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Abstract

The constant transformation of our surroundings often goes unnoticed, but it occurs nonetheless.
Imperceptibly, our skin undergoes slight color changes as our hearts beat, and our heads subtly move
with each breath. While these alterations may escape our eyes, they are captured by cameras. We
can magnify the variation in those small signals to extract important information such as heartbeat
rate, which in turn can be used in many real-life applications such as polygraph tests. The polygraph,
or lie detector test, is a tool that measures physiological changes in an individual to detect deception.
This thesis aimed to explore the feasibility of using video information to extract heartbeat rates,
replacing the traditional sensors that are commonly used to extract this information. Through a series
of experiments involving videos of people standing still, and a video of a real-life suspect that was
lying, it was consistently possible to enhance the color changes that occur in a person’s skin when
their heartbeats. Though it was not possible to develop a fully-functioning lie detector test, this thesis
proves that the motion and color magnification technique is reliable even when applied to videos of
individuals engaged in speech and movement. It also proved that it is an interesting solution that has
the potential of revolutionizing how interviews and interrogations are conducted.



Chapter 1

Introduction

The ability to tell whether one is lying or not is one that many have coveted throughout history.
With that intention, we, as humans, have invented many contraptions and methods to try to extract
information from a person. Many of those methods are unethical and unreliable, such as the truth
serum and other methods of torture that should not be used anymore [5].

With that in mind, Dr. John Augustus Larson proposed a machine capable of aiding detectives in
the detection of lies in persons of interest[4]. These machines are called polygraphs, or more commonly,
”lie detectors”. Albeit controversial, they are commonly used by many police departments all over the
world, and they have helped to solve many cases.

The polygraph was devised as a way to measure physiological changes in a person when asked
pressing questions, which can indicate deceit. This is done by connecting electrodes to different parts
of a person’s body. The main things that are measured in a polygraph are:

• Heart rate;

• Blood pressure;

• Respiration;

• Skin conductivity;

When the polygraph was first created, the electrodes and wires, and sensors that collected the data
would be properly placed on the suspect, and then plugged into a machine, which would, in turn,
register the values on paper. In more modern polygraph machines, everything is connected directly
to a computer, so we do not need a specific machine to apply the lie detector test. We only need the
wires and measurement tools and the adaptor to connect to the computer.

However, one thing has not changed with time. We still need to attach all of the measurement
equipment to the person being evaluated, which might make them nervous and botch the results of
the test. It would also be interesting to try and detect lies in a person that is not expecting to be
evaluated.

With that in mind, we thought it would be interesting to develop a Contactless Polygraph, extract-
ing all the necessary information from videos, using Eulerian video magnification[9] to amplify minute
movements and color changes which can be useful to obtain a person’s heartbeat and breathing rate.

However, it is important to keep in mind that this is purely an academic study, and it is not suitable
to be used in real-life situations just yet.

1 The Polygraph

As previously mentioned, the polygraph is a lie detector machine. It has been used in many high-
profile criminal cases to uncover the truth. However, it is not a fool-proof method and it is also
inadmissible in court in most countries. It is a difficult tool to use, and it requires the interviewer to
have special training and certification for it to be effective.

That being said, it can be a useful resource to help identify persons of interest and extract difficult
truths, provided that its results are not used by themselves, but are taken into account when analyzing
other bits of evidence and data related to the crime.
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1.1 Traditional data collection

As previously mentioned, the polygraph works by measuring mainly the suspect’s heart rate, respira-
tory activity, and electrodermal activity (also known as Galvanic Skin Response or GSR). Different
measurement tools can be used to obtain data for the three different channels.

To measure blood pressure and heart rate, a sensor to measure blood flow is placed on the suspect’s
fingers, and a regular blood pressure cuff is placed on their arm, with the latter being the most common.

To measure breathing rate, two sensors are placed around the interviewed person’s chest, one above
the heart and one below it.

To measure GSR, a sensor is placed on the suspect’s palm, and any changes in perspiration can
be detected by the lie detector. In other words, if their hand is suddenly drier or more sweaty, the
interviewer will know. This is done by placing two electrodes in different fingers in the suspect’s hand,
and a small current is applied. We can then measure conductance to determine changes in the level of
perspiration.

Motion detector sensors are also usually used to alert the interviewer in case the interviewed person
moves in a way that might influence the test. [3]

1.2 Issues

As mentioned in the previous section, most of the sensors used in the process of data collecting can
be easily influenced by the sudden movements of the suspect, which can make applying the test
uncomfortable and complicated.

These measurements are also not always good indicators of deception. Heart rate and blood pressure
can be influenced by factors such as any perceived threat, increase in physical or mental activity, the
anticipation of a threat or activity, or more generally, any form of arousal. The ”baseline” of any
cardiovascular activity is not the same between individuals, as it is not even the same for a single
individual in different settings. This can make it difficult for interviewers to determine which patterns
are actually signs of deception.[10]

Breathing rate is also subject to the same limitations. And it is also influenced by different factors,
which can also alter the results of the test in different ways. For example, the person’s autonomous
nervous system might ”choose” to change the person’s breathing rate because of a difference in oxygen
or carbon dioxide concentrations in the air. On the other hand, the suspect might try to make his
breathing deliberately slow to attempt to seem calm to the investigator.

According to Synnott et. al., the most reliable of the three channels of the polygraph is the
ectodermal activity[10]. But, alas, it is not something we can effectively measure using video, so the
person using the contact-less polygraph in a real-life setting would still have to use the sensor to
measure their GSR.
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Chapter 2

Background

In order to fully understand the theory behind the concepts that will be explained in this thesis, there
are some basic ideas that need to be remembered or learned, and I will specify them in the following
chapters.

1 Markov Random Field

A Markov Random Field (or MRF) is a probabilistic graphical model used in the fields of physics
and probability, computer vision, and image processing tasks. It can be used to graph the relationships
and statistical dependencies among random variables in an image or signal.[12].

A random field refers to a collection of random variables defined on a specific domain, such as
an image grid. Each random variable represents a value associated with a particular location in the
domain.

This type of graphical model follows the Markov Property, which states that a value of a random
variable is only dependent on the values of its neighbors. In more technical terms, a random variable’s
value is conditionally independent of all other variables in the field, if its neighboring variables are
given. We can write this equation in terms of probabilities in the equation 2.1.

P (Xn|XV −Xn) = P (Xn|XNn
) (2.1)

An MRF is a type of undirected graph G = (V, ϵ), which means that its edges do not have an
associated direction, which serves to indicate the symmetry of the dependencies between random
variables. V represents the nodes that correspond to random variables in the graph.

In an MRF, given the set of independent random variables, Xs, associated with the set of nodes S.
Let the edges between said nodes, denoted by the letter ϵ, represent dependence relationships. Let A,
B, and C be disjointed subsets of nodes. If there is no path from subset A that does not pass through
any node of XC to get to XB , then XA is conditionally independent of XB given XC .

The neighbor set Nn of a node n can be defined by the set of nodes that are connected to n via
edges ϵ of the graph:

Nn = {m ∈ V |(n,m)inϵ}

If we have a node n’s neighbor set, then we can say that n is independent of all other nodes in the
graph. And we can write the Markov Property:

Inference is one of the main tasks of an MRF. It involves the estimation of the most likely con-
figuration of a set of random variables, given observed data or constraints provided by the potential
function. Inference in MRFs can be often challenging and can involve methods such as graph cuts or
belief propagation (which is used in Rubinstein’s study).
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Figure 2.1: An example of a clique in a Markov Random Field graph. A, B, and D form a clique.

1.1 Potential Function

The Potential Function ϕ (also known as energy function or cost function) is what characterizes the
MRF, and describes the compatibility or agreement between the values of neighboring variables. It
assigns lower energy to configurations that are more likely or desirable.

ϕ is defined for neighboring nodes or variables in the graph, which are typically nodes that are
connected to each other by edges in the graphical map. It assigns a cost or energy to each possible
configuration of the neighboring variables, and lower values are associated with more desirable or more
likely configurations, and the opposite is true for higher values of ϕ.

By manipulating the potential function ϕ, researchers can shape the behavior and properties of
the MRF, such as encouraging smoothness, promoting certain configurations, or incorporating prior
knowledge about the previous domain.

The formulation of the potential function ϕ is specific to each specific application and problem
being addressed. And different tasks might require different types of potential functions designed to
fulfill specific requirements.

1.2 Clique

A clique in the context of an MRF is a subgraph of G whose nodes are completely connected to each
other, as represented in Figure 2.1.

A clique can be understood as a group of variables in the Markov Random Field that interact
directly with each other, based on the underlying dependencies defined by the MRF structure.

Cliques provide a structured way to represent the interactions and dependencies between vari-
ables in an MRF. By defining potential functions associated with cliques, MRFs can model complex
relationships and capture the local interactions between variables.

MRFs are often defined based on the concept of factorization. The joint probability distribution
of variables in the MRF can be factorized as a product of other potential functions, each associated
with a clique in the graphical model. The potential function describes the compatibility between the
variables within the clique.

The potential function associated with each clique is ϕc, which is real and non-negative. ϕc does
not need to correspond to conditional probability distributions of any kind.

ϕc usually takes the form:
ϕc(xc) = e−

1
T Vc(xc) (2.2)

T is called temperature, but it is often assumed to be 1. Vc(xc) can also be referred as the clique
potential.

A maximum clique is a clique that cannot be extended by adding another variable without violating
the property that every pair of nodes within the clique has to be connected.

Cliques play a crucial role in performing efficient interference in MRFs. Inference algorithms such
as belief propagation or belief passing operate on cliques to compute messages or propagate information
through the graph. The connectivity of the cliques and the Markov property makes it convenient for
computations to be performed on them.
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Figure 2.2: An example of belief propagation being applied on a graph. In purple, we have the messages
initially sent by the variable nodes (step 1). In green, we have the messages sent back by the factor
nodes (step 2). The thought bubble illustrates the belief calculated by one of the variable nodes (step
3).

2 Message Passing

Message passing is a category of algorithms used to perform inference in graphical models, such as
Bayesian Networks or Markov Random Fields. They carry that name because it is a method used to
exchange information or propagate messages between nodes in a graphical model.

The overall structure of message-passing algorithms is:

1. Initialization of Messages Messages from variable nodes to factor nodes are initialized. They
can be set to a random value, or to non-informative values from the hidden nodes; these non-
informative values set the costs of each possible state to be equal.

Messages can be thought of as a variable telling its neighbors what it thinks its state is, or what
it thinks the cost would be for it to change from its current state to its other possible states.

2. Computation of Factor Node Messages The factor nodes receive all the messages from their
neighboring variable nodes, and compute messages that they send to their neighboring hidden
variable nodes. This message tells the neighboring nodes what state they should be in, and how
much it would cost for them to change states.

3. Computation of Hidden Node BeliefsThe hidden nodes receive the messages from the factor
nodes and compute a belief, what they believe their state should be. In belief propagation
algorithms, this takes the form of a cost, or a probability, associated with each of its possible
states.

4. Selection of Single GuessWe use a threshold on the values calculated in the previous step to
choose a single guess for a variable node.

5. Termination Check We now have a guess for the overall configuration of the factor graph,
and we can use this to check for a termination condition. If the termination condition has been
satisfied, we output the current guess.

If not, the variable nodes will compute new messages and send them to the factor nodes, thus
initiating a new iteration

In Figure 2.2, we can see a small example of a factor graph and some of the stages of belief
propagation.
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2.1 Loopy Belief Propagation

Loopy Belief Propagation or LBP is named ”loopy” because it allows messages to circulate through
the loops in the graphical model, despite the cycles. The solutions found by the LBP are approxima-
tions, but it is effective for a wide range of problems and can provide reasonable approximations in
many cases. [14]

Because convergence is not guaranteed, an additional step is required to be added at the end of
the message-passing algorithm: convergence check. In this step, a convergence check is performed to
determine whether the algorithm has reached a stable state.

We can verify whether the algorithm has reached a stable state by comparing the current messages
with the messages from the previous iterations and measuring the difference between them. If the
difference falls below a predefined threshold, or if the maximum number of iterations has been reached,
the algorithm is terminated.

3 Kullback-Leibler Divergence

Kullback-Leibler divergence (also known as relative entropy) is a type of statistical distance, and it
is often used as a metric of how different two probability distributions are from each other. It is
commonly used in various fields, including information theory, statistics, and machine learning. [2]

It is a non-symmetric measure of relative entropy, or difference in information, between two distri-
butions. When the relative entropy between two distributions is 0, they both have identical quantities
of information.

Given two probability distributions P and Q, the KL-divergence from P to Q is denoted by
KL(P ||Q), and it is calculated as the expectation of the logarithmic difference between the proba-
bilities of the two distributions:

KL(P ||Q) =
∑
X

P (X)log
P (X)

Q(X)
(2.3)

This quantity is asymmetric, which means that KL(P ||Q) is often different from KL(Q||P ). It is
also non-negative and has a minimum value when P = Q, or when they are equal up to a constant
factor.

4 Correlation in Image Processing

Correlation in image processing refers to the process of moving a filter mask (i.e. a kernel) over an
image and computing the sum of products at each location. It is a function of displacement of the
filter. [6]

In other words, correlation refers to a technique that measures the similarity or relationship between
two images or different parts of the same image. It involves comparing the pixel values or intensity
patterns in the image to determine their degree of similarity or correspondence.

Its mathematical formula is given by:

F ◦ I(x, y) =
N∑

j=−N

N∑
i=−N

F (i, j)I(x+ i, y + i) (2.4)

Cross-correlation is a common form of correlation used in image processing. It involves sliding
a smaller ”template” image or kernel over a larger image and computing the similarity between the
template and the corresponding image in the source image at each position.

The correlation coefficient is a measure of the linear relationship between two variables, such as
pixel intensities in two images. It ranges from -1 to 1, and if it is 1 the correspondence between the two
variables is perfect, while -1 indicates perfect negative correlation. A correlation close to 0 indicates
little to no relationship between them.

Cross-correlation has two very interesting properties:

• Translation Invariance: Therefore, we can use this to find an object anywhere in the image.
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• Locality: Allows our system to focus on an area of interest in an image, ignoring the rest of it.
In other words, different areas of images (usually) don’t interfere with each other.

Correlation has various applications in image processing, including object detection, image recog-
nition, motion tracking, image registration, and image quality assessment. It is a fundamental tool for
analyzing and comparing images in many computer vision and image analysis tasks.

5 Fourier Analysis

Fourier Analysis is a technique used by many different areas of science, including mathematics,
physics, engineering, and signal processing. It is a study of general functions that have had the Fourier
Transform applied to them, which allows us to understand the frequency content and amplitude of a
signal.

The Fourier Analysis is used to decompose a complex signal or function into a sum of simpler
sinusoidal components with different values of frequency and amplitude. In other words, it provides
a representation of a signal in the frequency domain. By decomposing a signal into its frequency
components, we can analyze the contribution of different frequencies to the overall signal. The fre-
quency domain representation is often visualized using a graph called a frequency spectrum or power
spectrum, which shows the amplitude or power of each frequency component.

The Fourier transform is an extension of the Fourier series for non-periodic or time-limited signals.
It allows us to analyze signals with finite duration or non-repeating patterns. The Fourier transform
converts a signal from the time domain to the frequency domain by representing it as a sum of complex
exponential functions. The resulting representation provides information about the magnitude and
phase of different frequency components.

After applying the Fourier transform to a function, we can then proceed to analyze and filter the
data, using the values for the frequencies obtained.

Fourier analysis has numerous applications in different domains. It is used for signal-processing
tasks such as filtering, compression, noise removal, and modulation. In image processing, Fourier anal-
ysis is employed in tasks like image enhancement, image reconstruction, and pattern recognition. It
also has applications in physics (e.g., studying waves and oscillations), audio engineering, telecommu-
nications, and many other fields.

A technique that is very useful for signal and image processing is the FFT, or fast Fourier transform.
It is an efficient algorithm used to compute the Discrete Fourier Transform (DFT) of a sequence or
signal.

Analogously to the continuous Fourier Transform, the DFT is a mathematical transformation that
converts a discrete-time signal from the time domain into the frequency domain. It expresses the signal
as a sum of complex sinusoidal components at different frequencies.

The FFT algorithm revolutionized the computation of the DFT by proving an efficient way to
analyze the frequency content of signals. By enabling the transformation of time-domain signals into
the frequency domain, it reveals important information about the signal’s spectral components.

5.1 Ideal Band-pass Filtering

An Ideal Band-pass Filter is a theoretical filter, which allows a specific range of frequencies to pass
through while attenuating all other frequencies to zero. It is characterized by having a perfectly flat
pass-band, where the desired frequencies are passed without any distortion, and an infinitely sharp
transition between the pass-band and stop-band.

The pass-band of an ideal filter refers to the range of frequencies that the filter allows to pass
through without attenuation. It is usually defined by a lower cutoff frequency and an upper cutoff
frequency.

The stop-band in an ideal filter includes all frequencies outside the pass-band. In the stop-band,
the filter will reject all frequencies in this range.

BI(ω) =

{
1 ωH ≤ |ω| ≤ ωL

0 otherwise
(2.5)

This filter is periodic and has a period of 2π. An example of this filter can be seen in Figure 2.3
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Figure 2.3: Example of a band-pass filter

6 First-order Taylor Expansion

The first-order Taylor expansion, also known as the linear approximation, is a method in calculus
to approximate a function around a specific point using its derivative. It involves expressing a function
as a linear combination of the function’s value at a chosen point and its derivative at that point.

Mathematically, the first-order Taylor expansion at a function f(x) around a point a is given by:

f(x) ≈ f(a) + (x− a)
∂f(a)

∂a

In this approximation, the function f(x) is approximated by a linear function that consists of the

function’s value at the point a, and the product of the derivative of the function evaluated at a, δf(a)
δa ,

and the difference between the variable x and the point a, (x− a).
The first-order Taylor expansion provides a good approximation of a function in the vicinity of a

chosen point, particularly when the difference between x and a is small. It is a fundamental concept
in calculus and serves as a building block for higher-order approximations and mathematical analysis.

7 Motion and Color Amplification

The world around us is always changing, even if we do not always notice. Plants grow ever so slowly,
our muscles contract and expand microscopically when we move, our pupils dilate when the lighting
in the environment changes slightly, and machines can wobble ever so slightly if there is a mechanical
failure waiting to happen. Things that cannot be noticed with the naked eye.

With this in mind, a Ph.D. student from the Massachusetts Institute of Technology, Michael Ru-
binstein, and his team proposed a technique to amplify minimal changes that happen over time in
videos. Their work focused on amplifying movements or objects of interest while removing distracting
information using signal processing and filtering.[9]

By studying these techniques, we can understand how to process videos in a way that will help
reveal hidden information, which can be used in real-life applications.

7.1 Introduction

Signal processing is used in many different areas of study, one of them being image and video processing.
Some of the techniques that were devised to process videos are more complex than others, but a lot
of them were so optimized that they are now commonly used in smartphone apps to enhance or edit
videos.

In this section, I will be exploring three of these different techniques, all of which involve either
removing or magnifying signals.
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Removing Irrelevant Information

Time-lapse videos are videos that are recorded over a long period of time, with a low frame rate. When
it is played, a higher frame rate is used, giving the viewer the impression that time is accelerated. It
has many different applications in many industries, for example:

• In the entertainment industry, it can be used as a way to show the passage of time in movies.

• In the medical industry, one of its many uses is that it can be used as a way to monitor embryo
development when they are being incubated for fertility treatments such as IVF. [1]

• In the agronomy industry, it can be used to monitor plant growth.

In many of those cases, lighting can suddenly change, or irrelevant objects might appear and disappear,
which can make analyzing such videos much more difficult. This is what this technique proposes to
eliminate.

The video processing system treats all short-term visual changes as noise, and long-term changes as
a signal, which reveals the underlying long-term events. In other words, it automatically separates the
short-term and long-term motion components in a video, making it easier to analyze what is actually
relevant information.[9]

This is not the focus of this paper, but it is interesting to explain and analyze the techniques used
to achieve this, so I will detail it more in further chapters.

Different Approaches

When a person breathes, their body undergoes slight movements, and their facial color changes in
response to their heartbeat. However, these changes in motion and color are minimal, requiring the
use of specialized techniques to extract and analyze this valuable information.

The Eulerian video magnification technique analyzes the color values of a pixel through time and
amplifies frequency variations in a given band of interest.

There are two different techniques to extract this information. Both of them used Eulerian speci-
fication of the changes in the videos, amplifying the changes that would be seen in fixed locations in
space.

Eulerian Specification is a term used in continuum mechanics, and refers to the analysis of
changes that happens in a specific location of space through which fluid passes over time.

In other words, by using these techniques, we want to monitor and amplify the changes that happen
around fixed locations in the scene i.e. pixels.

The first method we are going to discuss is the linear method. Spatial decomposition is first
applied on a video, followed by temporal filtering. When the result of the temporal filter is amplified,
hidden information is shown. This technique can be used to extract small hidden motions.

However, the linear method has two major drawbacks: the first one is that noise is amplified
linearly with the motion, and the second is that this technique does not work with higher spatial
sequences and large motions.

For this reason, a second method has been proposed, in which the linear approximation is replaced
with a localized Fourier decomposition, using complex-valued pyramids. The phase variations of the
Fourier coefficients over time can be attributed to motion, and we can modify them to manipulate
motion.

Changes in the phase coefficient of the values in the pyramid over time correspond to motion, and
we can process them to either remove unwanted noise or amplify them to reveal hidden motion.

Although it is more computationally expensive, higher ranges of motion are supported and less
noise is produced.

Processing Videos in Space-time

If we fix our sights on a specific area of a video, and the color in it changes, it can mean one of two
things. Either the color of the object depicted in that part of the image has changed, or the object
in the region moved, and there is now another object in that area of the video or another part of the
same object. These changes are what we want to amplify.

The process to amplify these signals goes as follows:
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1. Decomposing the video into different spatial frequency bands.

The magnification in all bands is not uniform, as they may each have a different signal-to-noise
ratio, or the linear approximation may not be accurate. If the linear approximation is not
accurate for a specific band, we want to reduce the amplification as much as possible to reduce
the noise produced.

2. Temporal Processing on each spatial band.

We examine the values of a pixel in a frequency band over time and apply a band-pass filter to
extract the frequency bands of interest. The temporal processing is uniform in all spatial levels
and for all pixels in each one.

The signal that resulted from the band-pass filter is then multiplied by a magnification factor α,
which can be attenuated.

3. Add magnified signal to the original signal and collapse the spatial pyramid to obtain the final
output

But how does this temporal processing magnify motion? Even though we want to study the two-
dimensional case, we can study the case of a one-dimensional signal, and generalize it.

We can write the image intensity I at position x and time t as a function of the current location
and the displacement δ(t) it suffers through time:

I(x, t) = f(x+ δ(t)) (2.6)

In which α is the magnification factor. We can rewrite this as an approximation of the first-order
Taylor expansion about x:

I(x, t) = f(x+ δ(t)) ≈ f(x) + δ(t)
∂f(x)

∂x
(2.7)

At the beginning of time, there is no displacement, so δ(t = 0) = 0 and I(x, 0) = f(x).
Our goal is to amplify the motion by the amplification factor α, and therefore, we want to acquire

the signal:

Î(x, t) = f(x+ (1 + α)δ(t)) (2.8)

If we apply a temporal band-pass filter to I(x, t) at every position x, rejecting f(x) at every point,
we can write the resulting signal, B(x, t) as:

B(x, t) = δ(t)
∂f(x)

∂x
(2.9)

As previously explained, the original signal is processed, and the band-pass filter is applied and
amplified by a factor α. The resulting signal of the summation of both components is then:

Ĩ(x, t) = I(x, t) + αB(x, t) (2.10)

Substituting B(x, t) for equation 2.9 and I(x, t) as in equation 2.7 (after the first-order Taylor
expansion), we get:

Ĩ(x, t) ≈ f(x) + (1 + α)δ(t)
∂f(x)

∂x
(2.11)

Once again, assuming that the first-order Taylor expansion holds in this case (for the amplified
larger perturbation (1 + α)δ), we can obtain the signal that we wanted originally:

Ĩ ≈ f(x+ (1 + α)δ(t)) (2.12)
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Limits The approximations used to hold for smooth videos and small motions, but if the image
functions change too fast (have high spatial frequencies), then we cannot assume that the first-order
Taylor approximations hold because the value of the perturbation (1 + α)δ(t) becomes too large.

We can calculate the limits for which this solution works, in other words, for which ranges of values
that the processed signal Ĩ(x, t) (equation 2.11) is equal to the true magnified motion, Î(x, t) (equation
2.8):

(̃x, t) ≈ Î(x, t)

f(x) + (1 + α)δ(t)
∂f(x)

∂x
≈ f(x+ (1 + α)δ(t)) (2.13)

If f(x) = cos(ωx), for spatial frequency ω, and we call 1 + α β, then we can rewrite equation 2.13
as:

cos(ωx)− βωδ(t)sin(ωx) ≈ cos(ωx+ βωδ(t)) (2.14)

The additional law for cosines states that:

cos(α+ β) = cos(α)cos(β)− sin(α)sin(β)

Therefore, we can rewrite equation 2.14 as:

cos(ωx)− βωδ(t)sin(ωx) ≈ cos(ωx)cos(βωδ(t))− sin(ωx)sin(βωδ(t)) (2.15)

Therefore, we can assume that βωδ(t) ≈ sin(ωx) and cos(βωδ(t)) ≈ 1.
The small angle approximation rule states that for small angles, the function sine is approximately

equal to its angle, or if θ is small enough then sin(θ) = θ.
The approximation holds for values within 10% of βωδ(t) ≤ π

4 . We know that the wavelength λ is
inversely dependent on the frequency of the signal ω and the λ = 2π

ω .
Remembering that β = (1+α), we can manipulate the inequality to obtain the limit for which the

small signal approximation holds:

(1 + α)δ(t) <
λ

8
(2.16)

7.2 Obtaining Heart Rate and Pulse

A very common device used to extract heartbeat from a patient is the ECG, which measures the
electrical activities of the person’s heart [8]. This device requires electrodes to be attached to a
person’s skin, usually using sticky patches. Although effective, this type of device requires the sensors
to have good contact with the patient’s skin and can yield inaccurate measurements should they be
poorly attached.

This means that the patient might have to shave his or her chest and his or her skin has to be free
from oils and sweat. This is inconvenient, and therefore, it is interesting to consider other methods to
extract a patient’s heartbeat.

The technique of magnifying small changes in videos could be an interesting solution, depending
on the context.

As stated earlier, a person’s skin color changes slightly with blood flow. The signal corresponding
to the blood flowing through a person’s corresponds to a variation of roughly 0.5 intensity units in an
8-bit scale (with the pixel’s values ranging from 0 to 255).

The process to extract the heartbeat from a person’s face is as follows:

1. Spatial decomposition.

Similarly to the process of amplifying small motions, this process begins with the decomposition
of the video into different spatial frequency bands, but a Gaussian pyramid is used instead. The
number of levels in the pyramid is usually limited to 3 or 4.

2. Filtering.

Each level of the pyramid is temporally filtered, and we select frequency values that are compat-
ible with the human heart rate, 0.4 to 4 Hz (or 24 to 240 beats per minute). Temporal filtering
removes some of the noise.
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3. Frequency Analysis.

In order to detect the heartbeat rate, we can either:

(a) Perform a frequency analysis of color variation in the video.

(b) Detect the maxima points within a local window of time in the band-passed signal, detecting
the pulse onset times at each location on the face in the coarse pyramid level.

The quality of the pulse extraction can vary depending on the area of the face being used, and
sometimes errors can occur when detecting the peaks in the band-passed signal.

To get a good estimation of when the pulse onset happens, we integrate the values of the signal
extracted from different parts of the video, ignoring all points that deviate too much from the expected
values of frequency.

We then consider that the points that were not ignored contain a pulse signal, and the pulse
locations are now determined to be the local (temporal) centers of mass of the detected peaks in all
the points.

The pulse estimation at particular points may be noisy, but the method previously stated of com-
bining different estimations at different points can give a robust estimation of the pulse signal.

From the estimated pulse signal, the heartbeat rate can be established within a small temporal
window.

8 Motion Denoising

In this section, we will explore a technique to remove ”motion noise” from videos. As previously
mentioned, motion noise can include random objects appearing and disappearing, sudden changes in
lighting, or irrelevant information that come from a one-time event, such as wind.

Randomness can be a form of noise, and we might want to remove undesired random motions
from our videos, such as jitters from the camera or the wind. In other words, we want to remove the
temporally inconsistent motion.

The input of the system is a video I(x, y, t) in the shape [M ×N ×T ], with RGB intensities in the
interval [0, 255]. The desired output J(x, y, t) also has the shape [M ×N × T ].

8.1 Background

Temporal Filtering

A solution to temporal filtering is to pass the sequence of signals through a temporal low-pass filter:

J(x, y, t) = f(I(x, y, {k}t+δt
t−δt

)) (2.17)

f would be the ”filter” operator, and δt would determine the temporal window size. If the video
had a static viewpoint, a median operator would often be used as f , because it is good to reduce noise
and separate background and foreground elements.

This approach is simple to implement and fast, but it has the downside of performing the filtering
pixel-by-pixel. When applied to a moving scene, pixels that belong to different objects are averaged,
and that can lead to a blurred or discontinuous output[9].

A strategy to try and fix the issue was devised: to filter along motion trajectories. In other words,
to integrate pixels along their estimated motion path. This approach is useful in compressing video
and removing noise, but it does not filter the actual motion, which can lead to unwanted artifacts and
imperfect results.

Mathematical Justification

The mathematical model used for the Eulerian magnification of signals considers that the world evolves
slowly with time. And because the changes happen so slowly, we can use the redundant data from the
sequential frames to infer information about the static data in a video.

Considering the output video J(x, y, t), and the input video I(x, y, t), we want to minimize the
energy given by equation 2.18:
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E(J) = A+ αB (2.18)

In which:

A =
∑
x,y,t

|J(x, y, t)− I(x, y, t)| (2.19)

B =
∑
x,y,t

|J(x, y, t)− J(x, y, t+ 1)| (2.20)

The energy E(J) between the input and output videos can be described as a sum of the fidelity
term (A, equation 2.19) and the temporal cohesion term (B, equation 2.20) multiplied by α.

The fidelity term describes the similarity between the two videos throughout their location and
time, while the temporal cohesion term describes how temporally smooth the video is. α controls the
trade-off between the two components.

We can describe the output video J(x, y, t) as it is written in equation 2.21. I(x, y, t) is the input
video and ω(x, y, t) is the displacement field in time and space.

J(x, y, t) = I(x+ ωx(x, y, t), y + ωy(x, y, t), t+ ωt(x, y, t)) (2.21)

As 2.21 is only described in terms of x, y, and t, we can parameterize p = (x, y, t) and use it in
equation 2.18, substituting p into J(x, y, t), which becomes J(p). Therefore, we would have:

E(ω) =
∑
p

|I(p+ ω(p))− I(p)|+ (2.22)

α
∑

p,r∈Nt(p)

||I(p+ ω(p))− I(r + ω(r))||2+ (2.23)

γ
∑

p,q∈Nt(p)

λpq|ω(p)− ω(q)| (2.24)

Equation 2.24 has not changed much from equation 2.18, but it has one key difference: now there is
a term that is written in terms of the displacement window ω (equation 2.24), and it serves to smooth
it. It is being multiplied by γ, which is the regularization term.

N (p) refers to the spatio-temporal neighborhood of the pixel p, Ns(p) refers to the spatial neigh-
borhood of p, and Nt(p) refers to the temporal neighborhood of p. Using the six pixels that are directly
connected to p, we can construct a neighborhood system.

Each element of the sum in equation 2.24 is multiplied by the weight λpq = e−β||I(p)−I(q)||2 . β
can be deduced using the method described by Szeliski et. al. in the paper ”A Comparative Study of
Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors”[11]. The
weight factor λpq serves as a smoothing factor, and it assigns different weights to discontinuities in the
displacement map, using the similarity between the surrounding pixels in the original video.

8.2 Optimization

Using a 3D Markov Random Field to represent the three-dimensional space of the video volume, we
can optimize the equation 2.24. In the MRV, each node p corresponds to a pixel p in each video frame
and represents the latent variables ω(p).

Latent variables are variables that are not directly observable or measurable but inferred based on
their relationship with the observable variables. They are often used to simplify complex systems or
explain patterns in data.

In the Eulerian video magnification model, the state space is defined as a collection of all potential
three-dimensional displacements that can occur within a predefined search region.

The best optimization technique for this application is the Loopy Belief Propagation (LBP), because
it produces more sequences that were more visually appealing and that achieved lower energy solutions
compared to the other methods[9].
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Chapter 3

Proposal

1 Introduction

The primary goal of this thesis is to investigate the potential use of physiological information extracted
from video data within the framework of the polygraph test. The aim is to assess its effectiveness in
distinguishing between truthful and deceptive responses from the subjects.

To accomplish that, I conducted an in-depth study on the topic of amplification of small signals
in videos[9], to gain a comprehensive understanding of how to amplify subtle changes in motion and
color within videos.

Using this information, I wanted to be able to detect the pulse and magnify breathing rates of
subjects in videos, in order to explore how such techniques could be employed in real-life situations.

I also wanted to discuss the feasibility of these techniques in criminal investigations.

2 Objectives

The objectives I have set for this project were mainly:

1. To gain a deep understanding of the process of magnifying small signals in videos:
Unquestionably, this step was of utmost significance, consuming a significant portion of my time
and attention.

Initially, I intended to reconstruct the open-source Matlab code-shared by Rubinstein using
Python as a means to gain a hands-on comprehension of the practical implementation. However,
I encountered significant challenges during this endeavor. Consequently, after a few weeks, I
decided to discontinue that approach and shifted my focus toward studying the original code
and paper in detail.

2. To use the available code in videos I took myself and of real-life suspects.

Although it may seem straightforward, I faced significant obstacles during this phase. It was
quite challenging to determine the exact settings and functions to use. I conducted numerous
exhaustive tests, trying out various combinations of parameters. The difficulty increased when I
attempted to apply these methods to a real-life video of a suspect who was talking and moving.

However, these endeavors did produce interesting results, which will be discussed in more detail
in later chapters.

3. To study how polygraphs work and their validity

Although not the most critical aspect of my research, this step was still highly engaging. It
provided valuable insights into the importance of the polygraph test, despite the ongoing debates
surrounding its reliability. It also highlighted its continued usage as a crime-fighting tool in
different parts of the world.
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3 Methodology

This thesis was mainly focused on researching and understanding different concepts. It was comprised
of two main parts:

1. Research.

As previously stated, the first part was the most time-consuming for me. It required me to
read and reread different articles, in particular articles about different motion magnification
techniques.

I also had to study foreign and forgotten concepts used in the articles, read some of the referenced
works, and take many notes.

2. Understanding and testing code.

One of the main sources of inspiration for this project was the open-source Motion Magnification
project provided by the Massachusetts Institute Of Technology[7].

In order to fully understand what was done by them, and how the theory translated into practice,
I decided to attempt to implement it into Python from scratch. However, I did not realize how
much of a grueling task it would be. My code ended up having too many bugs, and in the end,
I could not make it work.

I, unfortunately, realized it was against my better judgment to proceed with the development of
the Python application because I would not have had enough time to complete my thesis had I
done so.

After my failed attempt at implementing my solution in Python, I decided it was a better use of
my time to work with what was already available.

For that reason, I used the open-source code I mentioned previously. Altering the code to better
suit my needs, I initially tested it as-was using the videos for which the best parameters were
already known.

After I made it work as expected, I started working with the videos I sourced. I understood the
theory, but it was initially very difficult to find the ideal combination of parameters to magnify
colors.

I did eventually learn how to properly quantify the necessary parameters to process the videos
in the way that I wanted.

The results I obtained will be discussed in later chapters.
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Chapter 4

Implementation Details

1 Python: Initial Attempts

As previously stated, I initially tried to translate the original code into Python. Even though it ended
up not yielding the desired results, I think it is still relevant to discuss the structure of the code I
developed to properly understand the most important parts and functionalities of the original code.

My purpose behind this ”translation” was to better understand what was being done. Therefore,
I tried to simplify the original code as much as I could, which might have been what made my version
of the code not work in the first place.

Even if it does not work as it should have, the logic behind the operations being applied is correct,
and the simplification makes it easier to understand what is being done and what the intentions behind
each function in Rubinstein’s code were.

For this reason, I will explain my version of the code, so you might notice some dissimilarities in
the order of some operations or how they are being applied.

To properly implement the functions I needed, I used the libraries OpenCV, NumPy, and SciPy. I
separated the different functions into different files according to their purpose.

I developed the class video, to simplify the process of importing videos and processing their frames.
I developed two methods of initializing a video object, I could either import an existing video from a
path, or I could create a video from a stack of images.

Other than that, the video class had the disp method, which would display the video until a key
was pressed, and the getFrames method, which would extract the frames from the video, saving them
in an attribute of the class to save some time if I wanted to perform more than one operation on the
same video.

The class video can be described as follows, and it is found in the file video.py:

class video():

frames = []

def __init__(self, path = "", stack = None):

self.path = path

if stack != None:

self.width = len(stack[1])

self.height = len(stack[2])

self.fps = 30

self.frames = np.asarray(stack)

self.len = len(self.frames)

self.displayInfo()

else:

cap = cv2.VideoCapture(self.path)

self.width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)

self.height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)

self.fps = cap.get(cv2.CAP_PROP_FPS)

self.len = cap.get(cv2.CAP_PROP_FRAME_COUNT)
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self.getFrames()

def displayInfo(self):

print("Length: ",self.len)

print("Width: ",self.width)

print("Height: ",self.height)

print("# Frames: ",len(self.frames))

def export(self, new_file_name=''):

if(new_file_name==''):

new_file_name=self.path

height, width = self.frames[0].shape[:2]

result = cv2.VideoWriter('./results/' + new_file_name,

cv2.VideoWriter_fourcc(*'DIVX'),

self.fps,

(width, height))

for f in self.frames:

result.write(f.astype('uint8'))

result.release()

def disp(self):

cap = cv2.VideoCapture(self.path)

if(cap.isOpened == False):

print("Error opening video!")

while(cap.isOpened()):

ret, frame = cap.read()

if ret == True:

cv2.imshow('Frame',frame)

if cv2.waitKey(25) & 0xFF == ord('q'):

break

else:

break

cap.release()

cv2.destroyAllWindows()

def getFrames(self):

cap = cv2.VideoCapture(self.path)

count = 0

self.frames = []

while(cap.isOpened()):

ret, frame = cap.read()

count +=1

if ret == True:

self.frames.append(frame)

if count == self.len:

break

else:

break

cap.release()

Color Magnification The color magnification function, colorAmplification, takes as an input
an object of the class video, the magnification factor α, the band-pass range, the sampling rate, and
the attenuation factor λ. It uses that information to build the Gaussian stack and then applies the
band-pass filter to each item of the stack. The stack is of size L × N × M × 3, with L being the
number of levels, and N and M corresponding to the dimensions of each frame (3 is the number of
color channels). After that, the filtered stack is multiplied by the magnification and attenuation factor
and then added to the original signal. This is all done in the YIQ color space. A diagram showing the
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Figure 4.1: Diagram illustrating the process of magnifying the colors in a video.

process can be observed in Figure 4.1
The code for the color amplification function is in the file colorAmplification.py and it goes as

follows:

# colorAmplification()

# Inpired by the function amplify_spatial_Gdown_temporal_ideal

# Applies Gaussian blur as the spatial filtering, followed by an ideal bandpass filter

# The idea is to amplify color variations, I.E. from this we will extract heart rate.

# alpha: amplification factor

# level: How many levels are in our Gaussian Decomposition stack?

# bandpassRange: [wLow, wHigh] range in which our bandpass filter will operate

# chromAttenuation: attenuate color?

def colorAmplification(video, alpha, level, bandpassRange, samplingRate, chromAttenuation):

temporalWindow = [0, int(video.len)]

print("Spatial Filtering...")

gaussianStack = stackBuilders.buildGaussianStack(video, temporalWindow, level)

print("Done!")

print("Temporal filtering...")

filteredStack = filters.idealBandPassing(gaussianStack, bandpassRange[0], bandpassRange[1],

samplingRate)↪→

print("Done!")

stack = []

print(len(filteredStack))

for i in range(len(filteredStack)):

filtered = filteredStack[i].squeeze()

filtered[:,:,0] = filtered[:,:,0] * alpha

filtered[:,:,1] = filtered[:,:,1] * alpha * chromAttenuation

filtered[:,:,2] = filtered[:,:,2] * alpha * chromAttenuation

f = cv2.resize(filtered,(int(video.width), int(video.height)))
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f = f + lib.rgb2ntsc(video.frames[i])

f = lib.ntsc2rgb(f)

f = lib.normalizedImage(f)

f[f<0] = 0

f[f>255] = 255

stack.append(f)

v = vid.video(stack=stack,path="face.avi")

v.export()

Building the Gaussian Stack The function that builds the Gaussian Stack is called buildGaussianStack,
and it takes as an input a video object, the temporal window, and the number of levels we want in
our Gaussian Stack. After that, it converts each frame of the video in the temporal window to the
YIQ color space and applies the function blurDownsample to each one separately. The result of this
operation is added to the output stack.

I also created the class buildLaplacianStack, which would, as the name suggests, create a Lapla-
cian Pyramid based on the inputted video.

The code for the two functions is:

# buildGaussianStack()

# Build gaussian pyramid with level layers

# video: video class object

# temporalWindow: How big of a timeframe (in the video) are we taking

# in consideration?

# level: how many layers in our laplacian decomposition pyramid?

def buildGaussianStack(video, temporalWindow, level):

stack = []

for i in range(temporalWindow[0], temporalWindow[1]):

image = lib.rgb2ntsc(video.frames[i])

stack.append(filters.blurDownsample_(image, level))

return stack

# cv2.destroyAllWindows()

#buildLaplacianStack()

# Build Laplacian Pyramid. The second dimension is the color channel,

# The third dimension is time.

# - video

# - window [startIndex, endIndex]

def buildLaplacianStack(video, window, height=None):

stack = []

stackId = []

for i in range(window[0], window[1]):

image = lib.rgb2ntsc(video.frames[i])

lapl, idx = laplacian.buildLaplacian_(np.array(image))

stack.append(lapl)

stackId.append(idx)

return stack, stackId

Blurring and Down-sampling The function blurDownsample takes three different inputs: the
image to be processed (image), the number of levels in the Gaussian pyramid (levels), and the filter
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Figure 4.2: The function blurDownsample takes image, levels and filter as an input. For simplicity
reasons, the process of filter selection is not depicted, but it depends on whether filter is a string or
not. The dotted lines represent inputs and the solid lines the flow of the code. The diamonds represent
conditions and the rectangles represent functions.

to be used to blur the image (filter]). This function is recursive, and its stopping condition depends
on the levels variable.

It initially verifies whether the filter variable is a string, if so, the program will try to find a filter
with that name and set it as the value of filter. If it is not a string, it will normalize it by dividing
each member of the filter by the sum of all its members.

After that, it verifies if levels> 1. If True, the function will recursively call blurDownsample with
levels = levels - 1, with the same image, and updated filter.

Afterward, the function verifies if levels≥ 1, if it is False (i.e. if levels == 0, the stopping
condition), then it will return the input image. If True, then it will verify the size of the image or
filter, and call the function correlationDownsample, which will be described in the following section.
If the image is 1 dimensional, the down-sampling step will be 1, otherwise, it will be 2. If the filter is
one dimensional, the program will first perform down-sampling with a step value of [1,2] and then
again with a step value of [2,1]. If both the image and the filter are two-dimensional, then the
program will perform down-sampling with step [2,2].

This process is described in Figure 4.2 and in the code below. The function blurDownsample is in
the file filters.py.

# blurDownsample()

# Recursively blurs and downsamples the image levels times.

# The downsampling is always done by 2 in each direction.

def blurDownsample_(image, levels,filter='binom5'):

tmp = blurDownsample(image[:,:,1], levels)

out = np.zeros((tmp.shape[0],tmp.shape[1],image.shape[2]))

out[:,:,0] = tmp
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out[:,:,1] = blurDownsample(image[:,:,1], levels)

out[:,:,2] = blurDownsample(image[:,:,2], levels)

return out

def blurDownsample(image, levels, filter = 'binom5'):

if(isinstance(filter, str)):

filt = getFilter(filter)

else:

filt = filter

filt = filt/filt.sum()

if levels > 1:

image = blurDownsample(image, levels - 1, filt)

if levels >= 1:

if(image.shape[0] == 1 or image.shape[1] == 1):

return correlationDownsample(image,

filt,

((image.shape[0]!=1) * 1+1,(image.shape[1]!=1) * 1 +1))

elif(len(filt.shape)==1):

return correlationDownsample(correlationDownsample(image, filt, [2,1],axis=1),

filt,

[1,2])

else:

return correlationDownsample(image,

filt,

[2,2])

else:

return image

Correlation and Down-sampling The function correlationDownsample receives as an input the
image we want to process, the filter it is going to be correlated with, the axis the correlation is
going to be done in, and the last input,step, determines how much down-sampling is done.

The program first determines if the filter is one-dimensional. If so, it will apply SciPy’s correlate1d
function to the image in the given axis.

If the filter is two-dimensional, it inverts the order of the elements of the filter in both axes and
applies the function convolve from the SciPy library to the image.

The resulting array from either operation is then down-sampled according to step and returned.
The code below can be found in the file filters.py.

# correlationDownsample()

# Calculates the cross-correlation between the image and the filter.

# filter: which filter to filter with

# step: how much to downsample

# window_start and window_stop: determine the window in which the image will be filtered

def correlationDownsample(image,

filter,

step = [2,2],

window_stop = (-1,-1),

window_start = (0,0),

axis=0):

if(window_stop == (-1,-1)):

window_stop = (image.shape[0], image.shape[1])
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if len(filter.shape) == 1:

# filter = filter[len(filter)-1:0:-1]

if(axis==1):

image = scipy.ndimage.correlate1d(image*1.0, filter,axis=0)

else:

image = scipy.ndimage.correlate1d(image*1.0, filter,axis=1)

else:

filter = filter[len(filter)-1:0:-1, len(filter)-1:0:-1]

image = scipy.ndimage.convolve(1.0*image, filter,mode='reflect')

return image[window_start[0]:window_stop[0]:step[0], window_start[1]:window_stop[1]:step[1]]

Ideal Band-passing As previously explained in Section 5.1, the ideal band-pass filter is a theoretical
filter that blocks out all signals outside of a specific frequency range.

The idealBandPassing function receives as input the signal to be filtered (input), the lower (wLow)
and upper (wUpper) bound of the pass-band, the sampling rate and the number of dimensions to shift
the input.

The program first shifts the dimensions of input by dim.
It then determines the temporal frequencies of the input’s Fourier Transform, using the number of

dimensions of the shifted input n, and the sampling rate. If we call the sampling rate s, we can write
that the frequencies for this input are as described in equation 4.1.

freq =
[1, 2, 3, ..., n− 1, n]

n ∗ s
(4.1)

After that, it creates a mask by replicating the array freq until the mask has the same number of
dimensions as the shifted input.

The program then will set the value of the elements in the mask to 1 or 0 according to whether
they are within the boundaries of the pass-band or not.

Following this operation, the program will perform an FFT on the shifted input, and then use the
mask previously calculated to set all values outside of the transformed range of the transformed shifted
input to 0.

Finally, we perform an IFFT and return all real values.
The code below can be found in the file filters.py.

# idealBandPassing:

# Applies ideal bandpass filter on input

# wLow: lower cutoff region

# wUpper: upper cutoff region

def idealBandPassing(input, wLow, wUpper, samplingRate,dim=1):

f = np.roll(input,dim-1)

input = np.asarray(f)

dimensions = list(f.shape)

n = dimensions[0]

dn = len(dimensions)

freq = (np.linspace(1, n, n) - 1)/n*samplingRate

if(len(dimensions) == 4):

mask = np.asarray((freq > wLow) & (freq <

wUpper))[np.newaxis][np.newaxis][np.newaxis].transpose()↪→

elif(len(dimensions) == 3):
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mask = np.asarray((freq > wLow) & (freq < wUpper))[np.newaxis][np.newaxis].transpose()

else:

return

dimensions[0] = 1

mask = np.tile(mask, dimensions)

f = scipy.fft.fft(f,axis=0)

f[~mask] = 0

out = np.real(scipy.fft.ifft(f,axis=0))

return out

2 Matlab

As previously stated, I could not make my code work, despite my best efforts. For this reason, I
decided to use the Matlab code provided by Rubinstein to magnify motions and colors.

The function used to magnify motions and colors is amplify_spatial_Gdown_temporal_ideal,
which does the process I described in Section 1. First decomposing the signal into a Gaussian pyramid
before filtering and summing the results to the original video.

This function loads the video whose path was given and processes it, saving the result where the
user specifies.

The code I used to generate the videos can be found in the file getResults.mlx, and the necessary
videos to run it can be found in the folder ”data ”.

If these folders do not exist yet, the program creates a folder with the current date and time inside
the folder results (if they do not exist yet). It then runs the aforementioned function with the given
parameters.

clear;

dataDir = './data';

resultsDir = 'results/' + string( datetime('now','TimeZone','local','Format','d_MM_HH'));

mkdir(resultsDir);

% Jodi Arias (Rest)

video = fullfile('data_/jodi_rest_sq.mp4');

amplify_spatial_Gdown_temporal_ideal(video, resultsDir, 120, 7, 65/60, 70/60, 30, 0.9);

% Jodi Arias (Lie)

video = fullfile('data_/jodilie.mp4');

amplify_spatial_Gdown_temporal_ideal(video,resultsDir, 50, 7, 70/60, 80/60, 30, 0.9);

% Me

video = fullfile("data_/me6.mp4");

amplify_spatial_Gdown_temporal_ideal(120, 5, 70/60, 80/60, 30, 1)

Another function I have developed for this application was the heartbeat function, which reads
data from a video and returns an array with the average value of each frame. Using this function, we
can determine when the peaks in coloration happen in a color-magnified video.
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Using that information, the number of frames, and the video’s frame rate, we can have a good idea
of what the person’s heartbeat rate is.

The heartbeat function is as described in the code below:

function avg = heartbeat(vidFile)

[~,vidName] = fileparts(vidFile);

% Read video

vid = VideoReader(vidFile);

% Extract video info

vidHeight = vid.Height;

vidWidth = vid.Width;

nChannels = 3;

fr = vid.FrameRate;

len = vid.NumberOfFrames;

temp = struct('cdata', zeros(vidHeight, vidWidth, nChannels, 'uint8'), 'colormap', []);

startIndex = 1;

endIndex = len-10;

%% Render on the input video

% output video

k = 0;

avg = zeros(1, endIndex-startIndex);

for i=startIndex+1:endIndex

k = k+1;

temp.cdata = read(vid, i);

[rgbframe,~] = frame2im(temp);

rgbframe = im2double(rgbframe);

avg(k) = sum(rgbframe(:))/(size(rgbframe,1) * size(rgbframe,2));

end

% close(vidOut);

end

To generate the image with the spatiotemporal representation of the video, I created the function
ytslice. This function extracts the array of pixels in the center of each frame and returns an array
with the same height as the original video, but the width equal to the number of frames.

Its code is:

function out = ytslice(vidFile)

[~,vidName] = fileparts(vidFile);

% Read video

vid = VideoReader(vidFile);

% Extract video info

vidHeight = vid.Height;

vidWidth = vid.Width;

nChannels = 3;

fr = vid.FrameRate;

len = vid.NumberOfFrames;

temp = struct('cdata', zeros(vidHeight, vidWidth, nChannels, 'uint8'), 'colormap', []);
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startIndex = 1;

endIndex = len-10;

%% Render on the input video

% output video

k = 0;

out = zeros(vid.Height,len-10,3);

center = floor(vidHeight/2);

for i=startIndex+1:endIndex

k = k+1;

temp.cdata = read(vid, i);

[rgbframe,~] = frame2im(temp);

rgbframe = im2double(rgbframe);

out(:,i,:) = rgbframe(:,center,:);

end

end

The script I used to generate the graphs used in Chapter 6 is given by the code below, and it can
be found in the file generateResults.mlx:

% ===================

%% Face

vidfile = "./data_/face.mp4";

vidfile2 = "./results_/face-ideal-from-0.83333-to-1-alpha-100-level-4-chromAtn-1.avi";

a = heartbeat(vidfile);

b = heartbeat(vidfile2);

p = plot(a(1:end-10) - b,"-");

title("Intensity Face (Amplified Subtracted from Original)")

xlim([1,length(b)])

xlabel("Time")

ylabel("Intensity")

plot(a, '-');

title("Intensity Face (Original)")

xlim([1,length(a)])

xlabel("Time")

ylabel("Intensity")

plot(b, '-');

title("Intensity Face (Amplified)")

xlim([1,length(b)])

xlabel("Time")

ylabel("Intensity")

y = ytslice(vidfile);

p = imshow(y);

title("Face Original (YT Slice)")

ylim("auto")

y = ytslice(vidfile2);

p = imshow(y);

title("Face Amplified (YT Slice)")
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ylim("auto")

% =================

%% Me

vidfile = "./data_/me6.mp4";

vidfile2 = "./results_/me6-ideal-from-1.1667-to-1.3333-alpha-120-level-5-chromAtn-1.avi";

a = heartbeat(vidfile);

b = heartbeat(vidfile2);

p = plot(a(1:end-10) - b,"-");

title("Intensity Me (Amplified Subtracted from Original)")

xlim([1,length(b)])

xlabel("Time")

ylabel("Intensity")

plot(a, '-');

title("Intensity Me (Original)")

xlim([1,length(a)])

xlabel("Time")

ylabel("Intensity")

plot(b, '-');

title("Intensity Me (Amplified)")

xlim([1,length(b)])

xlabel("Time")

ylabel("Intensity")

y = ytslice(vidfile);

p = imshow(y);

title("Me Original (YT Slice)")

ylim("auto")

y = ytslice(vidfile2);

p = imshow(y);

title("Me Amplified (YT Slice)")

ylim("auto")

% =================

% Jodi Rest

vidfile = "./data_/jodi_rest_sq.mp4";

vidfile2 = "./results_/jodi_rest_sq-ideal-from-1.0833-to-1.1667-alpha-120-level-7-chromAtn-0.9.avi";

a = heartbeat(vidfile);

b = heartbeat(vidfile2);

p = plot(a(1:end-10) - b,"-");

title("Intensity Jodi Rest (Amplified Subtracted from Original)")

xlim([1,length(b)])

xlabel("Time")

ylabel("Intensity")

plot(a, '-');

title("Intensity Jodi Rest (Original)")

xlim([1,length(a)])

xlabel("Time")

ylabel("Intensity")

plot(b, '-');

title("Intensity Jodi Rest (Amplified)")

xlim([1,length(b)])

26



xlabel("Time")

ylabel("Intensity")

y = ytslice(vidfile);

p = imshow(y);

title("Jodi Rest Original (YT Slice)")

ylim("auto")

y = ytslice(vidfile2);

p = imshow(y);

title("Jodi Rest Amplified (YT Slice)")

ylim("auto")

% =================

% Jodi Lie

vidfile = "./data_/jodilie.mp4";

vidfile2 = "./results_/jodilie-ideal-from-1.1667-to-1.3333-alpha-50-level-7-chromAtn-0.9.avi";

a = heartbeat(vidfile);

b = heartbeat(vidfile2);

p = plot(a(1:end-10) - b,"-");

title("Intensity Jodi Lie (Amplified Subtracted from Original)")

xlim([1,length(b)])

xlabel("Time")

ylabel("Intensity")

plot(a, '-');

title("Intensity Jodi Lie (Original)")

xlim([1,length(a)])

xlabel("Time")

ylabel("Intensity")

plot(b, '-');

title("Intensity Jodi Lie (Amplified)")

xlim([1,length(b)])

xlabel("Time")

ylabel("Intensity")

y = ytslice(vidfile);

p = imshow(y);

title("Jodi Lie Original (YT Slice)")

ylim("auto")

y = ytslice(vidfile2);

p = imshow(y);

title("Jodi Lie Amplified (YT Slice)")

ylim("auto")

Note The code used in this project can be found in this GitHub repository: Link
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Chapter 5

Analysis of Sustainability and
Ethical Implications

As with any new project idea or innovation, we must discuss the ethical and sustainability impact
that the realization of this project could have. Because the idea proposed by this thesis would mainly
be implemented through software, it is not relevant to discuss any kind of environmental impact,
especially because no physical resources are used (except for electricity).

That being said, the economic and social implications are still important points to be explored.
There is no political or religious agenda associated with this project, and no intention to oppress,

violate any rights or harm any individual, or institution in any way.

1 Economic Implications

The only costs associated with the development and execution of this thesis would be human resources.
In order to reduce the amount of work I would have to do, it was necessary to read other people’s
previous work, so as to be able to add to that and not commit the same mistakes that they might
have.

If 1 ECTS is equivalent to roughly 25 hours of work, the master’s thesis is worth 30 ECTS, assuming
I have worked exactly 30 × 25 = 750 hours, if the minimum wage in Spain is roughly 8 euros/hour,
then the cost to develop this project was of approximately of 750× 8 = 6000 euros.

A lot more work would have to be done to develop a product that could be commercialized, such as
the development of a GUI, or being able to extract information from a live video. To implement all of
that, I estimate that I would have to work for approximately an extra month. The minimum wage per
month is 1080 euros. Therefore the cost associated with such a project would be around 7080 euros.

After the product was finished, though, the cost associated with maintaining it would be relatively
low. There would be no need for constant updates or adjustments to the code, and the cost of running
it would not be much greater than running a regular application on a computer.

Other projects could expand on the results obtained in this thesis, other researchers could imple-
ment the features I mentioned that are lacking for a final project, or they could simply use the analysis
I have done to gain more understanding of the work they need to do.

2 Social Implications

The polygraph itself is a controversial tool. Even though it is widely used in many countries around
the world, it is still cause for debate.

The lie detector test works by analyzing spikes of activity in physiological data, such as heartbeat
rate, respiratory activity, and galvanic skin response (GSR, or electrodermal activity), in order to
determine if a person is lying or not.

However, because we are measuring the physiological responses of a person, any number of factors
can contribute to skew the results[10], including factors such as:

1. Anticipation of a threat or activity,
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2. Increased physical or mental activity,

3. Voluntary control of respiration, which affects both GSR and heartbeat rate,

4. Changes in the concentration of carbon dioxide and oxygen in the air,

For this reason, they are not fool-proof, and if not properly administered, they can lead to people
being unfairly charged with a crime they did not commit.

Also, if we were to further extend the project by extracting the respiration rate from the suspect
using video, we would have most of the pieces necessary to build a functioning polygraph.

However, this could be used by persons with bad intentions or misinformed people to try and detect
lies in people that might not know that they are being evaluated, which might compromise the validity
of the test, leading to faulty conclusions and innocent people being arrested or unfairly accused of
something they did not commit.

If this project is ever created as a finished product, it is very important that the people using it are
well-trained, capable individuals, and that they are properly instructed on how to properly use this
tool.

The program works by augmenting the changes in the color of people’s skin, and it works with
people of different ethnicities and skin colors. It makes no distinction of gender, sex, age, or any other
factor.

If properly developed into a final product, this project could be used by smaller police departments
and private investigators, as they would only need to obtain a good enough video camera and the GSR
sensor, having no need to acquire the sensor to measure heartbeat rate, the blood pressure cuff or the
sensors that measure respiration.

3 Relationship with the Sustainable Development Goals

It project may contribute to goal 9.5 of the Sustainable Development Goals defined by the United
Nations in 2015.

This goal is defined by: ”9.5 Enhance scientific research, upgrade the technological capabilities of
industrial sectors in all countries, in particular developing countries, including, by 2030, encouraging
innovation and substantially increasing the number of research and development workers per 1 million
people and public and private research and development spending”

It contributes towards this goal by suggesting an improvement of an existing tool and shedding
light on how the use of a new technique can be used in real-life situations to improve the way that
interrogations are conducted, in a way that can make them more comfortable and less intimidating for
the person being investigated.
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Chapter 6

Results

1 Introduction

The primary focus of this study was, as previously stated, research. To ascertain the viability of
using the color magnification techniques to extract a person’s heartbeat rate, instead of using more
traditional methods.

In order to do this, I had to test Rubinstein’s code with different videos. Testing with the videos
and parameters provided did indeed yield the expected results.

The video where the magnification of the pulse could be seen more clearly was called ”face” (a
still frame of the video can be observed in Figure 6.1). Using α = 100, ωL = 50/60, ωH = 60/60,
30 fps, and 4 levels, I obtained the expected results. Figure 6.2 depicts two different spatiotemporal
representations of videos. Figure 6.2a represents the video before it was color-amplified, while Figure
6.2b represents the video after it was color-amplified.

In order to obtain this representation, I extracted the central vertical set of pixels from each frame
of the video and joined them all together, so each vertical line in the resulting picture represents one
frame, with time moving from left to right.

In Figure 6.2b, the vertical red lines appeared whenever blood flowed to the subject’s face (making
it red). It is clear to see that the color magnification effect was done successfully.

Figure 6.2c and Figure 6.2d are graphs representing the peaks of intensity over time in the video.
When comparing the spatiotemporal representations of the videos with the graphs, we can clearly see
that when the person’s heart beats, the intensity of the image increases.

I calculated these values by simply computing the average value of each frame over time. Even
though it is not the most robust method, since I am mostly using videos focused on the subject’s
face and with unchanging backgrounds, this is still a valid way to determine the peaks of intensity in
videos.

Despite obtaining success in replicating Rubinstein’s results, the same did not happen when I
initially tried to magnify colors in my own videos. Indeed, when using the recommended parameters,
my videos would be too noisy and I struggled to find the correct parameters that would only magnify
color and not motion.

Although theoretically, we would need to magnify motion and color to implement a functioning

Figure 6.1: A still frame of the face video.
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(a) Spatio-temporal representation of origi-
nal face video.

(b) Spatio-temporal representation of pro-
cessed face video.

(c) Graph representing the peaks of intensity
in the original face video over time.

(d) Graph representing the peaks of intensity
in the processed face video over time.

Figure 6.2
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Figure 6.3: A still frame of the me6 video.

polygraph test, I thought it was a better idea to try and focus on one of them at a time, and I thought
that the color magnification aspect would be easier.

Human heartbeat rates tend to be from 60 to 100 bpm. To convert beatings-per-minute to Hertz,
we have to divide the number in bpm by 60. Therefore, in order to extract the heartbeat rate of a
person from a video, we want to amplify the changes in color in the temporal frequency of 1 to 1.67
Hz, approximately.

I have, however, also tested the outcome when using different values of frequency and will share
my results in the following sections.

2 Results For Static Subjects

To try and amplify color in a subject that is not moving, I have filmed a few clips of myself trying
not to move. However, even when I was trying my best not to move, the natural head bobbing that
occurs when one breathes became perceptible when I magnified the changes in the video. The video
that I am using as an example here is called me6, it only shows the subject in a white background. A
still frame of the me6 video can be seen in Figure 6.3.

In Figure 6.4, we can observe the results of the color magnification. For this case, I used the
parameters α = 120, ωL = 70/60, ωH = 80/60 and a Gaussian pyramid with 5 levels. The graphs
depicting the intensity of the image over time can be seen in Figures 6.4c and 6.4d.

Although the results were not as obvious as in the face example, one can still see the vertical lines
of darker color in the processed video.

As previously stated, the metric I am using is not the most robust. However, if we count the peaks
of intensity in the graph in Figure 6.4d, we can more or less estimate the person’s heartbeat rate.
The video me6 is approximately 15 seconds long, and we can count 13 peaks. If every peak is one
heartbeat, then we have 13 beats in 15 seconds, and therefore the heartbeat rate in bpm would be
around 52bpm.

3 Results For Real-life Subjects

The previous two examples were of subjects that were as still as possible, but if we want to consider
whether this method could be appropriate to measure a person’s heartbeat rate during an interrogation,
then we should test whether this method would still be a valid possibility if the subject is talking or
blinking.

I used two videos to assess how plausible it would be to use this technique, as is, in a real-life
situation. Both videos were extracted from an interview Jodi Arias gave to Fox News, right after she
was convicted of murder in the first degree. Both clips are very short, each around 10 seconds long.
The first one is of Arias blinking and not saying anything, and the second one is of her lying, so she
is talking and moving.

The video where she is not lying is called jodi rest (Figure 6.5a) and the other is called jodi lie
(Figure 6.5b).

It was very difficult to select the parameters for either case. Using too few layers in the Gaussian
pyramid would make the result extremely noisy and useless for this application, too many layers would
make it so the whole image would change colors because too much pooling would be done to the video.
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(a) Spatio-temporal representation of the
video me6 unprocessed.

(b) Spatio-temporal representation of the
video me6 color-magnified.

(c) Graph representing the peaks of intensity
in the unprocessed me6 video over time.

(d) Graph representing the peaks of intensity
in the color-magnified me6 video over time.

Figure 6.4

(a) Still frame of the
jodi rest video.

(b) Still frame of the
jodi lie video.
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Figure 6.6: Graph showing the difference in intensity frame-by-frame between the processed jodi lie
video and the original one.

The pass-band range was also tricky to determine. I did not want to make it too wide to try and
reduce the noise being amplified, but I also could not make it too narrow or I would not be able to
amplify the signals I wanted.

To amplify the video jodi rest, I used the parameters α = 120, ωL = 65/60, ωH = 70/60, a Gaussian
pyramid of 7 layers and a color attenuation of 0.9. Analyzing Figure 6.7a and 6.7b, one can clearly see
that the subject has moved her head during the filming of the video, but the vertical strips can still
be easily observed, and the intensity of the overall image fluctuates in time.

One can count around 12 peaks in the graph 6.7d, and the video jodi rest is around 11 seconds
long. So her heartbeat rate was around 65 bpm.

So now it would be interesting to compare the result obtained from when Arias was lying with
when she was not lying.

To extract her heartbeat when she was lying in the video jodi lie, I used the parameters α = 50,
ωL = 70/60, ωH = 80/60, a Gaussian pyramid of 7 layers and a chroma attenuation of 0.9. Right
away, one can notice the stark difference between the spatiotemporal graph in Figure 6.8a and the
others that came before them.

It is easy to see that the subject has moved her head while talking in the way that the lines are
jagged and discontinuous. However, when analyzing Figure 6.8b, we can still clearly distinguish the
vertical lines that represent the person’s heartbeat.

It must be noted, though, that analyzing the intensity graphs, in this case, is not as straightforward.
The peaks of intensity in the graph shown in Figure 6.8c impact the graph in Figure 6.8d significantly,
and it makes it hard to determine whether it is the change in color on the subject’s face that is causing
that peak or if she has just moved.

For that reason, I thought it would be interesting to subtract one signal from the other, as shown
in Figure 6.6. Because the color magnification process is done by extracting the desired frequency
band and adding it to the original video, it makes sense that if we subtract the intensity in the original
video from the intensity in the processed video, we will obtain the signal that was added.

Using this logic, we can count 20 peaks in the graph depicted in Figure 6.6. The jodi lie video is
17 seconds long. Therefore, her heartbeat rate was approximately 71 bpm, which is more than when
she is not lying.

Of course, this does not prove anything, and many other factors could be playing a role in the
heartbeat rate increase. This video was not extracted from an official polygraph interview, therefore
other factors might have made her more nervous when answering that question. Moreover, the heart-
beat rate was very roughly estimated. However, this shows that it is a very interesting idea that could
be used in the future.
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(a) Spatio-temporal representation of the
video jodi rest unprocessed.

(b) Spatio-temporal representation of the
video jodi rest color-magnified.

(c) Graph representing the peaks of intensity
in the unprocessed jodi rest video over time.

(d) Graph representing the peaks of intensity
in the color-magnified jodi rest video over
time.

Figure 6.7
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(a) Spatio-temporal representation of the
video jodi lie unprocessed.

(b) Spatio-temporal representation of the
video jodi lie color-magnified.

(c) Graph representing the peaks of intensity
in the unprocessed jodi lie video over time.

(d) Graph representing the peaks of inten-
sity in the color-magnified jodi lie video over
time.

Figure 6.8
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Chapter 7

Conclusion

In this study, I investigated the idea of using video to extract the heartbeat rate and breathing rates
from a suspect in an investigative setting. Through research and analysis, I have gained valuable
insight into the subject of signal magnification and its applications.

The results obtained in Section 6 are promising, and while not perfect, they show that it is indeed
possible to extract valuable information from videos, even when the subjects are moving slightly and
talking.

However, despite the contributions and insights gained from this study, it is important to highlight
that there are many limitations to be considered.

First, the pass-band ranges and number of layers have to be manually selected.
Second, the video has to be of sufficiently high quality, and the subject has to be the focus of the

footage.
Third, movement and color are amplified simultaneously depending on the pass-band frequency,

which is not always desirable.
Fourth, the sample size in which tests were performed was small.
And finally, the magnification does not work if the subject moves too much or if the video is not

smooth.
All of these points, coupled with the fact that the subject’s heartbeat rate is not the only information

that is used when conducting lie detection tests, make the use of these techniques, as-is, impractical
in any real-life situations.

However, some other researchers have developed some techniques[13] to detect information in real-
time that are promising, and that could show good results if applied in this context.

Despite its limitations, the color and motion magnification techniques described in this thesis are
powerful tools that show great potential in many fields of study, including forensic science. I hope that
this thesis research will serve as a foundation for further investigations and contribute to evidence-based
decision-making in the future.
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Chapter 8

Further Work

Despite having learned much from this study, there are still many interesting topics that I would have
liked to expand on should I have had more time.

• Implementation of a more robust heartbeat rate extraction technique, as described by Rubinstein[9]
and Wu in his 2013 Master Thesis ”Eulerian Video Processing and medical applications”[13].

• Implementation of the motion amplification algorithm using Laplacian pyramids instead of Gaus-
sian.

• Testing the algorithm on footage of a polygraph interviewee, with the heartbeat information to
verify

• Extracting heartbeat in real-time.

• Making the Python version of the code work, to make the development of a GUI easier in the
future.
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