X ′ = (x′
ij) be matrices of indetermi-

nates over B, of sizes m×n and n×m, respectively. Denote by R = B[X] and R′ = B[X ′] the
corresponding polynomial rings. We note that the map that leaves B fixed and sends xij 7→ x′

ji

gives a ring isomorphism R
∼−→ R′. In addition, this isomorphism maps the ideal It(X) ⊆ R of

t-minors of X to the ideal It(X ′) ⊆ R′ of t-minors of X ′.

In view of the above remark, hereinafter we shall assume that an m× n matrix of indetem-
inates X satisfies 1 ≤ m ≤ n, that is to say, “it has more columns than rows”.

Definition 5.4. Let X = (xij) be an m× n matrix of indeterminates over a ring B.
(1) A submaximal minor of X is a minor of X of size t = m− 1.
(2) A maximal minor of X is a minor of X of size t = m.

Notation 5.5 ([BV88]). Let X = (xij) be a matrix of indeterminates of size m × n over a
ring B, with m ≤ n, let R = B[X] be a polynomial ring and fix an integer 1 ≤ t ≤ m. Given
integers 1 ≤ a1, . . . , at ≤ m and 1 ≤ b1, . . . , bt ≤ t, we define

[a1, . . . , at | b1, . . . , bt] := det


xa1b1 · · · xa1bt

... . . . ...
xatb1 · · · xatbt

 .

Note that the rows are determined by the choice of ai’s, and the columns are given by the
choice of bj’s. When t = m, all the rows are chosen, thus we simply write [b1, . . . , bm].

Since the determinant of a matrix is invariant (up to a sign) under row and column swaps,
we may assume that the indices are given in ascending order, that is, 1 ≤ a1 < · · · < at ≤ m

and 1 ≤ b1 < · · · < bt ≤ n.

Example 5.6. Let X = (xij) be the following 3 × 3 matrix of indeterminates

X =


x11 x12 x13

x21 x22 x23

x31 x32 x33

 .

over a field K, and let R = K[X] be the corresponding polynomial ring.
(a) The 1-minors of X are the monomials x11, x12, . . . , x33, hence the ideal I1 of 1-minors of

X is the homogeneous maximal ideal of R.
(b) The 2-minors ofX, i.e. the submaximal minors, have the form [a1, a2 | b1, b2]. For instance,
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choosing rows 1 and 2, and columns 2 and 3, yields the 2-minor

[1, 2 | 2, 3] = det
x12 x13

x22 x23

 = x12x23 − x13x22.

It follows that the ideal I2 of 2-minors X has 9 generators, which are listed below:
[1, 2 | 1, 2] = x11x22 − x12x21, [1, 2 | 1, 3] = x11x23 − x13x21, [1, 2 | 2, 3] = x12x23 − x13x22,

[1, 3 | 1, 2] = x11x32 − x12x31, [1, 3 | 1, 3] = x11x33 − x13x31, [1, 3 | 2, 3] = x12x33 − x13x32,

[2, 3 | 1, 2] = x21x32 − x22x31, [2, 3 | 1, 3] = x21x33 − x23x31, [2, 3 | 2, 3] = x22x33 − x23x32.

• The only 3-minor of X is the determinant

detX = x11x22x33 + x13x21x32 + x12x23x31 − x13x22x31 − x11x23x32 − x12x21x33,

thus I3 = (detX) is a principal ideal of R.

Observation 5.7. We note that a t-minor of an m × n matrix of indeterminates X = (xij)
corresponds bijectively to a choice of t different columns and t different rows of X. As a result,
the ideal of t-minors of X has (

m

t

)(
n

t

)
generators.

Definition 5.8. Let X = (xij) be an m× n matrix of indeterminates over a ring B, m ≤ n.
A determinantal ring is a commutative ring R that is isomorphic to a quotient ring of the form
B[X]/It(X). These rings are commonly denoted by Rt(X) = B[X]/It(X).

Let V and W be n-dimensional and m-dimensional vector spaces over a field K, respectively.
After choosing bases for V and W , a K-linear map φ : V → W can be represented by an m×n

matrix

M =


a11 · · · a1n
... . . . ...
am1 · · · amn


with entries in K. One is usually interested in computing properties of φ, such as the rank,
or eigenvalues and eigenspaces when V ∼= W . To this purpose, a common procedure in linear
algebra is to perform row operations on M in order to obtain an easier to handle matrix that
is equivalent to M . A similar method can be applied to matrices of indeterminates.

Consider the following m× n matrix of indeterminates

X =


x11 · · · x1n
... . . . ...

xm1 · · · xmn

 ,

59



5. Bernstein-Sato Theory for Determinantal Ideals

defined over a ring B, and let R = B[X] be the corresponding polynomial ring. By localizing
R at the indeterminate xmn, R[x−1

mn] = B[X][x−1
mn], one can “eliminate” the indeterminate x1n

from X via row operations as follows:

x11 · · · x1n
... . . . ...

xm1 · · · xmn

 7−→


x11 − xm1x1nx

−1
mn · · · x1,n−1 − xm,n−1x1nx

−1
mn 0

x21 · · · x2,n−1 x2n
... . . . ... ...

xm1 · · · xm,n−1 xmn


Repeating the same procedure with the remaining rows results in the following matrix:


x11 · · · x1n
... . . . ...

xm1 · · · xmn

 7−→



x11 − xm1x1nx
−1
mn · · · x1,n−1 − xm,n−1x1nx

−1
mn 0

x21 − xm1x2nx
−1
mn · · · x2,n−1 − xm,n−1x2nx

−1
mn 0

... . . . ... ...
xm−1,1 − xm1xm−1,nx

−1
mn · · · xm−1,n−1 − xm,n−1xm−1,nx

−1
mn 0

xm1 · · · xm,n−1 xmn


The upper left (m− 1) × (n− 1) matrix is simpler to study and carries a wealth of information
of X in the sense made precise by the following results:

Observation 5.9 ([BV88]). Let B be a commutative ring, let U = (uij) be an m× n matrix
of elements in B, m ≤ n, and suppose that umn is a unit in B. Consider the (m− 1) × (n− 1)
matrix Ũ = (ũij) with entries given by

ũij = uij − umjuinu
−1
mn for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1.

Denote by [ · | · ]U and by [ · | · ]
Ũ

the minors of U and Ũ , respectively.
(1) Fix an integer 1 ≤ t ≤ m. Given integers 1 ≤ a1, . . . , at ≤ m−1 and 1 ≤ b1, . . . , bt ≤ n−1,

one has
[a1, . . . , at,m | b1, . . . , bt, n]U = umn[a1, . . . , at | b1, . . . , bt]Ũ .

(2) For each integer 1 ≤ t ≤ m, It−1(Ũ) = It(U).

Proposition 5.10 ([BV88, Proposition 2.4]). Let X = (xij) and Y = (yij) the matrices of
indeterminates over a ring B of sizes m× n and (m− 1) × (n− 1), respectively, m ≤ n. Then
the substitutions

xij 7−→ yij + xmjxinx
−1
mn for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1,

xin 7−→ xin for 1 ≤ i ≤ m− 1,
xmj 7−→ xmj for 1 ≤ j ≤ n,

induce an isomorphism of rings

φ : B[X][x−1
mn] −→ B[Y ][xm1, . . . , xmn, x1n, . . . , xm−1,n][x−1

mn],

which maps the extension of It(X) ⊆ B[X] to the extension of It−1(Y ) ⊆ B[Y ] for each integer
1 ≤ t ≤ m.
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Proof. Consider the following substitutions:

yij 7−→ xij − xmjxinx
−1
mn for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1,

xin 7−→ xin for 1 ≤ i ≤ m− 1,
xmj 7−→ xmj for 1 ≤ j ≤ n.

This induces a ring homomorphism ψ : B[Y ][xm1, . . . , xmn, x1n, . . . , xm−1,n][x−1
mn] → B[X][x−1

mn],
which is clearly the inverse of φ. From Observation 5.9 one has that It(X)B[X][x−1

mn] = It−1(X̃),
where X̃ is the (m−1)×(n−1) matrix with entries x̃ij = xij−xmjxinx−1

mn =: yij for 1 ≤ i ≤ m−1
and 1 ≤ j ≤ n− 1, thereby It−1(X̃) coincides with the extension of It−1(Y ).

The proposition above gives a powerful tool to study ideals of minors, as it allows one to
perform induction on the tuple (m,n, t). As we shall see in Sections 5.4 and 5.6, many properties
of interest to us are shared between the ideals of minors corresponding to the tuples of integers
(m,n, t), (m+ 1, n+ 1, t+ 1), (m+ 2, n+ 2, t+ 2), . . . In addition, one has the following handy
results:

Proposition 5.11. Let X = (xij) be an m× n matrix of indeterminates over a commutative
ring B, m ≤ n. Then determinantal ideals of minors of X give the following chain of ideals in
the polynomial ring B[X]:

Im ⊆ Im−1 ⊆ · · · ⊆ I2 ⊆ I1.

Proof. Choose an integer 1 ≤ t ≤ m−1 and let δ = [a1, . . . , at+1 | b1, . . . , bt+1] be a (t+1)-minor.
Expanding it along the first row yields

δ =
t+1∑
k=1

(−1)k+1xa1bk
[a2, . . . , at+1 | b1, . . . , b̂k, . . . , bt+1],

where b̂k means that the integer bk has been removed. Each summand is a multiple of a t-minor,
thus δ ∈ It and It+1 ⊆ It, which proves the proposition.

Theorem 5.12 ([HE71, Theorem 1]). Let X be an m × n matrix of indeterminates over a
commutative ring B. If B is a Noetherian domain, then It is a prime ideal for each 1 ≤ t ≤ m.

5.2. Monomial orders

Monomial orders prove to be a useful tool in commutative algebra. For instance, these can be
used to “highlight” a monomial µ of a polynomial f , and ensure that µn is a monomial of fn

for every integer n ≥ 1. Furthermore, monomial orders lie in the very heart of the theory of
Gröbner bases, which allow the use of computational methods in algebra.

In this section we present the basics of monomial orders in polynomial rings over a field K.
The reference is [E04, Chapter 15].
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Notation 5.13. It will be convenient to use multi-index notation throughout this section. If
a = (a1, . . . , an) ∈ Zn≥0 is an n-tuple of non-negative integers, xa will denote the monomial

xa := xa1
1 · · ·xan

n .

Under this notation, the product of two monomials xa and xb is xaxb = xa+b, where a+ b is the
component-wise sum of the multi-indices.

Definition 5.14. Let R = K[x1, . . . , xn] be a polynomial ring. A term in R is an element of
the form αxa, where α ∈ K and a = (a1, . . . , an) ∈ Zn≥0 is a multi-index.

It is necessary to establish a total order on the indeterminates of the polynomial ring
K[x1, . . . , xn] before defining monomial orders. The following order is considered

x1 > x2 > · · · > xn,

and it shall be the implicit ordering unless otherwise stated. Observe that if the ordering is
different, the variables can be renamed so as to achieve the order above.

Definition 5.15. A monomial order on a polynomial ring R = K[x1, . . . , xn] is a total order
> on the set of monomials of S such that if xa, xb, xc ∈ R are monomials with xc ̸= 1, then

xa > xb =⇒ xa+c > xb+c > xb.

Definition 5.16. Let S = K[x1, . . . , xn] be a polynomial ring over a field K and let > be a
monomial order on S. Given a polynomial f ∈ S, the initial term of f , denoted by in>(f), is
the greatest term of f with respect to the monomial order >. When the monomial order > on
S is clear from the context, we will denote the initial term by in(f).

It is convenient to apply this order to terms as well: if xa, xb ∈ S are monomials with xa > xb

and 0 ̸= α, β ∈ K, we write αxa > βxb. Some examples of monomial orders are in order to fix
ideas. Let K denote a field:

Definition 5.17. The lexicographic order >lex is a monomial order on K[x1, . . . , xn] defined
as follows:

xa >lex x
b if and only if ai > bi for the first index with ai ̸= bi.

Definition 5.18. The homogeneous lexicographic order >hlex is the monomial order on the
polynomial ring K[x1, . . . , xn] defined by:

xa >hlex x
b if and only if

 deg(xa) > deg(xb) or,
deg(xa) = deg(xb) and ai > bi for the first index with ai ̸= bi.

Definition 5.19. The graded reverse lexicographic order >rlex is the monomial order on the
polynomial ring K[x1, . . . , xn] defined by:

xa >rlex x
b if and only if

 deg(xa) > deg(xb) or,
deg(xa) = deg(xb) and ai < bi for the last index with ai ̸= bi.
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Example 5.20. Let R = K[x, y, x] a polynomial ring with the usual ordering x > y > z.
(a) One has x2 >lex yz

2, but yz2 >hlex x
2 and yz2 >rlex x

2 since deg(yz2) > deg(x2).
(b) Consider the monomials x3, xyz ∈ S, that correspond to the multi-indices (3, 0, 0) and

(1, 1, 1), respectively. Then x3 >lex xyz, x3 >hlex xyz and also x3 >rlex xyz.
(c) Consider the degree 4 monomials y3z, xyz2 ∈ S. In the lexicographic and homogeneous

lexicographic orders xyz2 >lex y
3z and xyz2 >hlex y

3z, whereas under the graded reverse
lexicographic order one has y3z >rlex xyz

2.

Example 5.21. Let K[x, y, u, v] be a polynomial ring with x > y > u > v, and define

f = det
x y

u v

 = xv − yu.

With respect to the lexicographic and the homogeneous lexicographic orders, in>lex(f) =
in>hlex(f) = xv. On the contrary, under the graded reverse lexicographic order, one has that
in>rlex(f) = −yu.

Proposition 5.22. Let R = K[x1, . . . , xn] be a polynomial ring and let > be a monomial
order on S. Then for any polynomials f, g ∈ S,

in(fg) = in(f) in(g).

Proof. The conclusion is clear when either of the polynomials is zero, thus suppose that both
are non-zero. Let in(f) = αxa and in(g) = γxc be the initial terms of f and g, respectively,
with α, γ ̸= 0, and write f = αxa +∑r

i=1 βix
bi , g = γxc +∑s

j=1 δjx
dj . The product fg reads

fg = αγxa+c +
r∑
i=1

βiγx
bi+c +

s∑
j=1

αδjx
a+dj +

r∑
i=1

s∑
j=1

βiδjx
bi+dj .

Note that it might be necessary to collect terms in this expression, however this form suffices
for the purpose of computing the initial term. By definition of monomial order,

αxa > βix
bi =⇒ αγxa+c > βiγx

bi+c for 1 ≤ i ≤ r,

γxc > δjx
dj =⇒ αγxa+c > αδjx

a+dj for 1 ≤ j ≤ s.

Likewise, αγxa+c > βiδjx
bi+dj for all 1 ≤ i ≤ r and 1 ≤ j ≤ s, which proves the proposition.

5.3. The F -pure threshold of a determinantal ideal

In [MSV14], Miller, Singh and Varbaro computed the F -pure threshold of a determinantal ideal
in a polynomial ring over a field of positive characteristic.
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Theorem 5.23 ([MSV14, Theorem 1.2]). Let X = (xij) be an m×n matrix of indeterminates
over a field F of positive characteristic. Let R = F[X] be a polynomial ring and 1 ≤ t ≤ m an
integer. The F -pure threshold of the ideal It ⊆ R of t-minors of X is

fpt(It) = min
{

(m− k)(n− k)
t− k

∣∣∣∣∣ k = 0, . . . , t− 1
}
.

In this section we reproduce this calculation. We begin by introducing some preliminary con-
cepts and results, giving little to no proof.

Definition 5.24. Let R be a commutative ring and let I ⊆ R be an ideal. The integral
closure of I, denoted by I, is the set of elements x ∈ R that satisfy an equation of the form

xn + a1x
n−1 + · · · + an−1x+ an = 0,

for some integer n ≥ 1, where ai ∈ I i for each 0 ≤ i ≤ n.

Observation 5.25. Some remarks regarding the integral closure of an ideal are in order:
(a) The integral closure I of an ideal I ⊆ R, is again an ideal of R.
(b) Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let I ⊆ R be an ideal.

Let f ∈ R be a homogeneous polynomial and suppose that f ∈ I. Then there exists a
homogeneous polynomial g ∈ R such that gf ℓ ∈ Iℓ for all integers ℓ ≥ 1.

The interested reader may consult the proofs of these facts and further observations in [HS06].

Theorem 5.26 (Briançon-Skoda theorem, [AH01, Theorem 1.2]). Let R be a regular local
ring and let I be an ideal generated by r elements. Then for all n ≥ r,

In ⊆ In−r+1.

We bring in a notation introduced in [BV88, Chapter 10]. Given an integer t, define the
function γt on a minor δ of a matrix of indeterminates X by

γt(δ) :=
0 if deg δ < t,

deg δ − t+ 1 if deg δ ≥ t,

and extend it to a product δ1 · · · δh of minors of X by

γt(δ1 · · · δh) :=
h∑
i=1

γt(δi).

Under mild hypothesis, the theorems below give explicit formulas for the symbolic powers and
integral closures of determinantal ideals.

Theorem 5.27 ([BV88, Theorem 10.4]). Let B be an integral domain. Then for all integers
1 ≤ t ≤ m and k ≥ 0, the k-th symbolic power of It is generated by the products of minors µ
such that γt(µ) ≥ k. Equivalently,

I
(k)
t =

∑
It+κ1−1 · · · It+κs−1,
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where the sum is taken over all κ1, . . . , κs ≥ 1, s ≤ k, such that κ1 + · · ·+κs ≥ k. Furthermore,
µ ∈ I

(k)
t if and only if γt(µ) ≥ k.

Theorem 5.28 ([B91, Theorem 1.3]). Let X be an m × n matrix of indeterminates over an
integral domain B, m ≤ n. Then the primary decomposition of the integral closure of Ist in
B[X] is given by

Ist =
t⋂

j=1
I

((t−j+1)s)
j .

Theorem 5.29 (Bruns, [MSV14, Theorem 2.1]). Let s ≥ 1 be an integer and let δ1, . . . , δh

be minors of X. If h ≤ s and ∑h
i=1 deg δi = ts, then

δ1 · · · δh ∈ Ist .

Proof. In view of [B91, Theorem 1.3] (see Theorem 5.28), one needs to show that δ1 · · · δh ∈
I

((t−j+1)s)
j for each j = 1, . . . , t. By [BV88, Theorem 10.4] (see Theorem 5.27), this is equivalent

to show that γj(δ1 · · · δh) ≥ (t− j + 1)s, which follows from

γj(δ1 · · · δh) =
h∑
i=1

γj(δi) =
h∑
i=1

deg δi≥j

(deg δi − j + 1) ≥
h∑
i=1

(deg δi − j + 1) = (t− j + 1)s.

Proposition 5.30. Let X = (xij) be an m × n matrix of indeterminates over a field K,
m ≤ n. Let It be the ideal of t-minors of X in the polynomial ring R = K[X]. Then RIt is a
regular local ring of dimension (m− t+ 1)(n− t+ 1).

Proof. The ring R is regular because it is a polynomial ring over a field, thus by definition of
regularity, the localized ring RIt is regular local of dimension equal to the height of It. The
grade of It is grade It = (m − t + 1)(n − t + 1) by [BV88, Theorem 2.5] and, since R is a
Cohen-Macaulay ring, height and grade of an ideal coincide, from where the result follows.

Observation 5.31. Fix a field F of characteristic p > 0, let X be an m × n matrix of
indeterminates over F and R = F[X] a polynomial ring. Let It be the ideal of t-minors of X.
Then for each integer e ≥ 0, the only associated prime of I [pe]

t is It. This follows from the
flatness of the Frobenius endomorphism; for instance, see [ILL+07, Corollary 21.11].

Lemma 5.32. Let X be an m× n matrix of indeterminates over a field F of characteristic p
and let Ik the ideal of k-minors of X in the polynomial ring R = F[X]. Fix an integer e ≥ 0.
If a ⊆ R is an ideal such that aRIk

⊆ I
[pe]
k RIk+1 , then a ⊆ I

[pe]
k .

Proof. The ideal aRIk
is generated by elements of the form a/1, where a ∈ a. By assumption,

there exists f ∈ I
[pe]
k and u ∈ R − Ik such that a/1 = f/u, hence (au − f)v = 0 for some

v ∈ R − Ik, but since R is a domain, one has that au = f ∈ I
[pe]
k . Viewing R/I

[pe]
k as an

R-module, one has that u · a = f = 0. The set of zero-divisors on R/I
[pe]
k is equal to the
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union of the associated primes of I [pe]
k . By the flatness of the Frobenius endomorphism, the

only associated prime of I [pe]
k is Ik. As u ∈ R− Ik, it follows that a = 0, that is, a ∈ I [pe], which

proves the assertion.

Now we are in position to prove [MSV14, Theorem 1.2]. The proof consists in giving an
upper bound and a lower bound for the ν-invariant νmIt

(pe) of It at the homogeneous maximal
ideal m of the polynomial ring R = F[X]. These bounds have constant terms which do not
depend on pe, thus they vanish when taking limits to compute the F -pure threshold.

Proposition 5.33 ([MSV14]). Let X = (xij) be matrix of indeterminates of size m × n,
m ≤ n, over a field F of characteristic p and set R = F[X]. Denote by m = (x11, . . . , xmn) ⊆ R

the homogeneous maximal ideal and let It ⊆ R be the ideal of t-minors of X. Then there exists
an integer N ≥ 0 such that for all e ≥ 0,

νmIt
(pe) ≤ (m− k)(n− k)

t− k
(pe − 1) +N

for all integers 0 ≤ k ≤ t− 1.

Proof. Choose an integer 0 ≤ k ≤ t − 1 and let δk and δt be minors of X of sizes k and t,
respectively. Then δt−k−1

k δt is a product of t − k minors and has degree k(t − k − 1) + t =
(k+ 1)(t− k), hence δt−k−1

k δt ∈ I t−kk+1 by [MSV14, Theorem 2.1] (see Theorem 5.29). Because δt
is an arbitrary minor of size t, one has that δt−k−1

k It ⊆ I t−kk+1. By the Briançon-Skoda theorem
(see Theorem 5.26) there exists an integer N ≥ 0 such that for all ℓ ≥ 1,(

δt−k−1
k It

)N+ℓ
⊆ I

(t−k)ℓ
k+1 .

The ideals of minors satisfy It ⊆ Ik+1 ⊆ Ik because of Proposition 5.11, therefore in the
localization RIk+1 the extension of It is a proper ideal, whereas δk becomes a unit, whence

IN+ℓ
t RIk+1 ⊆ I

(t−k)ℓ
k+1 RIk+1 .

Now the maximal ideal Ik+1RIk+1 of RIk+1 is generated by (m− k)(n− k) elements by Propo-
sition 5.30 and, by Proposition 4.31,

IN+ℓ
t RIk+1 ⊆ I

(t−k)ℓ
k+1 RIk+1 ⊆ I

[pe]
k+1RIk+1

for all integers satisfying (t − k)ℓ ≥ (m − k)(n − k)(pe − 1) + 1. As the only associated prime
of I [pe]

k+1 is Ik+1, by applying Lemma 5.32 we recover the inclusion of ideals in R:

IN+ℓ
t ⊆ I

[pe]
k+1 ⊆ m[pe].

It follows that the ν-invariant νmIt
(pe) is bounded above by

νmIt
(pe) ≤ (m− k)(n− k)

t− k
(pe − 1) +N.
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Consider the homogeneous lexicographic order (see Section 5.2) on a polynomial ring R =
K[X] over a field K, with the following ordering on the indeterminates:

x11 > x12 > · · · > x1n >

x21 > x22 > · · · > x2n >
... ... ... ...

xm1 > xm2 > · · · > xmn.

Under this ordering, the initial term of a minor is the product of the indeterminates in the
main diagonal, as shown in the following lemma.

Lemma 5.34. Let X = (xij) be an m × n matrix of indeterminates over a field K, m ≤ n.
Fix 1 ≤ t ≤ m and choose integers 1 ≤ a1 < · · · < at ≤ m and 1 ≤ b1 < · · · < bt ≤ n. Let > be
the homogeneous lexicographic order on the polynomial ring K[X]. Then

in([a1, . . . , at | b1, . . . , bt]) = xa1b1 · · ·xatbt .

Proof. The t-minor reads [a1, . . . , at | b1, . . . , bt] = ∑
σ∈St

sgn(σ)∏t
i=1 xaibσ(i) , where St is the

symmetric group of degree t. Let σ ∈ St be a permutation different from the identity. Then
there exists an integer 1 ≤ i ≤ t such that σ(i) ̸= i, and is minimal with this property,
that is, σ(j) = j for all 1 ≤ j < i. In consequence, one has σ(i) > i, thus xaibi

>

xaibσ(i) and xa1b1 · · ·xai−1bi−1xaibi
> xa1bσ(1) · · ·xai−1bσ(i−1)xaibσ(i) . As a result, xa1b1 · · ·xatbt >

xa1bσ(1) · · · xatbσ(t) for all permutations σ ∈ St − {Id}, which proves the lemma.

Notice that if the integers 1 ≤ a1, . . . , at ≤ m and 1 ≤ b1, . . . , bt ≤ n specifying the rows and
the columns of the t-minor are not given in ascending order, the integers can be swapped until
they are in ascending order. As the determinant of a matrix is invariant up to a sign under row
and column swaps, the initial term is invariant up to a sign as well.

Example 5.35. Let X = (xij) be a 5 × 7 matrix of indeterminates over a field K and let δ
be the 4-minor δ = [1, 3, 4, 5 | 2, 5, 6, 7]. With respect to the homogeneous lexicographic order
on R = K[X] one has

in(δ) = in


x12 x15 x16 x17

x32 x35 x36 x37

x42 x45 x46 x47

x52 x55 x56 x57

 = x12x35x46x57.

Instead, suppose that the rows or columns are not given in ascending order, for instance let
δ′ = [4, 5, 1, 3 | 5, 2, 6, 7]. One needs 5 transpositions in order to make the indices appear in
ascending order, hence δ′ = (−1)5δ = −δ, and the initial term reads in(δ′) = −x12x35x46x57.

Observation 5.36. We may graphically depict a minor as follows. Represent the m × n

matrix of indeterminates X = (xij) as an m × n array of dots, in such a way that the (i, j)
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dot corresponds to xij. Then a t-minor δ = [a1, . . . , at | b1, . . . , bt] is drawn in the array of dots
by means of a line connecting the indeterminates in the initial term of δ. As in(δ) involves t
variables and no two of them are in the same row or column, the line completely determines
the minor. In the case of Example 5.35, the 4-minor [1, 3, 4, 5 | 2, 5, 6, 7] is depicted as:

.

Figure 5.1

In order to obtain a lower bound on νmIt
(pe), one exhibits an element in some power of It not

in m[pe]. We shall introduce further notation to this end. For each integer 0 ≤ k ≤ m, define

∆k :=
n−m∏
i=0

[i+ 1, . . . , i+m]
m−k∏
j=2

[j, . . . ,m | 1, . . . ,m− j+ 1] · [1, . . . ,m− j+ 1 | n−m+ j, . . . , n],

which is a product of n+m− 2k − 1 minors. One readily checks that deg ∆k = mn− k2 − k.
Furthermore, for 1 ≤ k ≤ m define

∆′
k := ∆k · [m− k + 1, . . . ,m | 1, . . . , k].

It is a product of n+m− 2k minors and has degree deg ∆′
k = mn− k2.

Example 5.37. We display the products of minors to help with notation. The initial terms
of ∆ and ∆′

k are the product of the indeterminates in the diagonals drawn. In the case k = 0,
the initial term of ∆0 is the product of all the indeterminates.

n−m∏
i=0

[i + 1, . . . , i + m]

m−k∏
j=2

(
[j, . . . ,m | 1, . . . , m − j + 1]×

×[1, . . . , m − j + 1 | n − m + j, . . . , n]

)

∆k ∆′
k

Figure 5.2
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5.3. The F -pure threshold of a determinantal ideal

Lemma 5.38 ([MSV14, Lemma 2.2]). Fix integers 1 ≤ t ≤ m ≤ n. Let k be the least integer
in the interval [0, t− 1] such that

(m− k)(n− k)
t− k

≤ (m− (k + 1))(n− (k + 1))
t− (k + 1) ,

where we view an integer divided by zero as infinity. Define u = t(m + n − 2k) − mn + k2.
Then t− k − u ≥ 0.

Proof. The integer k ∈ [0, t − 1] satisfying the hypothesis clearly exists. By manipulating the
inequality, one gets

t− k − t(m+ n− 2k) +mn− k2 ≥ 0,

from where the assertion follows.

Proposition 5.39 ([MSV14]). Let X = (xij) be a matrix of indeterminates of size m × n,
m ≤ n, defined over a field F of characteristic p > 0 and set R = F[X]. Denote by m =
(x11, . . . , xmn) ⊆ R the homogeneous maximal ideal and let It ⊆ R be the ideal of t-minors of
X. Let k be the least integer in the interval [0, t− 1] such that

(m− k)(n− k)
t− k

≤ (m− (k − 1))(n− (k − 1))
t− (k − 1) .

Then there exists a homogeneous polynomial f ∈ R such that for all integers e ≫ 0,

νmIt
(pe) ≥ (m− k)(n− k)

(
pe − 1 − deg f

t− k
− 1

)
.

Proof. The integer k exists by [MSV14, Lemma 2.2] (see Lemma 5.38) and, by letting u =
t(m+ n− 2k) −mn+ k2, one has that t− k − u ≥ 0. Define the product of minors ∆ by

∆ :=


∆t

0 if k = 0,
∆u
k (∆′

k)t−k−u if k ≥ 1 and u ≥ 0,
∆−u
k−1 (∆′

k)t−k+u if k ≥ 1 and u < 0.

When k = 0, ∆ is a product of t(m+ n− 1) minors, has degree tmn and, from t− u ≥ 0, one
has that t(m+n−1) ≤ mn. For k ≥ 1, ∆ is a product of (m−k)(n−k) minors and has degree
t(m− k)(n− k). In all cases, it follows from [MSV14, Theorem 2.1] (see Theorem 5.29) that

∆ ∈ I
(m−k)(n−k)
t ,

therefore there exists a homogeneous polynomial f ∈ R such that for all integers ℓ ≥ 1,

f∆ℓ ∈ I
(m−k)(n−k)ℓ
t .
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5. Bernstein-Sato Theory for Determinantal Ideals

By Proposition 5.22, the initial term of ∆ with respect to the homogeneous lexicographic order
reads

in(∆) =


in(∆0)t if k = 0,
in(∆k)u in(∆′

k)t−k−u if k ≥ 1 and u ≥ 0,
in(∆k−1)−u in(∆′

k)t−k+u if k ≥ 1 and u < 0,

and it is clear that every variable involved in the initial term in(∆) has exponent at most t−k.
As a result, as long as ℓ ≥ 1 satisfies

deg f + ℓ(t− k) ≤ pe − 1,

one has that in(f∆ℓ) = in(f)in(∆)ℓ ̸∈ m[pe], hence

f∆ℓ ∈ I
(m−k)(n−k)ℓ
t − m[pe],

and νmIt
(pe) ≥ (m− k)(n− k)ℓ. Taking ℓ ≥ 1 to be maximal among the integers satisfying the

inequality above, it follows that

νmIt
(pe) ≥ (m− k)(n− k)

(
pe − 1 − deg f

t− k
− 1

)
.

Proof of Theorem 5.23. By Propositions 5.33 and 5.39, the ν-invariant νmIt
(pe) is bounded by

(m− k)(n− k)
(
pe − 1 − deg f

t− k
− 1

)
≤ νmIt

(pe) ≤ N + (m− k)(n− k)
t− k

(pe − 1)

for all integers e ≫ 0. Dividing by pe and taking the limit when e → ∞, by definition of the
F -pure threshold and from the choice of the integer k in the interval [0, t − 1] from [MSV14,
Lemma 2.2] (see Lemma 5.38),

fpt(It) = min
{

(m− k)(n− k)
t− k

∣∣∣∣∣ k = 0, . . . , t− 1
}
.

5.4. The ν-invariants of ideals of maximal minors

As introduced in Chapter 1, Lőrincz, Raicu, Walther and Weyman computed the Bersntein-Sato
polynomial of the ideal of maximal minors in [LRWW17].

Theorem 5.40 ([LRWW17, Theorem 4.1]). Let X = (xij) be an m× n matrix of indetermi-
nates of size m× n, m ≤ n, defined over C. Let Im be the ideal of maximal minors of X in the
polynomial ring C[X]. The b-function of Im is given by

bIm(s) =
n∏

i=n−m+1
(s+ i).
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5.4. The ν-invariants of ideals of maximal minors

In this section we prove the positive characteristic analogue, namely, the computation of the
ν-invariants and the Frobenius roots of powers of the ideals of maximal minors of matrices of
indeterminates over perfect fields of positive characteristic. The proof is given by a sequence
of lemmas.

Lemma 5.41. Let X = (xij) and Y = (yij) be matrices of indeterminates of sizes m× n and
(m−1)× (n−1), respectively, over a perfect field F of characteristic p > 0, with m ≤ n. Define
the rings R = F[X], S = F[Y ] and Q = R[x−1

mn]. Fix an integer 1 ≤ t ≤ m, let I = It(X) ⊆ R

be the ideal of t-minors of X and J = It−1(Y ) ⊆ S the ideal of (t − 1)-minors if Y . Then S

injects in Q and for all integers e ≥ 0 and ℓ ≥ 0,

(CeR · Iℓ)Q = (CeS · J ℓ)Q.

Proof. Consider the polynomial ring T = K[Y ][xm1, . . . , xmn, x1n, . . . , xm−1,n][x−1
mn] and let

ψ = φ−1 : T = K[Y ][xm1, . . . , xmn, x1n, . . . , xm−1,n][x−1
mn]

∼=−−→ Q = K[X][x−1
mn]

be the isomorphism from [BV88, Proposition 2.4] (see Proposition 5.10). The ring S injects in
the polynomial ring K[Y ][xm1, . . . , xmn, x1n, . . . , xm−1,n] and, as it is a domain, the localization
map is an injection, thus the composition S ↪−→ T

∼=−→ Q is an injection. This gives a diagram

R Q

S T.

∼= ψ

For each integer ℓ ≥ 0 the isomorphism ψ maps the extension of Iℓ to the extension of J ℓ, that
is, IℓQ = J ℓQ. It follows that for each integer e ≥ 0,

(CeR · Iℓ)Q = CeQ · (IℓQ) (Proposition 4.24)
= CeQ · (J ℓQ) (Proposition 5.10)
= (CeT · (J ℓT ))Q (Proposition 4.24)
= ((CeS · J ℓ)T )Q (Proposition 4.25)
= (CeS · J ℓ)Q,

which proves the lemma.

Lemma 5.42. Let X = (xij) be an m × n matrix of indeterminates over a perfect field F
of positive characteristic. Let Im be the ideal of maximal minors of X in the polynomial ring
R = F[X]. Then for all integers ℓ ≥ 1, xmn is a non-zero-divisor modulo Iℓm, that is to say,
fxmn ∈ Iℓk implies that f ∈ Iℓk.

Proof. By [BC03, Proposition 2.2], xmn is a non-zero-divisor modulo I(ℓ)
m and, by [BC03, Corol-

lary 2.3], symbolic and usual powers of Im coincide, therefore xmn is regular modulo Iℓm.
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5. Bernstein-Sato Theory for Determinantal Ideals

Lemma 5.43. Let R be a ring and let I, J ⊆ R be ideals. Let f ∈ R be an element such
that IRf ⊆ JRf . If f is a non-zero-divisor on R/J , then I ⊆ J .

Proof. The ideal IRf is generated by the elements a/fn, where a ∈ I and n ≥ 0 is an integer.
By assumption, for each a ∈ I there exists b ∈ J and an integer n ≥ 0 such that a/1 = b/fn,
hence (afn−b)fm = 0 for some m ≫ 0, thus afn+m = bfm ∈ J . As a result, a ∈ (J : fn+m) = J ,
where the second equality follows from f being a non-zero-divisor on R/J .

Lemma 5.44. Let R = F[x1, . . . , xn] be a polynomial ring over a field F of characteristic
p > 0 and let m = (x1, . . . , xn) ⊆ R be the homogeneous maximal ideal. Fix an integer e ≥ 1.
Then for all integers s ≥ 0,

CeR · m(s−1)pe+n(pe−1)+1 ⊆ ms.

Proof. Given an integer ℓ ≥ 1, mℓ is the ideal of R generated by the monomials of degree ℓ.
Let xa ∈ m(s−1)pe+n(pe−1)+1 be a monomial of degree deg xa = |a| = (s− 1)pe +n(pe − 1) + 1. In
the standard basis of F e

∗R as a free R-module (see Definition 2.34), xa is expressed as F e
∗x

a =
F e

∗x
bpe+r = xbF e

∗x
r, where F e

∗x
r belongs to the standard basis, thus deg xr = |r| ≤ n(pe − 1).

Since |a| = |b|pe + |r|, one has

(s− 1)pe + n(pe − 1) + 1 ≤ |b|pe + n(pe − 1),

therefore |b| ≥ s−1+ 1
pe . As |b| is an integer, one has that |b| ≥ s, hence xb ∈ ms. From [BMS08,

Proposition 2.5] (see Proposition 4.18), a subset of the monomials of degree ≥ s generate the
Frobenius root CeR · m(s−1)pe+n(pe−1)+1, thus it is a subset of ms.

Let X = (xij) be an m × n matrix of indeterminates. In what follows, we will consider the
following ordering on the variables:

x11 > x12 > · · · > x1n >

x21 > x22 > · · · > x2n >
... ... . . . ...

xm1 > xm2 > · · · > xmn.

Proposition 5.45. Let X = (xij) be an m × n matrix of indeterminates over a field F of
characteristic p > 0, and let R = F[X] be a polynomial ring. For each i = 0, 1, . . . , n−m let

δi = [1 + i, . . . ,m+ i] = det


x1,1+i · · · x1,m+1

... . . . ...
xm,1+i · · · xm,m+1

 .

Furthermore, define ∆ = (δ0 δ1 · · · δn−m)pe−1, and let > be the homogeneous lexicoprahic order
on R. Then:
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5.4. The ν-invariants of ideals of maximal minors

(1) For each i = 0, 1, . . . , n−m, the initial term of δi is in(δi) = x1,1+i · · ·xm,m+i.
(2) The initial term of ∆ reads

in(∆) = (in(δ0) in(δ1) · · · in(δn−m))pe−1 =
n−m∏
i=1

(x1,1+i · · ·xm,1+i)p
e−1 ,

thus it is an element of the standard basis of F e
∗R.

(3) In the standard basis of F e
∗R, F e

∗ ∆ reads

F e
∗ ∆ = F e

∗ in(∆) +
∑

F e
∗ µ̸=F e

∗ in(∆)
gµF

e
∗µ, where gµ ∈ R.

Example 5.46. In order to help intuition, we depict the principal diagonal of the minors
δ0, δ1, δ2 and δ3 for a 3 × 7 matrix.

Figure 5.3
Proof of Proposition 5.45. (1) The assertion follows from Lemma 5.34.

(2) By Proposition 5.22, the initial term of the product is equal to the product of the initial
terms. It follows that the following element is in the standard basis:

in(∆) =
n−m∏
i=0

in(δi)p
e−1 =

n−m∏
i=0

(x1,1+i · · · xm,m+i)p
e−1.

(3) Let αxa = αxa11
11 x

a12
12 · · ·xamn

mn be a monomial of ∆, with α ∈ F − {0}, and suppose
that F e

∗αx
a = gF e

∗ in(∆), where g ∈ R. Since ∆ is a homogeneous polynomial of degree
m(n−m+1)(pe−1), αxa = gp

e in(∆) is a monomial of the same degree. As a result, (gpe+1)in(∆)
is a term of ∆, which equals in(∆), but this means g = 0 and α = 0, a contradiction.

Theorem 5.47 (The ν-invariants of ideals of maximal minors). Let X = (xij) be a matrix
of indeterminates of size m × n, m ≤ n, over a perfect field F of characteristic p > 0. Fix an
integer e ≥ 0 and let Im be the ideal of maximal minors of X in the polynomial ring R = F[X].

(1) For all integers 0 ≤ k ≤ (n−m+ 1)(pe − 1), CeR · Ikm = R.
(2) For all integers s ≥ 1,

CeR · Ispe+(n−m+1)(pe−1)
m = CeR · Ispe+(n−m+1)(pe−1)−1

m = CeR · Ispe+(n−m+1)(pe−1)−2
m = · · ·

= CeR · I(s−1)pe+(n−m+1)(pe−1)+2
m = CeR · I(s−1)pe+(n−m+1)(pe−1)+1

m = Ism.

(3) The set of ν-invariants of Im of level e is

ν•
Im

(pe) = {spe + (n−m+ 1)(pe − 1) | s ∈ Z≥0}

(4) If s ≥ 0 is an integer and J = Is+1
m , then νJIm

(pe) = spe + (n−m+ 1)(pe − 1).
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5. Bernstein-Sato Theory for Determinantal Ideals

Proof. (1) Let ∆ = (δ0 · · · δn−m)pe−1 be defined as in Proposition 5.45. It is a product of n−m+1
minors of X raised to pe − 1, hence ∆ ∈ I(n−m+1)(pe−1)

m and CeR · ∆ ⊆ CeR · I(n−m+1)(pe−1)
m . From

Proposition 4.18 and the expression of F e
∗ ∆ in the standard basis of F e

∗R given in Proposi-
tion 5.45, one has that 1 ∈ CeR · ∆, from where the assertion follows.

(2) The Frobenius roots give an ascending chain

CeR · Ispe+(n−m+1)(pe−1)
m ⊆ CeR · Ispe+(n−m+1)(pe−1)−1

m ⊆ · · · ⊆ CeR · I(s−1)pe+(n−m+1)(pe−1)+1
m ,

hence it suffices to show that Ism ⊆ CeR · Ispe+(n−m+1)(pe−1)
m and CeR · I(s−1)pe+(n−m+1)(pe−1)+1

m ⊆ Ism.
As for the first inclusion, by Proposition 4.21,

Ism = Ism CeR · I(n−m+1)(pe−1)
m = CeR ·

(
Is[p

e]
m I(n−m+1)(pe−1)

m

)
⊆ CeR · Ispe+(n−m+1)(pe−1)

m .

In order to prove the second inclusion, we proceed by induction on m. For a row matrix,
i.e. m = 1 the result follows from Lemma 5.44, thus suppose that m ≥ 2. Consider the rings
S = K[Y ] and Q = R[x−1

mn], where Y = (yij) is an (m−1)×(n−1) matrix of indeterminates over
F. By letting J = Im−1(Y ) ⊆ S be the ideal of maximal minors of Y , it follows from Lemma 5.41
that (CeR · Iℓm)Q = (CeS · J ℓ)Q for all integers ℓ ≥ 0. Observe that fpt(Im) = fpt(J) = n−m+ 1,
therefore

(CeR · I(s−1)pe+(n−m+1)(pe−1)+1
m )Q = (CeR · J (s−1)pe+(n−m+1)(pe−1)+1)Q (Lemma 5.41)

= JsQ (Induction)
= IsmQ. (Proposition 5.10)

By Lemma 5.42, xmn is a non-zero divisor modulo Ism, therefore applying Lemma 5.43 one
recovers the inclusion in the ring R, that is CeR · I(s−1)pe+(n−m+1)(pe−1)+1

m ⊆ Ism.
(3) It follows from (1) and (2) that for all integers s ≥ 0,

Is+1 = CeR · Ispe+(n−m+1)(pe−1)+1 ⊊ CeR · Ispe+(n−m+1)(pe−1) = Is,

thereby the ν-invariants of I of level e are given by spe + (n−m+ 1)(pe − 1) for s ∈ Z≥0.
(4) Immediate from (3).

Corollary 5.48. Under the assumptions of Theorem 5.47, the F -pure threshold of Im with
respect to the homogeneous maximal ideal m of R is fpt(Im) = n−m+ 1.

Proof. Since νmIm
(pe) = (n−m+ 1)(pe − 1) for each positive integer e ≥ 0, one has

fpt(Im) = lim
e→∞

νmIm
(pe)
pe

= n−m+ 1.

We note, however, that this fact can be deduced directly from [MSV14, Theorem 1.2] (see
Theorem 5.23).
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Corollary 5.49. Under the assumptions of Theorem 5.47, the only Bernstein-Sato root of
the ideal Im is α = −fpt(Im) = −(n−m+ 1).

Proof. Let (td)∞
d=0 ⊆ Z≥0 be a sequence of non-negative integers and define

νd := tdp
d + (n−m+ 1)(pd − 1) ∈ ν•

Im
(pd).

Then (νd)∞
d=0 is a sequence of ν-invariants with p-adic limit νd → −fpt(Im) = −(n−m+ 1) as

d → ∞. By [QG21b, Theorem IV.17] (see Definition 4.36), α = −fpt(Im) is a Bernstein-Sato
root of Im. Any sequence of ν-invariants is of this form, thus the only Bernstein-Sato root of
Im is α = −fpt(Im).

The corollary above allows us to answer a question raised in [QG21a]:

Question 5.50 ([QG21a, Question 6.16]). Suppose that the F -pure threshold α of an ideal
a ⊆ R lies in Z(p). Is the largest Bernstein-Sato root of a equal to −α?

We readily see that, for ideals of maximal minors in any prime characteristic, the answer to the
question is yes.

The computation of Frobenius roots and ν-invariants of ideals of maximal minors allows one
to determine the test ideals. For the remainder of this section, given a real number λ ≥ 0, let
{λ} denote its fractional part.

Theorem 5.51 ([H14, Theorem 3.2]). Let X = (xij) be an m × n matrix of indeterminates
over a perfect field F of characteristic p > 0, with m ≤ n. Let Im be the ideal of maximal
minors of X in the polynomial ring R = F[X].

(1) For each real number λ ≥ fpt(Im), τ(Iλm) = I⌊λ⌋−fpt(Im)+1
m .

(2) The set of F -jumping numbers of Im is FJN(Im) = {λ ∈ Zn−m+1}.

Proof. (1) Since R is a Noetherian ring, the chain of ideals

C0
R · I⌈λp0⌉

m ⊆ C1
R · I⌈λp⌉

m ⊆ C2
R · I⌈λp2⌉

m ⊆ · · · ⊆ CeRI⌈λpe⌉
m ⊆ · · ·

eventually stabilizes. In view of Theorem 5.47, the chain stabilizes to a power of Im. For
λ < fpt(Im) = n−m+ 1 one has τ(Iλ) = R, hence suppose that λ ≥ fpt(Im). Then the chain
stabilizes to Is+1

m for some integer s ≥ 0. As a result, for all e ≫ 0 one has

spe + fpt(Im)(pe − 1) < λpe ≤ (s+ 1)pe + fpt(Im)(pe − 1).

Rearranging the inequalities gives

λ− fpt(Im)p
e − 1
pe

− 1 ≤ s < λ− fpt(Im)p
e − 1
pe

.
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5. Bernstein-Sato Theory for Determinantal Ideals

These inequalities determine a half-open interval of length 1 in the real line, thus it contains
exactly one integer for e ≫ 0. We claim that such integer is s = ⌊λ⌋ − fpt(Im). On the one
hand, by letting λ = ⌊λ⌋ − {λ}, the first inequality reads

fpt(Im)
pe

≤ 1 − {λ} ,

which holds for all e ≥ 0 large enough. On the other hand the inequality

⌊λ⌋ − fpt(Im) < λ− fpt(Im)p
e − 1
pe

holds for all e ≥ 0. This proves that τ(Iλm) = I⌊λ⌋−fpt(Im)+1
m .

(2) It follows from the formula for test ideals.

The test ideals of Im and its F -jumping numbers can be depicted as follows:

λ

τ(Iλ
m)

· · ·

n
−

m
+

1

n
−

m
+

2

n
−

m
+

3

n
−

m
+

4

n
−

m
+

5

n
−

m
+

6

R

I

I2

I3

I4

I5

Figure 5.4

Recall that a commutative Noetherian ring R of characteristic p > 0 is F -finite if F∗R is a
finitely generated R-module (see Section 2.3). Suppose that R is a regular F -finite ring and let
a ⊆ R be an ideal. Then for each real number λ ≥ 0 the ascending chain of ideals

C0
R · a⌈λ⌉ ⊆ C1

R · a⌈λp⌉ ⊆ C2
R · a⌈λp2⌉ ⊆ · · · ⊆ CeR · a⌈λpe⌉ ⊆ · · ·

stabilizes after finitely many steps. It is not known, however, at which step it stabilizes. This
motivates the following definition:

Definition 5.52. Let R be a regular F -finite ring, a ⊆ R an ideal and let λ ≥ 0 be a real
number. We define the stabilization index of a with exponent λ, denoted by S(aλ), to be the
least non-negative integer such that, for all integers d ≥ 0,

CS(aλ)
R · a⌈λpS(aλ)⌉ = CS(aλ)+e

R · a⌈λpS(aλ)+e⌉.

In particular, τ(aλ) = CS(aλ)
R · a⌈λpS(aλ)⌉.
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Due to the particularly nice behavior of the ν-invariants of the ideals of maximal minors, it
is possible to give an explicit formula for the stabilization index.

Proposition 5.53. Let X = (xij) be a matrix of indeterminates of size m×n, m ≤ n, defined
over a perfect field F of characteristic p > 0. Let Im be the ideal of maximal minors of X in
the polynomial ring F[X]. The stabilization index of Im with exponent λ ≥ 0 is

S(Iλm) =



⌈
logp

fpt(Im)
fpt(Im) − λ

⌉
if 0 ≤ λ < fpt(Im),⌈

logp
fpt(Im)
1 − {λ}

⌉
if λ ≥ fpt(Im),

Proof. Since R is a Noetherian ring, the ascending chain of ideals

C0
R · I⌈λp0⌉

m ⊆ C1
R · I⌈λp⌉

m ⊆ C2
R · I⌈λp2⌉

m ⊆ · · · ⊆ CeRI⌈λpe⌉
m ⊆ · · ·

eventually stabilizes. In view of Theorem 5.47, the chain stabilizes to a power Ism for some
integer s ≥ 0.

To begin with consider the case 0 ≤ λ < fpt(Im). Since the test ideal τ(Iλm) is trivial, that
is τ(Iλ) = R, there is an integer e0 ≥ 0 such that CeR · I⌈λpe⌉

m = R for all e ≥ e0, and e0 is
minimal with respect to this property, i.e. S(Iλm) = e0. As a result, by Theorem 5.47, one has
that λpe ≤ ⌈λpe⌉ ≤ fpt(Im)(pe − 1), whence

S(Iλm) =
⌈
logp

fpt(Im)
fpt(Im) − λ

⌉
.

Now suppose λ ≥ fpt(Im), then τ(Iλm) = Is+1
m for some integer s ≥ 0. As in the proof of

Theorem 5.51, one concludes that s must satisfy

λ− fpt(Im)p
e − 1
pe

− 1 ≤ s < λ− fpt(Im)p
e − 1
pe

for all e ≫ 0, and that the only integer doing so is λ = ⌊λ⌋ − fpt(Im). The second inequality is
true for all e ≥ 0. Rearranging terms shows that the first inequality holds is equivalent to

fpt(Im)
pe

≤ 1 − {λ}.

It follows that the smallest integer e ≥ 0 for which the inequality above is true is

S(Iλm) =
⌈
logp

fpt(Im)
1 − {λ}

⌉
.

Observation 5.54. Regarding the stabilization index of Im:
(1) The larger is the characteristic of the field F, the faster the chain of ideals stabilizes.
(2) When 0 ≤ λ < fpt(Im), the stabilization index diverges as λ → fpt(Im)−. The same

occurs when λ ≥ fpt(Im) and {λ} → 1−.

77



5. Bernstein-Sato Theory for Determinantal Ideals

5.5. Determinantal-type polynomials

Chronologically, first we were able to compute the ν-invariants and the Frobenius roots of powers
of the determinant of an n× n matrix of indeterminates X over Fp. By letting f = detX and
setting m = n in Theorem 5.47, one has:

(1) For all integers s ≥ 0,

CeR · f spe+pe−1 = CeR · f spe+pe−2 = · · · = CeR · f spe−pe = (f)s.

(2) The set of ν-invariants of f of level e is ν•
f (pe) = {(s+ 1)pe − 1 | s ∈ Z≥0}.

We observe that the same is true for a more general class of polynomials, which we refer
to as determinantal-type polynomials. For this section we recover multi-index notation: if
a = (a1, . . . , an) ∈ Zn≥0 is an n-tuple of non-negative integers, we let xa be the monomial

xa = xa1
1 · · ·xan

n .

Definition 5.55. Let R = B[x1, . . . , xn] be a polynomial ring over a ring B.
(1) A square-free monomial is non-trivial monomial xa of R, i.e. not a unit of R, such that

0 ≤ a1, . . . , an ≤ 1.
(2) A determinantal-type polynomial is a non-zero polynomial whose monomials are square-

free.
It follows from the definition that a determinantal-type polynomial is in the homogeneous
maximal ideal m = (x1, . . . , xn) of R.

Example 5.56.
(a) If X = (xij) is an n× n matrix of indeterminates over a field K, the determinant

detX =
∑
σ∈Sn

sgn(σ)x1,σ(1) · · ·xn,σ(n)

is a determinantal-type polynomial in the ring K[X].
(b) Let X = (xij) be a 2n× 2n skew-symmetric matrix of indeterminates with zero diagonal,

that is to say, xij = −xji for all 1 ≤ i, j ≤ 2n. The Pfaffian of X is the polynomial in
K[X] given by

Pf X = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

xσ(2i−1),σ(2i).

One can show that (Pf X)2 = detX. Since no variable appears twice in the same mono-
mial, it is a determinantal-type polynomial.

(c) The elementary symmetric polynomials in K[x1, . . . , xn], that is the polynomials given by

es =
∑

1≤i1<···<is≤n
xi1 · · ·xis

for 1 ≤ s ≤ n, are determinantal-type polynomials.
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Recall that if R = F[x1, . . . , xn] is a polynomial ring over a perfect field F of characteristic
p, then for each e ∈ Z≥0, the R-module F e

∗R is free with standard basis{
F e

∗x
i1
1 · · ·xinn | 0 ≤ i1, . . . , in < pe

}
.

For a proof of this fact, see Proposition 2.33.

Lemma 5.57. Let R = F[x1, . . . , xn] be a polynomial ring over a perfect field F of character-
istic p > 0 and let f ∈ R be a determinantal-type polynomial. Then for all integers 0 ≤ r < pe,
F e

∗ f
r is an F-linear combination of elements in the standard basis.

Proof. Let f = ∑m
i=1 αix

ai ∈ R, where αi ∈ K and ai = (ai1, . . . , ain) ∈ {0, 1}n for each integer
i = 1, . . . , n. By the multinomial theorem one has

f r =
∑

k1+···+km=r

(
r

k1, . . . , km

)
m∏
i=1

αki
i x

kiai .

The monomials in the expression above are of the form

m∏
i=1

xkiai = x

∑m
i=1 kiai = x

∑m
i=1 kiai1

1 · · · x
∑m
i=1 kiain

n ,

and these are elements of the standard basis since for each j = 1, . . . , n one has
m∑
i=1

kiaij ≤
m∑
i=1

ki = r ≤ pe − 1.

Thereby, up to collecting terms, in the standard basis F e
∗ f

r reads

F e
∗ f

r =
∑

k1+···+km=r

((
r

k1, . . . , km

)
m∏
i=1

αki
i

)1/pe

F e
∗x

∑m
i=1 kiai

,

which shows that the coefficients are in K. As F e
∗R is free and f r ̸= 0, at least one of the

coefficients is non-zero.

Theorem 5.58 (The ν-invariants of determinantal-type polynomials). Let R = F[x1, . . . , xn]
be a polynomial ring over a perfect field F of characteristic p and let f ∈ R be a determinantal-
type polynomial. Fix an integer e ≥ 0. Then:

(1) For all integers s ≥ 0 and 0 ≤ r < pe,

CeR · f spe+pe−1 = CeR · f spe+pe−2 = CeR · f spe+pe−3 = · · ·
= CeR · f spe+1 = CeR · f spe = (f)s.

(2) The ν-invariants of f of level e are ν•
f (pe) = {(s+ 1)pe − 1 | s ∈ Z≥0}.

(3) If s ≥ 0 is an integer and J = (f)s+1, then νJf (pe) = (s+ 1)pe − 1.
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Proof. (1) First consider the case when s = 0. We know that F e
∗ f

pe−1 is a linear combination
of basis elements with coefficients in K by Lemma 5.57, thus by Proposition 4.18 one has
CeR · fpe−1 = R. Let s ≥ 0 and 0 ≤ r < pe be arbitrary integers. Since the Frobenius roots give
the ascending chain

CeR · f spe+pe−1 ⊆ CeR · f spe+pe−2 ⊆ · · · ⊆ CeR · f spe+1 ⊆ CeR · f spe

,

it is enough to verify that (f)s ⊆ CeR · f spe+pe−1 and that CeR · f spe ⊆ (f)s. On the one hand, by
Proposition 4.21,

(f)s = (f)s CeR · fpe−1 = CeR ·
(
f s[p

e]fp
e−1
)

= CeR · f spe+pe−1.

On the other hand, by Proposition 4.19, CeR·f spe ⊆ (f)s is equivalent to (f)spe ⊆ (f)s[pe] = (f)spe .
(2) From (1), we have that for each integer s ≥ 0,

(f)s+1 = CeR · f (s+1)pe ⊊ CeR · f (s+1)pe−1 = (f)s,

hence the ν-invariants of f of level e ≥ 0 are of the form (s+ 1)pe − 1 for s ∈ N.
(3) It follows at once from (2).

Corollary 5.59. Let R = F[x1, . . . , xn] be a polynomial ring over a perfect field F of charac-
teristic p > 0 and let f ∈ R be a determinantal-type polynomial. The F -pure threshold of f
at the homogeneous maximal ideal m = (x1, . . . , xn) is fpt(f) = 1.

Proof. One has that νmf (pe) = pe − 1 for each integer e ≥ 0, thus by definition of the F-pure
threshold,

fpt(f) = lim
e→∞

νmf (pe)
pe

= 1.

Corollary 5.60. Let R = F[x1, . . . , xn] be a polynomial ring over a perfect field F of char-
acteristic p > 0 and let f ∈ R be a determinantal-type polynomial. The only Bernstein-Sato
root of f is α = −fpt(f) = −1.

Proof. Let (td)∞
d=0 ⊆ Z≥0 be a sequence of non-negative integers and set

νd := (td + 1)pd − 1 ∈ ν•
f (pd).

Then (νd)∞
d=0 is a sequence of ν-invariants with p-adic limit νd → α = −fpt(f) = −1, thus

α = −fpt(f) is a Bernstein-Sato root of f by [QG21b, Theorem IV.17]. Any sequence of
ν-invariants of f is of this form, therefore α− fpt(f) is the only Bernstein-Sato root of f .

Observe that Theorem 5.58 and its corollaries applied to the determinant of a matrix of inde-
terminates is a particular case of Theorem 5.47 and Corollary 5.49, respectively. Furthermore,
we have the following connection to the characteristic zero case:
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Corollary 5.61. Let f ∈ Z[x1, . . . , xn] be a determinantal-type polynomial and denote by f
its extension to the polynomial ring C[x1, . . . , xn].

(1) The log-canonical threshold of f at the origin is lct(f) = 1.
(2) A root of the b-function bf (s) ∈ C[s] of f is −1.

Proof. For each prime p ∈ Z, denote by fp ∈ Fp[x1, . . . , xn] the reduction of f modulo p.
(1) By [MTW05, Theorem 3.4] (see Theorem 4.43), one has that lct(f) = limp→∞ fpt(fp) = 1.
(2) Since α = −1 is the only Bernstein-Sato root of fp for each prime p ∈ Z, it follows from

[QG21b, Theorem VI.3] (see Theorem 4.38) that α = −1 is a root of the b-function of f .

Proposition 5.62. Let R = F[x1, . . . , xn] be a polynomial ring over a perfect field F of
characteristic p and let f ∈ R be a determinantal-type polynomial. Let λ ≥ 0 be a real number
and fix an integer e ≥ 0. Then

CeR · f ⌈λpe⌉ =
(f)⌊λ⌋ if {λ} ≤ (pe − 1)/pe,

(f)⌊λ⌋+1 if {λ} > (pe − 1)/pe,

where {λ} denotes the fractional part of λ.

Proof. Write λ = ⌊λ⌋ + {λ}. Since 0 ≤ {λ} < 1, there exists an integer 0 ≤ r < pe such that
r ≤ {λ} pe < r+ 1. We distinguish two cases according to whether the inequalities are strict or
not. First assume that r = {λ} pe, that is, {λ} ≤ (pe−1)/pe. Then ⌊λ⌋pe ≤ λpe ≤ ⌊λ⌋pe+pe−1,
and by Theorem 5.58,

(f)⌊λ⌋ = CeR · f ⌊λ⌋pe+pe−1 ⊆ CeR · f ⌈λpe⌉ ⊆ CeR · f ⌊λ⌋pe = (f)⌊λ⌋.

Next suppose that both inequalities are strict. On the one hand, if 0 ≤ r ≤ pe − 2 one has
{λ} < (pe − 1)/pe. In consequence, ⌊λ⌋pe ≤ λpe < ⌊λ⌋pe + pe − 1 and CeR · f ⌈λpe⌉ = (f)⌊λ⌋

as before. On the other hand, if r = pe − 1, that is (pe − 1)/pe < {λ} < 1, it follows
that ⌊λ⌋pe + pe − 1 < λpe < ⌊λ⌋pe + pe and ⌈λpe⌉ = (⌊λ⌋ + 1)pe. Again by Theorem 5.58,
CeR · f ⌈λpe⌉ = (f)⌊λ⌋+1.

Proposition 5.63. Let R = F[x1, . . . , xn] be a polynomial ring over a perfect field F of
characteristic p > 0 and let f ∈ R be a determinantal-type polynomial. Let λ ≥ 0 be a real
number. Then the stabilization index of f with exponent λ is given by

S(fλ) =
⌈
logp

1
1 − {λ}

⌉
.

Proof. First suppose that λ ≥ 0 is an integer. Then by Proposition 5.62 one has

CeR · f ⌈λpe⌉ = CeR · fλpe = (f)λ
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for all integers e ≥ 0, thus the stabilization index is S(fλ) = 0. Next suppose that λ ≥ 0 is not
an integer. Since the sequence ((pe − 1)/pe)∞

e=0 has limit 1 as e → ∞, there exists some E ≥ 1
such that

pE−1 − 1
pE−1 < {λ} ≤ pE − 1

pE
.

By Proposition 5.62 one has CeR · f ⌈λpe⌉ = (f)⌊λ⌋+1 for all integers 0 ≤ e ≤ E − 1, whereas
CeR · f ⌈λpe⌉ = (f)⌊λ⌋ for all integers e ≥ E. It follows that the stabilization index is E, which is
given by

S(fλ) = E =
⌈
logp

1
1 − {λ}

⌉
.

As Corollary 5.59 shows, the F -pure threshold of the determinant of a matrix of indetermi-
nates is 1. This shows that, Proposition 5.63 is a particular case of Proposition 5.53 applied to
the determinant.

Theorem 5.64. Let R = F[x1, . . . , xn] be a polynomial ring over a perfect field F of charac-
teristic p and let f ∈ R be a determinantal-type polynomial.

(1) For each real number λ ≥ 0, τ(fλ) = (f)⌊λ⌋.
(2) The set of F -jumping numbers of f is FJN(f) = {λ ∈ Z≥1}.

Proof. (1) The sequence ((pe − 1)/pe)∞
e=0 has limit 1 as e → ∞, thus there exists e0 ≥ 0 such

that {λ} ≤ (pe−1)/pe for all e ≥ e0. Then CeR ·f ⌈λpe⌉ = (f)⌊λ⌋ for all e ≥ e0 by Proposition 5.62,
thus it follows that τ(fλ) = (f)⌊λ⌋.

(2) Fix an integer n ≥ 0. Then τ(fλ) = (f)⌊λ⌋ = (f)n for all real numbers n ≤ λ < n + 1,
whereas τ(fn+1) = (f)n+1. Consequently n + 1 is an F -jumping number of f , from where the
assertion follows.

5.6. Behavior of the F -pure threshold under induction

As previously mentioned, some properties of interest to us are preserved under induction on
each component of the triple (m,n, t), where m × n is the size of the matrix and t is the size
of the minors. Fix a field F of positive characteristic, and let Ji be the ideal of (t + i)-minors
of a (m+ i) × (n+ i) matrix of indeterminates over F. In this section we will show that if t is
large enough with respect to m and n, then

fpt(J0) = fpt(J1) = fpt(J2) = · · · ,

thus the F -pure threshold “stabilizes”. In contrast, if t is not large enough with respect to m
and n, then there is an integer ℓ ≥ 1 such that

fpt(J0) > fpt(J1) > · · · > fpt(Jℓ) = fpt(Jℓ+1) = fpt(Jℓ+2) = · · · .
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Definition 5.65. Let t ≤ m ≤ n be integers. Define the function θ : Z3 × R → R by

θ(m,n, t;x) := (m− x)(n− x)
t− x

.

Note that the F -pure threshold of the ideal It(X) of t-minors of a matrix of indeterminates
X of size m× n, m ≤ n, defined over a field of prime characteristic is

fpt(It(X)) = min
k=0,...,t−1

θ(m,n, t; k).

(see [MSV14, Theorem 1.2]). For each choice of m ≤ n with t < m, θ is a function of x of class
C1 defined in R−{t}. When t = m, i.e. when one considers maximal minors, the function reads
θ(m,n, t;x) = n− x, thus it is C1 everywhere.

Proposition 5.66. Let t < m ≤ n be fixed integers and view θ(m,n, t;x) as a function of x.
(1) The point x∗ = t−

√
(t−m)(t− n) is a local minimum of θ(m,n, t;x).

(2) For x < x∗, θ(m,n, t;x) is strictly decreasing.
(3) For x∗ < x < t, θ(m,n, t;x) is strictly increasing.

Proof. The partial derivative of θ with respect to x reads

∂xθ = −
(x− t+

√
(t−m)(t− n))(x− t−

√
(t−m)(t− n))

(x− t)2 ,

and it is vanishes when x = x± = t ±
√

(t−m)(t− n). Since t < m ≤ n, the square root is a
real number and we have x− < t < x+. Let x∗ = x−; we claim that θ has a local minimum at
x∗. Indeed, on the one hand, x2 − 2tx+ (m+ n)t−mn < 0 for all x− < x < x+, thus ∂xθ > 0
for x− < x < t. On the other hand, x2 − 2tx+ (m+n)t−mn > 0 when x < x−, hence ∂xθ > 0
for all x < x−.

For the sake of clarity, we include the graph of θ(m,n, t;x) as a function of x:

x

θ(m, n, t; x)

t

x∗

Figure 5.5
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Lemma 5.67. Let 1 ≤ t ≤ m ≤ n be integers. Then:
(1) For each integer i ∈ Z, θ(m+ i, n+ i, t+ i;x+ i) = θ(m,n, t;x).
(2) For each integer i ∈ Z, θ(m+ i, n+ i, t+ i;x) = θ(m,n, t;x− i).

Proof. A couple of straightforward computations show that

θ(m+ i, n+ i, t+ i;x+ i) = (m+ i− (x+ i))(n+ i− (x+ i))
t+ i− (x+ i)

= θ(m,n, t;x),

and

θ(m+ i, n+ i, t+ i;x) = (m+ i− x)(n+ i− x)
(t+ i− x)

= (m− (x− i))(n− (x− i))
t− (x− i)

= θ(m,n, t;x− i).

Notation 5.68. Let X = (xij) be an m × n matrix of indeterminates over a commutative
ring B, with m ≤ n, and let i ≥ −m + 1 be an integer. We define X[i] as the matrix of
indeterminates

X[i] :=


x11 · · · x1,n+i
... . . . ...

xm+i,1 · · · xm+i,n+i

 ,
and we let B[X[i]] be the corresponding polynomial ring. More explicitly:

(a) For i = 0, X is left unchanged, thus X = X[0].
(b) When i > 0, X[i] is the (m+ i) × (n+ i) matrix of indeterminates obtained by adjoining

i rows below the m-th row of X, and i columns to the right of the n-th column.
(c) When i < 0, X[i] is the (m+ i) × (n+ i) matrix of indeterminates obtained by removing

the last i rows and columns of X. If i ≤ −m the matrix X[i] is empty, thus i ≥ −m+ 1.

To begin with, we look at the behavior under induction of the F -pure threshold of the ideal
of maximal minors:

Proposition 5.69. Let X = (xij) be a matrix of indeterminates of size m×n, m ≤ n, defined
over a field F of positive characteristic. Then for all integers i ≥ 0,

fpt(Im(X)) = fpt(Im+i(X[i])) = n−m+ 1.

Proof. Note that θ(m+i, n+i,m+i;x) = n+i−x, thus the minimum on the set [0,m+i−1]∩Z
is achieved at k = m+ i− 1. which gives fpt(Im+i(X[i])) = n+ i− (m+ i− 1) = n−m+ 1.

Observe that the fact shown in the preceding proposition was already used in the proof of
Theorem 5.47.(2).
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In the succeeding propositions we shall study the behavior under induction of the F -pure
threshold of the ideals of non-maximal minors. In order to avoid repeating the hypothesis,
in the following propositions X = (xij) will be matrix of indeterminates of size m × n, m ≤
n, defined over a field F of positive characteristic. Moreover, for each integer i ≥ −t + 1,
It+i(X[i]) ⊆ F[X[i]] will denote the ideal of (t+ i)-minors of X[i].

Proposition 5.70. Fix integers 1 < t < m ≤ n.
(1) If x∗ = t−

√
(t−m)(t− n) ≤ 0, then fpt(It(X)) = mn/t.

(2) If (m+ n)t ≤ mn, then fpt(It(X)) = mn/t.

Proof. (1) As shown in Proposition 5.66, x∗ = t−
√

(t−m)(t− n) is where θ(m,n, t;x) attains
its local minimum. Since x∗ ≤ 0 and θ(m,n, t;x) is strictly increasing for x∗ < x < t, we have
that

θ(m,n, t; 0) = mn

t
< θ(m,n, t; k)

for all integers 1 ≤ k < t from where the assertion follows.
(2) We note that x∗ ≤ 0 is equivalent to (m+ n)t ≤ mn.

From the previous proposition and by definition of the F -pure threshold, one has:

fpt(It(X)) =
θ(m,n, t, 0) if x∗ ≤ 0,

min {θ(m,n, t, ⌊x∗⌋), θ(m,n, t, ⌈x∗⌉)} otherwise.

Recall that given a function f : D ⊆ R → R, arg min f denotes the subset of points of D
where f attains its absolute minimum, that is:

arg min f := {x ∈ D | f(x) ≤ f(y) for all y ∈ D} .

Similarly, if E is a subset of D, we let

arg min{f | x ∈ E} := arg min f|E = {x ∈ E | f(x) ≤ f(y) for all y ∈ E} .

Proposition 5.71. Let 1 ≤ t < m ≤ n be fixed integers and suppose that

κ = max
(

arg min
{
θ(m,n, t; k)

∣∣∣∣ k = 0, . . . , t− 1
})

≥ 1.

Then for all integers i ≥ −κ+ 1,

fpt(It+i(X[i])) = θ(m,n, t;κ).

Proof. We note that fpt(It+i(X[i])) = min{θ(m + i, n + i, t + i; k) | k = 0, . . . , t + i − 1}. Let
x∗ be the local minimum of θ(m,n, t;x) as a function of x given by Proposition 5.66. Since
κ is the integer where θ(m,n, t;x) attains its minimum over the set [0, t) ∩ Z, it follows that
x∗ ∈ (κ−1, κ+1) ⊆ R>0, thus θ(m,n, t, κ) ≤ θ(m,n, t, κ−1) and θ(m,n, t, κ) ≤ θ(m,n, t, κ+1).
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On the one hand, as κ− 1 < x∗ and, by Proposition 5.66, θ(m,n, t;x) is strictly decreasing
as a function of x in (−∞, x∗) ⊆ R, hence θ(m,n, t;κ) ≤ θ(m,n, t;κ− ℓ) for all integers ℓ ≥ 1.
As a result, by Lemma 5.67,

θ(m+ i, n+ i, t+ i;κ+ i) = θ(m,n, t;κ)
≤ θ(m,n, t;κ− ℓ)
= θ(m+ i, n+ i, t+ i;κ+ i− ℓ),

for all integers ℓ ≥ 1. On the other hand x∗ < κ+ 1, and θ(m,n, t;x) is strictly increasing as a
function of x in (x∗, t) ⊆ R, thereby θ(m,n, t;κ) ≤ θ(m,n, t;κ+ℓ) for all integers 1 ≤ ℓ ≤ t−κ,
where we set θ(m,n, t; t) = ∞. Again by Lemma 5.67,

θ(m+ i, n+ i, t+ i;κ+ i) = θ(m,n, t;κ)
≤ θ(m,n, t;κ+ ℓ)
= θ(m+ i, n+ i, t+ i;κ+ i+ ℓ),

for all integers 1 ≤ ℓ ≤ t−κ. This shows that θ(m+ i, n+ i, t+ i;κ+ i) ≤ θ(m+ i, n+ i, t+ i; k)
for all integers k = 0, . . . , t+ i− 1, which proves the proposition.

Proposition 5.72. Let 1 ≤ t < m ≤ n be integers. Suppose that

arg min
{
θ(m,n, t; k)

∣∣∣∣ k = 0, . . . , t− 1
}

= 0,

and that θ(m,n, t; 0) ≤ θ(m,n, t; −1). Then for all integers i ≥ 1,

fpt(It+i(X[i])) = θ(m,n, t; 0).

Proof. By assumption, fpt(It(X)) = θ(m,n, t; 0). By Lemma 5.67, one has that

θ(m+ 1, n+ 1, t+ 1; 1) = θ(m,n, t; 0) ≤ θ(m,n, t; −1) = θ(m+ 1, n+ 1, t+ 1; 0),
θ(m+ 1, n+ 1, t+ 1; 1) = θ(m,n, t; 0) ≤ θ(m,n, t; k) = θ(m+ 1, n+ 1, t+ 1; k + 1),

for all integers 1 ≤ k < t, hence fpt(It+1(X[1])) = θ(m + 1, n + 1, t + 1; 1) = fpt(It(X)). This
puts us in the situation of Proposition 5.71 since

κ = max
(

arg min
{
θ(m+ 1, n+ 1, t+ 1; k)

∣∣∣∣ k = 0, . . . , t
})

= 1.

As a result, fpt(It+i(X[i])) = fpt(It(X)) = θ(m,n, t; 0) for all integers i ≥ 1.
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In order to aid intuition with Propositions 5.71 to 5.73, it is useful to depict the behavior of
the F -pure threshold and the integer at which θ attains its minimum as follows:

x

θ(
m

+
i,

n
+

i,
t

+
i;

x
)

i
=

0

⌊x∗⌋

i
=

1
i

=
2

i
=

3
i

=
4

i
=

5
i

=
6

i
=

7

i
0 1 2 3 4 5 6 7

fpt(It+i(X[i]))

· · ·

Figure 5.6

Proposition 5.73. Let 1 ≤ t < m ≤ n be integers and let x∗ = t −
√

(t−m)(t− n) be the
local minimum of θ(m,n, t;x) as a function of x. Suppose that x∗ < 0.

(1) If θ(m,n, t; ⌊x∗⌋) < θ(m,n, t; ⌈x∗⌉), then

fpt(It(X)) > fpt(It+1(X[1])) > · · · > fpt(It−⌊x∗⌋(X[⌊x∗⌋])),

and, for all integers i ≥ 1,

fpt(It−⌊x∗⌋(X[−⌊x∗⌋])) = fpt(It−⌊x∗⌋+i(X[−⌊x∗⌋ + i])).

(2) If θ(m,n, t; ⌈x∗⌉) ≤ θ(m,n, t; ⌊x∗⌋), then

fpt(It(X)) > fpt(It+1(X[1])) > · · · > fpt(It−⌈x∗⌉(X[−⌈x∗⌉])),

and, for all integers i ≥ 1,

fpt(It−⌈x∗⌉(X[−⌈x∗⌉])) = fpt(It−⌈x∗⌉+i(X[−⌈x∗⌉ + i])).

Proof. By Lemma 5.67 we note that, for each integer i ∈ Z≥0, the graph of θ(m+i, n+i, t+i;x)
as a function of x is the graph of θ(m,n, t;x) shifted by i units to the right. As a result,
θ(m+ i, n+ i, t+ i;x) attains its local minimum at

x∗ + i = i+ t−
√

(t−m)(t− n).
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(1) By assumption we have that ⌊x∗⌋ < ⌈x∗⌉, for otherwise θ(m,n, t; ⌊x∗⌋) = θ(m,n, t; ⌈x∗⌉).
For each integer 0 ≤ i < ⌊x∗⌋, the local minimum of θ(m + i, n + i, t + i;x) is at x∗ + i ≤ 0,
hence by Proposition 5.70

fpt(It+i(X[i])) = θ(m+ i, n+ i, t+ i; 0) = θ(m,n, t; −i),

where the second equality follows from Lemma 5.67. Since θ(m,n, t;x) is strictly increasing for
x∗ < x < t, it follows that

θ(m,n, t; 0) > θ(m,n, t; −1) > · · · > θ(m,n, t; ⌈x∗⌉) > θ(m,n, t; ⌊x∗⌋),

which proves the first part. From Proposition 5.66, θ(m,n, t;x) is strictly decreasing for x < x∗,
thus θ(m,n, t; ⌊x∗⌋ − 1) ≥ θ(m,n, t; ⌊x∗⌋) = θ(m− ⌊x∗⌋, n− ⌊x∗⌋, t− ⌊x∗⌋; 0), therefore

κ := arg min
{
θ(m− ⌊x∗⌋, n− ⌊x∗⌋, t− ⌊x∗⌋; 0)

∣∣∣∣ k = 0, . . . , t− ⌊x∗⌋ − 1
}

= 0.

By Proposition 5.72, it follows that, for all integers i ≥ 1,

fpt(It−⌊x∗⌋(X[−⌊x∗⌋])) = fpt(It−⌊x∗⌋+i(X[−⌊x∗⌋ + i])).

(2) The argument is identical to the one used to prove (1).

5.7. Initial ideals of determinantal ideals

In proving [MSV14, Theorem 1.2] and Theorem 5.47, the initial terms of products of minors
have played an important role when computing the ν-invariants of ideals of minors. In this
section we explore this idea in more detail. We refer the reader interested in Gröbner bases to
[E04, Chapter 15].

Definition 5.74. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, let I ⊆ R

be an ideal and let τ be a monomial order on R. The initial ideal of I with respect to the
monomial order τ is the ideal of R generated by the initial terms of the elements of I, that is,
inτ (I) := (inτ (f) | f ∈ I). If the monomial order τ is clear from the context, we shall write
in(f) and in(I).

If I is generated by polynomials f1, . . . , fr, it is not true in general that the initial ideal in(I)
is generated by in(f1), . . . , in(fn).

Definition 5.75. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, let I ⊆ R be an
ideal and let τ be a monomial order on R. A Gröbner basis of I with respect to the monomial
order τ is a set of generators f1, . . . , fr of I such that in(f1), . . . , in(fr) generate the initial ideal
in(I).
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Example 5.76. Let R = K[x, y] be a polynomial ring over a field K and consider the ideal
I = (x + y, x − y), which is precisely the homogeneous maximal ideal of R. With respect to
the lexicographic order on R, one has in(x+ y) = in(x− y) = x but in((x+ y) − (x− y)) = 2y,
which is not an element of (in(x + y), in(x − y)) = (x), thus {x + y, x − y} is not a Gröbner
basis of I. Instead, {x, y} is a Gröbner basis for I.

Definition 5.77 ([BC03, Section 5]). Let X = (xij) be an m × n matrix of indeterminates
over a field K, and let R = K[X] be a polynomial ring. A diagonal monomial order τ on R,
is a monomial order on R such that if [a1, . . . , at | b1, . . . , bt] is a t-minor of X with 1 ≤ a1 <

· · · < at ≤ m and 1 ≤ b1 < · · · < bt ≤ n, then

inτ ([a1, . . . , at | b1, . . . , bt]) = xa1b1 · · · xatbt .

Roughly speaking, if the indices determining the rows and columns of the minor are given in
ascending order, a monomial order is diagonal if the initial term of the minor is the product of
the elements in the diagonal. By Lemma 5.34, the homogeneous lexicographic order on K[X]
is a diagonal monomial order. Likewise, the lexicographic order is also diagonal, since both
orders coincide on homogeneous polynomials.

Proposition 5.78. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, let I ⊆ R be
an ideal and τ a monomial order on R. Then in(I)ℓ ⊆ in(Iℓ) for all integers ℓ ≥ 0.

Proof. Choose polynomials f1, . . . , fℓ ∈ I and let ηi = in(fi) for each i = 1, . . . , ℓ. Then
the product η1 · · · ηℓ = in(f1 · · · fℓ) is a generator of in(I)ℓ, where the equality follows from
Lemma 5.34. Since f1 · · · fℓ ∈ Iℓ, it follows that η1 · · · ηℓ ∈ in(Iℓ), as desired.

In general, the containment in(Iℓ) ⊆ in(I)ℓ is not true for an arbitrary ideal I ⊆ R. Nonethe-
less, it does hold for ideals of maximal minors.

Theorem 5.79 ([C97, Theorem 2.1]). Let X = (xij) be an m × n matrix of indeterminates
over a field K and let R = K[X] be a polynomial ring. The set {δ1 · · · δi | δ1, . . . , δi ∈ Im} is a
Gröbner basis of I im for all i ∈ Z≥0 with respect to a diagonal monomial order τ . In particular
in(I im) = in(Im)i for all i ∈ Z≥0.

Theorem 5.80. Let X = (xij) be an m × n matrix of indeterminates over a perfect field F
of characteristic p > 0 and let R = F[X] be a polynomial ring. Let in(Im) be the initial ideal
of the ideal of maximal minors Im with respect to a diagonal monomial order.

(1) For each integer e ≥ 0, νmin(Im)(pe) = (n−m+ 1)(pe − 1).
(2) The F -pure threshold of in(Im) is fpt(in(Im)) = n−m+ 1.

Proof. Let δ = [b1, . . . , bm] be a maximal minor of X, with 1 ≤ b1 < · · · < bm ≤ n. Then
1 ≤ b1 ≤ n − m + 1, for otherwise at least two of the bi’s are repeated. As a result, in each
maximal minor of X one of the variables x11, x12, . . . , x1,n−m+1 is involved.
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(1) For each integer j = 1, . . . , n−m+ 1 define

δj := [j, . . . , j +m− 1] = det


x1j · · · x1,j+m−1
... . . . ...

xmj · · · xm,j+m−1

 ,
which is a maximal minor with initial term

ηj := in(δj) = x1jx2,j+1 · · ·xm,j+m−1.

Then η1 · · · ηn−m+1 is a product of n−m+ 1 monomials, thus it lies in the ideal in(Im)n−m+1,
and each variable involved in it is raised to the power of 1. By letting m = (x11, . . . , xmn) be
the homogeneous maximal ideal of R, for each integer e ≥ 0 one has that

(η1 · · · ηn−m+1)p
e−1) ∈ in(Im)(n−m+1)(pe−1) − m[pe],

thus νmin(Im)(pe) ≥ (n − m + 1)(pe − 1). In order to show the converse inequality, let µ be a
product of (n−m+ 1)(pe − 1) + 1 initial terms of maximal minors of X. As noted above, the
indeterminates x11, x12, . . . , x1,n−m+1 are in µ. Furthermore, µ is divisible by a monomial of the
form xr1

11x
r2
12 · · ·xrn−m+1

1,n−m+1, where r1, . . . , rn−m+1 ≥ 1 are integers satisfying r1 + · · · + rn−m+1 =
(n − m + 1)(pe − 1) + 1. By the pigeonhole principle there is some rj ≥ pe, whence µ ∈ m[pe],
which proves that νmin(Im)(pe) ≤ (n−m+ 1)(pe − 1) and thus the equality.

(2) By definition of the F -pure threshold of an ideal at m,

fpt(in(Im)) = lim
e→∞

νmin(Im)(pe)
pe

= n−m+ 1.

Observation 5.81. When dealing with the initial terms of t-minors with respect to diagonal
monomial orders, one notices that some indeterminates are not involved in them. For instance,
for a 7 × 9 matrix, the indeterminates excluded from the initial terms of the 4-minors are those
within the triangles drawn below:

t−1⋃
i=1

i⋃
j=1

{xi+m−t+1,j}

t−1⋃
i=1

t−1⋃
j=i

{xi,j+n−t+1}

.

Figure 5.7

This remark is made precise in the following proposition.
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Proposition 5.82. Let X = (xij) be an m×n matrix of indeterminates over a field K and let
τ be a diagonal monomial order on the polynomial ring R = K[X]. Fix an integer 1 ≤ t ≤ m

and consider the subset of indeterminates

E =
t−1⋃
i=1

i⋃
j=1

{xi+m−t+1,j}


︸ ︷︷ ︸

E1

∪

t−1⋃
i=1

t−1⋃
j=i

{xi,j+n−t+1}


︸ ︷︷ ︸

E2

.

Then:
(1) No indeterminate in E is involved in an initial term of a t-minor of X.
(2) Each indeterminate not in E is involved in an initial term of a t-minor of X.

It may be useful to consult Fig. 5.8 to assist with notation in the proof of Proposition 5.82.
Observe that in Fig. 5.8 the matrix of dots is rotated so that the row number i is given by the
x-axis, and the column number j is given by the y-axis.

y − x = t − m

y − x = 0

y − x = n − m
y − x = n − t

x

y

1 m − t + 1 m

1

n − t + 1

n

Figure 5.8

Proof of Proposition 5.82. (1) Let δ = [a1, . . . , at | b1, . . . , bt]; we may assume that the indices
are given in ascending order. Let xi+m−t+1,j be a variable in E1 involved in the minor δ. Suppose
that it is involved in the initial term in(δ). Then there exists an integer 1 ≤ k ≤ t such that
ak = i+m− t+ 1 and bk = j. On the one hand,

ak = i+m− t+ 1 < ak+1 < · · · < at ≤ m,

thus t− k ≤ m− (i+m− t+ 2) + 1 = t− i− 1, that is, i ≤ k − 1. On the other hand,

1 ≤ b1 < · · · < bk−1 < bk = j,
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hence k − 1 ≤ j − 1, i.e. k ≤ j. One then finds that 1 ≤ k ≤ j ≤ i ≤ k − 1, a contradiction.
Likewise, let xi,j+n−t+1 be a variable in E2, involved in the minor δ, and suppose that it is in

the initial term in(δ). As before, there is an integer 1 ≤ k ≤ t with ak = i and bk = j+n− t+1,
hence

1 ≤ a1 < · · · < ak−1 < ak = i

and
bk = j + n− t+ 1 < bk+1 < · · · < bt ≤ n.

Both inequalities together give k ≤ i and j ≤ k − 1, hence k ≤ i ≤ j ≤ k − 1, a contradiction.
(2) Consider the lattice L = {(x, y) ∈ Z2 | 1 ≤ x ≤ m, 1 ≤ y ≤ n}, define the subsets

E1 = {(x, y) ∈ L | y − x < t − m} and E2 = {(x, y) ∈ L | y − x > n − t}, and let E = E1 ∪ E2.
By identifying the indeterminate xij and the lattice point (i, j), the matrix X is identified to
L, and the sets E1 and E2 are identified to E1 and E2, respectively. Let xij be a variable not
in E, that is, (i, j) ∈ L − E . Consider the line V = {(x, y) ∈ R2 | y − x = j − i}; we claim
that |V ∩ L| ≥ t. To prove it we consider several cases depending on j − i. In order to help
intuition, we refer the reader to Fig. 5.8.

• If t−m ≤ j − i ≤ 0, then V ∩ Z = {(i− j + 1, 1), (i− j + 2, 2), . . . , (m,m− i+ j)}, thus
it contains m− i+ j points of the lattice and, by assumption, m− i+ j ≥ t.

• If 0 < j − i ≤ n−m, one has V ∩ Z = {(1, j − i+ 1), (2, j − i+ 2), . . . , (m, j − i+m)},
which contains m ≥ t points.

• If n − m < j − i ≤ n − t, then V ∩ Z = {(1, j − i + 1), (2, j − i + 2), . . . , (n − j + i, n)}.
The intersection contains n− j + i points of the lattice which is ≥ t by assumption.

Consequently, given a lattice point (i, j) ∈ L−E , one can choose t−1 additional points contained
in V . The result is a collection of points {(a1, b1), . . . , (at, bt)} satisfying 1 ≤ a1 < · · · < at ≤ m

and 1 ≤ b1 < · · · < bt ≤ n. Furthermore, it is clear that there is some integer 1 ≤ k ≤ t

with ak = i and bk = j. The corresponding t-minor [a1, . . . , at | b1, . . . , bt] has xij in its initial
term.

Definition 5.83. Let X = (xij) be a matrix of indeterminates of size m× n, m ≤ n, and fix
an integer 1 ≤ t ≤ m. The set of excluded indeterminates of X is

E :=
t−1⋃
i=1

i⋃
j=1

{xi+m−t+1,j}

 ∪

t−1⋃
i=1

t−1⋃
j=i

{xi,j+n−t+1}

 .
Proposition 5.84. Let X = (xij) be a matrix of indeterminates of size m×n, m ≤ n, defined
over a field F of characteristic p > 0. Fix an integer 1 ≤ t < m, let It be the ideal of t-minors
in the polynomial ring R = F[X], and let in(It) be the initial ideal with respect to a diagonal
monomial order on R. Then for each integer e ≥ 0,

νmin(It)(pe) ≥
(⌊
m

t

⌋
n− t+ 1

)
(pe − 1).
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Proof. For each pair of integers 1 ≤ i ≤
⌊
m
t

⌋
and 1 ≤ j ≤ n− t+ 1, let

δij = [(i− 1)t+ 1, . . . , it | j, . . . , t+ j − 1] .

Furthermore, for each pair of integers 1 ≤ i ≤
⌊
m
t

⌋
− 1 and 1 ≤ j ≤ t− 1, define

εij = [(i− 1)t+ j + 1, . . . , it+ j | 1, . . . , t− j, n− j + 1, . . . , n]

(see Example 5.85 for a sketch of the δij and εij). Denote by ∆ the product of all the δij and
εij. Then ∆ is a product of⌊

m

t

⌋
(n− t+ 1) +

(⌊
m

t

⌋
− 1

)
(t− 1) =

⌊
m

t

⌋
n− t+ 1

minors of size t of X. By construction, the initial term in(∆), which is the product of the all
the in(δij) and in(εij), is a square-free monomial, whence

in(∆)pe−1 ∈ in(It)(⌊
m
t ⌋n−t+1)(pe−1) − m[pe].

Example 5.85. In order to assist with notation in the proof of Proposition 5.84, we depict
the δij and the εij for the 3-minors of an 8 × 8 matrix:

δ11 δ12 δ13 δ14 δ15 δ16

δ21 δ22 δ23 δ24 δ25 δ26

ε11

ε12

ε11

ε12

Figure 5.9

Suppose that t divides m. Then the lower bound on νmin(It)(pe) given by Proposition 5.84 is
the best one possible, in the sense that all the indeterminates of X = (xij), except the excluded
ones, are involved in the initial term of some δij or some εij. As the proposition below shows,
the same is true when t divides n.

Proposition 5.86. Let X = (xij) be a matrix of indeterminates of size m × n, m ≤ n,
defined over a perfect field F of characteristic p. Fix an integer 1 ≤ t ≤ m, let It be the ideal of
t-minors of X in the polynomial ring R = F[X], and let in(It) be the initial ideal with respect
to a diagonal monomial order on R. Suppose that t divides n. Then:
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(1) There is a product of mn
t

− t + 1 minors such that each indeterminate of X not in the
excluded indeterminates is in the initial term of some t-minor of X.

(2) Let m ⊆ R be the homogeneous maximal ideal. For each integer e ≥ 1,

νmin(It)(pe) ≥
(
mn

t
− t+ 1

)
(pe − 1).

Proof. (1) For each pair of integers 1 ≤ i ≤ m− t+ 1 and 1 ≤ j ≤ n
t
, define

δij = [i, . . . , i+ t− 1 | (j − 1)t+ 1, . . . , jt].

Furthermore, for each pair of integers 1 ≤ i ≤ t− 1 and 1 ≤ j ≤ n
t

− 1, let

εij = [1, . . . , t− i, n− i+ 1, . . . , n | (j − 1)t+ 1 + i, . . . , jt+ i],

(see Example 5.87 for a sketch of the δij and εij). It is clear that every indeterminate not
among the excluded ones is in the initial term of some δij or εij. Denote by ∆ the product of
all the δij and εij. Then ∆ is a product of n

t
(m− t+ 1) +

(
n
t

− 1
)

(t− 1) = mn
t

− t+ 1 minors.
(2) The initial term in(∆) is the product of all the initial terms in(δij) and in(εij). Since

each non-excluded indeterminate of X is involved in an initial term, and no indeterminate is
in two different initial terms, it follows that in(∆) is a square-free monomial. As a result,

in(∆) ∈ in(It)(
mn

t
−t+1)(pe−1) − m[pe],

from where the assertion follows.

Example 5.87. To assist with notation in the proof of Proposition 5.86, we show the δij and
εij for the 3-minors of an 8 × 9 matrix of indeterminates:

δ11

δ21

δ31

δ41

δ51

δ61

δ12

δ22

δ32

δ42

δ52

δ62

δ13

δ23

δ33

δ43

δ53

δ63

ε11

ε11

ε21

ε21

ε12

ε12

ε22

ε22

Figure 5.10
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5.8. Ideals of t-minors

Let X = (xij) be an m × n matrix of indeterminates over a perfect field F of characteristic p,
and let Im(X) ⊆ K[X] be the ideal of maximal minors. Recall that the F -pure threshold of
Im(X) is fpt(Im(X)) = n−m+ 1, and that ν-invariants of level e ≥ 0 are given by

ν•
Im(X)(pe) = {ν(s) := pe + (n−m+ 1)(pe − 1) | s ∈ Z≥0},

hence two consecutive ν-invariants satisfy ν(s+ 1) − ν(s) = pe. In particular, we have that

CeR · Im(X)(n−m+1)(pe−1) = R.

In order to prove this fact, we have showed that there is a product of (n − m + 1)(pe − 1)
maximal minors that has a monomial in the standard basis of F e

∗R as a free R-module (see
Definition 2.34 and Proposition 2.33). Furthermore, for each integer s ∈ Z≥0 we have that

CeR · Im(X)ν(s)+pe = CeR · Im(X)ν(s)+pe−1 = · · · = CeR · Im(X)ν(s)+1 = Im(X)s+1.

In order to prove this fact, it sufficed to show two inclusions: Im(X)s+1 ⊆ CeR · Im(X)ν(s)+pe and
CeR · Im(X)ν(s)+1 ⊆ Im(X)s+1. As Proposition 5.88 shows, a variant of this inclusion is satisfied
by every ideal in a regular F -finite ring.

Proposition 5.88. Let R = F[x1, . . . , xn] be a polynomial ring over a field F of characteristic
p > 0 and let m = (x1, . . . , xn) be the homogeneous maximal ideal. Let a ⊆ m be an ideal, fix
an integer e ≥ 0 and let ν = νma (pe). Then for all integers s ≥ 0

as+1 ⊆ CeR · aν+(s+1)pe

.

Proof. By assumption CeR · aν = R, hence by Proposition 4.21,

as+1 = as+1 · CeR · aν = CeR · (a(s+1)[pe]aν) = CeR · (a(s+1)[pe]aν) ⊆ CeR · aν+(s+1)pe

.

On the contrary, the inclusion CeR · Im(X)ν(s)+1 ⊆ Im(X)s+1 is more delicate. To deduce it,
we proceeded by induction on m to reduce the problem to an (m− 1) × (n− 1) matrix Y ; this
is achieved by localizing at the variable xmn. By the inductive hypothesis one has

CeK[Y ] · Im−1(Y )spe+(n−m+1)(pe−1)+1 ⊆ Im−1(Y )s+1.

In the localized ring Q, the extension of the powers of Im(X) correspond to the extension of
the powers of Im−1(Y ), that is Im(X)ℓQ = Im−1(Y )ℓQ for all integers ℓ ≥ 1. A key fact in
this step is that fpt(Im(X)) = fpt(Im−1(Y )) = n − m + 1, thus one can set ℓ = n − m + 1.
Afterwards, an inclusion of Frobenius roots in the localization is shown and, using that xmn is a
non-zero-divisor modulo Im(X)s, one recovers the aforementioned inclusion in the polynomial
ring K[X].
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In Section 5.6 we have shown that given a tuple (m,n, t), there is an integer i0 ∈ Z (not
necessarily non-negative) such that for all i ≥ i0, the F -pure threshold of the ideal It+i(X[i])
of (t+ i)-minors of an (m+ i) × (n+ i) matrix of indeterminates X[i] is stable in the sense that

fpt(It+i0(X[i0])) = fpt(It+i0+1(X[i0 + 1])) = fpt(It+i0+2(X[i0 + 2])) = · · · .

Suppose that i0 ≤ 0. Then a strategy to compute the ν-invariants of the ideal It(X) is to
reduce the problem to the case (m + i0, n + i0, t + i0), thus a seemingly important step in the
computation of the ν-invariants of ideals of t-minors is completed. Nonetheless, it is not true
in general that xmn is a non-zero-divisor modulo It(X)ℓ for all integers ℓ ≥ 1, thus this strategy
cannot be applied.

In this section we give bounds on νmIt
(pe), since we believe that the remaining ν-invariants

can be computed from this.

Proposition 5.89. Let X = (xij) be an m× n matrix of indeterminates over a perfect field
K of characteristic p > 0. Let R = K[X] be the corresponding polynomial ring and It(X) ⊆ R

the ideal of t-minors of X. Suppose that fpt(It(X)) ̸∈ Z, then:
(1) For infinitely many integers e ≥ 0, νmIt

(pe) ≥ ⌊fpt(It)⌋(pe − 1)
(2) For infinitely many integers e ≥ 0, νmIt

(pe) ≤ ⌈fpt(It)⌉(pe − 1).

Proof. (1) Suppose that this is not the case, i.e. suppose that νmIt
(pe) < ⌊fpt(It)⌋(pe − 1) for all

integers e ≥ 0. Then

fpt(It) = lim
e→∞

νmIt
(pe)
pe

= lim
e→∞

⌊fpt(It)⌋
pe − 1
pe

= ⌊fpt(It)⌋,

but this is a contradiction since fpt(It) > ⌊fpt(It)⌋.
(2) Analogous to part (1).

Proposition 5.90. Let X = (xij) be a matrix of indeterminates of size m×n, m ≤ n, defined
over a field F of characteristic p > 0. Fix an integer 1 ≤ t ≤ m, let It be the ideal of t-minors
of X in the polynomial ring R = F[X]. Suppose that t divides m or divides n. Then for each
integer e ≥ 0,

νmIt
(pe) ≥

(
mn

t
− t+ 1

)
(pe − 1).

Proof. By Propositions 5.84 and 5.86, there is a product ∆ of mn
t

− t+ 1 minors of size t whose
initial term is a square-free monomial under a diagonal monomial order on R. As a result, for
each integer e ≥ 0,

∆pe−1 ∈ I
(mn

t
−t+1)(pe−1)

t − m[pe],

thus νmIt
(pe) ≥

(
mn
t

− t+ 1
)

(pe − 1), as desired.
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Proposition 5.91. Let X = (xij) be a matrix of indeterminates of size m×n, m ≤ n, defined
over a field F of characteristic p > 0, and let It be the ideal of t-minors of X in the polynomial
ring R = F[X]. For each integer e ≥ 0,

CeR · I(m−t+1)(n−t+1)(pe−1)+1
t ⊆ It.

In particular, by letting m be the homogeneous maximal ideal of R,

νmIt
(pe) ≤ (m− t+ 1)(n− t+ 1)(pe − 1).

Proof. The localized ring RIt is a regular local ring of dimension (m − t + 1)(n − t + 1) (see
Proposition 5.30), thus by Proposition 4.10,

I
(m−t+1)(n−t+1)(pe−1)+1
t RIt ⊆ I

[pe]
t RIt .

By Lemma 5.32 the only associated prime of I [pe]
t is It, therefore one recovers the inclusion in

the ring R, that is,
I

(m−t+1)(n−t+1)(pe−1)+1
t ⊆ I

[pe]
t ,

from where the assertion follows.

So far we have only considered the homogeneous lexicographic order induced by the usual
ordering on the variables, namely, x11 > · · · > x1n > · · · > xm1 > · · ·xmn. As the following
example shows, weighted monomial orders prove to be a useful tool to compute ν-invariants.

Example 5.92. Let X = (xij) be the 3 × 3 matrix of indeterminates

X =


x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,
defined over a field F of characteristic p > 0 and set R = F[X]. Consider the 2-minors

δ1 = [1, 2 | 1, 2] = x11x22 − x12x21, δ2 = [1, 2 | 1, 3] = x12x23 − x13x22,

δ3 = [2, 3 | 1, 2] = x21x32 − x22x31, δ4 = [1, 3 | 1, 3] = x11x33 − x13x31,

and define ∆ = δ1δ2δ3δ4, which is an element in I4
2 . The product ∆ computed over Z reads

∆ = x12x
2
13x21x

2
22x

2
31 − x11x

2
13x

3
22x

2
31 − x2

12x13x21x22x23x
2
31

+ x11x12x13x
2
22x23x

2
31 − x12x

2
13x

2
21x22x31x32 + x11x

2
13x21x

2
22x31x32

+ x2
12x13x

2
21x23x31x32 − x11x12x13x21x22x23x31x32 − x11x12x13x21x

2
22x31x33

+ x2
11x13x

3
22x31x33 + x11x

2
12x21x22x23x31x33 − x2

11x12x
2
22x23x31x33

+ x11x12x13x
2
21x22x32x33 − x2

11x13x21x
2
22x32x33 − x11x

2
12x

2
21x23x32x33

+ x2
11x12x21x22x23x32x33,
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which has a square-free monomial. Consider the matrix of weights

W = (wij) =


100 8 7
6 5 50
3 70 −9000

 .
This gives the weight function µ : R9 → R, µ(s11, . . . , s33) = s11w11 + · · ·+s33w33, which induces
a weighted monomial order >µ on R:

xa >µ x
b if and only if µ(a) > µ(b).

Under the monomial order >µ, the initial term of ∆ is the one corresponding to the square-free
monomial, that is, in>µ(∆) = −x11x12x13x21x22x23x31x32. Since the coefficient of the square-
free monomial is −1, the initial term of the reduction mod p of ∆ is in>µ(∆) = −x11 · · ·x32. In
consequence, by letting m = (x11, . . . , x33) be the homogeneous maximal ideal, for each integer
e ≥ 0 one has in>µ(∆pe−1) = (x11 · · ·x32)p

e−1, which gives

∆pe−1 ∈ I
4(pe−1)
2 − m[pe],

hence νmI2(pe) ≥ 4(pe − 1). By Proposition 5.91 one has that CeR · I4(pe−1)+1
2 ⊆ I2, thus νmI2(pe) =

4(pe − 1). It follows from Proposition 5.88 that I2 ⊆ CeR · I4(pe−1)+pe

2 , whence

CeR · I4(pe−1)+pe

2 = CeR · I4(pe−1)+pe−1
2 = · · · = CeR · I4(pe−1)+2

2 = CeR · I4(pe−1)+1
2 = I2.

From this computation one recovers the F -pure threshold of I2, namely, fpt(I2) = 4. Further-
more, one deduces the following:

(a) For each real number 4 ≤ λ < 5, τ(Iλ2 ) = I2. Indeed, since τ(Iλ2 ) = CeR · I⌈λpe⌉
2 for some

e ≫ 0, in order for CeR · I⌈λpe⌉
2 to be a known Frobenius root of I2, one needs

4(pe − 1) < λpe ≤ 4(pe − 1) + pe

which is equivalent to
4p

e − 1
pe

< λ ≤ 4p
e − 1
pe

+ 1.

Since both inequalities must hold for all integers e ≥ 0 large enough, by letting e → ∞,
it follows that λ ∈ [4, 5) ⊆ R.

(b) Define νe := νmI2(pe) = 4(pe − 1). Then (νe)∞
e=0 ⊆ Z is a sequence of ν-invariants with

p-adic limit νe → −4 as e → ∞, therefore −4 is a Bernstein-Sato root of I2 in any prime
characteristic p. As it does not depend on p, it follows that −4 is a root of the b-function
of I2 in characteristic zero.

Example 5.93. Let X = (xij) be an n× n matrix of indeterminates over a perfect field F of
characteristic p > 0, and let In−1 be the ideal of (n − 1)-minors of X in the polynomial ring
R = F[X]. Proceeding as in Example 5.92, one shows that CeR · I4(pe−1)+1

n−1 ⊆ In−1. By Propo-
sition 4.19, this is equivalent to I

4(pe−1)+1
n−1 ⊆ I

[pe]
n−1, hence νmIn−1(pe) ≤ 4(pe − 1). Furthermore,

using Section 5.6, one sees that fpt(In−1) = 4 for all integers n ≥ 1.
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5.9. Open questions

Let X be a matrix of indeterminates of size m × n, m ≤ n, defined over a perfect field F of
characteristic p > 0. Let It be the ideal of t-minors of X in the polynomial ring R = F[X] and
fix e ∈ Z≥0. In view of Theorems 5.47 and 5.80 and Example 5.92, several natural questions
arise:

Question 5.94. Is it true that for all integers e ≥ 0 large enough, νmIt
(pe) = ⌊fpt(It)(pe − 1)⌋?

Question 5.95. For each s ∈ Z≥0, denote by ν(s) the s-th smallest ν-invariant of level e of It.
In other words, ν(0) = νmIt

(pe) and, for each s ≥ 1, ν(s) = min(ν•
It

(pe) − {ν(0), ν(1), . . . , ν(s −
1)}). Is is true that ν(s+ 1) − ν(s) = pe?

Question 5.96.
(a) Let ℓ ≥ 0 be an integer; is the Frobenius root CeR · Iℓt equal to some power Ikt ?
(b) Even stronger, following the notation of Question 5.95, let ν(s) and ν(s+1) be consecutive

ν-invariants of level e of the ideal It. We wonder if the following equalities hold:

CeR · Iν(s+1)
t = CeR · Iν(s+1)−1

t = · · · = CeR · Iν(s)+2
t = CeR · Iν(s)+1

t = Ist .

Question 5.97. Fix a diagonal monomial order τ on the polynomial ring R = F[X]. It might
be possible to relate properties of the ideal of t-minors to its initial ideal. More precisely:

(a) Is it true that fpt(It) = fpt(inτ (It))?
(b) Is it true that ν•

It
(pe) = ν•

inτ (It)(pe)?

Question 5.98. Let W = (wij) be an m×n matrix of real numbers and set deg xij = wij for
all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Set ν := νmIt

(pe) and let ∆ = δ1 · · · δν be a product of ν minors of size
t of X such that ∆ ̸∈ m[pe]. Can one find a matrix of weights W such that in(∆) is an element
in the standard basis of F e

∗R as an R-module?
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Chapter A

Algorithms

A.1. Computation of the F -pure threshold of a determinantal ideal

The functions in the Python code below return the F -pure threshold of the ideal It of t-minors
of an m× n matrix of indeterminates X defined over a field F of characteristic p > 0.

import math

# Returns (m - k)*(n - k)/(t - k)
def fpt_function (m, n, t, k):

return (m - k)*(n - k)/(t - k)

# Returns the fpt of the ideal of t- minors
def fpt(m, n, t):

# Check arguments
if t < 1:

print ("Error: t < 1, function will return {-1,-1}.")
return [-1, -1]

if t > min(m,n):
print ("Error: t > min(m,n), function will return {-1,-1}.")
return [-1, -1]

if t == m:
return [n - m + 1, m - 1]

# Compute F-pure threshold (fpt)
fpt = fpt_function (m, n, t, 0)
arg_min = 0
for k in range (1, t):

fk = fpt_function (m, n, t, k)
if fk < fpt:

fpt = fk
arg_min = k

# Return statement
return [fpt , arg_min ]
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A.2. Frobenius roots

Let R = F[x1, . . . , xn] be a polynomial ring over a field F of characteristic p > 0 and fix an
integer e ≥ 0. The following functions coded in Macaulay2 compute the Frobenius root CeR · I
of an ideal I ⊆ R.

A.2.1. Monomialization

Let xa = xa1
1 · · ·xan

n ∈ R be a monomial. Each ai may be written uniquely as ai = bip
e + ri,

where bi, ri ≥ 0 are integers and 0 ≤ ri < pe, therefore xa can be expressed as

xa1
1 · · ·xan

n = (xb1
1 · · · xbn

n )pe

xr1
1 · xrn

n .

Equivalently, in the standard basis of F e
∗R as a free R-module (see Definition 2.34), xr1

1 · · ·xrn
n

is a basis element, therefore F e
∗ (xa1

1 · · ·xan
n ) = (xb1

1 · · ·xbn
n )F e

∗ (xr1
1 · · · xrn

n ).
Given an integer ℓ ≥ 0, denote by [ℓ] := {0, 1, . . . , ℓ}. Then one can verify that the map

φ : [pe − 1]n → [npe − 1] sending (r1, . . . , rn) 7→ ∑n
i=1 rip

e(n−i) is a bijection. By identifying the
basis monomial xr = xr1

1 · · ·xrn
n with its multi-index r = (r1, . . . , rn), one can keep track of the

basis monomial by identifying it with the integer φ(r).
The method monomialize carries out this operation: given a multi-index a = (a1, . . . , an),

it returns the multi-indices b = (b1, . . . , bn) and r = (r1, . . . , rn), as well as the corresponding
basis element bel(r) := φ(r).

-- Given a monomial , the function computes it in the std basis
monomialize = method ();

monomialize (ZZ , List , List) := (pe , a, ve) -> (
b := {};
r := {};
xb := 1;
bel := 0;
for i from 0 to ( length a - 1) do (

ai := a#i;
bi := floor (ai / pe);
ri := ai % pe;
ti := bi * pe + ri;
b = append (b, bi);
r = append (r, ri);
bel = bel + ri * ve#i;
xb = xb * x_(i+1)^ bi;

);
return (xb , r, bel );

);

106



A.2. Frobenius roots

A.2.2. Computation of Frobenius roots for principal ideals

Fix a polynomial f = ∑
i αix

ai ∈ R and express it in the standard basis of F e
∗R as a free

R-module like F e
∗ f = ∑m

j=1 fjF
e
∗x

rj . It follows from [BMS08, Proposition 2.5] (see Proposi-
tion 4.18) that CeR · f = (f1, . . . , fm).

The method newFrobeniusRootPrincipal computes the coefficients f1, . . . , fm. To this end, the
function loops through the terms αixai of f and calls the method monomialize to express them
as α1/pe

i xbiF e
∗x

ri . Each monomial is identified by the basis elements xri , which corresponds
uniquely to the integer bel(ri) = φ(ri). Since different terms may have the same basis element
F e

∗x
ri , as the coefficients α1/pe

i xbi are stored in a list, they are compared with one another using
the integer bel(ri).

-- Frobenius root of a principal ideal
newFrobeniusRootPrincipal = method ();
newFrobeniusRootPrincipal ( RingElement , ZZ , List) := (f, pe , ve) -> (

(M, C) := coefficients f; -- Monomials of f and their Coefficients
fRootGenList := {}; -- Generators of the Frobenius root of f
-- Loop through all the monomials of f
for j from 0 to ( numColumns (M) - 1) do (

-- Compute the monomial in the standard basis
exponentsMonomial = ( exponents M_(0,j))#0;
(xb , r, bel) := monomialize (pe , exponentsMonomial , ve);
xb = xb * C_(j ,0);
-- Introduce the monomial in the gens of the Frobenius root of f
-- Check if there is a monomial with same basis element (same bel)
k := 0;
found := false ;
while (found == false and k < length fRootGenList ) do (

genk := fRootGenList #k;
if (bel == genk #0) then (

found = true;
xb = xb + genk #1;
fRootGenList = drop( fRootGenList , {k,k});
fRootGenList = append ( fRootGenList , {bel , xb });
-- fRootGenList #k = {bel , genk #1 + xb};

);
k = k + 1;

);
-- If not , append element at the end of the list
if (found == false ) then (

fRootGenList = append ( fRootGenList , {bel , xb });
);

);
return fRootGenList ;

);
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A.2.3. Computation of Frobenius roots

Let I = (f1, . . . , fr) ⊆ R be an ideal. As the action of Cartier operators is additive, one has
that CeR · I = ∑r

i=1 CeR · fi.
The method newFrobeniusRoot computes the Frobenius root CeR · I as the sum of the CeR · fi.

To calculate the latter, it calls the method newFrobeniusRootPrincipal, thus obtaining a list of
generators which later on are put together.

-- Frobenius root of an ideal
newFrobeniusRoot = method ();
newFrobeniusRoot (ZZ , Ideal ) := (e, I) -> (

-- Vector of powers ( (p^e)^(N-1), (p^e)^(N-2), ..., (p^e), 1)
ve := {1};
for i from 0 to (N - 2) do (

ve = prepend (p * ve#0, ve);
);
-- Lists of generators
genIdeal := first entries gens I; -- Generators of I
genList := {}; -- Generators of the Frob. root
-- Loop through all generators
for i from 0 to ( length genIdeal - 1) do (

-- i-th generator of I
f := genIdeal #i;
fRootGenList := newFrobeniusRootPrincipal (f, pe , ve);
-- Merge lists
for j from 0 to ( length fRootGenList - 1) do (

gen := fRootGenList #j;
genList = append (genList , gen #1);

);
);
J := ideal unique ( genList );
return J;

);
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A.2.4. Example of computation of a Frobenius root

LetX = (xij) be a 3×4 matrix of indeterminates over F3 and set R = F3[X]. Let I = I3(X) ⊆ R

be the ideal of maximal minors of X.
The example code below displays the calculation of the Frobenius root C1

R·I4, using newFrobe-
niusRoot as well as the method frobeniusRoot from the TestIdeals package. We refer the reader
interested in this Macaulay2 package to [FHK+19].

load " Monomialize .m2"
load " NewFrobeniusRoots .m2"
loadPackage " TestIdeals "

-- Variables
m = 3 -- Rows
n = 4 -- Columns
p = 3 -- Characteristic
e = 1 -- Exponent
pe = p^e;
R = GF(p)[ x_1 ..x_(m*n)]; -- Polynomial ring over Fp
X = genericMatrix (R, m, n); -- Matrix of indeterminates
I = minors (3, X); -- Ideal of minors
nu = (n - m + 1)*(p^e - 1); -- nu - invariant

-- Power of the ideal of minors and generators
J = I^nu;
gensIdeal = first entries gens J; -- Generators of the ideal

-- Computation of Frobenius roots
froot1 = newFrobeniusRoot (e, J); -- New Frobenius root
froot2 = frobeniusRoot (e, J); -- TestIdeals package
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