
id179037
 
 

ON THE COMPOSITION OF NEURAL AND
KERNEL LAYERS FOR MACHINE LEARNING

ALEX MARTORELL LOCASCIO

Thesis supervisor: LUIS ANTONIO BELANCHE MUÑOZ (Department of Computer Science)

Degree: Master's degree in data science

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech



Abstract

Deep Learning architectures in which neural layers alternate with mappings to infinite-
dimensional feature spaces have been proposed in recent years, showing improvements
on the results obtained when using either technique separately. However, these new
algorithms have been presented without delving into the rich mathematical structure
that sustains kernel methods.

The main focus of this thesis is not only to review these advances in the field of Deep
Learning, but to extend and generalize them by defining a broader family of models that
operate under the mathematical framework defined by the composition of a neural layer
with a kernel mapping, all of which operate in reproducing kernel Hilbert spaces that
are then concatenated. Each of these spaces has a specific reproducing kernel that we
can characterize. Together all of this defines a regularization-based learning optimization
problem, for which we prove that minimizers exist. This strong mathematical background
is complemented by the presentation of a new a model, the Kernel Network, which man-
ages to produce successful results on many classification problems.

i



“S’ha d’escriure amb llibertat, amb gust, amb plaer,
però amb la màxima observació possible”

Josep Pla

“Hi un amor profund en la memòria del que havies volgut ser”
Jordi Graupera

Acknowledgements

I want to start by thanking my professor and advisor Dr Llúıs Belanche, who through
countless meetings and too many coffees has given me helpful advice and most impor-
tantly, good ideas. The conversations we had helped me carry on with this thesis. I am
certain that his lectures and his knowledge are present in my writing.

My parents also deserve a big acknowledgement, for all their support during my student
life and all the difficulties of it. This thesis is a big milestone and I am grateful to share
it with them.

My classmates (and close friends) Pim, Enric and Louis are also part of this. It has
been 2 tough years, but being able to work with them has made everything a little bit
easier.

ii



Contents

1 Introduction 1

2 Literature Review 3

2.1 The term ”Deep Kernel Learning” . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Deep Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Representer Theorem and Deep Learning . . . . . . . . . . . . . . . . . . 9

2.4 Random Fourier Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Important concepts in RKHS Theory 12

3.1 Kernel methods, RKHS and The Representer Theorem . . . . . . . . . . . 12

3.2 Approximations of the Gaussian RBF Kernel: Random Fourier Features . 16

3.3 Vector Valued Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . 17

3.3.1 Definitions and main properties . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Representer Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 A Representer Theorem for the concatenation of L layers 22

5 A Deep Kernel Learning model: The Kernel Network 26

5.1 The Kernel Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 The RKHS in a Kernel Network . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Optimization of the Kernel Network . . . . . . . . . . . . . . . . . . . . . 31

6 Experimental Results 34

6.1 Evaluating the kernel network and other ML models over different data sets 36

7 Limitations and Future work 40

8 Conclusions 42

iii



List of Figures

2.1 Graphical Representation of the Deep Hybrid Model . . . . . . . . . . . . 6

2.2 Comparison between the explicit feature mapping in a Deep Hybrid Model
and the ReLU activation function in a Feed-Forward Neural Net . . . . . 7

2.3 Illustration of deep hybrid model with two maxout neural-kernel blocks.
Figure extracted from article “Deep neural-kernel blocks” . . . . . . . . . 8

6.1 Loss for kernel network with deep hybrid model parameters . . . . . . . . 35

6.2 Accuracy for kernel network with deep hybrid model parameters . . . . . 35

6.3 Loss for SGD with alternate optimization (3) . . . . . . . . . . . . . . . . 36

6.4 Accuracy for SGD with alternate optimization (3) . . . . . . . . . . . . . 36

6.5 Loss for Adam with alternate optimization (6) . . . . . . . . . . . . . . . 36

6.6 Accuracy for Adam with alternate optimization (6) . . . . . . . . . . . . . 36

6.7 Loss for kernel network in the australian data set across epochs . . . . . . 37

6.8 Accuracy for kernel network in the australian data set across epochs . . . 37

6.9 Kernel matrix for RFF Layer at epoch 0 . . . . . . . . . . . . . . . . . . 38

6.10 Kernel matrix for RFF Layer at epoch 150 . . . . . . . . . . . . . . . . . . 38

6.11 Kernel matrix for FC Layer at epoch 0 . . . . . . . . . . . . . . . . . . . 38

6.12 Kernel matrix for FC Layer at epoch 150 . . . . . . . . . . . . . . . . . . 38

6.13 Kernel matrix for Neural Layer at epoch 0 . . . . . . . . . . . . . . . . . 39

6.14 Kernel matrix for Neural Layer at epoch 150 . . . . . . . . . . . . . . . . 39

6.15 Norm of the weight matrix for the neural layer . . . . . . . . . . . . . . . 39

List of Tables

5.1 Number of parameters in a Neural-Kernel Block + Fully Connected Layer 26

6.1 Details of data sets used during experiments . . . . . . . . . . . . . . . . . 34

6.2 Results for CNAE-9 data set listed in deep hybrid model references . . . . 34

6.3 Comparison between SGD and Adam via alternate optimization or not,
with associated metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4 Results on different models . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 Running time for different models . . . . . . . . . . . . . . . . . . . . . . . 38

iv



1 Introduction

Deep Neural Networks and Kernel methods are two pillars of Machine Learning algo-
rithms, and more specifically, of regularization-based learning. They have been studied
as independent methods and both of them have gone through an uncountable amount
of extensions, ramifications and generalizations. In fact, if someone now mentions these
model families without giving more details, the reader asks for more specifications: which
type of neural network are they referring to, what are we trying to predict, which kernel
are we using, how many hyperparameters does it have, whether it is a deep model or not,
... as it is expected, the sophistication has not ceased to increase.

However, let us try to set some boundaries to orientate the reader. In neural networks,
born with the multilayer perceptron (MLP), have have gone through many advancements,
to produce complex models as LSTMs, convolutional neural networks (CNNs) and autoen-
coders. All these newer architectures belong to the framework defined by the umbrella
term deep neural network, or sometimes an even bigger one, deep learning. The word
”deep”, usually just means more than one hidden layer; as the original models had just
one hidden layer between the input and output.

With regards to Kernel methods, the limits are easier to set. The main idea is to try to
solve a problem but in a different space. If we are discussing a classification problem, this
is easy to explain: it is more often than not impossible to find a separating hyperplane
between the two classes. However, what if these data points are mapped to a higher
dimension ? Then, it may be possible to find a function the correctly classifies the two
classes. This concept of optimizing a function in a different space is the fundamental
notion behind kernel methods. They rely on a strong mathematical theory which is
branch from functional analysis. To summarize, the data points are mapped to a Hilbert
space of functions H. Then, a function f ∈ H can be found such that a prediction f(x)
is a linear combination of the data points mapped to this new space.

In recent years, research seems to be willing to see if these two groups of models -
in theory far apart from each other - have anything in common besides that they take
data points as inputs. The authors of [1] refer to this process as hybridization. The idea
behind it is to apply from the deep learning field to kernel methods and vice-versa. A
starting point were gaussian processes, as the authors of [2] show us. They present a
model that lays the first stone in this hybridization technique between deep networks and
kernel methods. In their paper, the authors go over the comparison kernel-neural net:
It seems like that in the 1990s, neural networks were seen as a revolutionary model that
would take away the podium from kernel methods. This article , which was published in
2015, is a clear sign that this never happened, and subsequent research has proven that
hybridization produces better results in many performance metrics, and what is more
interesting, allows to solve new problems in Machine Learning for which an answer had
yet to be found.

This thesis is structured in three main parts: The first one, to which Chapter 2 is
dedicated, is a review of the literature published in the recent years about the main
topics the are crucial to this writing. These are grouped in 4 categories: Firstly, what
do we understand for the term ”deep kernel learning” as of today. Secondly, it covers
one of the better known hybridization proposals, the deep hybrid model. This proposal
is what this thesis aims to formalize and generalize. After this, the two aspects that are
more related to kernel methods are reviewed: representer theorem and approximations
to kernels. The first aspect deals with the different versions of this essential result in

1



kernel methods. The second one discusses the advances in approximating one of the more
important kernels used in kernel methods, the gaussian RBF.

The second part is the theoretical backbone of the thesis and spans over three chap-
ters: 3, 4 and 5. The first one, whilst trying to avoid excessive meanders and unnecessary
technical detail that exceed our scope, it presents the essential mathematical tools behind
the goal to establish connections between Kernel methods and Deep Learning. Chapter
4 is dedicated to stating a Representer Theorem for a multi class Deep Kernel Learning
problem, a fundamental result to be able to characterize the Deep Kernel Learning model
presented in Chapter 5, the Kernel Network. Aside from the equations of this new
model and its mathematical details, a thorough training algorithm for it is also given.

Finally, the last part of the thesis, reserved to Chapter 6 and 7, is dedicated to present-
ing the experimental results obtained, as well as comparing them with other existing
machine learning models. A rigorous approach is used to assess the quality of the model.
Last but not least, and before some concluding thoughts, a brief chapter is included which
a dissertation about some of the limitations encountered, as well as possible extensions
and a future outlook.

2



2 Literature Review

There are several building blocks that come into place when discussing Deep Kernel Learn-
ing (DKL). Firstly, the term itself. Nowadays, there are many machine learning algorithms
that are said to be DKL, hence, it becomes necessary to list a set of characteristics that
such algorithms fulfill. It is also important to consider the theoretical framework behind
DKL. Functional analysis and the representer theorem provide it for Kernel methods,
and it is crucial to this thesis to see if this framework can be extended to DKL. Finally,
kernel approximation is an important topic, in order to reduce the computational cost of
learning algorithms.

In the whole of this thesis, a Learning problem in the context of machine learning is
assumed. This consists of a set X ⊂ Rd, Y = R, a kernel function k : X ×X → R which
induces a mapping ϕ into an RKHS H, a Hilbert space of functions f : X → R. (See
Chapter 3 for more details).

2.1 The term ”Deep Kernel Learning”

It is clear that the term deep kernel learning is already mainstream in the machine learning
community. To put it into the context of our thesis, it can be useful to trace it back to
its origins. Survey paper [3] is a good reference for the array of terminologies that have
appeared in recent years, as it also focuses on finding points in common between Deep
Kernel Learning (DKL) and Multiple Kernel Learning. (MKL)

In MKL, the kernel k is defined as a combination of predefined kernels k =
∑M

m=1 µmkm.
The feature mapping is to a space induced by several kernels, defined as

ϕ(x) =
(
ϕ1(x), . . . ϕM (x)

)T
The term µm indicates the weight of each kernel, a combination that is learnt during
training. Additional constraints may be imposed, such that

∑
m µm = 1. [3]. One of

the main references for Multiple Kernel Learning is, which states that combining kernels
instead of 1 yields to better results in existing algorithms [4]. For instance, one of the
more simple kernel combinations which is the sum k1 + k2 or the multiplication k1 · k2 in
a SVM arw shown to improve the test accuracy significantly.

DKL, on the other hand, is not based upon on a convex combination of kernels but
rather in their composition. In general, a DKL model consists of several mappings into
different feature spaces, which can be expressed as:

k(xi, xj) =
(
ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕL(xi)

)T (
ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕL(xj)

)
Article [2] is the first one to coin in 2015 the term ”Deep Kernel Learning”, as its

title suggests. Their proposal is a Neural Network with L layers followed by a Gaussian
Process (which produces a probabilistic mapping). Recall that a Gaussian Process f(X) ∼
GP(µ, kγ) produces an output:

f(X) ∼ [f(x1) . . . f(xn)]
T ∼ N(µ,KX,X) (2.1)

where µ = µ(xi) is the mean function and (KX,X)i,j=1÷n = kγ(xi, xj) is the covariance
kernel. γ is a hyperparameter, meaning that the covariances are parametrized by γ. It is
clear then that a gaussian process is a collection of functions. The architecture proposed
is:

3



Input → Hidden Layer 1 → · · · → Hidden Layer L → ∞-layer

The novelty of this model is the ∞-layer. This is the author’s way of referring to a
gaussian process with an RBF Kernel, since as it is explained in Chapter 3, the feature
mapping of an RBF kernel can be seen as an infinite basis function representation.

The justification for this choice can be found in the introduction of [2]: In the late
90s, there was a debate about whether gaussian processes would end up replacing neu-
ral networks. This rivalry between models produced an important amount of literature
comparing neural networks (adpative finite basis functions, architecture, regularization)
and gaussian processes (infinite basis functions, kernels), which brings research to a new
stage: Combining the structural properties of neural networks with the non-parametric
flexibility of kernel methods. Kernel methods are non-parametric in the sense that they
do not make assumptions about the data distribution, something that is not common to
many other ML models. The structural properties of neural networks (neurons, activation
functions, stacking layers) succeed in learning complex data patterns.

Many developments have made since 2015. As of 2021, according to survey [3] there
are three major families of models in the DKL context:

• Combination of deep learning architectures and kernel machines, the first one being
the front-end and the latter the back-end part of the model. An example is a
combination of a CNN with an SVM. The features learnt by a CNN are then used
to train an SVM with the Gaussian kernel.

• Incorporation of kernel methods into deep architectures via the stacking principle:
A first example is an SVM trained in a standard way and then applying a kernel
activation on the support vectors, which are used as inputs for a second SVM. An-
other example is training deep neural networks with kernel blocks in between neural
layers, which provides new representations of the data to possibly improve learning.
This architecture, called Deep Hybrid Model was ideated by Mehrkanoon et al.
and explained in [5, 6]. Since this architecture is one of the main inspirations and
is studied throughout this thesis find a thorough introduction to its structure in
section 2.2. The DKL model presented in this thesis, called Kernel Network, would
also fall into this category. (Chapter 5)

• Integrating Deep Learning ideas into Kernel Learning. One of the more well-known
examples of this is the arc-cosine kernels which mimic deep neural networks.

An attempt to combine MKL and DKL (which is explained below) is found in [7]. The
authors generalize the MKL optimization problem as:

min
k∈K

min
f∈Hk

N∑
i=1

L(yi, f(xi)) + λ∥f∥Hk
(2.2)

where Hk is the reproducing kernel Hilbert space associated to kernel k, and K is the
optimization domain of the candidate kernels. Since this is an MKL framework, one should
expect thatK is the domain obtained by a convex combination of kernels (see above). The
extension proposed by the authors is Multiple Layer Multiple Kernel Learning (MLMKL),
which is to generalize equation 2.2 to a concatenation of layers, which results in a domain
of l-level multi layers:

K(l) = {k(l)(·, ·) = g(l)([k
(l−1)
1 (·, ·), . . . k(l−1)

m (·, ·)])} (2.3)

4



where g(l) is a function that combins all the kernels from the previous layer. Then, the
authors delve into a Two-layer MKL scenario where the outer function is a gaussian RBF
and the inner is a combination of m kernels. The two layer minimization problem is
formulated as

min
k∈K(2)

min
f∈Hk

1

2
∥f∥2Hk

+

N∑
i=1

L(f(xi), yi) +

m∑
k=1

µk (2.4)

Clearly, a penalty is added for the sum of µ parameters. Observe that the regularization is
over the final function f , which expresses the concatenation of the two kernel layers. This
model (2LMKL) returns better results than the SVM on many datasets. Alternatives to
this formulation are seen in Chapter 4.

However, it must be said that MKL is not the focus of this thesis, however, as it has
been shown, the representer theorem and many DKL algorithms have a clear connection
with MKL.

2.2 Deep Hybrid models

The adjective deep, which already appeared in the previous section, does not only apply
to kernels, but rather to a much broader field. Deep learning is where models composed of
multiple processing layers learn representations of data with multiple levels of abstraction.
[8]. Stacking different levels of layers allows the data points to be mapped to another
vector space, which may have a higher dimension than the previous one, hence offering
different feature representation, different levels of abstraction.

It has been effort of many research papers to see if a bridge can be built that estab-
lishes a clear connection between kernel methods and deep neural networks. This process
can be referred to as hybridization. The lesson from deep kernel learning is that several
layers may be needed to learn complex representations. For this reason, Kernel methods,
which generally consist in finding similarities between data points through the matrix
(KX,X)i,j=1÷n = k(xi, xj) may be insufficient. To study the incorporation of deep net-
works and kernel methods into a single architecture if is has been so far a good starting
point for more expressive models [1].

The Deep Hybrid model was introduced in [5] and extended in [6] The main idea is to
insert a kernel layer between two neural layers. A kernel layer consists of a mapping from
a space to another with a different dimension. In figure 2.2, a simple illustration of this
deep hybrid model is depicted.

The equations of the baseline model depicted in Figure 2.2 are 1:

h1 =W1x+ b1

h2 = φ̂(h1) (2.5)

s =W2h2 + b2

where W1 ∈ Rd1×d and W2 ∈ RQ×d2 are the weight matrices, and b1 ∈ Rd1 , b2 ∈ RQ are
the bias vectors. Note that s is the output of the neural layer, values to which a loss
function is applied.

The question here is what exactly is φ̂(·). As explained before, the model is named
deep hybrid, meaning that it combines neural and kernel layers. Hence, φ̂ : Rd1 → Rd2

1The figures in this section are a reproduction of the ones that can be found in [5, 6]

5



Input Neural Layer

ϕ(·)

RFF-Layer

Fully Connected Layer

Output

Figure 2.1: Graphical Representation of the Deep Hybrid Model

is an explicit mapping to the feature space ( d2 is the dimension of the feature space).
More specifically, there exists a kernel k : Rd1 × Rd1 → R which induces a feature map
ϕ : Rd1 → H, where H is a Hilbert space. Note that two different spaces that seem
to be similar objects have been mentioned here: A Hilbert space H and a vector space
Rd2 (which is also in fact a Hilbert space). The differences between them and how they
interact in the deep hybrid model are theoretical: They are explained in Chapter 3 and
5.

What is also explained in the next chapter this feature space need not be finite di-
mensional. It is known that some kernels induce a feature mapping to a Hilbert space
that is infinite, such as the Gaussian RBF Kernel. The mathematical technicalities of this
implication are outlined in Section 3.1. If the kernel trick (k(x, y) = φ(x)Tφ(y)) cannot
be employed, the task becomes cumbersome. If φ(x) is infinite, this becomes impossible.
That is why the author uses an approximation to the explicit feature map, which is called
Random Fourier Features. This approximation technique is central to this thesis, so find
a detailed description of it in 3.2. In summary, what happens is that a map to a lower
dimensional space φ : Rd → RD is defined:

φ̂(x) =
1√
D

(
cos(ωT

1 x), . . . , cos(ω
T
Dx)

)
ω ∼ N(0, σ2Id) (2.6)

Note that this definition is the one used by [5] and it is not the same as the one appearing
in the original paper [9]. These distinctions are also discussed in section 3.2. At the end
of the Fully Connected Layer, in the case of a multiclass the softmax σ : RQ → [0, 1]Q

is applied. To compute the difference between the prediction and the true value, the
negative log-likelihood loss is used. The composition of the softmax and the negative log
likelihood is called cross-entropy loss:

CE = −
d∑

i=1

ti log(pi) (2.7)

where ti is the truth label for the i-th class and pi the predicted probability for each class
after the softmax has been applied. Clearly this is a standard function in neural network

6



training. This is mentioned because the representer theorem will need to be adapted to
this specific loss function. [10, 11]

A difference between the deep hybrid model and a neural network is the absence of
an activation function between layers. However, the author expresses the similarities
between an explicit feature mapping and activation function (e.g. the ReLU). Recall that
the ReLU, which introduces non-linearity in the Neural Network is defined as f(x) =
max{0, x}. The explicit feature mapping, as defined in 2.6, receives input from all neurons.
The product ωTx involves the whole representation x for each coordinate i = 1, . . . , D of
the new representation φ̂(x).

These differences can be visualized schematically in Figure 2.2.

ϕ(·)

Kernel Mapping

max(0, x)

max(0, x)

max(0, x)

max(0, x)

ReLU

Figure 2.2: Comparison between the explicit feature mapping in a Deep Hybrid Model
and the ReLU activation function in a Feed-Forward Neural Net

In [6], Mehrkanoon develops of an extension of the Deep Hybrid Model. This consists
of a more complex architecture which uses the idea of a kernel mapping, but a more
sophisticated version of it. The kernel mapping now receives the maximum of m neural
passes, the average, or a convolutional opeartion. We focus briefly on the equations of
the maxout kernel block, to see how it compares to the equations in 2.5.

The equations of a maxout kernel block are:

h
(l)
maxout = max

k∈{1,...m}
V

(l)
k h(l−1) + b

(l)
k

h(l) = φ̂(l)

(
h
(l)
maxout

)
(2.8)

where (l) is the current layer, V
(l)
k are the weight matrices and b

(l)
k are the biases. Since

a forward pass returns a vector in Rdl , the coordinate i ∈ {1, . . . , dl} is defined as the
maximum coordinate i in vectors k = 1, . . . ,m.

The average kernel block is analogous to the maxout. Finally, the convolutional block
consists of a pointwise convolution. A pointwise convolution is a 1×1 convolution, mean-
ing that each element gets affected by such operation.The intricacies present in defining
convolutional filters is out of the scope of this thesis, but they are worth mentioning since
CNNs appear again briefly in section 5.2.

7



Having said this, the equations of a deep maxout neural-kernel network are:

h
(1)
maxout = max

k∈{1,...m}
V

(1)
k x+ b

(1)
k

h(1) = φ̂(1)

(
h
(1)
maxout

)
h
(2)
maxout = max

k∈{1,...m}
V

(2)
k h(1) + b

(2)
k (2.9)

h(2) = φ̂(2)

(
h
(2)
maxout

)
s(x) =Wh(2) + b (2.10)

where h(1) and h(2) each represent a maxout neural-kernel block and W ∈ Rd2×Q is the
weight matrix of the fully connected layer.

Figure 2.3: Illustration of deep hybrid model with two maxout neural-kernel blocks.
Figure extracted from article “Deep neural-kernel blocks”

In summary, what is seen is a more complex ”neural pass”, whereas the kernel activa-
tion remains the same, as an approximation of the gaussian kernel by RFFs.

Since the described model is present in several moments during the course of this thesis,
some terminology around it must be set. The concatenation of h1 and h2 is referred to
as a neural-kernel block. In [5], the author refers to the whole model as deep hybrid
model. In the description of the algorithm, the name deep hybrid neural-kernel network
is used. The term block only appears in the second paper ([6]), in a vague way. As
stated previously, the extensions of the deep hybrid model are called maxout kernel block,
average kernel block or convolutional kernel block. This second paper is in fact titled
”Deep neural-kernel blocks”, which is why, in this thesis, the structure neural layer +
kernel mapping is referred to as neural-kernel block:

x′ =Wx+ b (2.11)

x′′ = φ̂(x)

This is deemed a useful term since a concatenation of neural-kernel blocks can now be
easily described. The concatenation of neural-kernel blocks with a fully connected layer
at the end is called for the author Stacked layers model.

In the experimental section, the deep hybrid model is comapred with two other models
beside One Layer or Two Layer Neural Networks: LS-SVM and TROP-ELM. The LS-
SVM (least squares support vector machine) is a Kernel based machine learning algorithm

8



which consists of optimizing the following functional:

J(w, e) =
1

2
wTw + γ

1

2

N∑
i=1

e2k

s.t yi = wTφ(xi) + b+ ei

The TROP-ELM is the acronym for Tikhonov-Regularized Optimally Pruned Extreme
Learning Machine. This model, described in [12]. The authors present an extension
of the OP-ELM. Extreme Learning Machine is a model where there is initialization of
weights without backpropagation. This, of course is huge improvement in computational
time, and produces surprising results. Optimally pruned means to solve the problem of
irrelavant variables that can corrupt some of the neurons. Tikhonov-regularized is adding
an L2 penalty on regression weights. The authors claim that TROP-ELM gives better
results, which is why it is used by authors of [5, 6] for comparison.

The deep hybrid model is tested using 15 different classifications data sets. The author
claims that in average, the Deep Hybrid model with one neural-kernel block (i.e. Neural +
Kernel + Fully Connected) performs equally or slightly better (On average an increment
from 0 to 2%). The extension with different types of neural-kernel blocks produces better
results on many of these datasets, with improvements in accuracy up to 6% with respect
to the Deep Hybrid Model.

2.3 Representer Theorem and Deep Learning

The Representer Theorem is a fundamental result associated to Kernel methods [13, 14].
It defines a prediction function when mimizing the regularized risk as a linear combination
of the Kernel matrix evaluated at the training data points xi for i = 1, . . . , N :

f(·) =
N∑
i=1

αik(·, xi) (2.12)

In the survey [13] and in many subsequent papers, the problem to which it is applied
is always a training set X = Rd considered is with training data set X = Rd but with
output Y = R. Also, the classical Representer Theorem (Wahba) is proved for one type
of empirical risk (The mean square loss) and one quadratic regularizer. These two facts
are the context of most statements of the Representer Theorem in Statistical Learning
Literature. The output Y = R is applied to classification and regression problems. In [14]
one can find a semi-parametric version of the Representer Theorem. The authors also
generalize it to a larger group of regularizers.

The semi-parametric Representer Theorem, besides the hypothesis of the standard
Representer Theorem (or non-parametric) considers a set of M real-valued functions
{ψp}Mp=1 over X. In addition, if we construct the matrix (ψp(xi))ip, where i = 1, . . . , n,
this matrix must have rank M . if that is the case, then when minimizing the regularized
risk, admits a representation of the form f̃ := f + h, with

f̃(·) =
N∑
i=1

αik(xi, ·) +
M∑
p=1

βpψp(·) (2.13)

Observe that f ∈ span{k(·, xi) | i = 1, . . . , N} and h ∈ span{ψp}.

9



Why this Representer Theorem was named semi-parametric is now clear, as the pre-
diction function f̃ has a set of real-valued functions that no depend on the number of
data points. A simple example where this semiparmetric theorem can be applied is the
SV classifier with an offset term b.

The results in [15] are born out of a limitation in interpolation and regression in RKHS.
Sometimes, the Hilbert space H may not contain the functions that can approximate the
solution of the problem. The authors define two similar functions g1 = (0.1 + |x|)−1 and
g2 = (0.1 + |x− y|)−1, and produce 200 samples (xi, gk(xi)) for each k = 1, 2. Then they
try to approximate them with a function f ∈ H where H the Hilbert space defined by
the tensor product of two Sobolev-Matern kernels ( see page 17 of [15] for a definition).
The problem arises when g1 ∈ H but g2 ̸∈ H. However, if the interpolant is searched
in {f ◦ R} | f ∈ H where R is a rotation, that solves the issue. The authors show this
interpolant incurs in less error rather than using f as interpolator.

In summary, this example is very clear to set motivation for the authors, which also
shared by this thesis: Two layers can be more expressive than a single one, which is re-
strictive for. That is a lesson that has already been extracted from Deep Neural Networks,
which are able to extract more complex patterns.

The rest of the paper is dedicated to presenting a finite-sample (as well as an infinite-
sample) representer theorem for the concatenation of L layers. A description of the
Interpolation and Regression in the standard context (Wahba’s Representer Theorem) is
given, which is then extended to L layers. That implies describing two or more RKHS,
one or more being vector-valued. A thorough description of the minimization problem
and how the stated representer theorem applies to it is also provided.

The authors make a suggestion (Section 3.3.3 of [15]) to relate the finite sample repre-
senter theorem to Deep Kernel Learning. They assume that these models consists of an
outer Kernel K applied to a concatenation of non linear functions f2, . . . , fL

K̃(x, y) = K(f2 ◦ . . . ◦ fL(x), f2 ◦ . . . ◦ fL(y))

What if we assume that fl ∈ H↕ for l = 2, . . . , L with Hl being an RKHS? This short
paragraph, which can sound remarkable or prosaic to some readers, is one of the funda-
mental aspects of this thesis, which is to establish an array of connections between Kernel
methods and Deep Networks.

In a different article [16], which then becomes part of PhD Thesis [17], Dinuzzo stud-
ies the case of a Kernel Machine with two layers. The justification is to consider an
architecture that needs this composition of two functions to be described:

f = f1 ◦ f2, f2 : X → Y, f1 : Y → Z (2.14)

where X is a set and Y and Z are Hilbert spaces. No restrictions are made here over Y
and Z, they are assumed to be vector valued. The author offers interpretations for this
novel architecture: In many data modeling problems, one of them being that function g1
can act as a preprocessing transformation on the data, by extracting features that will
then be used in the predictor g2.

A Representer Theorem for the problem 2.14 is stated (See Chapter 4). It is general
result that allows for the kernel to be a combination of m kernels, which is a connection
to MKL.The author moves to a problem where the kernel of the inner Hilbert space H1

has a matrix-valued kernel associated defined as K1 = diag(K̃1, . . . , K̃m), where K̃i for
i = 1, . . . ,m are basis kernels to be defined.

10



Finally, a mention to developments from a mathematical point of view. Reserach
has focused on generalizing and unifying the different statements that have appeared
as Representer Theorems. [18] is a generalization by offering necessary and sufficient
conditions for these theorems, a complicated issue as seen in section 3.3.2. Mathematical
preliminaries are needed which clearly , such as linear operator theory and specifically
subspace valued maps . On this same note, [19] states a representer theorem for Hilbert
space valued functions (Vector Valued in our case).

2.4 Random Fourier Features

Random Fourier features are introduced by Rahimi in Recht in 2007 [9], as an approxi-
mation for the Gaussian RBF Kernel. ( cf. Section 3.2)

k(x, y) = ⟨ϕ(x), ϕ(y)⟩ ≈ z(x)T z(y) (2.15)

with z : X → RD. Instead of evaluating the kernel function, or relying on the kernel trick
(first equality) the input is transformed via z. As it will be shown, there is not just one
definition for z.

This is only possible for shift-invariant kernels, i.e. k(x, y) = k(x− y). The authors in
[9] show that this approximation |k(x, y) − z(x, y)| can be bounded to error ε with only
D = O(Dε−2 log 1

ε2
).

Another perspective which of special interest in this thesis is the error bounds for
Random Fourier Features. In [9], a first error bound is given. The article entitled ”On the
Error Bounds of Random Fourier Features”, [20] reviews the definition of Random Fourier
Features in attempts to tighten the probability bound in [9]. However, the important
addition to the study of this approximation is that the authors study the error in specific
ML models, like Kernel Ridge Regression or Support Vector Machines. In other words,
they study directly the difference in predictions due to using z instead of k. If h(x) =
αTk(xi, x) and ĥ(x) = αT k̂x is the function obtained through the Representer Theorem,
it is possible to bound |ĥ(x)− h(x)| by the differences ∥k̂x − kx∥2 and ∥K̂ −K∥2.

What about the applications of Random Fourier Features in different settings? They
have been used in Machine Learning algorithm since their appearance in 2007. Survey
[21] lists many of them.

The simplicity and practical usage of this approximation sparked the question if other
kernels, could have also a low-dimensional approximation. This applies to the inhomoge-
neous polynomial kernel k(x, y) = (⟨x, x′⟩ + c)p for which we know the feature mapping
ϕ(x) has dimension

(
d+p
p

)
, a combinatorial number that explodes for large p. Spherical

Random Features are presented in [22]. They provide an approximation for the polynomial
kernel in the unit sphere. The impossibility of applying Bochner’s Theorem to guaran-
tee a non-negative Fourier Transform of the polynomial kernel is remedied by Spherical
Random Features, which are similar to RFFs when it comes to defining the mapping ϕ,
but different when it comes to defining p(ω) This finding is useful to extend Deep Hybrid
models, in the sense that the kernel layer could be a mapping by a different kernel than
the Gaussian RBF.

11



3 Important concepts in RKHS Theory

In this chapter, an overview is given of the necessary concepts that illustrate the results of
Chapters 4 and 5. This consists of a brief summary of Kernel Methods and the Representer
Theorem as well as detailed definition of two important kernels: The Gaussian RBF kernel
and the Polynomial Kernel.

This allows to introduce further concepts in RKHS Theory, which are central to this
thesis: Bochner’s Theorem guarantees that a shift invariant kernel is positive definite if
and only if it is the Fourier Transform of non-negative measure. This gives us a possibility
to approximate the Gaussian RBF Kernel through computation of the fourier transform.

Since this is an approximation, an error with respect to the true value is incurred. In
section 3.2 some of the error bounds are listed, which will be useful to further characterize
the models in Chapter 5.

Section 3.3.2 is devoted to Vector Valued reproducing kernel Hilbert spaces, an exten-
sion to the definition of provided in Section 3.1. As shown, this consists of an extension
to functions f : X → R, to the case f : X → RD, for D > 1. representer theorems,
which also are an extension from the real-valued function to the vector-valued function
are presented. Vector valued RKHS are defined by matrix valued kernels, meaning that
now there is a kernel matrix k : X ×X → RD×D. Studying matrix-valued kernels and its
properties are not the objective of this thesis, but rather to study their relationship with
a scalar-valued kernels, so that the models presented have a simpler expression.

3.1 Kernel methods, RKHS and The Representer Theorem

Let X be a non empty set. From now on, X = Rd is assumed. A symmetric function
is called a positive semi definite kernel if k : X × X → R if for every n ∈ N, for every
x1, . . . , xn ∈ X and ∀ai, aj

∑
i

∑
j aiajK(xi, xj) ≥ 0.

A simple example of a kernel is the linear kernel, k(x, y) = ⟨x, y⟩Rd for x, y ∈ Rd, which
clearly is symmetric and positive semi definite.

The definition below links the concept of kernel and Hilbert space. Note that in some
texts this appears as a Proposition.

Definition 3.1. Let X be a non-empty set. A function k : X ×X → R is a kernel if and
only if there exists a Hilbert space H and a map ϕ : X → H such that for all x, x′ ∈ H:

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H (3.1)

Equation is referred to as the kernel trick. This means that similarities can be com-
puted in the Hilbert space directly by evaluating the kernel instead of computing the inner
product in H. This can be advantageous as we might not have an explicit expression ϕ,
or such expression can be hard to obtain.

The following two definitions, which are intertwined, are the backbone of Kernel meth-
ods.

Definition 3.2. Let X ⊆ Rd and H a Hilbert space. A kernel function k : X ×X → R
is called a reproducing kernel of H:

(1) ∀x, k(x, ·) ∈ H

12



(2) ∀f ∈ H and ∀x ∈ X f(x) = ⟨f(·), k(x, ·)⟩ (reproducing property)

Then H is a reproducing kernel Hilbert space.

Example 3.3. Most Hilbert spaces are Reproducing Kernel Hilbert spaces. Spaces (with
their respective inner product) such as R,Rd, l2, L2 are examples of RKHS.

A more formal definition for an RKHS follows.

Definition 3.4. An RKHS is a Hilbert space of functions where the linear evaluational
functions are continuous

[x](·) :H → R
f → [x]f = f(x) ∀f ∈ H ∀x ∈ X

Kernel methods and RKHS on their own cannot work without the representer theorem.
This is a result that comes form Riesz’s representation lemma.

In Section 2.3, a few mentions were made to the representer theorem and some ex-
tensions that have been tried. However, it is important to stress its importance in the
context of machine learning. Observe that the optimization problem

min
f∈H

L((x1, f(x1)), . . . , (xn, f(xn))) + λ∥f∥2 (3.2)

is solved in a Hilbert space H. As said before, the space H can be of high dimension
or infinite. The representer theorem says that the solution to equation (3.2) is a linear
combination

f(·) =
N∑
i=1

K(·, xi)

Theorem 3.5. (Representer Theorem) X = Rd, Y = R and k : X × X → R a kernel
function. H is the RKHS induced by k, Θ : H → R a non-decreasing function (regularizer)
and the loss L. The optimization problem:

minf∈H

{
L

(
(f(x1), y1), . . . (f(xn), yn)

)
+Θ(∥f∥2)

}
has a solution of the form f(·) =

∑n
i=1 αiK(xi, ·) ∈ H

Proof. Consider Y = span{K(xi, ·) i = 1, . . . , N} ⊂ H, a closed set. By the Orthogonal
decomposition Theorem H = Y ⊕ Y ⊥. Therefore, if f ∈ H, f = fY + f⊥Y . By applying
the reproducing property,

f(x) = ⟨f(·),K(x, ·)⟩ = ⟨fY ,Kx⟩ ∀x ∀f ∈ H

Now, fY =
∑N

i=1 αiK(xi, ·). By definition ∥f∥2 = ∥fY + fY ⊥∥2 ≥ ∥fY ∥2. Since Θ is non
decreasing, Θ(∥f∥2) ≥ Θ(∥fY ∥2) for all f ∈ H.

The minimizer f need not be unique. For that, the convexity of the functional is
necessary. (More on that in Section 3.3.2). It is important to point out that the mono-
tonicity of Θ (i.e. it is a non decreasing function) is to guarantee that there always exists
a minimizer of the form f(·) =

∑N
i=1 αik(·, xi). This is used in the last line of the proof.

13



One of the references for Kernel methods and Support Vector Machines is [23], which
sets it in the broader context of Statistical Learning. Chapter 4 is dedicated to Kernels
and provides a formal theory about the gaussian rbf kernel and its RKHS, which this
review on Kernels and RKHS Theory is partly based on.

In [23], a distinction is made between real valued kernels and complex valued kernels.
That is not the case of [24], another important reference for Kernel methods.

Complex valued kernels are not considered in this thesis, as the possible solutions of
the function to be approximated are in an R-Hilbert space. For more information, the
reader is referred to Chapter 4 in [23].

Let us move to discuss infinite feature mappings. The first concept needed is the
one of sequence, but a particular one: a square summable sequence is {αk}k≥1 for which
∥αk∥2 =

∑∞
k=1 α

2
k <∞.

Definition 3.6. The Hilbert space of square summable sequences l2 is the complete
vector space of sequences such that for (αk)k ∈ l2 then

∑∞
n=1 α

2
k <∞. l2 is endowed with

inner product ⟨{αk}k, {βk}k⟩ =
∑

k αkβk.

Observe that feature map ϕ : X → H need not be unique. Consider the kernel
matrix K = (k(xi, xj))i,j=1,...,N . Since a kernel matrix K is positive semidefinite it can
be decomposed as K = V DV T . By definition of a kernel K = ϕϕT where

ϕ =

ϕ(x1). . .
ϕ(xN )

 (3.3)

Which is why ϕ(xi)
T = vTi D

1/2 is a feature map. However, ϕ′(x) = Qϕ(x), when Q is an
orthogonal matrix, is another valid feature map. This is clear since for all i, j ∈ {1, . . . , N}
we have ϕ′(x)ϕ′(x′) = ϕ(x)TQTQϕ(x) = ϕ(x)Tϕ(x).

The following lemma characterizes an important fact: Kernels can be described as the
inner product between two sequences of l2, meaning that it possible to have a kernel with
a feature mapping to an infinite dimensional Hilbert space.

Lemma 3.7. Let X be a set and (ϕi(x))i≥1 a sequence of l2, where ϕi(x) is the i-th
coordinate of the feature map to the Hilbert space H = l2. The function defined as

k(x, x′) =
∞∑
i=1

ϕi(x)ϕ(x
′)

is a kernel.

This Lemma is a classical result in Kernel methods, and can be found in Section 4.1
of [23].

Proof. Hölder’s inequality for l2 spaces gives

∞∑
i=1

|ϕi(x)ϕi(x′)| ≤ ∥ϕi(x)∥l2∥ϕi(x′)∥l2 <∞

because (ϕi(x)) belongs to l2. Now, define H := l2 and trivially ϕ(x) := (ϕi(x)) maps X
to the Hilbert space. This proves that k is a kernel.

14



It is clear that the Gaussian RBF Kernel and the Polynomial Kernel are widely used
in machine learning [24, 13, 25]. Observe that they are both kernels with infinite or
potentially infinite dimensional feature mappings, which In Chapter 5 these kernels will
become necessary to describe the kernel network model, as well as a link between activa-
tion functions and RKHS. Find below detailed of these two kernels.

Notation. [d] is used to indicate {1, . . . , d}. Hence [d]p indicates the cartesian product

{1, . . . , d} ×
p
· · · × {1, . . . , d}

Example 3.8 (Homogeneous Polynomial Kernel). The Polynomial kernel is defined as
k(x, x′) = (⟨x, x⟩ + c)d, d is the dimension. Note that if c = 0 the polynomial kernel is
referred to as homogeneous. For instance, given p = 2 and d = 2, the expansion of the
product is(〈

(x1, x2), (x
′
1, x

′
2)
〉)2

= (x1x
′
1 + x2x

′
2)

2 = x21x
2
1
′ + 2x1x

′
1x2x

′
2 + x22x

2
2
′ =

=
∑
j∈[2]2

[x1]j1 [x2]j2 · [x′1]j1 [x′2]j2

More generally,

⟨x, x′⟩p =
∑
j∈[d]p

[x]j1 · . . . · [x]jp [x′]j1 · . . . · [x′]jp = ⟨ϕ(x), ϕ(x′)⟩ (3.4)

where ϕ(x) has components being all possible p-th degree ordered products of the entries
of x. In other words, for the case d = 2, p = 2, we have ϕ(x) = (x22, x2x1, x

2
1)

Example 3.9 (Gaussian RBF Kernel). The Gaussian RBF kernel is defined as

k(x, x′) = e−
∥x−x′∥2

2σ2 = e−γ∥x−x′∥2

σ2 or its equivalent γ is a hyperparameter. To find the feature mapping, observe

e−γ∥x−x′∥2 = e−γ∥x∥2e2γx
T x′
e−γ∥x′∥2

Using the taylor expansion at x = 0

e2γx
T x′

=
∞∑
k=0

1

k!
(2γ⟨x, x′⟩)k

Using the results from the polynomial kernel, we obtain the feature map ϕ

e2γx
T x′

=
2kγk

k!

∑
j∈[d]k

[x]j1 · · · · · [x]jk [x
′]j1 · · · · · [x′]jk (3.5)

Clearly, the feature mapping for the Gaussian RBF kernel is:

ϕ(x) = e−γ∥x∥2
(√

2kγk

k!

k∏
i=0

xji

)
(3.6)

If the polynomial is of infinite degree, the feature mapping defined for both kernels is
ϕ : Rd → l2(N).

The next section is devoted to approximations to the Gaussian RBF Kernel via Ran-
dom Fourier Features. An interesting discussion, which is found in [26] attemps to ap-
proximate the Gaussian RBF through the taylor expansion and comparing its error with
the approximation through RFFs.

15



3.2 Approximations of the Gaussian RBF Kernel: Random Fourier Fea-
tures

Let us begin with two important definitions.

Definition 3.10. The Fourier transform of a function on the eucliedan space Rn is defined
as:

f̂(ξ) =

∫
Rn

f(x)e−i2π⟨ξ,x⟩dx (3.7)

where ξ and x are vectors of Rn.

Definition 3.11. A scale invariant kernel on Rd is a kernel function k : X×X → R such
that k(x, x′) = k(x− x′) for x, x′ ∈ Rd

The Gaussian, Laplacian and Cauchy Kernel are examples of shift-invariant kernels.

Notation. If v ∈ Cn, v∗ denotes the conjugate transpose, i.e. the operation of transposing
v, and then applying the complex conjugate (a+ ib becomes a− ib)

Theorem 3.12 (Bochner). A continuous shift-invariant kernel is positive definite if and
only if it is the Fourier transform of a non-negative measure p(ω).

Observation 3.13. If k(0) = 1, p(ω) is a normalized probability density function.

Now, in application of Bochner’s Theorem

k(x− y) =

∫
Rd

p(ω)eiω
T (x−y)dω = Eω[ξω(x)ξω(y)

∗] (3.8)

where ξω(x) = eiω
T x. The second equality is the definition of expected value. In particular,

ξω(x)ξω(y)
∗ is an unbiased estimate of k(x, y) when ω is drawn form p (the probability

distribution). [9]. Observe that the expected value can be approximated (Monte-Carlo):

Eω[ξω(x)ξω(y)
∗] ≈

D∑
j=1

ξωj (x)ξωj (y) =

D∑
j=1

exp(iωT
j (x− y))

where ωj are taken i.i.d from the probability distribution p. By Euler’s Formula and ∀j:

exp(iωT
j (x− y)) = cos(ωT

j (x− y))− i sin(ωT
j (x− y))

Since the kernel is assumed to be real-valued:

k(x− y) = Re
(
Eω[ξω(x)ξω(y)

∗]
)
= Eω

[
Re (ξω(x)ξω(y)

∗)
]
= Eω[cos(ω

T (x− y))]

Now, one can make the following observation (Law of total expectation)

Eω[cos(ω
Tx+ b)] = Eω[Eb[cos(ω

Tx+ b)] | ω] = 0 b ∼ U [0, 2π]

which allows us to write

Eω[cos(ω
T (x− y))] = Eω[cos(ω

T (x− y))] + Eω[cos(ω
T (x+ y) + 2b)]

= Eω[cos(ω
T (x− y)) cos(ωT (x+ y) + 2b)] = Eω[

√
2 cos(ωTx+ b)

√
2 cos(ωT y + b)]

16



The last equality is trigonometry 2. Observe that we now a mapping defined: ξω(x) =
zω(x) =

√
2 cos(ωTx + b), with ω ∼ p(ω) and b ∼ U [0, 2π]. In summary, we have proved

the ξω(x)ξω(y) has expected value k(x, y). Now, the final step is to define the mapping
ϕ(x), which has dimension D. As explained in the following algorithm, the mapping will
be based on sampling D ω’s and b’s from their respective distributions.

The algorithm for calculating Random Fourier Features provided in [9] for the Gaussian
RBF Kernel is summarized in the steps below:

(1) Compute the Fourier transform p of the shift-invariant kernel k

(2) Draw D iid samples ω1, . . . , ωD ∈ Rd from p(ω). as well as D iid samples for b,
b1, . . . , bD ∈ R from the uniform(0, 2π) .

(3) Define z(x) =
√

2
D

(
cos(ωT

1 x+ b1) . . . ω
T
Dx+ bD)

)T

First note that the fourier transform of the gaussian RBF kernel is also a gaussian, in

particular p(ω) = (2π)−
D
2 e−

∥ω∥22
2 . Also, note the differences between the feature mapping

and the one the author of the Deep Hybrid model employs (see Section 2.2). These
differences and their affect will be discussed in Chapter 5.

It is clear now that the definition z(x) is not unique and that authors have used
different versions. Research paper [20] attempts to list advantages and disadvantages
between using the z(x) defined previously or as:

z̆(x) =

√
2

D

(
sin(wT

1 x) cos(w
T
1 x) . . . sin(w

T
D/2x) cos(w

T
D/2x)

)T

The reason why it is possible is direct consequence from trigonometry and noting that we
have only sampled D/2. ω’s from p(ω). The conclusion that z(x) is superior than z̆(x)
for the Gaussian Kernel.

Finally, to show the versatility of RFFs, recall the representer theorem from Section
3.1, and apply it to obtain a linear expansion of the RFFs:

f(x) =

N∑
i=1

αik(xi, x) =

N∑
i=1

αi⟨ϕ(xi), ϕ(x′)⟩ ≈
N∑
i=1

αiz(xi)
T z(x) = ŵT z(x) (3.9)

with w =
∑N

i=1 αiz(xi).

3.3 Vector Valued Reproducing Kernel Hilbert Spaces

The representer theorem considersX to be set and Y = R. [14], which is the most common
application. As mentioned in section 2.3 there have been extensions of the representer
theorem to the case Y = Rd. More generally, the problem of learning real-valued function
is extended to learning Hilbert-space valued functions.

This needs a more complex mathematical structure, which is an extension of the field
of Learning in Reproducing Kernel Hilbert Spaces (RKHS). The case where the output
is a vector, i.e. Y = Rd is referred vector-valued. Hence, a theory was developed for the

2cos(x+ y) + cos(x− y) = 2 cos(x) cos(y)

17



concept of Vector Valued Reproducing Kernel Hilbert Spaces (vector valued RKHS or
VVRKHS from now on). It is not the goal of this thesis to provide a thorough presenta-
tion the theory surrounding vector valued RKHS, but rather to highlight the important
definitions and results that allow to prove the statement for the two-layer representer
theorem, one of the main results of the Thesis.

The following definitions and properties are extracted from the main reference in vector
valued RKHS ([10]). A less formal introduction to vector valued RKHS, among other
topics, can be found in [27].

Notation. In [10] two different notations are used for the inner product: (·, ·) and ⟨·, ·⟩.
The first one is used for the Hilbert space Y (i.e. the output ), and the latter for the
RKHS H Here we adopt ⟨·, ·⟩ to denote the inner product of any Hilbert space.

3.3.1 Definitions and main properties

Let X be set, Y a Hilbert space, and H the Hilbert space of functions f : X → Y . From
now on, Y = RD

Definition 3.14. H is a Vector Valued Reproducing Kernel Hilbert space if there exists
a kernel function K : X ×X → RD×D such that

(1) K(x, ·)z ∈ H(X,RD) ∀x ∈ X and z ∈ RD

(2) zT f(x) = ⟨f,K(x, ·)z⟩H(X,RD) ∀x ∈ X, ∀z ∈ RD and ∀f ∈ H(X,RD)

Observe the main difference with the RKHS theory described in [13], which is for
kernels K : X × X → R, which is called a scalar-valued kernel in comparison to the
function defined above, which is a matrix-valued kernel. Also, the difference in the
reproducing property with respect to a scalar-valued RKHS.

Example 3.15. K(x, y) = xyT is a matrix-valued kernel. [28]

When constructing matrix-valued kernels, a relationship with the scalar valued coun-
terpart can be established.

Definition 3.16. Let K : X × X → RD×D, k : X × X → R and A ∈ RD×D positive
semi-definite matrix. Define

K(x, x′) = k(x, x′)A

K is called a separable kernel. There exists is an extension of this definition to a more
general case,

K(x, x′) =

p∑
i=1

ki(x, x
′)Qi

where Qi positive semi definite matrices.

Observe that the matrix A can be initialized in many different ways, and learnt. [27].
Definition 3.16 allows to work with scalar valued kernels in vector valued RKHS. For

18



instance, for a matrix valued kernel K : X ×X → RD×D the Gaussian RBF Kernel can
be adapted to this new context by defining:

K(x, x′) = e−γ∥x−y∥2diag(A) (3.10)

In other words, between two data points x and x′, the matrix valued kernel K has non-
zero values in the diagonal, and they are all the same. This means that the outputs
are treated as unrelated, i.e. i-th component does not have any relationship with j-th
component. In other words B encodes dependencies between the outputs.

The following section goes over the representer theorems in the context of vector-valued
output. As one clearly notices, these are equivalent versions of the Representer Theorem
for scalar output.

3.3.2 Representer Theorems

The following result is a representer theorem for the regularization problem in vector-
valued spaces, with the squared error loss. [10]

Theorem 3.17. (Representer Theorem for vector valued functions) Consider {(xi, yi)}ni=1 ⊆
X × Y with the following approximation scheme

J(f) =
n∑

j=1

∥yi − f(xi)∥2 + λ∥f∥2

If f̂ minimizes J in H, it is unique and has the form

f̂ =
n∑

i=1

Kxici

where the coefficients cj ∈ Y are the unique solution of the linear equations

n∑
j=1

(K(xi, xl) + µδil)cl = yi i = 1, . . . , n

Proof. cf. p.7-8 [10].

The proof is similar to the scalar version of the representer theorem. Note that the
statement of the theorem says the minimzer is unique. This is a rare case in representer
theorems, as it is clear that for many functionals there will not be a unique minimizer. In
this case, the uniqueness is thanks to the convexity of the loss function and the regularizer.
Note the difference between the minimizer of the scalar case and the vector valued:

f =

n∑
i=1

αikxi f =

n∑
i=1

ciKxi (3.11)

for αi ∈ R and ci ∈ RD, k : X × X → R and K : X × X → RD×D. In the previous
section, the concept of separable kernel was introduced. For the vector valued case, we
write the following:

f(·) =
n∑

i=1

K(·, xi)ci =
n∑

i=1

k(·, xi)Aci =
n∑

i=1

k(·, xi)diag(aj)ci (3.12)

19



where diag(aj). for aj ∈ R for j = 1, . . . , D. Observe that the output vector f(·) has D
components, with fj beingthe sum across the training data set of the product k(·, xi)ajcj,i.
This observation is the basis for the presentation of the kernel network in Chapter 5.

Notation. Y n = Y × n· · ·×Y is used to express the space that contains all the data points.
Note that it is a Hilbert space with inner product ⟨c, c′⟩ =

∑n
j=1⟨cj , c′j⟩, for c, c′ ∈ Y n,

i.e. c = (cj ∈ RD) ∈ Y n

This applies to the square error loss, but in general one can define the functional

E(f) = V (f(xj), ∥f∥2) (3.13)

where V : Y n ×R → R as V (f(xj), ∥f∥2) for all f ∈ H. This notation is a formal way of
describing the minimization problem:

E(f) :=

n∑
j=1

L(yj , f(xj)) + Θ(∥f∥2) (3.14)

The authors in [10] prove a theorem for any function which minimizes the functional E(f)

Theorem 3.18. If for every y ∈ Y n the function Θ : R+ → R+ defined for t ∈ R+

by h(t) := V (y, t) is strictly increasing and f0 ∈ H minimizes the functional V , then
f0 =

∑
j∈[m]Kxjcj for cj ∈ Y . If V is strictly convex, the minimizer is unique.

Proof. cf. p. 9-10 [10].

The proof is very simple, and can be seen as a corollary of the previous theorem. Two
other straightforward corollaries are stated below appear from this theorem. They appear
under what is a common circumstance E might have one than more minimum, provided
that it is a function of sveral variables. Is the form of the f0 the same?

Corollary 3.19. If V satisfies the hypothesis of theorem 3.18 and f0 ∈ H is a local
minimum of E, then f0 =

∑
j∈[m]Kxjcj for cj ∈ Y

Proof. cf. p. 10 [10].

This first theorem shows that there is a representation theorem for any global or local
minimum of E, provided that V is strictly increasing. The corollary below is a result that
can be applied when this strict convexity cannot be fulfilled.

Corollary 3.20. If V is differentiable at the local minimum f0 ∈ H of E then there exists
c ∈ Y n such that f0 =

∑
j∈[m]Kxjcj

Proof. cf. p. 10 [10].

In summary, so far the following versions of the representer theorem have been covered:

(1) For the scalar-valued case, a representer theorem is presented with a general loss
function, and non-decreasing regularizer Θ. This is called non-parametric represen-
ter theorem [14].

20



(2) Still in the scalar-valued case, a semi-parametric theorem was stated. This involves
minimizing f̃ in the spaces H and span{ψp} where ψp are real-valued functions,
meaning we find f̃ = f + h [14].

(3) A vector-valued representer theorem for the standard approximation scheme with
L2 regularization, which considers the squared loss and a constant times the squared
norm of f as a regularizer. Also, the function f is found to be a unique minimizer,
and in particular, the unique solution of a system of linear equations.

(4) For a general functional V , a vector-valued representer theorem is stated giving
the expression form of f0, which is f0 =

∑
j∈[m]Kxjcj . Uniqueness is guaranteed

provided the convexity of the minimizer.

(5) It is clear that in most practical cases is E will have more than one local minimum.
Given the hypothesis of (4), which is Theorem , meaning that V is strictly increasing,
a strong result states that in any local minimum of E also has the expression form
f0 =

∑
j∈[m]Kxjcj .

(6) Last but not least, an alternative to the strict convexity of V in the second argument
is proposed, via the differentiability of V at f0.

As mentioned previously, attempts to generalize and unify representer theorem for all
functionals and regularizers have been made. This, however, requires moving a step up:
operator theory and subspace valued maps are the framework for this approach. This
exceeds the scope of this thesis, which does not need such a general for the pratical cases
in which a result of the nature of the representer theorem is needed.

21



4 A Representer Theorem for the concatenation of L layers

The generalization of the Representer Theorem [13, 14] has been the objective of several
research papers. In the previous chapter extensions to Vector Valued RKHS context have
been studied. ( see section 3.3.2 for more details)

Another extension to the Representer Theorem is to minimize a function f defined as
a composition of two or more functions. Originally, this can be found in [16]. This article
is part of a thesis by the same author on Kernel Methods [17].

In [16], the focus is the extension of kernel methods to a two layer problem. The setup
is as follows: Learning a function g : X → Y (X a set and Y a Hilbert space) can be
broken into two separate problems, by introducing H1, a Z-valued RKHS over X and H2

a Y -valued RKHS over Z . The spaces H1 and H2 are vector valued. The optimization
problem consists of minimizing the functional

min
g1∈H1
g2∈H2

N∑
i=1

L(yi, g2 ◦ g1(xi)) + Θ1(∥g1∥H1) + Θ2(∥g2∥H2) (4.1)

The first theorem for vector valued functions, proposes a sufficient condition.

Theorem 4.1 (Dinuzzo). If the functional of problem 4.1 admits minimizers, then there
exists minimizers of the form

g1(x) =
N∑
i=1

K1(xi, x)c
1
i g2(z) =

N∑
i=1

K(2)(g1(xi), z)c
(2)
i

Letting K(x1, x2) := K2(g1(x1), g1(x2)) denote the input-output kernel, there exists op-
timal learning architectures whose input-output map can be written as:

g(x) = (g2 ◦ g1)(x) =
l∑

i=1

K(xi, x)c
(2)
i (4.2)

Proof. cf. p.112 - 113 [17].

The proof of this theorem uses a trick that and it is that points zi can be seen as fixed
points of the function g1(xi) for i = 1, . . . , N and the function minimized is

min
g2∈H2

L(g2(z1), . . . , g2(zN )) + Θ2(∥g2∥H2)

In application of the Representer Theorem for vector valued RKHS (Theorem 3.18), there
exists a minimizer of the form

g2(z) =

l∑
i=1

K2
zi(z)c

2
i

Now that g2 has been fixed, the problem to be solved is:

min
g1∈H1

L̃(g1(x1), . . . , g1(xN )) + Θ1(∥g1∥H1)

Note L̃(z) = L(g2(z1), . . . , g2(zN )) which allows for the application of the Representer
theorem again, obtaining the desired representation g2 ◦ g1.

22



Section 3.1 covers the fact that Representer Theorems are not ”Existence theorems”,
meaning that they do not guarantee an existence of minimizers, but rather they provide
a representation for the minimizer in terms of the data points. Clearly, this also applies
for the theorem above.

The existence of a minimizer can be ensured if there are conditions over g1, g2, Θ1

and Θ2. In the previous chapter, we showed that uniqueness of minimizers is not always
guaranteed. Finally, as stated previously, if Θ1 and Θ2 are strictly increasing, all the
minimizers have the form of the expansion presented in the theorem.

In the paperA representer theorem for deep kernel learning, authors B. Bohn, M.Griebel
and C.Rieger state and proof a Representer Theorem for a concatenation of L layers. As
explained in section 2.3, their motivation behind this new result comes from the shortfalls
of the Representer Theorem in finding f : X → Y for some specific problems, that escape
the mathematical structure of a single Hilbert space H. For this reason, it is necessary
to extend the framework to multiple layers, where each layer is a new RKHS, which con-
tains arbitrary functions. The function f : X → Y is a now a concatenation of functions
belonging to different RKHS. That allows for a better theoretical function approximation.

The main applications for this theorem are interpolation and regression, which means
the learning problem is standard: X = Rd and Y = R. L is the number of layers, i.e. the
number of compositions of functions belonging to different Hilbert spaces.

Theorem 4.2. Let H1, . . . ,Hl be reproducing kernel Hilbert spaces of functions with
finite dimensional domains Dl and ranges Rl ⊆ Rdl with dl ∈ N for l = 1, . . . , L, such
that Rl ⊆ Dl−1 for l = 2, . . . , L, DL = Ω and R1 ⊆ R. Let furthermore L : R2 → [0,∞]
be an arbitrary loss function and Θ1, . . . ,ΘL : [0,∞) → [0,∞) be strictly monotonically

increasing functions. Then, a set of minimizers
(
fl
)L
i=1

with fl ∈ Hl of

J(f1, . . . , fl) =

N∑
i=1

L(yi, f1 ◦ · · · ◦ fL(xi)) +
L∑
l=1

Θl

(
∥fl∥2Hl

)
fulfills fl ∈ Vl ⊂ Hl for all l = 1, . . . L with

Vl = span{Kl(fl+1 ◦ . . . ◦ fL(xi), ·)ekl | i = 1, . . . , N and kl = 1, . . . dl}

where Kl denotes the reproducing kernel of Hl and ekl ∈ Rdl is the kl-th unit vector.

Proof. cf. Theorem 1 p. 5-6 [15].

In this setting, a function fl ∈ Hl is describe fl : Dl → Rl ⊆ Dl−1, where Dl, Rl and
Dl−1 are finite-dimensional. This a condition for this family of Representer Theorems,
since the proof uses the orthogonal decomposition of a Hilbert space, which requires a
finite dimensional Hilbert space. Generalizations of the representer theorem to infinite
dimensional spaces have to undergo different techniques in operator theory and functional
analysis.

The main lesson from this theorem is that an infinite-dimensional optimization prob-
lem is actually solved in a finite-dimensional space. This is the case for the representer
theorems that have been presented in this thesis. The original problem

arg min
fl∈Hl
l=1,...L

J(f1, f2, . . . , fL)

23



is now an optimization problem in a finite-dimension problem:

arg min
fl∈Vl

l=1,...L

J(f1, f2, . . . , fL)

The following Theorem is an equivalent of Theorem 4.2 with the difference that Y is a
Vector Valued RKHS. It is the fundamental result of this thesis, as it supports the Kernel
Network model developed in Chapter 5. The proof of it is based on the one of Theorem
4.2.

Theorem 4.3. Let H1, . . . ,Hl be reproducing kernel Hilbert spaces of functions with
finite dimensional domains Dl and ranges Rl ⊆ Rdl with dl ∈ N for l = 1, . . . , L, such that
Rl ⊆ Dl−1 for l = 2, . . . , L, DL = Ω and R1 ⊆ Rm. Let furthermore L : Y ×Rm → [0,∞]
be an arbitrary loss function and Θ1, . . . ,ΘL : [0,∞) → [0,∞) be strictly monotonically

increasing functions. Then, a set of minimizers
(
fl
)L
i=1

with fl ∈ Hl of

J(f1, . . . , fl) =

N∑
i=1

L(yi, f1 ◦ · · · ◦ fL(xi)) +
L∑
l=1

Θl

(
∥fl∥2Hl

)
fulfills fl ∈ Vl ⊂ Hl for all l = 1, . . . L with

Vl = span{Kl(fl+1 ◦ . . . ◦ fL(xi), ·)ekl | i = 1, . . . , N and kl = 1, . . . dl}

where Kl denotes the reproducing kernel of Hl and ekl ∈ Rdl is the kl-th unit vector.

Proof. Since Hl are Hilbert spaces with a finite-dimensional domain, the orthogonal de-
composition Theorem says that if Vl ⊂ Hl is a closed subset, it has an orthogonal com-
plement V ⊥

l such that Hl = Vl ⊕ V ⊥
l . Then fl projects in two these two subspaces:

fl = ΠVl
(fl) + ΠV ⊥

l
(fl). This is for all l = 1, . . . , L In virtue of the reproducing property

for vector valued spaces:

fl ◦ fl+1 ◦ . . . ◦ fL(xi) =
d1∑
k=1

〈
ΠVl

(fl) + ΠV ⊥
l
(fl),Kl(fl+1 ◦ . . . ◦ fL(xi), ·)ek

〉
ek

Observe that ⟨ΠV ⊥
l
(fl),Kl(fl+1 ◦ . . . ◦ fL(xi), ·)ek⟩ = 0 :

fl ◦ fl+1 ◦ . . . ◦ fL(xi) =
d1∑
k=1

〈
ΠVl

(fl),Kl(fl+1 ◦ . . . ◦ fL(xi), ·)ek
〉
ek

In application of the reproducing property once again ⟨f,K(x, ·)⟩z = zT f(x):

d1∑
k=1

(
eTkΠV ⊥

l
(fl)(fl+1 ◦ . . . ◦ fL(xi))

)
ek = ΠVl

(fl)(fl+1 ◦ fL(xi))

which is the evaluation of ΠV ⊥
l

at fl+1 ◦ . . . ◦ fL. The last equality is clear. The process

explained can be iterated to obtain:

f1 ◦ f2 ◦ . . . fL(xi) = ΠV1(f1) ◦ΠV2(f2) ◦ . . . ◦ΠVL
(fL)(xi)

24



The functional J(f1, . . . fL) is now written in function of the projections of f1, . . . , fL

J(f1, . . . , fL) =
N∑
j=1

L(yi,ΠVl
(f1) ◦ΠVl

(f2) ◦ . . . ◦ΠVL
(fL)(xi)) +

L∑
l=1

Θl

(
∥ΠVl

(fl)∥2Hl
+ ∥Π⊥

Vl
(fl)∥2Hl

)

Where we have observed that ∥fl∥2Hl
= ∥ΠVl

(fl)∥2Hl
+ ∥Π⊥

Vl
(fl)∥2Hl

as in the proof for
Theorem 3.5. Since Θl are strictly monotonically increasing functions:

J(f1, . . . , fL) ≥ J(ΠV1(f1), . . . ,ΠVL
(fL))

which ensures that the minimizer fl belongs to Vl for all l = 1, . . . , L

25



5 A Deep Kernel Learning model: The Kernel Network

Notation. In the subsequent sections, a specific notation is used to differentiate the
functions that define the Deep Hybrid Model from the ones obtained by the Representer
theorem. For a single iteration of a Deep Hybrid Model (without stacked Neural-Kernel
Blocks), the outputs of the Neural, Kernel, and FC Layer are denoted as h1, h2, and s
respectively, following the notation in [5] in [6]. Whereas the functions representing the
corresponding operations in their respective Reproducing Kernel Hilbert Spaces (RKHS)
are denoted as f3, f2, and f1. Observe that the numbers are reversed to allow for a more
straightforward application of the Representer Theorem.

5.1 The Kernel Network

In the previous section, the Neural-Kernel structure was introduced. Recall that after a
pass through a Neural-Kernel Block, the vector obtained is a representation of x ∈ Rd in
a feature space. A Fully Connected Layer is added at the end of the block to solve the
classification problem.

The Representer Theorem for L layers L = 3 to obtain an explicit expression for the
Kernel network. Below we describe a forward pass through this structure:

X Ω Φ Y

xi zi = f3(xi) ti = f2(zi) yi = f1(ti)

f3 f2 f1

Hence, the building block of a Kernel Network consists of the input and the three Hilbert
spaces.

The Representer Theorem from Chapter 4. We define h = f1 ◦ f2 ◦ f3. If this theorem
is applied, the following expressions for f3, f2, f1 are obtained:

f3(·) =
N∑
k=1

d3∑
o=1

c
(3)
k,oK

(3)(·, xk)eo

g(·) = f2 ◦ f3(·) =
N∑
j=1

d2∑
l=1

c
(2)
j,l K

(2)

( N∑
k=1

d3∑
o=1

c
(3)
k,oK

(3)(xj , xk)eo, ·
)
el

h(·) = f1(·) =
N∑
i=1

d1∑
p=1

c
(1)
i,pK

(1)(g(xi), ·)ep

where eo, el, ep are the respective unit vectors i.e. eo = (0, . . . , 1, . . . , 0) in the o-th coor-
dinate.

Table 5.1 summarizes the dimensions as well as the number of parameters in the Kernel
Network

Trainable parameters Neural Layer Kernel Layer Fully Connected Layer

Weights d3 × d 0 d2 × d1
Coefficients N × d3 N × d2 N × d1

Table 5.1: Number of parameters in a Neural-Kernel Block + Fully Connected Layer

26



A more simplified equivalent expression of the kernel network is:

f1(·) =
N∑
i=1

d1∑
p=1

c
(1)
i,pK(xi, ·)ep (5.1)

where the outer kernel K is defined as

K(x, x′) = K(f2 ◦ f3(x), f2 ◦ f3(x′))

5.2 The RKHS in a Kernel Network

In the kernel network ,we start by making the following observation:

The first forward pass is defined as, f(x) = Wx + b, with x ∈ Rd, b ∈ Rd3 . In order
to include the bias in the computation of the Kernel, we define W̃ = (b W )T , meaning
that W ∈ R(d3+1)×d Observe that now x = (1 x1 . . . xd)

T .

The linear kernel k(x, y) = xT y for x, y ∈ Rd can be extended to a more general kernel
k′(x, y) = xTAy where A is a psd matrix. (If A = Id, k

′(x, y) is the linear kernel)

However, there is an important difference between the linear kernel and the general
linear kernel. The linear kernel is just the dot product between two vectors, and the
feature mapping, which is the identity, does not change the dimension of the space. This
is why it is referred sometimes as a non-kernel. The general linear kernel does map
the data points into another space, as its feature mapping ϕ : Rd → Rp is defined as
ϕ(x) =W Tx (see propositions below)

Proposition 5.1. Given x, y ∈ Rd, then k(x, y) = xTAy where A ∈ Rd×d is psd, is a
kernel, and is called the general linear kernel.

Proof. k is a kernel if it is symmetric and positive semi definite. If A is psd , we can write
A =WW T whereW does not to be a square matrix. Now, for x1, . . . , xN ∈ Rd, construct
the matrix K = (kij)i,j=1,...,N defined as k(xi, xj) = xTi Axj . Then, for every c ∈ RN :

N∑
i=1

N∑
j=1

cicjkij =

N∑
i=1

N∑
j=1

cicjx
T
i Axj =

N∑
i=1

N∑
j=1

cicj(x
T
i W )(W Txj) =

=
N∑
i=1

N∑
j=1

cicj(W
Txi)

T (W Txj) =

∥∥∥∥ N∑
i=1

ci(W
Txi)

∥∥∥∥2 ≥ 0

What is next is to describe the RKHS of the general linear kernel. In the proof above,
we have seen that an inner product can be derived from the kernel k(x, y) = xTWW T y,
defined as ⟨ϕ(x), ϕ(y)⟩ = ⟨Wx,Wy⟩Rp . A candidate RKHS is needed. Given f ∈ H,

f(x) =

N∑
i=1

αiK(xi, x) =

N∑
i=1

αi⟨W Txi,W
Tx⟩Rp =

〈 N∑
i=1

αiW
Txi,W

Tx

〉
Rp

=

= ⟨α1W
Tx1 + . . .+ αnW

Txn,W
Tx⟩Rp

Clearly α1W
Tx1 + . . . + αnW

Txn = s ∈ Rp So, the functions are of the form f(x) =
⟨s,W Tx⟩Rp , with s ∈ Rp. The candidate H is defined to have inner product ⟨f1, f2⟩H =

27



sT1 s2, denoting the standard inner product in Rp. That H is a Hilbert space is clear
because H is isomorphic to Rp, which is a Hilbert space. The remaining step is to check
that it is indeed an RKHS:

• H contains Kx = K(x, ·) : y 7→ ⟨Wx,Wy⟩

• fs ∈ H, x ∈ X:

f(x) = ⟨s,W Tx⟩Rp = ⟨fs, fWT x⟩H = ⟨fs, kx⟩

The following proposition summarizes this reasoning.

Proposition 5.2. The RKHS of the general linear kernel is the space of functions f(x) =
⟨s,W Tx⟩Rp , for s ∈ Rp. The RKHS is endowed with the inner product ⟨fW,x, fW,y⟩ =
⟨W Tx,W T y⟩. The norm induced by the inner product is ∥f∥2 = xTAx, where A =WW T .

The RKHS of the Gaussian RBF Kernel can be quite complex if a rigorous approach
is taken. Find details in Chapter 4 of [23]. Considering that the RKHS is already known,
few things can be said. However, recall that in ther kernel network, the RBF Kernel is
approximated through random Fourier features. The feature map is z : X → H′ defined as
z(x) = cos(ωTx) where ω ∼ N(0, σ2Id) The approximate RBF kernel k(x, y) ≈ z(x)T z(y)
defines an RKHS H ′ that may not be contained in the RKHS H defined by the Gaussian
RBF Kernel [21].

For the last layer, which is fully connected, observe that its equations are defined by
y = σ(Wh2 + b), with W ∈ Rd2×d1 , and where σ : Rd1 → Rd1 is an activation function.
The question is if it possible to describe a pass through a fully connected with a function
from an RKHS. In other words, an RKHS that contains the class of functions σ(⟨w, x⟩)
for w, x ∈ Rd2 . We have already characterized a neural pass has activation function.

The article titled Convexified Convolutional Neural Networks [11] by Zhang et al. aims
to desribe a class of convolutional neural networks that are a convex optimization problem.
This is done by developing the innovative idea that non linear convolutional filters (
h(z) = σ(⟨ω, z⟩) are seen as vector of a reproducing kernel hilbert space. An interesting
result linked to statistical analysis is proven: For two-layer convolutional neural networks,
the generalization error obtained by a convexified CNN converges to the generalization
error of the best possible CNN. Establishing this strong bridge between deep neural
networks and kernel methods comes with finding reproducing kernel hilbert spaces that
can contain functions that represent the convolutional opreation. The authors introduce
two important results, which we can study and apply to our problem. In the context of
CNNs, the filters h : z 7→ σ⟨w, z⟩, for w, z in Rd2 are shown to be elements of the RKHS
induced by the gaussian RBF kernel and the inverse polynomial kernel. Let us review the
architecture they use to see if it can be compared to the kernel network.

In [11] the different building blocks of a CNN are described in the following way: Given
an input x ∈ Rd0 a collection of patches {zp(x)}Pj=1 of the full input vector x. For each

vector, zp(x) ∈ Rd1 . The convolutional operation is defined as:

hj(z) := σ(ωT
j z) z ∈ Rd1 (5.2)

where σ : R → R. Observe that ωj ∈ {ωj}rj=1. In the CNN context, each function hj is
called a filter. Observe that that h(z) ∈ Rr. The final expression for this CNN, a vector

28



f(x) = (f1(x), . . . , fd2(x)) ∈ Rd2 :

fk(x) =

r∑
j=1

P∑
p=1

αk,j,phj(zp(x))

Observe the similarities between this framework and the last layer of a kernel network.
In a kernel network, the fully connected layer can be written as:

fj(x) = σ(ωT
j x) for j = 1, . . . , d1 (5.3)

i.e. a vector f(x) = (f1(x), . . . , fd1(x))

The equations for a Fully Connected Layer in the Deep hybrid model [5] are
s = σ(Wh2+b). Observe that the problem can be reducec to si = σi(wx+b) for w ∈ Rd2 .
Applying the represnter theorem, we can obtain:

σ(⟨ω, ·⟩)j =
N∑
i=1

ciK(f2(x
i), f2(·))j j = 1, . . . , N

In this case, σ belongs to the RKHS induced by kernel K.

However, this is not a trivial matter. In [11] the explicit feature map for both kernels is
needed to prove Lemma 5.4 and 5.5. (In [11], the RBF Kernel is defined as ϕ : Rd1 → l2(N),
which is the definition given in this thesis)

There exists a restriction over the activation function σ. A polynomial expansion is
assumed: σ(x) =

∑∞
j=0 ajt

j . The RKHS of the gaussian RBF kernel captures activation
functions that are either a polynomial or a sinuosidal function (which can be approximated
by the polynomial). The polynomial expansions of the sigmoid function and the ReLU
are not contained in the RKHS of the gaussian RBF kernel [11]. This is because the
coefficients of the polynomial expansion do not converge quickly enough to zero.

These lemmas used in a CNN context study if the RKHS of these two respective kernels
contain the function h : z 7→ σ(⟨ω, z⟩). As explained before, we consider an equivalent in
the fully connected layer of the kernel network, where the last part of it is defined as a
vector x ∈ Rd1 of components x = (σ(⟨w1,·, x⟩), . . . , σ(⟨wd1,·, x⟩), where w1,· are the rows
of the weight matrix.

Definition 5.3. The inverse polynomial kernel, for x, x′ ∈ Rd is defined as

k(x, x′) =
1

2− ⟨x, x′⟩
(5.4)

The following two lemmas have very similar proofs, so only the proof for the RBF
kernel is reproduced.

Lemma 5.4. Assume that the function σ(x) has a polynomial expansion σ(t) =
∑∞

j=0 ajt
j .

Let Cσ(λ) :=
√∑∞

j=0 2
j+1a2jλ

2j . If Cσ(∥ω∥2) < ∞, then the RKHS induced by the

inverse polynomial kernel contains the function h : z 7→ σ(⟨ω, z⟩) with Hilbert norm
∥h∥H = Cσ(∥ω∥2)

Proof. Found in [11].

We assume ∥x∥2 = ∥x′∥2 = 1 for this lemma on the gaussian RBF kernel.

29



Lemma 5.5. Assume that the function σ(x) has a polynomial expansion σ(t) =
∑∞

j=0 ajt
j .

Let Cσ(λ) :=
√∑∞

j=0
j!e2γ

(2γ)j
a2jλ

2j . If Cσ(∥ω∥2) <∞, then the RKHS induced by the Gaus-

sian kernel contains the function h : z 7→ σ(⟨ω, z⟩) with Hilbert norm ∥h∥H = Cσ(∥ω∥2)

Proof. Recall the feature mapping of the gaussian RBF kernel ϕ : Rd → l2(N):

ϕ(x) = e−γ∥x∥2
(√

2kγk

k!

k∏
i=0

xji

)
(5.5)

(to the k-th coordinate) By assumption, ∥x∥2 = ∥x′∥2 = 1. Observe that the feature map
can be written as follows. Similarly, a vector ω ∈ l2(N) is defined as

ω = eγ
(√

2kγk

k!

)− 1
2

aj

k∏
i=0

ωji

Now, the image of ⟨w, x⟩ through the activation function is computed

σ(⟨ω, x⟩) =
∞∑
j=0

aj(⟨ω, z⟩)j =
∞∑
j=0

aj
∑

(j1,...,jk)∈[d1]k
ωj1 · . . . · ωjkxj1 · . . . · xjk = ⟨ω, x⟩ (5.6)

where the definition for the polynomial kernel is applied. Now, observe

eγ
(√

2kγk

k!

)− 1
2

e−γ

(√
2kγk

k!

)
= 1 (5.7)

which is why ω can be inferred from the product after the second equal sign of 5.6. This
shows h ∈ H The second part of the proof has to do with verifying hilbert norm of H:

∥ω∥22 =
∞∑
k=0

k!e2γ

(2γ)k
a2k

∑
(j1,...,jk)∈[d1]k

ω2
j1ω

2
j2 · ω

2
jk

=

∞∑
k=0

k!e2γ

(2γ)k
a2j∥ω∥

2j
2 = C2

σ(∥ω∥2) <∞

This concludes the proof, ∥h∥H = ∥ω∥2 = Cσ(∥ω∥2)

Now, in the CNN framework described in [11], as well as ours, the representer theorem
can be applied,

f3(t)j = σ(⟨ω, t⟩)j =
N∑
i=1

ciK(f3(t), f3(ti))j j = 1, . . . , d1

i.e. there exists a kernel function K : Rd1 × Rd1 → R such that K(z, z′) = ⟨ϕ(z), ϕ(z′)⟩,
such that

σ(⟨ωj , z⟩) = ⟨ωj , ϕ(z)⟩ (5.8)

However, both ϕ(z) and ωj belong to l2(N). The problem needs to be reduced to a
finite-dimensional one, which the author tackles by projecting onto a linear space, the
one spanned by ϕ(f2(xi)).

Note that this is not done for the kernel network, as the idea is to replicate the deep
hybrid model, where the last layer is a fully connected layer. This is considered as possible
and important extension of the model.

30



5.3 Optimization of the Kernel Network

Notation. Sometimes, in attempt to simplify notation, it can be useful to refer to the
row of the coefficient matrix c(i) for i = 1, 2, 3. We write either ck = ck,· where k is the
row.

The optimization problem described in Section 5.1 and extended in ?? is solved by
minimizing the following functional given by the Representer Theorem:

Jλ,µ,ν(f1, f2, f3) =

N∑
j=1

L(f1 ◦ f2 ◦ f3(xj), yj) + λ∥f1∥2H(Φ,Rd1 )
+ µ∥f2∥2H(Γ,Φ) + ν∥f3∥2H(Ω,Γ)

(5.9)

As explained in previous section, recall that the definition of matrix-valued kernels
through its scalar-valued used in this thesis is:

K(xi, xj) = K(xi, xj)A

where A is a diagonal matrix. A = diag(a1, . . . , an)

Let us compute the squared norm of f3 (the rest are analogous):

∥f3∥2Γ =

〈 N∑
k=1

d3∑
o=1

c
(3)
k,oK(·, xk)eo,

N∑
k′=1

d3∑
o=1

c
(3)
k′,oK(·, x′k)eo

〉
=

=

N∑
k=1

N∑
k′=1

〈 d3∑
o=1

c
(3)
k,oK(·, xk)eo,

d3∑
o=1

c
(3)
k′,oK(·, x′k)eo

〉
=

=
N∑
k=1

N∑
k′=1

d3∑
o=1

c
(3)
k,oc

(3)
k′,ok(xk, x

′
k)

where we have observed that eTi ej = δij . To ease the notation, we can write:

∥f3∥2Γ = cTKc =

N∑
k,k′=1

c
(3)
k,· k(xk, x

′
k)c

(3)
k′,· (5.10)

As explained previously the Kernel Network has 5 sets of parameters:

c(1) = {c(1)i,p | i = 1, . . . , N, p = 1, . . . d1}

W(1) =W ∈ Rd1×d2

c(2) = {c(1)j,l | j = 1, . . . , N, l = 1, . . . d1}

c(3) = {c(3)k,o | k = 1, . . . , N, o = 1, . . . d3}

W(3) =W ∈ Rd3×d

Let us discuss the derivatives of the functional with respect to the parameters of the
model. As it is clear, layers L = 1, 2 have parameters that depend from L = 3. Therefore,
full expressions for the derivatives ∂J

∂c
(3)
k,o

and ∂J

∂w
(3)
k,o

contain the derivatives with respect to

31



the other parameters of the kernel network and can be adapted accordingly. Ignoring the
derivative of the cross-entropy (which is already known), we apply the chain rule.

∂J

∂f2f3(xi)
=
∂J

∂L

∂L

∂f1f2f3(xi)

∂f1f2f3(xi)

∂f2(f3(xi))
=

=
∂J

∂L

∂L

∂f1f2f3(xi)

N∑
i′=1

d1∑
p=1

c
(1)
i,p

∂

∂f2f3(xi)

[
f2(f3(xi)

]T
W TWf2(f3(x

′
i))

The derivative process can stop here (if f3 is considered a constant) or continue

∂f2f3(xi)

∂f3(xi)
=

N∑
j=1

d2∑
l=1

c
(2)
j,l

∂

∂f3(xi)
φ(f3(xi))

Tφ(f3(xj)) (5.11)

And now the expression of f3(xi) given by the representer theorem would be used in case
the goal is to obtain ∂J

∂c
(3)
k,o

, for instance.

As it is standard in neural network training L(θ) =
∑N

i=1 Li(θ), meaning that the
derivatives are computed with respect to the functions evalueated at each data point xi.
Note that the partial derivative with respect to a coefficient is computed for each data
point i = 1, . . . , N . This explains the i subscript.

Algorithm 1 below states the training process of the Kernel Network.

Algorithm 1 Learning the Kernel Network (with one Neural-Kernel Block)

Input. Data {(xi, yi)}ni=1, dimensions d1, d2, variance σ.

1. Initialize weight matrices W ∈ Rd3×d, V ∈ Rd2×d1 , as well as coefficient matrices
c(1) ∈ RN×d1 , c(2) ∈ RN×d2 , c(3) ∈ RN×d3

2. Construct the kernel matrices K3 ∈ Rd×d3 , K2 ∈ Rd3×d2 , K1 ∈ Rd2×d1 while com-
puting f3, f2, f1 in this order for each x ∈ X:

K3(x, x
′) = xTW TWx′ f3x =

N∑
k=1

c
(3)
k k(xk, x)

K2(f3x, f3x
′) = ϕ(f3x)

Tϕ(f3x
′) f2f3x =

N∑
j=1

c
(2)
j k(f3xj , f3x)

K1(f2f3x, f2f3x
′) = (f2x)

TV TV f2x
′ f3f2f1x =

N∑
i=1

c
(1)
i k(f3f2xi, f3f2x)

3. Solve the following optimization problem:

ĥ ∈ argminJ(h)λ,µ,ν where J(h) =

N∑
i=1

L(h(xi), yi) + λ∥f1∥2H1
+ µ∥f2∥2H2

+ ν∥f3∥2H3

(5.12)

Output. A prediction h(x) =
∑N

i=1 c
(1)
i K(xi, x)

32



The optimization problem 5.12 involves performing backpropagation over the different
sets of parameters described. Backpropagation is done using a gradient descent algo-
rithm. In the next chapter, performance is evaluated using the following two algorithms:
stochastic gradient descent and Adam. In summary, if θ denotes the set of all parameters
in the kernel network:

θt+1 = θt − η∇θL

where η is the learning rate.

On a final note, recall that [5] and [6], the functional minimized is

J(W1,W2, b1, b2) =
1

n

n∑
i=1

L(xi, yi) + γ[Tr(W1W
T
1 ) + Tr(W2W

T
2 )] (5.13)

Observe that the regularizer only affects the matrices of the neural layers.

33



6 Experimental Results

In this section, the accuracy and the generalization capability of the kernel network model,
as well as other metrics are put to the test. This is performed in comparison with two
other Machine Learning model: The deep hybrid model (The core Neural-Kernel model)
presented in [5, 6] and the multi-layer perceptron (MLP)

In the Experimental Results section of [5] the deep hybrid model is put to test in 15
different data sets, varying in number of features and in size. The comparison of the
deep hybrid model (One neural-kernel block or two) is made with two different models:
neural networks (One hidden layer or two). and Shallow LS-SVM (primal and dual).
In [6], the experiments section is dedicated to exploring any positive differences between
the extended deep hybrid model (deep Neural-Kernel architectures: average, maxout and
CNN) and the original deep hybrid model. Also, accuracies on the test set are stated for
LS-SVM and TROP-ELM. In this second reference, the number of data sets put to the
test is reduced to 12, a subset of the ones tested in the first reference, together with the
Motor data set.

Table 6.1 lists the different data sets (retrieved from the UCI ML repository) tested
in this report, with their dimension and number of attributes.

Data set N Partition train-test Features Classes

Australian 690 552/138 14 2

Titanic 2201 1760/441 3 2

Sonar 208 166/42 60 2

CNAE-9 1080 864/216 856 2

Adults 3 1100 880/220 93 2

Table 6.1: Details of data sets used during experiments

The author of the deep hybrid model only provides the specific parameters for CNAE-9
dataset, which are listed in [5]. These are h1 = 300, h2 = 400, σ = 0.7 and an unspecified
learning rate. In page 50-51 of [5], it is stated that the parameters for h1 and h2 for all
the data sets are found using random search strategy. The author seems to indicate that
he uses stochastic gradient descent (SGD) as the algorithm that optimizes the parameters
of the deep hybrid model. The author claims accuracy results that are summarized in
table 6.2

Deep Hybrid Model Neural Networks

One Neural-Kernel Block Two Neural-Kernel Blocks One layer Two layers

0.93± 0.01 0.94± 0.02 0.91± 0.02 0.92± 0.01

Table 6.2: Results for CNAE-9 data set listed in deep hybrid model references

The deep hybrid model was also reproduced in PyTorch (cf. source code), which gave
different results than the ones claimed in table above. This is important to note for the
comparison, as the results stated for neural networks in [5, 6] were lower than the ones
obtained.

When training the kernel network with an RFF layer, using SGD and the parameters
that work for the deep hybrid model are not valid now, as shown in figures 6.1 and 6.2.

3Extracted random subset

34



In other words, the conclusion here is that the kernel network learns differently than the
deep hybrid model, despite their similarities. A separate search must be conducted in
order to maximize the performance of the model.

Figure 6.1: Loss for kernel network with
deep hybrid model parameters

Figure 6.2: Accuracy for kernel network
with deep hybrid model parameters

Reducing the number of neurons in the hidden layer to h1 = 50 seems adequate to
make a comparison between the different algorithms, as well as optimization strategies.
As we will see, the kernel network seems to learn well with few neurons in the first layer,
which is generally not the case for the deep hybrid model. This is because as shown later
on, the learning happens especially through the RFF and the fully connected layer.

One of the strategies proposed is alternate optimization. Given a function f : Rs → R
with x = (x1, . . . , xs) , consider a partition of the variables and differentiate only with
respect to those, leaving the others constant [29]. The parameters to optimize here are
the weights for the neural layer and fully connected layer, and the coefficients obtained
by the three layers in the kernel network. A conjecture is made that it can be beneficial
to train the weights and the coefficients separately. In other words, during the even
epochs, backpropagation is performed but the coefficients are considered to be constant,
and hence only the weights are updated. The opposite happens for the odd epochs.

Also, two different optimizers are considered: Stochastic gradient descent and Adam.
The optimizer in Pytorch refers to the algorithm used to update the parameters of the
model. Some tests are performed using the CNAE-9 data set in order to compare the
optimizers and the usage of alternate optimization. The results are summarized in Table
6.3.

Algorithm Alternate Layer dim Param. Epochs Time Learns data Acc.

1 SGD Yes h1 = 300, h2 = 400 612576 250× 2 124 sec. No -
2 Adam Yes h1 = 300, h2 = 400 612576 250× 2 146 sec. No -
3 SGD Yes h1 = 50, h2 = 400 396576 250× 2 132 sec. Yes 0.81
4 Adam Yes h1 = 50, h2 = 400 396576 250× 2 127 sec. Yes 0.68
5 SGD No h1 = 50, h2 = 400 443035 500 152 sec. Yes 0.81
6 Adam No h1 = 50, h2 = 400 443035 500 168 sec. Memorizes training 0.78
7 Adam No h1 = 50, h2 = 200 268435 500 89 sec. Memorizes training 0.92

Table 6.3: Comparison between SGD and Adam via alternate optimization or not, with
associated metrics

35



Figures 6.3, 6.4, 6.5 and 6.6 below show the loss function for different cases.

Figure 6.3: Loss for SGD with alternate
optimization (3)

Figure 6.4: Accuracy for SGD with alter-
nate optimization (3)

Figure 6.5: Loss for Adam with alternate
optimization (6)

Figure 6.6: Accuracy for Adam with alter-
nate optimization (6)

Clearly, to stabilize the training process of the kernel network is to use Adam with no
alternate optimization.

6.1 Evaluating the kernel network and other ML models over different
data sets

Four different models are evaluated in this section: firstly, a neural network with one
layer, which is trained in two different ways: by passing the entire data set or batches of a
specific dimension. The two studied hybrid models are Mehrkanoon’s deep hybrid model
and the kernel network.

To find the different hyperparameters, such as regularizers and layer dimensions, Ran-
dom Search is used (as in the case of citing the article). For the regularizers, a uniform

36



distribution from 1e-1 to 1e-5 is considered. As for the layer sizes, it depends specifically
on each dataset, but the dimension of the first layer ranges from 5 to 300 neurons, and
the number of random Fourier features layer ranges from 50 to 1000. Finally, the learning
rate is also randomly searched, taking a value between 10−1 and 10−5.

Regarding the presentation of results, once the hyperparameter values have been de-
termined, the model is trained. To avoid bias in the results, the same train-test data
partition is used for all four models. Each model is trained 50 times, with different ran-
dom initializations of all parameters and coefficients each time to ensure that the presented
results have minimal bias possible.

Figures 6.7 6.8 show the training of the kernel network for the australian data set.
The parameters used are λ = µ = ν = 0.01, h1 = 10, h2 = 100, σ = 0.6. The learning
rate is equal to 10−4

Figure 6.7: Loss for kernel network in the
australian data set across epochs

Figure 6.8: Accuracy for kernel network in
the australian data set across epochs

Table 6.4 shows the comparison between 4 models: A neural network with one single
layer, the deep hybrid model from Mehrkanoon and the kernel network.

Data set NN 1 Layer (batches) NN 1 Layer Kernel network Deep hyb. model

Australian 0.889± 0.025 0.882± 0.019 0.878± 0.013 0.873± 0.007
Titanic 0.780± 0.017 0.790± 0.014 0.808± 0.00 0.804± 0.00
Sonar 0.857± 0.05 0.874± 0.047 0.852± 0.05 0.848± 0.05
CNAE-9 0.96± 0.013 0.972± 0.003 0.888± 0.037 0.96± 0.03
Adults 0.839± 0.05 0.842± 0.051 0.805± 0.056 0.812± 0.055

Table 6.4: Results on different models

It is clear the the kernel network manages to learn at the same rate as the deep
hybrid model, improving the accuracy slightly in some cases. In this case, the results are
promising, since this means we have been able to replicate the deep hybrid model from a
theoretical point of view. Nonetheless, so far, in most cases, the kernel network does not
manage to surpass the neural network except in the Titanic data set. However, there are
still many data sets to be tested, and that this model could show better performances.
Also, the training process can still be refined, which has not been able to be done due to

37



time constraints.

With regards to computational time, results for the australian data set are compiled
in Table 6.5:

Data set Training dim NN batches NN all Kernel net. Deep hyb.

Australian 690× 14 1.66s± 0.66s 0.18s± 0.04s 11.18s± 0.67s 1.15s± 0.28s

Table 6.5: Running time for different models

It is clear that the kernel network is the most costly in terms of computational time.
In the next chapter we consider some possible alternatives in order to reduce this cost.

Figures 6.9, 6.10, 6.11, 6.12 show the learning process for the RFF Layer and the FC
Layer for the Australian data set. (parameters λ = µ = ν = 0.01, h1 = 10, h2 = 100,
σ = 0.7) A fraction of 10 data points is taken in order to obtain a better visualization of
the problem. Note that the class vector (true labels) are y = [1, 0, 0, 0, 0, 0, 1, 1, 1, 0].

Figure 6.9: Kernel matrix for RFF Layer
at epoch 0

Figure 6.10: Kernel matrix for RFF Layer
at epoch 150

Figure 6.11: Kernel matrix for FC Layer at
epoch 0

Figure 6.12: Kernel matrix for FC Layer at
epoch 150

However, observe little change in the kernel matrices for the neural layer, as one can
see in Figures 6.13 and 6.14.

38



Figure 6.13: Kernel matrix for Neural
Layer at epoch 0

Figure 6.14: Kernel matrix for Neural
Layer at epoch 150

This means that the weights of the NN layer after initizialization change very slightly.
This is reinforced if we plot the norm of the weights, displayed in Figure 6.15. However,

Figure 6.15: Norm of the weight matrix for the neural layer

it must be said this observation is only valid and the importance of the first layer in the
whole of the model needs to be treated on a case by case basis.

39



7 Limitations and Future work

It is not surprising to say that the greatest limitation in this final master’s thesis has been
time. Once you start acquiring the necessary mathematical foundation to understand the
latest models and have been able to recreate them, little time is left to present original
ideas that combine the research conducted so far. And most importantly, ideas that work.

The theoretical path is long and even tortuous, but it allows us to establish founda-
tions to subsequently build a coherent model based on this theory. Therefore, the author
has deemed it necessary to develop a theory of kernel methods faithful to the underlying
mathematics, and although the practical part may have been somewhat limited, the possi-
bilities for expansion are remarkable. This chapter aims to list some of the proposals that
have been left open-ended and can guide us towards a more definitive “Kernel Network”
model. To do so, we rely on two articles that have proposed some ideas similar to those
presented in this thesis.

As it is clear, one of the main problems as of writing is the scalability of the kernel
network. The representer theorem for deep kernel learning guarantees that the minimizer
has a linear expression that is the composition of several functions belonging to different
RKHS. The model presented is able to learn well for small and some middle size datasets,
but the amount of parameters it has severly impacts the computational time when the
model. However, it must be said that no efforts have been made to optimize the algorithm,
a complicated task that could be a starting point in order to reduce training time. Pytorch
(the python framework used to develop all the different models ), besides providing has an
optimized backpropagation algorithm, which explains the low training time for NN-type
models.

Another suggestion that could try and improve the computational time is to reconsider
the linear layers. Chapter 5 has shown that there is an RKHS describing a neural layer,
however, the functions belonging to the RKHS could be an unnecessary complication to
the model, as they add parameters and do not provide a better representation of the data.

The article titled ”Stacked Kernel Networks” (2017) [30] is one of the other papers that
has had a significant influence on this master’s thesis. It presents the ”Stacked Kernel
Network” model, a model that clearly falls into the category of hybrid models. Using the
theory of RKHS (Reproducing Kernel Hilbert Spaces), it starts with a kernel layer after
the input that is specified. This is followed by a neural layer, which defines the projection
into a linear space. This is a main difference from the study conducted in the previous
pages, differences that are clear in the following formula:

X Ω Φ

xi zi = f3(xi) ti = f2(zi)

f3 f2

X H(1) W (1)

xi zi = ϕ(xi) ti =W Tϕ(zi)

ϕ W

As we have demonstrated throughout this thesis, using the representation theorem
involves a very large load of parameters that you carry along during training. For this
reason, the authors of the article propose three methods to represent the functions of
the RKHS. First, the same one that we said, that is, each output of a kernel layer is
defined from a linear combination of the data points from the dataset. They call it non-
parametric representation, as it depends on the data. Note that the authors use the

40



representer theorem for scalar-valued functions, meaning that every component of the
RFF layer has a function of the RKHS associated (hidden unit j and the layer l):

f
(l)
j (x) =

N∑
i=1

α
(l,j)
i k(l)(h

(l−1)
i , x)

where k(l)(·, ·) is the kernel function associated with the RKHS H(l).

As mentioned and proven in Section 5.2, the fully connected layer can be described
as function from the RKHS. However, they admit that the number of parameters grows
linearly with N , which is not scalable for large data sets. This is one of the main problems
seen in the kernel network.

The second solution they propose is not to search in the entire RKHS, but rather in a
subset of the RKHS, that being:

f = {fa(x) = k(a, x) | x ∈ Rd}

a is the learnable vector. This is clearly a subset of the RKHS because the kernel does
not change and the function is no longer a linear combination from the span generated by
the kernel evaluated at the training data points. The vector a is initialized using k-means
clustering from the input samples. Observe that for a layer l, the function is

f
(l)
j (h

(l−1)
i ) = k(l)(a, h

(l−1)
i ) (7.1)

This could be considered in our case. In other words, discard the the parameters ck,o
for the first layer, and learn the function f3(x)j = k(a, x)j . Finally, the third option is to
approximate the RBF kernel using RFFs, which has already been employed in this thesis
giving good results.

The interpretability factor is one that is important nowadays, and is a pending discus-
sion for this thesis. No one questions the fact that kernel methods are more interpretable
than neural networks, and we have been able to visualize the learning process through
the plots of the kernel matrices in the previous chapter. However, one could tackle more
ambitious which is to track the values of the coefficients and see their intervention in
predicting one class or another.

Another aspect could be to use the kernel function for the FC layer defined in section
5.2. As it shows succesful results in convexifying a CNN for the authors of [11]. Also, it
is a better approximation to the gaussian RBF kernel than the one obtained via RFFs,
as the RKHS does not change.

In summary, the kernel network has shown promising results, but can be still be tuned
in many ways to improve its performance.

41



8 Conclusions

In this final master thesis, many different ideas have converged into an almost 40-page
work: some from renowned authors in the field of machine learning, others incorporated
with my own original contributions. Let us review this journey and offer some concluding
thoughts.

Through the different chapters, we have studied the hybridization between deep learn-
ing and kernel methods. As we have seen from the beginning, this is an important research
topic in the field of machine learning in the last decade. Having two a priori models, which
have proven their success in their respective fields, the goal was to combine them from a
formal perspective.

As we have shown by conducting an extensive review of the available literature - where
the author admits that some papers might have not been included, considering that the
literature is sometimes dense and sometimes unmanageable - this hybridization has yielded
good results. Specifically, in a model that has been one of the main inspirations for this
master’s thesis: it has been proven that inserting a kernel function between two neural
layers can give better results in classification and regression problems, since we remember
that the objective of kernel methods is to send data points to a higher-dimensional space
- often infinite, as we have shown throughout the chapters with mathematical rigor.

The existence of a well-known mathematical theory that underlies kernel methods -
which we have reviewed, studied, and adapted to our problem over these forty pages -
has allowed us to demonstrate a representation theorem for several layers, which is what
defines a deep model: the concatenation of one layer behind the other. We have been
able to construct a model that is defined as the composition of functions, each of which
is determined by a linear combination of the data points.

As it has become clear, once the theoretically projected model has been put into prac-
tice, we have been able to verify that in most data sets, it works, producing competitive
results, sometimes similar (or slightly better), than the reference model: the neural net-
work with one layer. We have identified its main problem that should be addressed from
now on: the number of parameters that need to be trained. We have proposed two ways
to improve it: firstly, from the point of view of algorithm optimization. Then, from the
theoretical point of view: The spaces where the theoretical minimum is sought can be
reduced without having to give up the mathematical structure.

We have also seen how implementing this model leads us to analyze other hot branches
of machine learning research, one of them being model interpretability. It is known that
kernel methods are more interpretable than neural networks, and we have been able to
visualize the learning process. The fact that we have an explicit expression of the functions
we are minimizing, and conducting a study - which we have outlined in the practical part
of this document - of the coefficients obtained by the representation theorem, could be a
step to delve deeper into the interpretability of the predictions. This is the advantage of
kernel methods, such as in support vector machines: we are able to know which vectors
contribute to the prediction based on the values of the coefficients.

In summary, the presentation of this model opens several interesting paths from the
research point of view. The author acknowledges some of the problems to be solved as
well as the immediate needs to continue the study of the hybridization between kernel
methods and neural networks, particularly, with the presented model.

42



References

[1] L. Belanche and M. Ruiz, “Bridging deep and kernel methods. a: European sympo-
sium on artificial neural networks. ”esann2017: 25th european symposium on artifi-
cial neural networks: Bruges, belgium, april 26-27-28”.,” pp. 1–10, 2017.

[2] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel learning,”
2015.

[3] T. Wang, L. Zhang, and W. Hu, “Bridging deep and multiple kernel learning: A
review,” Information Fusion, vol. 67, pp. 3–13, 2021.

[4] M. Gönen and E. Alpaydin, “Multiple kernel learning algorithms,” Journal of Ma-
chine Learning Research, vol. 12, no. 64, pp. 2211–2268, 2011.

[5] S. Mehrkanoon and J. A. Suykens, “Deep hybrid neural-kernel networks using random
fourier features,” Neurocomputing, vol. 298, pp. 46–54, 2018.

[6] S. Mehrkanoon, “Deep neural-kernel blocks,” Neural Networks, vol. 116, pp. 46–55,
2019.

[7] J. Zhuang, I. W. Tsang, and S. C. Hoi, “Two-layer multiple kernel learning,” in
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (G. Gordon, D. Dunson, and M. Dud́ık, eds.), vol. 15 of Proceedings of
Machine Learning Research, (Fort Lauderdale, FL, USA), pp. 909–917, PMLR, 11–
13 Apr 2011.

[8] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature Cell Biology, vol. 521,
pp. 436–444, May 2015.

[9] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in
Advances in Neural Information Processing Systems (J. Platt, D. Koller, Y. Singer,
and S. Roweis, eds.), vol. 20, Curran Associates, Inc., 2007.

[10] C. A. Micchelli and M. A. Pontil, “On learning vector-valued functions,” Neural
Comput., vol. 17, p. 177–204, jan 2005.

[11] Y. Zhang, P. Liang, and M. J. Wainwright, “Convexified convolutional neural net-
works,” 2016.

[12] Y. Miche, M. van Heeswijk, P. Bas, O. Simula, and A. Lendasse, “Trop-elm: A
double-regularized elm using lars and tikhonov regularization,” Neurocomputing,
vol. 74, no. 16, pp. 2413–2421, 2011. Advances in Extreme Learning Machine: Theory
and Applications Biological Inspired Systems. Computational and Ambient Intelli-
gence.

[13] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,”
The Annals of Statistics, vol. 36, jun 2008.

[14] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,”
in Computational Learning Theory (D. Helmbold and B. Williamson, eds.), (Berlin,
Heidelberg), pp. 416–426, Springer Berlin Heidelberg, 2001.

[15] B. Bohn, M. Griebel, and C. Rieger, “A representer theorem for deep kernel learning,”
2018.

43



[16] F. Dinuzzo, “Kernel machines with two layers and multiple kernel learning,” CoRR,
vol. abs/1001.2709, 2010.

[17] F. Dinuzzo, “Learning functions with kernel methods,” 2011.

[18] A. Argyriou and F. Dinuzzo, “A unifying view of representer theorems,” in Proceed-
ings of the 31st International Conference on Machine Learning (E. P. Xing and T. Je-
bara, eds.), vol. 32 of Proceedings of Machine Learning Research, (Bejing, China),
pp. 748–756, PMLR, 22–24 Jun 2014.

[19] S. Diwale and C. Jones, “A generalized representer theorem for hilbert space - valued
functions,” 2018.

[20] D. J. Sutherland and J. Schneider, “On the error of random fourier features,” 2015.

[21] F. Liu, X. Huang, Y. Chen, and J. A. K. Suykens, “Random features for kernel
approximation: A survey on algorithms, theory, and beyond,” 2021.

[22] J. Pennington, F. X. X. Yu, and S. Kumar, “Spherical random features for poly-
nomial kernels,” in Advances in Neural Information Processing Systems (C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28, Curran Associates,
Inc., 2015.

[23] I. Steinwart and A. Christmann, Support Vector Machines. Springer Publishing
Company, Incorporated, 1st ed., 2008.

[24] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[25] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[26] A. Cotter, J. Keshet, and N. Srebro, “Explicit approximations of the gaussian kernel,”
2011.

[27] M. A. Alvarez, L. Rosasco, and N. D. Lawrence, “Kernels for vector-valued functions:
a review,” 2012.

[28] “Approximation with matrix-valued kernels and highly effective error estimators for
reduced basis approximations.”

[29] J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimization,” in
Advances in Soft Computing — AFSS 2002 (N. R. Pal and M. Sugeno, eds.), (Berlin,
Heidelberg), pp. 288–300, Springer Berlin Heidelberg, 2002.

[30] S. Zhang, J. Li, P. Xie, Y. Zhang, M. Shao, H. Zhou, and M. Yan, “Stacked kernel
network,” 2017.

44


	Introduction
	Literature Review
	The term "Deep Kernel Learning"
	Deep Hybrid models
	Representer Theorem and Deep Learning
	Random Fourier Features

	Important concepts in RKHS Theory
	Kernel methods, RKHS and The Representer Theorem
	Approximations of the Gaussian RBF Kernel: Random Fourier Features
	Vector Valued Reproducing Kernel Hilbert Spaces
	Definitions and main properties
	Representer Theorems


	A Representer Theorem for the concatenation of L layers
	A Deep Kernel Learning model: The Kernel Network
	The Kernel Network
	The RKHS in a Kernel Network
	Optimization of the Kernel Network

	Experimental Results
	Evaluating the kernel network and other ML models over different data sets

	Limitations and Future work
	Conclusions

