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UNIVERSITY OF PALERMO

Abstract
Department of Mathematics and Computer Sciences

Doctor of Philosophy

Multigraded Syzygies of Monomial Ideals

by Antonino Ficarra

In this Thesis, we broadly consider homogeneous ideals, with a special focus on mono-
mial ideals and ideals with (componentwise) linear powers. Three main topics are
treated. Firstly, the concept of t-spread monomial ideal introduced by Ene, Herzog
and Qureshi is generalized to vector-spread monomial ideal. The algebraic and ho-
mological property of this class are investigated. In particular, the Koszul cycles are
determined and the algebraic shifting theory is extended for this class. Secondly,
we consider the concept of homological shift ideals HSi(I) of a monomial ideal I.
Roughly speaking, HSi(I) is the monomial ideal whose generators correspond to the
multigraded pieces of the ith syzygy module of I. In particular HS0(I) = I. The
natural broad question we ask is: what are the properties of I shared by all HSi(I)?
A driving motivation for studying homological shift ideals comes from the Bandari�
Bayati�Herzog conjecture, that predicts that for a polymatroidal ideal I, HSi(I) is
polymatroidal, for all i. We show that the conjecture is true for HS1(I) and for all
polymatroidal ideals generated in degree 2. Homological shift ideals of edge ideals
and cover ideals of �nite simple graphs are also considered. We show that for the fun-
damental class of Cohen�Macaulay very well�covered graphs G, HSi(J(G)) has linear
quotients for all i, and we conjecture that the same is true for all powers of J(G). This
conjecture is settled for bipartite graphs by using the theory of Hibi ideals, and for
whisker graphs by using Rees algebras methods. Finally, our third topic is the study
of the asymptotic behaviour of the v-number of homogeneous ideals. This important
invariant was introduced by Cooper et all and further studied by Grisalde, Reyes and
Villarreal, in connection with the theory of projective Reed�Muller�type codes and
Algebraic Geometry. The v-number of I is the smallest degree d of a homogeneous
polynomial f such that (I : f) is an associated prime of I. Inspired by Brodmann
theorem on the asymptotic stability of the set associated primes of the powers Ik of an
ideal in a Noetherian ring, and also by the Cutkosky�Herzog�Trung and Kodiyalam
results on the asymptotic linearity of the Castelnuovo�Mumford regularity reg(Ik) of
powers of a homogeneous ideal I in a polynomial ring, we ask if the function v(Ik)
is linear for k ≫ 0. We call the function v(Ik), the v-function of I. It measures the
asymptotic homogeneous growth of the primary decomposition of I. Under reasonable
assumptions, we show that v(Ik) is indeed linear, and we conjecture that the same is
true in general. The proof of these results uses Rees algebra methods and linear pro-
gramming arguments. For monomial ideals in two variables, edge ideals of cochordal
graphs, polymatroidal ideals and Hibi ideals, we compute explicitly the v-function.
Finally we conjecture that for an ideal I with linear powers, we have v(Ik) = α(I)k−1
for all k ≥ 1, where α(I) is the initial degree of I. This conjecture is settled for edge
ideals with linear powers, polymatroidal ideals and Hibi ideals.
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Chapter 1

Introduction

The general motif of this dissertation is the study of homological and algebraic proper-
ties of homogeneous ideals, with a particular focus on monomial ideals and ideals with
(componentwise) linear powers. Monomial ideals gradually came into fashion after the
pioneering work of Hochster [105] and after Stanley [144, 145] successfully solved the
upper bound conjecture for spheres, by using some of the results of Hochster's stu-
dent, Reisner. This was an important conjecture belonging to the realm of topology
and combinatorics. So, back then, it came as a surprise that its solution involved
Commutative Algebra and, in particular, the theory of Cohen�Macaulay rings.

Nowadays, many of the current trends in Commutative Algebra are deeply inter-
twined with Combinatorics and Monomial Ideals. In particular, in this dissertation,
we mainly discuss three topics: vector�spread strongly stable ideals together with an
extension of algebraic shifting theory, homological shift ideals with a particular at-
tention to polymatroidal ideals, and edge and cover ideals, and �nally the v-number
of homogeneous ideals and the asymptotic behaviour of the v-number of powers of
homogeneous ideals. Next, we describe the structure of the thesis.

In Chapter 2, we summarize some basic facts from Commutative Algebra. In
particular, we de�ne graded rings, minimal free resolutions, graded Betti numbers,
Cohen�Macaulay, Gorenstein and complete intersection rings. In Section 2.4, we
survey what is known in the literature about the minimal free resolutions of monomial
ideals. We include the Taylor resolution, the Eliahou�Kervaire resolution, Koszul
cycles, ideals with linear quotients and Betti splittings.

Combinatorial aspects of monomial ideals are discussed in Chapter 3, mainly in the
framework of Stanley�Reisner rings and Alexander duality. The important technique
of polarization (Section 3.1) allows us to concentrate our attention on squarefree
monomial ideals. Hochster's formula is a powerful tool that relates the graded Betti
numbers of a squarefree monomial ideal to simplicial (co)homology. Edge ideals and
polymatroidal ideals are investigated in Sections 3.3 and 3.4.

Hereafter, unless otherwise stated, I is a graded ideal of the standard graded
polynomial ring S = K[x1, . . . , xn] with coe�cients in a �eld K.

The materials from Chapter 4 are taken from [63]. We introduce vector�spread
strongly stable monomial ideals. This class is a vast generalization of (strongly) stable
ideals, whose various extensions are considered by a huge number of researchers. Our
generalization is that of t-spread strongly stable ideal introduced by Ene, Herzog and
Qureshi [63]. We compute the Koszul cycles of vector�spread strongly stable ideals
and therefore we construct the minimal free resolution.

Theorem 4.2.8 (Ficarra, 2023 [63, Theorem 3.8]). Let I ⊂ S be a t-spread strongly
stable ideal. Then, for all i ≥ 1, the K-vector space Hi(x;S/I) has as a basis the
homology classes of the Koszul cycles

e(u;σ) such that u ∈ G(I), σ ⊆ [max(u)− 1] \ suppt(u), |σ| = i− 1.



2 Chapter 1. Introduction

As a consequence, we can compute the graded Betti numbers.

Corollary 4.4.2 Let I be a t-spread strongly stable ideal of S. Then,

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− 1−

∑j−1
ℓ=1 tℓ

i

)
, for all i, j ≥ 0.

In particular, the graded Betti numbers of a vector-spread strongly stable ideal I ⊂ S
do not depend upon the characteristic of the �eld K.

We extend the classical Algebraic Shifting theory developed by Kalai and others
in this general frame (Section 4.4). This theory was recently used to generalize the
Bigatti�Hulett theorem [89, Theorem 7.3.1] in the context of vector�spread ideals [37].

In Chapter 5, we consider homological shift ideals [101]. Let I ⊂ S be a monomial
ideal, then the ith homological shift ideal of I is the monomial ideal

HSi(I) = (xa : βi,a(I) ̸= 0).

Here, if a = (a1, . . . , an) ∈ Zn≥0 we set xa = xa11 · · ·xann , and βi,a(I) denotes a multi-
graded Betti number of I. This concept that was introduced by Herzog, Moradi,
Rahimbeigi and Zhu in [101], is motivated by a longstanding conjecture about poly-
matroidal ideals:

Conjecture 6.1.1 (Bandari�Bayati�Herzog [16, 101]). Let I ⊂ S be a polymatroidal
ideal. Then all homological shift ideals HSj(I) are again polymatroidal, for all j ≥ 0.

One of the main result we prove is

Theorem 6.1.2 (Ficarra, 2022 [60, Theorem 2.2]). Let I ⊂ S be a polymatroidal
ideal. Then HS1(I) is polymatroidal.

The conjecture is also true in the following cases:

(i) for squarefree polymatroidal ideals, proved by Bayati [16] (Corollary 6.1.5),

(ii) for polymatroidal ideals that satisfy the strong exchange property, proved by
Herzog, Moradi, Rahimbeigi and Zhu [101] (Corollary 6.1.6),

(iii) for all polymatroidal ideals generated in degree 2, proved by Ficarra and Herzog
[66] (Theorem 7.3.3).

More generally, we have also the following result.

Theorem 5.1.4 (Ficarra�Herzog, 2023 [66, Theorem 1.3]). Let I ⊂ S be an equigen-
erated monomial ideal having linear quotients. Then HS1(I) has linear quotients.

This result is the best possible for ideals with linear quotients. Indeed, if I is
equigenerated with linear quotients, then HS2(I) may fail to have linear quotients,
not even linear resolution (Example 7.1.1). Whereas, if I has linear quotients but it is
generated in more than one degree, then HS1(I) need not to have linear quotients, not
even componentwise linear (Example 5.1.5). However, we expect that if I has a linear
resolution, and not necessarily linear quotients, then HS1(I) has linear quotients.

Let I ⊂ S be a monomial ideal with d-linear resolution. Then

HSn−1(I) = x1 · · ·xn · soc(I),

where soc(I) = (I : m)⟨d−1⟩ is the socle of I and m = (x1, . . . , xn) (Corollary 5.3.2).
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By symmetry, one would expect that HSn−1(I) has liner resolution (or linear
quotients). However, this needs not to be the case. We provide such an example at
pages 139�140. On the other hand, if I is a polymatroidal ideal, Conjecture 6.1.1 in
particular would imply that HSn−1(I) and thus soc(I) is polymatroidal.

Conjecture 6.2.1 (Bandari�Herzog, 2013 [13], Chu�Herzog�Lu, 2021 [27]). Let I ⊂
S be a polymatroidal ideal. Then soc(I) is polymatroidal.

In this case we have only partial results, but we know that this latter conjecture
holds in the following cases: n ≤ 3, I is generated in at most degree 2, I is a squarefree
polymatroidal ideal, I is a principal Borel ideal, I is a PLP�polymatroidal ideal, I is
a LP�polymatroidal ideal.

In Chapters 7, 8 and 9 we study the homological shifts of edge ideals and cover
ideals of �nite simple graphs [66, 35, 36].

For an edge ideal I(G) with linear resolution, it is not necessarily true that
HSi(I(G)) has linear resolution as well, for all i (Example 7.1.1). On the other hand,
we show that if the complementary graph Gc of G is a proper interval graph or a
forest, then HSi(I(G)) has linear resolution, indeed even linear quotients, for all i
(Theorems 7.1.2 and 7.2.1).

As a conclusion of Chapter 7, we prove the following.

Theorem 7.3.3 (Ficarra�Herzog, 2023 [66, Theorem 4.5]). Let I ⊂ S be a polyma-
troidal ideal generated in degree two. Then, HSk(I) is polymatroidal, for all k ≥ 0.

Next, we consider cover ideals J(G) of �nite simple graphs G. By Alexander
duality, J(G) has a linear resolution if and only if I(G) is Cohen�Macaulay. In
particular, I(G) is height�unmixed. By Gitler and Valencia [76, Corollary 3.4] we
have

2 height(I(G)) ≥ |V (G)|.

When equality holds, G is called a very well�covered graph. We say that the graph
G is Cohen�Macaulay if I(G) is a Cohen�Macaulay ideal. All Cohen�Macaulay very
well�covered graphs have been characterized by Crupi, Rinaldo and Terai [40].

We consider the problem of determining all graphs G such that HSi(J(G)) has
linear resolution, or even linear quotients, for all i. From the considerations above,
the �rst case to study is when G is a Cohen�Macaulay very well�covered graph. In
[35], we posed the following conjecture.

Conjecture 8.4.4 (Crupi�Ficarra, 2023 [35, Conjecture 4.4]). Let G be a Cohen�
Macaulay very well�covered graph with 2n vertices. Then HSk((J(G))

ℓ) has linear
quotients with respect to the lexicographic order induced by xn > yn > xn−1 > yn−1 >
· · · > x1 > y1, for all k ≥ 0, and all ℓ ≥ 1.

This conjecture is widely open. Note that it would imply that J(G) has linear
powers. However in [35] and [36] we were able prove the following.

(i) The conjecture holds for ℓ = 1 (Theorem 8.4.1).

(ii) The conjecture holds for all Cohen�Macaulay bipartite graphs (Corollary 8.4.11).

(iii) The conjecture holds for all whisker graphs (Theorem 9.3.8).

For whisker graphs, we have more results concerning the powers of J(G). Indeed,
we proved that these ideals satisfy the ℓ-exchange property (Theorem 9.3.5), and we
computed the analytic spread, the limit depth and a bound for the depth stability
(Theorem 9.3.9).
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The last topic we study is the v-number of homogeneous ideals. Let I ⊂ S be a
homogeneous ideal. Then, the graded version of the primary decomposition theorem
for Noetherian rings says that for each associated prime p ∈ Ass(I) there exists a
homogeneous element f ∈ S such that (I : f) = p. Thus, it is natural to de�ne the
following invariants. Denote by Sd the dth graded component of S. The v-number of
I at p, denoted by vp(I), is de�ned as the least integer d such that there exists f ∈ Sd
with (I : f) = p. Whereas, the v-number of I is de�ned as

v(I) = min{d : there exists f ∈ Sd such that (I : f) ∈ Ass(I)}.

The concept of v-number �rst appeared in the work of Cooper et all [31], in
connection to Algebraic Geometry, projective Reed�Muller�type codes and minimum
distance functions. It was further studied in [6, 29, 83, 112, 111, 140, 137].

Inspired by results of Brodmann [21, 22], Ratli� [139], Cutkosky, Herzog, Trung
[41], Kodiyalam [118], and many others, about the asymptotic behaviour of powers of
homogeneous ideals, we investigate the asymptotic behaviour of the function v(Ik).

By a classical result due to Brodmann, we have Ass(Ik) = Ass(Ik+1) for all k ≫ 0,
and we call this common set of associated primes the stable set of associated primes of
I, denoted by Ass∞(I). For a �nitely generated graded S-module M =

⊕
dMd ̸= 0,

we set α(M) = min{d :Md ̸= 0} and ω(M) = max{d : (M/mM)d ̸= 0}.
Theorem 10.2.1 (Ficarra�Sgroi, 2023 [71]). Let I ⊂ S = K[x1, . . . , xn] be a graded
ideal, and let p ∈ Ass∞(I). Then, the following holds.

(a) For all k ≥ 1, we have

α((Ik : p)/Ik) ≤ vp(I
k) ≤ ω((Ik : p)/Ik).

(b) The functions α((Ik : p)/Ik), ω((Ik : p)/Ik) are linear in k for k ≫ 0.

(c) There exist eventually linear functions f(k) and g(k) such that

f(k) ≤ v(Ik) ≤ g(k), for all k ≫ 0.

As a second main result, we prove that

Theorem 10.2.6 (Ficarra�Sgroi, 2023 [71]). Let I ⊂ S = K[x1, . . . , xn] be a graded
ideal. Suppose that

(a) either Ass∞(I) = Max∞(I) or

(b) for all p ∈ Ass∞(I) and all k ≫ 0, (Ik : p)/Ik is generated in a single degree.

Then, vp(I
k), for all p ∈ Ass∞(I), and v(Ik) are linear functions in k for k ≫ 0.

We expect that, in general, the functions vp(I
k) (p ∈ Ass(I)) and v(Ik) are linear

in k for k ≫ 0. We also study such functions for monomial ideals in two variables,
edge ideals with linear resolution, polymatroidal ideals and Hibi ideals.

During the PhD program, I was lucky enough to write several papers [3, 4, 5, 32,
33, 34, 35, 36, 37, 38, 39, 55, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73] with many wonderful collaborators and colleagues. I could not discuss all these
articles in this dissertation. However, some of the topic studied include: t-spread
lexsegment ideals, characterizations of extremal Betti numbers, squarefree powers,
canonical traces, nearly Gorenstein rings, determinantal rings, binomial edge ideals,
exterior algebras, asymptotic componentwise linearity, toric algebras of 1-dimensional
simplicial complexes, Simon conjecture, and Fitting ideals, among others.
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Chapter 2

Multigraded structures and

monomial ideals

In this �rst chapter, we summarize the basic facts from commutative algebra and
combinatorics needed in the later parts of the thesis. We begin with a quick review
on graded algebras and graded Betti numbers. Cohen�Macaulayness, gorensteiness
and complete intersections algebras are discussed. Monomial ideals are discussed from
the algebraic viewpoint. The problem of constructing the minimal (multi)graded free
resolution was raised by Kaplansky in sixties. Besides the Taylor complex [146],
which is in general a non minimal resolution for a monomial ideal, historically the
�rst important class of monomial ideals whose minimal resolution was successfully
constructed is that of stable ideals [50]. This resolution is nowadays called the Eliahou�
Kervaire resolution. The method of Koszul cycles was used by Aramova and Herzog
[10], who recovered in a more simple fashion the Eliahou�Kervaire resolution and
later with Hibi constructed a similar resolution for squarefree stable ideals. Later on,
Charalambous and Evans realized that both the Taylor resolution and the Eliahou�
Kervaire resolution can be constructed by iterated mapping cones [26]. Inspired by
this discovery, Herzog and Takayama introduced monomial ideals with linear quotients
[100]. This notion is the algebraic counterpart of the concept of shellability from
simplicial complexes theory. Stable, squarefree stable and polymatroidal ideals are
examples of ideals with linear quotients. More recently, Francisco, Há and Van Tuyl,
by introducing the concept of Betti splitting, characterized when the mapping cone
construction produces a minimal free resolution of a monomial ideal [74]. Ideals with
linear quotients are a special case of a Betti splitting.

2.1 Graded algebras and Betti numbers

De�nition 2.1.1 A commutative ring R is called (positively) graded if there exists a
family (Rn)n≥0 of additive subgroups of R, called a graduation of R, such that

(i) R =
⊕

d≥0Rd;

(ii) For all d, h ≥ 0 we have that RdRh ⊆ Rd+h. That is, for all x ∈ Rd and all
y ∈ Rh, then xy ∈ Rd+h.

If u ∈ Rd, we say that u is a homogeneous element of degree d and we set deg(u) = d.

The polynomial ring S = K[x1, . . . , xn] with coe�cients in a �eldK is graded if we
put deg(xi) = 1 for all i. In this case, we say that S is the standard graded polynomial
ring. Note that Sd has a K-basis consisting of all monomials of S of degree d.
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We denote by Mon(S) the set of all monomials of S. In particular, any polynomial
f ∈ S can be uniquely written as a sum of monomials:

f =
∑

u∈Mon(S)

auu,

with only �nitely many au ∈ K non zero, and with u ∈ Mon(S). The support of f ,
supp(f), is the set of monomials u ∈ Mon(S) such that au ̸= 0.

For instance, if S = K[x, y, z], then

S3 = x3K ⊕ x2yK ⊕ x2zK ⊕ xy2K ⊕ xyzK ⊕ xz2K ⊕ y3K ⊕ y2zK ⊕ yz2K ⊕ z3K.

If n is an integer, set [n] = {1, 2, . . . , n}. For a monomial u = xa11 · · ·xann ∈ S, the
integral vector a = (a1, . . . , an) is called the multidegree of u. We also write u = xa,
in particular, for a = 0 = (0, . . . , 0), x0 = 1; whereas deg(u) = a1 + · · · + an is the
degree of u. It is customary to identify the multidegree a with the monomial xa.

Note that S is Zn-graded, that is, multigraded. Indeed S =
⊕

a Sa, where Sa is
the K-vector space with unique generator xa and SaSb ⊆ Sa+b.

De�nition 2.1.2 Let R be a commutative ring and A a R-algebra. A is called
(positively) graded if there exists a family (Ad)d≥0 of R-submodules of A, such that

(i) A =
⊕

d≥0Ad;

(ii) For all d, h ≥ 0 we have AdAh ⊆ Ad+h, that is, for all x ∈ Ad and all y ∈ Ah
then xy ∈ Ad+h.

De�nition 2.1.3 Let A be a graded R-algebra and I a two-sided ideal of A. The
ideal I is called a graded ideal, or also a homogeneous ideal, if

I =
⊕
d≥0

Id,

with Id = I ∩Ad, for all d ≥ 0, where Ad is the dth graded piece of A.

Observe that IdIh ⊆ Id+h, thus (Id)d≥0 is a graduation of I and I is graded as a
R-subalgebra of A.

Proposition 2.1.4 Let A be a graded R-algebra, and let I be a graded ideal of A.
Then A/I is a graded R-algebra, whose graded pieces are, for all d ≥ 0,

(A/I)d = (Ad + I)/I.

Proposition 2.1.5 Let A be a graded R-algebra. A two-sided ideal I of A is graded
if and only if is generated by homogeneous elements.

We concentrate our attention on �nitely generated graded K-algebras, where K is
a �eld. Despite the apparent generality of this notion, these algebras admit a familiar
presentation. Indeed, one has

Proposition 2.1.6 Let A be a �nitely generated graded K-algebra, with K a �eld.
Then, there exist a polynomial ring S = K[x1, . . . , xn] and a homogeneous ideal I of
S such that A ∼= S/I as K-algebras.
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From now on, let S = K[x1, . . . , xn] be the standard graded polynomial ring with
K a �eld. The graded maximal ideal, or irrelevant ideal, of S is m = (x1, . . . , xn). The
de�nition of graded S-modules is analogous to that of graded ring.

Finitely generated graded K-algebras S/I with irrelevant ideal m and local rings
(R,m) share many similarities. The role of m is analogous in both settings. Indeed,
as in the case of local rings, a graded version of Nakayama Lemma holds.

Proposition 2.1.7 (Nakayama Lemma, graded version). Let M a �nitely generated
graded S-module and let m1, . . . ,mr ∈ M . If m1 + mM, . . . ,mr + mM generate
M/mM , then m1, . . . ,mr generate M .

De�nition 2.1.8 Let M,N be graded S-modules. A S-map φ : M → N is called a
graded homomorphism if φ(Mi) ⊆ Ni, for all i.

We �x the category M whose objects are �nitely generated graded S-modules,
and whose morphism are graded homomorphisms. As in the case of a local ring, we
are going to associate to any object M ∈ M some algebraic invariants, called the
graded Betti numbers: βi,j(M).

An arbitrary S-map f : M → N , with M,N ∈ M is in general non graded.
Sometimes, it is convenient to change the grading on M in order to make f into
a graded homomorphism. We can shift the degrees by an integer d as follows. If
M =

⊕
i≥0Mi, the corresponding module obtained by shifting the degrees by d is

M(d) =
⊕
i≥0

M(d)i,

with M(d)i = Mi+d. Observe that if x ∈ Mi, then x is a homogeneous element of
degree i− d in M(d). Indeed, x ∈M(d)i−d =Mi−d+d =Mi.

Given an object of M ∈ M, we can construct a graded free resolution of M , that
is an exact complex

G : · · · hi+1−−−−→ Gi
hi−−→ · · · h2−−→ G1

h1−−→ G0
h0−−→M → 0

such that

(i) Gi ∈M, that is, the Gi's are �nitely generated graded S-modules;

(ii) the morphism hi are graded.

Graded free resolutions exist. Let M ∈ M, and let m1, . . . ,mr homogeneous
generators of M with deg(mi) = ai, for all i. Let F0 =

⊕r
i=1 Sei with deg(ei) = ai.

As F0 is a free S-module, we can de�ne the graded surjective S-map d0 : F0 →
M by setting d0(ei) = mi. Observe that F0

∼=
⊕r

i=1 S(−ai), thus F0 ∈ M. Let
K0 = ker(d0), then K0 ∈ M. Indeed K0 is graded and �nitely generated, since S is
noetherian and F0 is �nitely generated. We have the short exact sequence

0→ K0
i0−−→ F0

∼=
r⊕
i=1

S(−ai)
d0−−→M → 0,

with i0 the graded S-map given by inclusion. We can repeat this construction for K0.
Iterating the construction for all successive kernels Ki, i ≥ 0, we get a graded free
resolution of M

F : · · · → Fi+1
di+1−−−→ Fi → · · · → F2

d2−−→ F1
d1−−→ F0

d0−−→M → 0.
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Clearly, many (non isomorphic) graded free resolution exist.

De�nition 2.1.9 LetR be a ring andM a �nitely generatedR-module. The elements
m1, . . . ,mr ∈M form a minimal generating set for M if m1, . . . ,mr generate M and
no proper subset of them generate M .

Next lemma is pivotal and shows how to detect a minimal generating set.

Lemma 2.1.10 Let m1, . . . ,mr generators of a �nitely generated graded S-module
M . Let F0 =

⊕r
i=1 Sei and ε : F0 →M a surjective S-map with ε(ei) = mi, for all i.

The following facts are equivalent:

(i) m1, . . . ,mr form a minimal generating set of M ;

(ii) Ker(ε) ⊆ mF0.

De�nition 2.1.11 Let M ∈ M. A minimal graded free resolution of M is a graded
free resolution

F : · · · → Fi+1
di+1−−−→ Fi → · · · → F2

d2−−→ F1
d1−−→ F0

d0−−→M → 0

such that Im(di+1) ⊆ mFi, for all i ≥ 0.

A minimal graded free resolution of M ∈ M exists. Just repeat the construction
of a graded free resolution ofM , choosing at each step a minimal generating set of the
kernels Ki. By Lemma 2.1.10, this is equivalent to Im(di+1) ⊆ mFi, for all i ≥ 0. In
particular, this is equivalent to the fact that the matrices describing the di�erentials
di have entries in m.

Theorem 2.1.12 Let M be a �nitely generated graded S-module and let F be a min-
imal free resolution of M , with Fi =

⊕
j S(−j)βi,j . Then, for all i, j,

βi,j = dimK TorSi (K,M)j .

Thus, the following algebraic invariants are well de�ned,

De�nition 2.1.13 Let M ∈M. The graded Betti numbers of M are de�ned as

βi,j(M) = dimK TorSi (K,M)j .

The ith total Betti number of M is βi(M) =
∑

j βi,j(M).

Observe that if M ∼= N are isomorphic objects ofM, then βi,j(M) = βi,j(N), for
all i, j ≥ 0. Indeed, TorSi (K,M)j ∼= TorSi (K,N)j , for all i, j ≥ 0..

Not only the graded Betti numbers of M ∈M are unique, but also

Proposition 2.1.14 Let M a �nitely generated graded S-module and let F, G be two
minimal graded free resolutions of M . Then, F, G are isomorphic. That is, for all
i there exist graded S-isomorphisms αi : Fi → Gi such that the following diagram is
commutative

F : · · · // Fi+1

αi+1

��

di+1 // Fi

αi

��

// · · · // F2

α2

��

d2 // F1

α1

��

d1 // F0

α0

��

d0 //M

idM
��

// 0

G : · · · // Gi+1
∂i+1

// Gi // · · · // G2
∂2
// G1

∂1
// G0

∂0
//M // 0
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If M ∈M, the initial degree of M is α(M) = min{d :Md ̸= 0}.

Proposition 2.1.15 Let M a �nitely generated graded S-module. Then,

βi,ℓ(M) = 0, for all i ≥ 0 and all ℓ < i+ α(M).

Proof. Let d = α(M) and let F be a minimal graded free resolution of M .
We proceed by induction on i ≥ 0. For i = 0, β0,j(M) is the number of homoge-

neous generators of degree j of a minimal generating set of M . Thus, β0,j(M) = 0
whenever j < i+ d = d. Assume that the statement holds for i > 0, that is

βi,ℓ(M) = 0, for all ℓ < i+ d.

By inductive hypothesis, βi,ℓ(M) = 0, for all ℓ < i + d. Thus, the degrees of the
elements of a minimal generating set of Fi are ≥ i + d. By the minimality of F,
Im(di+1) ⊆ mFi, and as any element of m = (x1, . . . , xn) has degree ≥ 1, the degrees
of the elements of Im(di+1) are ≥ i + 1 + d. Since di+1 is a homogeneous map, the
preimages of the generators of Im(di+1) are generators of Fi+1 with degrees ≥ i+1+d.
Thus, βi+1,ℓ(M) = 0, for all ℓ < (i+ 1) + d, as desired. □

Corollary 2.1.16 Let M a �nitely generated graded S-module. Then,

βi,ℓ(M) = 0, for all i ≥ 0 and all ℓ < i.

For ℓ < i, the Betti number βi,ℓ(M) is zero. So, it is natural to collocate the graded
Betti numbers in a table whose (i, j)th entry is the graded Betti number βi,i+j(M).
We call this diagram, the Betti table or Betti diagram of M ,

i

j βi,i+j(M)

pd(M)

reg(M)
(k3, ℓ3)

(k2, ℓ2)
(k1, ℓ1)

Figure 2.1: Betti table of the module M ∈M.

The Betti numbers outside the area bounded by the axis and the dashed line
are zero. The Betti numbers in the entries (k1, ℓ1), (k2, ℓ2), (k3, ℓ3), . . . are important
invariants of M . Precisely,

De�nition 2.1.17 (Bayer�Charalambous�Popescu, 1999 [18]). LetM ∈M a graded
�nitely generated S-module. A graded Betti number βk,k+ℓ(M) is called extremal if

(a) βk,k+ℓ(M) ̸= 0,

(b) βi,i+j(M) = 0 for all (i, j) such that i ≥ k, j ≥ ℓ and (i, j) ̸= (k, ℓ).
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In such a case, the pair (k, ℓ) is called a corner of the Betti table ofM , or more simply
a corner of M . The extremal Betti numbers of M can be ordered canonically

βk1,k1+ℓ1(M), βk2,k2+ℓ2(M), . . . , βkr,kr+ℓr(M), (2.1)

with k1 > k2 > · · · > kr and ℓ1 < ℓ2 < · · · < ℓr.

Let M ∈M. Then, the following algebraic invariants of M are de�ned.

- The projective dimension of M is the integer

pd(M) = max{i : βi,j(M) ̸= 0, for some j}.

By Hilbert syzygies's Theorem we have pd(M) ≤ n.

- The (Castelnuovo-Mumford) regularity of M is the integer

reg(M) = max{j : βi,i+j(M) ̸= 0, for some i}.

Note that reg(M) ≥ α(M).

If M is generated in a single degree and reg(M) = α(M), we say that M has a
d-linear resolution. Let M⟨d⟩ be the S-submodule of M generated by Md. We
say that M is componentwise linear if M⟨d⟩ has a linear resolution for all d.

- The depth of M is the common length of any maximal regular sequence on
M . Recall that f = f1, . . . , fm is a regular sequence on M if the multiplication
map by fi, M/(f1, . . . , fi−1)M → M/(f1, . . . , fi−1)M , is injective for all i, and
M/(f)M ̸= 0. By the famous Auslander�Buchsbaum formula we have that
depth(M) + pd(M) = n. Thus,

depth(M) = min{i : βn−i,j(M) ̸= 0, for some j}.

Remark 2.1.18 To know the minimal graded free resolution of a homogeneous ideal
I of S is equivalent to know that of S/I. Indeed, βi,j(I) = βi+1,j(S/I) for all i and j. In
particular, pd(S/I) = pd(I)+1, depth(S/I) = depth(I)−1 and reg(S/I) = reg(I)−1.

Let dim(M) be the Krull dimension of M ∈M. We always have

depth(M) ≤ dim(M).

De�nition 2.1.19 Let M ∈M.

(a) We say that M is Cohen�Macaulay if depth(M) = dim(M).

(b) Suppose that M is Cohen�Macaulay. Then, the Cohen�Macaulay type of M is
the number

CM-type(M) = βpd(M)(M).

We say that M is Gorenstein if M is Cohen�Macaulay and CM-type(M) = 1.

(c) We say that M is complete intersection if M ∼= S/I where I = (f) is an ideal
generated by a homogeneous regular sequence f on S.

The following hierarchy holds:

complete intersection ⇒ Gorenstein ⇒ Cohen�Macaulay.
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2.2 The Koszul complex

To compute the graded Betti numbers one can use the Koszul complex [89]. Let
f = f1, . . . , fm be a sequence of elements of S. The Koszul complex K·(f ;S) attached
to the sequence f is de�ned as follows: let F be the free S-module with basis e1, . . . , em.

- We let Ki(f ;S) =
∧iF , for all i = 0, . . . ,m. A basis of the free S-module

Ki(f ;S) is given by the wedge products eτ = ek1 ∧ ek2 ∧ · · · ∧ eki , where τ =
{k1 < k2 < · · · < ki} ⊆ [m], with deg(uτ ) = |τ | = i.

- We de�ne the di�erential ∂i : Ki(f ;S)→ Ki−1(f ;S), i = 1, . . . ,m− 1 by

∂i(eτ ) =

i∑
ℓ=1

(−1)σ(τ ;kℓ)fkℓeτ\{kℓ},

where σ(τ ; kℓ) = {j : 1 ≤ j < ℓ}.

We order the wedge products lexicographically, as follows:
Let σ = {k1 < k2 < · · · < kp}, τ = {ℓ1 < ℓ2 < · · · < ℓq} ⊆ [m], we de�ne σ > τ if
p = q and for some j ∈ [p] one has

k1 = ℓ1, k2 = ℓ2, . . . , kj−1 = ℓj−1 and kj < ℓj .

If σ > τ , then we set eσ > eτ . For example,

e1 ∧ e2 > e1 ∧ e3 > e1 ∧ e4 > e2 ∧ e3 > e2 ∧ e4 > e3 ∧ e4.

Let I ⊂ S be an ideal, and let ε : S → S/I be the canonical epimorphism. We set
x = x1, . . . , xn. Koszul homology allows us to calculate the graded Betti numbers.

Indeed, if M ∈M, we de�ne

K·(f ;M) = K·(f ;S)⊗S M.

Then, we have the isomorphism Hi(x;M)j ∼= TorSi (K,M)j [89, Corollary A.3.5] and
consequently we have βi,j(M) = dimK Hi(x;M)j for all i and j.

Moreover, for a homogeneous ideal I ⊂ S, we have

βi−1,j(I) = βi,j(S/I) = dimK Hi(x;S/I)j for all i ≥ 1, j ≥ 0. (2.2)

Again, let M ∈M. In particular, we have

- pd(M) = max{i : Hi(x;M)j ̸= 0, for some j} = max{i : Hi(x;M) ̸= 0}.

- depth(M) = n−max{i : Hi(x;M) ̸= 0}.

- reg(M) = max{j : Hi(x;M)i+j ̸= 0, for some i}.

The following algebraic characterization holds.

Theorem 2.2.1 Let f = f1, . . . , fm be a sequence of elements of S and let I = (f).
Then, the following conditions are equivalent.

(a) f is a regular sequence on S.

(b) K·(f ;S/I) is the minimal free resolution of S/I.
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2.3 Monomial Ideals

Let S = K[x1, . . . , xn] be the standard graded polynomial ring in n indeterminates,
with K a �eld. Let u = xa11 x

a2
2 · · ·xann ∈ S, u ̸= 1, be a monomial. Then:

- deg(u) = a1 + a2 + · · ·+ an is called the degree of u,

- degxi(u) = max{j : xji divides u} = ai is called the xi-degree of u,

- supp(u) = {i : xi divides u} is called the support of u.

- max(u) = max(supp(u)) = max{i : xi divides u} is called the maximum of u,

- min(u) = min(supp(u)) = min{i : xi divides u} is called the minimum of u.

For convenience we set min(1) = max(1) = n, for the monomial 1 ∈ S.

By Mon(S) we denote the set of all monomials of S. Whereas, Monℓ(S) denotes
the set of all monomial of S having degree ℓ.

An ideal I of S is called a monomial ideal, if I can be generated by monomials.
We denote by G(I) the unique minimal set of monomial generators of I. Whereas,
for an integer ℓ ≥ 0, we set G(I)ℓ = {u ∈ G(I) : deg(u) = ℓ}.

Let I ⊂ S be a proper monomial ideal. The support of I is the set

supp(I) =
⋃

u∈G(I)

supp(u) = {i : xi divides u, for some u ∈ G(I)}.

We say that I is fully supported if supp(I) = {1, 2, . . . , n}.

Note that a monomial ideal is a multigraded S-module. Thus, any monomial ideal
I of S has a unique minimal (multi)graded free resolution

F : 0→
⊕
j

S(−j)βp,j(I) →
⊕
j

S(−j)βp−1,j(I) → · · · →
⊕
j

S(−j)β0,j(I) → I → 0,

where S(−j) is the free S-module obtained by shifting the degrees of S by j. For all
i, j ≥ 0, the numbers βi,j = βi,j(I) = dimK TorSi (K, I)j are called the graded Betti
numbers of I, and βi(I) =

∑
j βi,j(I) is the ith total Betti number of I.

In particular, for all i, we have =
⊕

j S(−j)βi,j(I) =
⊕

a S(−a)βi,a(I). We call

βi,a(I) = dimK TorSi (K, I)a a multigraded Betti number of I.

2.4 A tour through resolutions of monomial ideals

In this section, we collect several constructions that allow to determine partially or
wholly the minimal graded free resolutions of monomial ideals.

The problem to determine the minimal graded free resolution of a monomial ideal
goes back to Kaplansky. It was the �rst one to propose, in the sixties, the systematic
study of monomial ideals and their minimal resolutions. Despite their simple structure,
this problem is incredibly hard, and open. The general consensus is the following: no
explicit complex exists that gives a minimal free resolution for all monomial ideals.
On the other hand, many special constructions are known and for wide classes of
monomial ideals Kaplansky problem can be solved. Next, we survey what is known
in this direction.

Before starting our marathon of algebraic techniques, we state the following result.
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Theorem 2.4.1 LetM be a �nitely generated graded S-module, F the minimal graded
free resolution of M and let G any graded free resolution of M ,

G : · · · → Gi → · · · → G1 → G0 →M → 0,

with Gi =
⊕

j≥0 S(−j)bi,j for all i, j ≥ 0. Then, F is a subcomplex of G, and

βi,j(M) ≤ bi,j , for all i, j ≥ 0.

Proof. See [51, Theorem 4.26]. □

2.4.1 Kaplansky problem and Taylor resolution

The �rst mathematician to address Kaplansky problem was his student Diana Taylor.
In 1966 [146], she constructed for any monomial ideal I ⊂ S a lcm-complex that pro-
vides a (multi)graded free resolution of I, although non minimal in general. Nowadays
this complex is called the Taylor resolution.

Let I ⊂ S = K[x1, . . . , xn] be a proper monomial ideal, and letG(I) = {u1, . . . , um}.
The Taylor resolution of I is de�ned as follows. Following the same notations as in
[89], to the sequence {u1, . . . , um} of monomial generators of I, we associate a complex
T = T(u1, . . . , um) of free S-modules de�ned as follows: let T1 be a free S-module
with basis {e1, . . . , em}. Then

- Ti =
∧iT1. More precisely, Ti is a free S-module with basis the elements

eF = ej1 ∧ ej2 · · · ∧ eji , F = {j1 < j2 < · · · < ji} ⊆ [m];

- the di�erentials ∂i : Ti → Ti−1, for i = 1, . . . ,m, are de�ned by

∂i(eF ) =
∑
i∈F

(−1)σ(F ;i) lcm(uj : j ∈ F )
lcm(uj : j ∈ F \ {i})

eF\{i},

where σ(F ; i) =
∣∣{j ∈ F : j < i}

∣∣.
To each basis element eF , with F = {j1 < j2 < · · · < ji} ⊆ [m], we assign
(multi)degree

deg(eF ) = deg(lcm(uj : j ∈ F )).

As a special case of Theorem 2.4.1 we have

Theorem 2.4.2 The complex T(u1, . . . , um) is a graded free resolution of S/I, in
general non minimal. In particular,

βi(S/I) ≤
(
|G(I)|
i

)
, for all 1 ≤ i ≤ |G(I)|.

The reader may see the resemblance with the Koszul complex K·(u;S/I). Indeed,
the Taylor resolution is a modi�cation of the Koszul complex. The problem of the
latter complex is that it is not sensitive to the grading. Indeed, even if it is a resolution
of I, such a resolution is non graded, unless u = u1, . . . , um is a (monomial) regular
sequence, in which case K·(u;S/I) and T(u1, . . . , um) are isomorphic.

The Taylor complex was later generalized by Herzog in [85]. As a consequence of
his construction, we have the following remarkable inequalities.
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Theorem 2.4.3 (Herzog, 2007 [85]). Let I and J be proper monomial ideals of S.
Then

(a) βi(S/(I + J)) ≤
∑i

j=0 βj(S/I)βi−j(S/J) for all i.

(b) pd(I + J) ≤ pd(I) + pd(J) + 1.

(c) reg(I + J) ≤ reg(I) + reg(J)− 1.

(d) pd(I ∩ J) ≤ pd(I) + pd(J).

(e) reg(I ∩ J) ≤ reg(I) + reg(J).

All the previous inequalities are equalities if supp(I) ∩ supp(J) = ∅.

2.4.2 The Eliahou�Kervaire resolution

Hereafter, for a monomial u ∈ S, u ̸= 1, we set u′ = u/xmax(u).
A monomial ideal I of S = K[x1, . . . , xn] is called stable if for any monomial u ∈ I

and any i, we have that xi(u/xmax(u)) = xiu
′ ∈ I. The monomial ideal I is called

strongly stable if for any monomial u ∈ I and any i < j with j ∈ supp(u), we have
that xi(u/xj) ∈ I. Any strongly stable ideal is stable.

The class of stable ideals was introduced by Eliahou and Kervaire in 1990. In
characteristic zero, char(K) = 0, strongly stable ideals are the Borel��xed ideals. In
turn, the generic initial ideal Gin(I) (with respect to the reverse lexicographic order
>revlex) of any graded ideal is Borel��xed [89]. Therefore, strongly stable ideals play
a fundamental role in the theory of monomial ideals.

For a monomial ideal I ⊂ S, we de�ne M(I) to be the set of all monomials of S
belonging to I. The next pivotal lemma was proved by Eliahou and Kervaire.

Lemma 2.4.4 (Eliahou�Kervaire, 1990 [50, Lemma 1.1]). Let I ⊂ S be a stable ideal.
Then, for all w ∈M(I) there exist unique monomials u ∈ G(I) and v ∈ Mon(S) such
that w = uv and max(u) ≤ min(v). For any w ∈ M(I), we set g(w) = u and such
position de�nes a map g :M(I)→ G(I) which we call the decomposition map of I.

Let u ∈ G(I) be a minimal generator of I and let σ be a subset of [max(u) − 1].
Following [50], we call f(u;σ) an admissible symbol. To avoid unnecessary distinctions,
we set f(u;σ) = 0 if σ ̸⊆ [max(u)− 1].

Theorem 2.4.5 (Eliahou�Kervaire, 1990 [50]). Let I ⊂ S be a stable ideal, and let F
be the minimal free resolution of S/I.

(a) For all i, Fi has as a basis the admissible symbols f(u;σ) with u ∈ G(I), σ ⊆
[max(u)− 1] and |σ| = i.

(b) For all i > 0, the ith di�erential di : Fi → Fi−1 of F is de�ned by

di(f(u;σ)) =
∑
k∈σ

(−1)α(σ;k)(−xkf(u;σ \ k) +
xku

g(xku)
f(g(xku);σ \ k)),

where α(σ; k) = |{j ∈ σ : j < k}| and g : M(I) → G(I) is the decomposition
map of I (Lemma 2.4.4).

(c) For all i and j we have

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− 1

i

)
.
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2.4.3 Koszul cycles

In this subsection, we consider Koszul cycles. Their computation allows, in principle,
to calculate and construct the minimal free resolution of any ideal I ⊂ S. Sometimes,
this is a much simpler method than the usual computation of syzygies via Gröbner
basis. We illustrate this by recovering the Eliahou�Kervaire resolution of stable ideals
in a simpler fashion, as shown by Aramova and Herzog.

Let I be a monomial ideal of S, and let ε : S → S/I be the canonical epimorphism.
For all 1 ≤ j ≤ n, we let xj be the regular sequence xj = xj , xj+1, . . . , xn. In particu-
lar, x1 = x = x1, . . . , xn. One can de�ne the complex K·(xj ;S/I) = K·(xj ;S)⊗S/I.
We set ε(f)eσ > ε(g)eτ if eσ > eτ . We denote by Hi(xj ;S/I) = Hi(K·(xj ;S/I))
the ith homology module of xj with respect to S/I. These modules are graded. If
z ∈ Ki(xj ;S/I) is a Koszul cycle, i.e., ∂i(z) = 0, the symbol [z] denotes the homology
class of z in Hi(xj ;S/I).

We recall the following rule of multiplication: ∂(a∧b) = ∂(a)∧b+(−1)deg aa∧∂(b)
for a, b ∈ K·(x;S/I), with a homogeneous.

To simplify the notation, we set Ki(xj) = Ki(xj ;S/I) and Hi(xj) = Hi(xj ;S/I),
for all i and all j = 1, . . . , n. Each module Hi(xj) is a S = K[x1, . . . , xn]-module,
so it is in particular a S/(xj) ∼= K[x1, . . . , xj−1]-module, and for j = 1, a K-vector
space.

Let 1 ≤ j ≤ n−1. For all i, let αi : Ki(xj+1)→ Ki(xj) be the inclusion. We de�ne
also a homomorphism βi : Ki(xj)→ Ki−1(xj+1) as follows: Any element a ∈ Ki(xj)
can be written uniquely as a = ej∧b+c, for unique b ∈ Ki−1(xj+1) and c ∈ Ki(xj+1),
we set βi(a) = b. One immediately veri�es that βi ◦ αi = 0.

We can construct the following short exact sequence of complexes

0→ K·(xj+1;S/I)
α−−→ K·(xj ;S/I)

β−−→ K·(xj+1;S/I)[−1]→ 0, (2.3)

where [−1] denotes the shifting of the homological degree by −1; indeed the following
diagram is commutative with exact rows

...

∂i+2

��

...

��
∂i+2

��

...

��
∂i+1

��
0 // Ki+1(xj+1)

∂i+1

��

αi+1 // Ki+1(xj)
βi+1 //

∂i+1

��

Ki(xj+1)

∂i
��

// 0

0 // Ki(xj+1)

∂i
��

αi // Ki(xj)
βi //

∂i
��

Ki−1(xj+1)

∂i−1

��

// 0

0 // Ki−1(xj+1)

∂i−1 ��

αi−1 // Ki−1(xj)
βi−1 //

∂i−1 ��

Ki−2(xj+1)

∂i−2 ��

// 0

...
...

...

Therefore, we can apply the homology functor H to the short exact sequence of
complexes (2.3). By abuse of notations, we denote the induced maps Hi(α), Hi(β)
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again by αi, βi, for all i. So, we have the long exact sequence

· · ·
δi+1 // Hi+1(xj+1)

αi+1 // Hi+1(xj)
βi+1 // Hi(xj+1)

δi //

δi // Hi(xj+1)
αi // Hi(xj)

βi // Hi−1(xj+1)
δi−1 //

δi−1 // Hi−1(xj+1)
αi−1 // · · · α0 // H0(xj) // 0,

(2.4)

where the maps δi are the connecting homomorphisms. It can be veri�ed that δi is
multiplication by ±xj , i.e., δi([a]) = ±xj [a], see [89, Theorem A.3.3].

Theorem 2.4.6 (Aramova�Herzog, 1996 [10]). Let I ⊂ S be a stable monomial ideal.
Then, the following statements hold.

(a) For all i ≥ 1, the K-vector space Hi(x;S/I) has as a basis the homology classes
of the Koszul cycles

ε(u′)eσ ∧ emax(u) with u ∈ G(I), σ ⊆ [max(u)− 1], |σ| = i− 1.

For any such element, we set f(u;σ) = 1⊗ (−1)(i−1)(i−2)/2[ε(u′)eσ ∧ emax(u)]. If
σ does not satisfy the above side conditions, we set f(u;σ) = 0.

(b) Let F be the minimal free resolution of S/I. Then Fi has as a basis the elements
f(u;σ) given in (a). Moreover, the ith di�erential di : Fi → Fi−1 is de�ned by

di(f(u;σ)) =
∑
k∈σ

(−1)α(σ;k)(−xkf(u;σ \ k) +
xku

g(xku)
f(g(xku);σ \ k)),

where g :M(I)→ G(I) is the decomposition map of I (Lemma 2.4.4).

(c) For all i and j we have

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− 1

i

)
.

A squarefree monomial ideal I ⊂ S is called squarefree stable if for all squarefree
monomials u ∈ I and all i such that i /∈ supp(u), we have xi(u/xmax(u)) = xiu

′ ∈ I.
The ideal I is called squarefree strongly stable if for all squarefree monomials u ∈ I
and all i < j such that i /∈ supp(u) and j ∈ supp(u), we have xi(u/xj) ∈ I. Any
squarefree strongly stable ideal is squarefree stable.

Similarly to Lemma 2.4.4 we have

Lemma 2.4.7 Let I ⊂ S be a squarefree stable ideal. Then, for all w ∈ M(I)
there exist unique monomials u ∈ G(I) and v ∈ Mon(S) such that w = uv and
max(u) ≤ min(v). For any w ∈ M(I), we set g(w) = u and such position de�nes a
map g :M(I)→ G(I) which we call the decomposition map of I.

As a consequence of this lemma, the squarefree version of Theorem 2.4.6 holds.

Theorem 2.4.8 (Aramova�Herzog�Hibi, 2000 [12]). Let I ⊂ S be a squarefree stable
monomial ideal. Then, the following statements hold.
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(a) For all i ≥ 1, the K-vector space Hi(x;S/I) has as a basis the homology classes
of the Koszul cycles

ε(u′)eσ ∧ emax(u) with u ∈ G(I), σ ⊆ [max(u)− 1] \ supp(u), |σ| = i− 1.

For any such element, we set f(u;σ) = 1⊗ (−1)(i−1)(i−2)/2[ε(u′)eσ ∧ emax(u)]. If
σ does not satisfy the above side conditions, we set f(u;σ) = 0.

(b) Let F be the minimal free resolution of S/I. Then Fi has as a basis the elements
f(u;σ) given in (a). Moreover, the ith di�erential di : Fi → Fi−1 is de�ned by

di(f(u;σ)) =
∑
k∈σ

(−1)α(σ;k)(−xkf(u;σ \ k) +
xku

g(xku)
f(g(xku);σ \ k)),

where g :M(I)→ G(I) is the decomposition map of I (Lemma 2.4.7).

(c) For all i and j we have

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− j

i

)
.

2.4.4 Linear quotients

Monomial ideals with linear quotients were introduced by Herzog and Takayama [100].
Let I ⊂ S be a monomial ideal. We say that I has linear quotients if for some order
u1, . . . , um of its minimal generating set G(I), all colon ideals (u1, . . . , uℓ−1) : (uℓ),
ℓ = 2, . . . ,m, are generated by a subset of the set of variables {x1, . . . , xn}.

In such a case u1, u2, . . . , um is called an admissible order of I, and it is called
non-increasing if deg(u1) ≤ · · · ≤ deg(um). By [110, Lemma 2.1], an ideal with linear
quotients always has a non-increasing admissible order. So, from now, we consider
only non-increasing admissible orders. Furthermore, we de�ne

set(uk) = {i : xi ∈ (u1, . . . , uk−1) : uk}.

By [89, Proposition 1.2.2], (u1, . . . , uℓ−1) : (uℓ) is generated by the monomials

uj
gcd(uj , uℓ)

=
lcm(uj , uℓ)

uℓ
, j = 1, . . . , ℓ− 1.

Thus, by [89, Lemma 8.2.3], u1, . . . , um is an admissible order of I if and only if
for all j < ℓ there exist an integer k < i and an integer p such that

lcm(uk, uℓ)

uℓ
= xp and xp divides

lcm(uj , uℓ)

uℓ
.

Famous classes of monomial ideals with linear quotients include:

- stable ideals,

- squarefree stable ideals,

- edge ideals of cochordal graphs (Theorem 3.3.6),

- polymatroidal ideals (Theorem 3.4.2).
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We de�ne the map g : M(I) → G(I) as follows. If w ∈ M(I), then g(w) = uj ,
where j is the smallest integer such that w ∈ (u1, . . . , uj). We call g the decomposition
map of I. We say that g is regular if

set(g(xsu)) ⊆ set(u), for all u ∈ G(I) and all s ∈ set(u).

We set x∅ = 1 and xF =
∏
i∈F xi if F ⊆ [n] is non empty.

Theorem 2.4.9 (Herzog�Takayama, 2002 [100]). Let I ⊂ S be a monomial ideal
with linear quotients and admissible order u1, . . . , um, and let F be the minimal free
resolution of S/I. Then

(a) The ith free module of F, Fi, has as a basis the symbols f(u;σ) with u ∈ G(I),
σ ⊆ set(u) and |σ| = i− 1. Furthermore, f(u;σ) has multidegree xσu.

(b) Suppose that the decomposition map g is regular. Then, for all i > 0, the ith
di�erential di : Fi → Fi−1 of F is de�ned by

di(f(u;σ)) =
∑
k∈σ

(−1)α(σ;k)(−xkf(u;σ \ k) +
xku

g(xku)
f(g(xku);σ \ k)).

(c) For all i and j we have

βi,i+j(I) =
∑

u∈G(I)j

(
|set(u)|

i

)
. (2.5)

(d) An ideal with linear quotients is componentwise linear.

This result generalizes Theorems 2.4.5, 2.4.6 and 2.4.8. Indeed the decomposition
map of (squarefree) stable ideals is regular as noted in [100].

If I is generated in the same degree and it has linear quotients, then I has a
linear resolution. This fact is extremely useful in combinatorial commutative algebra.
Indeed, if we can prove that an equigenerated monomial ideal I and all its powers Ik

(k ≥ 2) have linear quotients, then it will follow that I has linear powers, i.e., I and
all its powers have linear resolutions.

2.4.5 Betti splittings

In this section, we survey the basics of Betti splittings theory. The techniques devel-
oped in this section include as particular cases the Eliahou�Kervaire resolution and
the class of monomial ideals with linear quotients.

Let G(I) be the unique minimal generating set of I. In [74], the authors pointed
out that to compute a minimal graded free resolution of I, one can �split� the ideal I
into �smaller� ideals I1, I2, i.e., I = I1 + I2 with G(I) the disjoint union of G(I1) and
G(I2). Hence, to get the minimal free resolution of I, one can use the minimal free
resolutions of I1 and I2 together with that of I1 ∩ I2.

Let us consider the short exact sequence

0→ I1 ∩ I2
ψ−1−−−→ I1 ⊕ I2

φ−−→ I = I1 + I2 → 0, (2.6)

where ψ−1(w) = (w,−w) and φ((w, z)) = w+z. Let A be the minimal free resolution
of I1 ∩ I2 and let B be the minimal free resolution of I1⊕ I2. Note that B is the direct
sum of the minimal free resolutions of I1 and I2. Since all S-modules Ai are free, thus
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projective, there exists a complex homomorphism ψ : A → B lifting the map ψ−1,
that means a sequence of maps ψi : Ai → Bi (i ≥ 0), called the comparison maps,
making the following diagram

A : · · · // A2

ψ2

��

dA2 // A1

ψ1

��

dA1 // A0

ψ0

��

dA0 // I1 ∩ I2
ψ−1

��

// 0

B : · · · // B2
dB2

// B1
dB1

// B0
dB0

// I1 ⊕ I2 // 0

(2.7)

commutative.
It is well known that ψ gives rise to an acyclic complex C(ψ) whose 0th homol-

ogy module is H0(C(ψ)) = coker(ψ−1) = (I1 ⊕ I2)/Im(ψ−1) ∼= (I1 ⊕ I2)/(I1 ∩ I2) ∼=
I1+I2 = I, i.e., C(ψ) is a free resolution of I (see, for instance, [47, Appendix A3.12]).

The complex C(ψ) is de�ned as follows:

(i) let C0 = B0, and Ci = Ai−1 ⊕Bi, for i > 0;

(ii) let d0 = φ ◦ dB0 , d1 = (0, ψ0 + dB1 ), and di = (−dAi−1, ψi−1 + dBi ), for i > 1.

This procedure, known as the mapping cone, may be visualized as follows:

A[−1] : · · · // A2

⊕ ψ2

""

dA2 // A1

⊕ ψ1

""

dA1 // A0

⊕ ψ0

$$

dA0 // I1 ∩ I2 // 0

B : · · · // B3
dB3

// B2
dB2

// B1
dB1

// B0
dB0

// I1 ⊕ I2 // 0

Here A[−1] is the complex A homologically shifted by −1.
Unfortunately, the free resolution C(ψ) is not always minimal. The next theorem

proved by Francisco, Há and Van Tuyl [74] characterizes when C(ψ) is a minimal free
resolution of I.

Theorem 2.4.10 (Francisco�Há�Van Tuyl, 2009 [74, Proposition 2.1]). Let I, I1, I2
be monomial ideals of S such that I = I1 + I2 and G(I) is the disjoint union of G(I1)
and G(I2). Then the following conditions are equivalent:

(a) For all i and j, we have

βi,j(I) = βi,j(I1) + βi,j(I2) + βi−1,j(I1 ∩ I2). (2.8)

(b) For all i and j, the map

TorSi (K, I1 ∩ I2)j → TorSi (K, I1)j ⊕ TorSi (K, I2)j

in the long exact sequence in Tor induced from (2.6) is the zero map.

(c) Applying the mapping cone to (2.6) gives a minimal free resolution of I.

Furthermore, if any of the equivalent conditions (a)�(b)�(c) holds, then

pd(I) = max{pd(I1),pd(I2), pd(I1 ∩ I2) + 1},
reg(I) = max{reg(I1), reg(I2), reg(I1 ∩ I2)− 1}.
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Hence, we can give the next de�nition.

De�nition 2.4.11 Let I, I1, I2 be monomial ideals of S such that I = I1 + I2 and
G(I) is the disjoint union of G(I1) and G(I2). We say that I = I1 + I2 is a Betti
splitting if any of the previous equivalent conditions (a)�(b)�(c) is satis�ed.

Next, we describe a special case of Betti splittings.

De�nition 2.4.12 Let I be a monomial ideal of S. Let I1 be the ideal generated
by all elements of G(I) divisible by xi and let I2 be the ideal generated by all other
elements of G(I). We call I = I1 + I2 a xi-partition of I. If I = I1 + I2 is also a Betti
splitting, we call I = I1 + I2 a xi-splitting.

The following two results will be needed later.

Proposition 2.4.13 ([74, Corollary 2.7]). Let I = I1 + I2 be a xi-partition of I and
I1 be the ideal generated by all elements of G(I) divisible by xi. If I1 has a linear
resolution, then I = I1 + I2 is a Betti splitting.

Proposition 2.4.14 ([20, Proposition 3.1]). Let I ⊂ S be a monomial ideal with a
d-linear resolution, I1, I2 monomial ideals such that I = I1+I2, G(I) = G(I1)∪G(I2)
and G(I1) ∩G(I2) = ∅. Then the following facts are equivalent:

(i) I = I1 + I2 is a Betti splitting of I;

(ii) I1 and I2 have d-linear resolutions.

If this is the case, then I1 ∩ I2 has a (d+ 1)-linear resolution.

Monomial ideals with linear quotients are a special case of Betti splittings.

Proposition 2.4.15 Let I ⊂ S be a monomial ideal with linear quotients and admis-
sible order u1, . . . , um. Then (u1, . . . , uj−1)+(uj) is a Betti splitting, for j = 2, . . . ,m.

This proposition is a special case of the next result due to Bolognini [20].

Criterion 2.4.16 (Bolognini, 2016 [20, Theorem 3.3]). Let I, I1, I2 be monomial
ideals of S such that G(I) is the disjoint union of G(I1) and G(I2). Suppose that I1
and I2 are componentwise linear. Then I = I1 + I2 is a Betti splitting.

Let j ∈ {2, . . . ,m}. Then, (u1, . . . , uj−1) has linear quotients and so it is compo-
nentwise linear (Theorem 2.4.9(d)). The ideal (uj) is componentwise linear as well,
for it is a principal ideal. Thus, (u1, . . . , uj−1) + (uj) is a Betti splitting.
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Chapter 3

Combinatorics on monomial ideals

In this second chapter, we survey the combinatorial and algebraic methods, developed
in the last �fty years, to manage monomial ideals. The �rst systematic study of
monomial ideals was carried out by Hochster [105], who linked squarefree monomial
ideals and their free resolutions to simplicial (co)homology of simplicial complexes.

Even thought squarefree monomial ideals are a special class of monomial ideals,
via polarization one can always reduce to such a class. Indeed, polarization is a
deformation technique that allows to transform a monomial ideal into a squarefree
monomial ideal and preserves the graded Betti numbers, the Hilbert function, the
height, the Cohen-Macaulayness and the Gorensteiness property.

Thus, if interested in such invariants of a monomial ideal I, one may assume
from the very beginning that I is squarefree. In this case, there is a one-to-one
correspondence between squarefree monomial ideals and simplicial complexes. This
theory was developed by Hochster in the seventies, and was successfully employed by
Stanley and Reisner who proved the upper bound conjecture for simplicial spheres.
This breakthrough of the theory opened up a new research trend in Commutative
Algebra, namely Combinatorial Commutative Algebra.

In Section 3.2 we discuss Alexander duality theory. Using this duality theory, one
can characterize Cohen�Macaulay squarefree monomial ideals.

Perhaps, the most fashionable topic in Combinatorial Commutative Algebra is
that of edge ideals. Edge ideals were introduced in 1990 by Villarreal [148]. Let G be
a �nite simple graph on vertex set V (G) = {1, 2, . . . , n} and edge set E(G). Then,
the edge ideal of G, is the squarefree monomial ideal I(G) generated by all monomials
xixj such that {i, j} ∈ E(G). After, recalling some useful notions from graph theory,
we use Alexander duality to characterize when I(G) is height�unmixed. It turns out
that is equivalent to saying that G is unmixed or well�covered. That is, all minimal
vertex covers of G have the same size. One can interpret the Alexander dual I(G)∨

of I(G) as the cover ideal J(G) of G. Bounds for the projective dimension and the
Castelnuovo�Mumford regularity of (powers of) I(G) are discussed. The classi�cation
of edge ideals with linear powers is explained in subsection 3.3.1.

Finally, in Section 3.4, we discuss discrete polymatroids and polymatroidal ideals.

3.1 The polarization technique

Let us recall the technique of polarization which is an operation that transforms a
monomial ideal into a squarefree monomial ideal in a larger polynomial ring.

Let u = xb11 · · ·xbnn ∈ Mon(S). Then, the polarization of u is the monomial

u℘ =
n∏
i=1

(

bi∏
j=1

xi,j) =
∏

i=1,...,n
bi>0

xi,1xi,2 · · ·xi,bi
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in the polynomial ring K[xi,j : i = 1, . . . , n, j = 1, . . . , bi].
Let I ⊂ S be a monomial ideal, and set ai = max{degxi(u) : u ∈ G(I)}, for

i = 1, . . . , n. Let
R = K[xi,j : i = 1, . . . , n, j = 1, . . . , ai]

be the polynomial ring in the variables xi,j , i = 1, . . . , n, j = 1, . . . , ai. The polariza-
tion of the monomial ideal I is de�ned to be the squarefree monomial ideal I℘ of R
with minimal generating set G(I℘) = {u℘ : u ∈ G(I)}.

Let M ∈M, recall that HilbM (t) =
∑

d dimK(Md)t
d is the Hilbert series of M .

Polarization preserves the main algebraic and homological properties of I.

Theorem 3.1.1 ([89, Corollary 1.6.3]). Let I ⊂ S be a monomial ideal, and let
I℘ ⊂ R be its polarization. Then, the following hold:

(a) βi,j(I) = βi,j(I
℘) for all i and j.

(b) HilbS/I(t) = (1− t)d HilbR/I℘(t), where d = dimR− dimS.

(c) height(I) = height(I℘).

(d) pd(S/I) = pd(R/I℘) and reg(S/I) = reg(R/I℘).

(e) S/I is Cohen�Macaulay (Gorenstein) if and only if R/I℘ is Cohen�Macaulay
(Gorenstein).

The following key lemma proved by Olteanu [135, Proposition 5.3] follows by a
more general result stated by Jahan [109, Lemma 3.3].

Lemma 3.1.2 Let I ⊂ S be a monomial ideal. Then I has linear quotients with
admissible order u1, u2, . . . , um of G(I) if and only if I℘ has linear quotients with
admissible order u℘1 , u

℘
2 , . . . , u

℘
m of G(I℘).

3.2 Simplicial complexes

A simplicial complex ∆ on the vertex set [n] is a family of subsets of [n], called the
faces of ∆, such that

- {i} ∈ ∆ for all i ∈ [n], and

- if F ⊆ ∆, G ⊆ F , we have G ∈ ∆.

The dimension of F ∈ ∆ is the number |F |−1. The dimension of ∆ is the number
d = max{|F | − 1 : F ∈ ∆}. A face F ∈ ∆ maximal with respect to the inclusion, is
called a facet. Let F1, . . . , Fm be the facets of ∆, then we write ∆ = ⟨F1, . . . , Fm⟩.
We denote by F(∆) the set of facets of ∆.

Let ∆ be a simplicial complex on [n] and let F ∈ ∆, we set xF =
∏
i∈F xi if F

is non empty and we set x∅ = 1 otherwise. The Stanley-Reisner ideal of ∆ is the
following squarefree monomial ideal of S = K[x1, . . . , xn],

I∆ = (xF : F /∈ ∆).

Whereas, the Stanley-Reisner ring of ∆ is the factor ring K[∆] = S/I∆.
Let d = dim(∆). For all −1 ≤ i ≤ d, we set fi(∆) = |{F ∈ ∆ : |F | = i}|. We

call f(∆) = (f−1(∆), f0(∆), . . . , fd(∆)) the f -vector of ∆.
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Proposition 3.2.1 ([51, Theorem 5.9]). Let ∆ be a simplicial complex on [n] of
dimension d− 1 and with f -vector f(∆) = (f−1, f0, f1, . . . , fd−1). Then

HilbK[∆](t) =

∑d
i=0 fi−1t

i(1− t)d−i

(1− t)d
.

In particular, dimK[∆] = dim(∆) + 1.

Let S = K[x1, . . . , xn] with K a �eld. We have the following bijection,

{simplicial complexes on [n]} ←→ {squarefree monomial ideals of S}.

3.2.1 Hochster formula

Let ∆ be a simplicial complex on the vertex set [n], and let I∆ be its Stanley-Reisner
ideal. By Hochster's formula [89, Theorem 8.1.1] we have

βi(S/I∆) =
∑
W⊆[n]

dimK H̃
|W |−i−1(∆W ;K),

where H̃j(∆W ;K) is the jth reduced simplicial cohomology module of the simplicial
complex ∆W = {F ∈ ∆ : F ⊆W}.

Hochster's formula allows us also to compute the graded Betti numbers.

Theorem 3.2.2 Let I = I∆ ⊂ S be a squarefree monomial ideal. Then

βi,j(I∆) =
∑

W⊆[n], |W |=j

dimK H̃
j−i−2(∆W ;K).

Next, we record some nice consequences of Hochster formula. Let ∆ be a simplicial
complex on [n]. A vector a = (a1, a2, . . . , an) ∈ Zn≥0 is called squarefree if ai ∈ {0, 1}
for all i. The following facts hold.

- ∆ is connected if and only if H̃0(∆;K) = 0.

- βi,a(I∆) = 0, if a is non squarefree.

3.2.2 Alexander duality

Let ∆ be a simplicial complex on [n]. The Alexander dual of ∆ is

∆∨ = {[n] \ F : F /∈ ∆}.

One has (∆∨)∨ = ∆. We denote I∆∨ by I∨. Thus, if I ⊂ S is a squarefree monomial
ideal, then (I∨)∨ = I. For a subset F of [n], let pF = (xi : i ∈ F ).

Proposition 3.2.3 Let ∆ be a simplicial complex on [n]. Then,

(a) I∆ =
⋂
F∈F(∆) p[n]\F is the minimal primary decomposition of I∆.

(b) Let I∆ = pG1 ∩ pG2 ∩ · · · ∩ pGm be the minimal primary decomposition of I∆.
Then G(I∆∨) = {xG1 ,xG2 , . . . ,xGm}.

The next fundamental result was proved by Eagon and Reiner [89, Theorem 8.1.9].

Criterion 3.2.4 (Eagon�Reiner 1998, [46]). Let I ⊂ S be a squarefree monomial
ideal. Then I is Cohen�Macaulay if and only if its Alexander dual I∨ has a linear
resolution.
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3.3 Edge ideals

Edge ideals have been introduced by Villarreal in 1990 [148]. Firstly, let us summarize
some basic facts from graph theory.

A simple graph G is an ordered pair of disjoint �nite sets (V (G), E(G)) such that
E(G) is a subset of the set of unordered pairs of V (G). The set V (G) is the set of
vertices and the set E(G) is called the set of edges.

If e = {u, v} is an edge of G one says that the vertices u and v are adjacent.
A walk of length n in G is an alternating sequence of vertices and edges, written as

w = {v0, z1, v1, . . . , vn−1, zn, vn}, where zi = {vi−1, vi} is the edge joining the vertices
vi−1 and vi. A walk may also be written {v0, . . . , vn} with the edges understood, or
{z1, z2, . . . , zn} with the vertices understood. If v0 = vn, the walk w is called a closed
walk. A path is a walk with all its vertices distinct. A cycle of length n is a closed
path {v0, . . . , vn} in which n ≥ 3. A forest is an acyclic graph.

To each simple graph G on the vertex set V (G) = [n] we can associate a squarefree
ideal I(G) of the polynomial ring S = K[x1, . . . , xn], called the edge ideal associated
to G, de�ned as follows [149]:

I(G) = (xixj : i is adjacent to j) = (xixj : {i, j} ∈ E(G)).

Let G be a graph with vertex set V (G) = [n] and with edge set E(G). Let i ∈ V (G)
be a vertex of G. The open neighborhood of i is the set

NG(i) = {j ∈ V (G) : {i, j} ∈ E(G)},

whereas the closed neighborhood of i is the set de�ned as follows

NG[i] = {j ∈ V (G) : {i, j} ∈ E(G)} ∪ {i}.

When the context is clear, we drop the subscript G.

If W ⊆ V (G), we denote by G \W the subgraph of G with the vertices of W and
their incident edges deleted.

A subset W of V (G) is called a vertex cover if every edge of G is incident with
at least one vertex in W . A vertex cover W is called a minimal vertex cover if there
is no proper subset of W which is a vertex cover of G. The set of all minimal vertex
cover of G is denote by C(G).

Attached to G, we have the cover ideal of G:

J(G) = (xi1 · · ·xis : W = {i1, . . . , is} is a minimal vertex cover of G).

The following fundamental observation holds.

Proposition 3.3.1 The Alexander dual of the edge ideal of G is the cover ideal of G,

I(G)∨ = J(G).

A graph G is unmixed or well�covered if all the minimal vertex covers have the
same cardinality. In particular, all the associated primes of I(G) have the same height.
A graph G is called Cohen�Macaulay over the �eld K if S/I(G) is a Cohen�Macaulay
ring. It is clear that a Cohen�Macaulay graph is unmixed [149, Proposition 7.2.9].

A pairing o� of all the vertices of a graph G is called a perfect matching. Thus
G has a perfect matching if and only if G has an even number of vertices and there
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is a set of independent edges covering all the vertices, where for a set of independent
edges we mean a set of pairwise disjoint edges [149].

In the case of edge ideals, the Eagon�Reiner criterion (Criterion 3.2.4) can be
restated as follows.

Theorem 3.3.2 Let G be a �nite simple graph. Then I(G) is Cohen�Macaulay if
and only if J(G) has a linear resolution.

Hence, we also have

Corollary 3.3.3 Let G be a �nite simple graph. Then J(G) is Cohen�Macaulay if
and only if I(G) has a linear resolution.

From Theorem 3.3.2, we can observe that for I(G) to be Cohen�Macaulay, it
follows that J(G) must be generated in a single degree, that is, G must be unmixed,
as we noted before.

3.3.1 The Dirac�Fröberg Theorem

In this subsection, we address the problem of characterizing all graphs G such that
I(G) has a linear resolution. Via Alexander duality, this problem is equivalent to the
classi�cation of all graphs G such that J(G) is a Cohen�Macaulay ideal.

A graph G is called chordal if it has no induced cycles of length bigger than three.
Recall that a perfect elimination order of G is an ordering v1, . . . , vn of its vertex set
V (G) such that NGi(vi) induces a complete subgraph on Gi, where Gi is the induced
subgraph of G on the vertex set {i, i + 1, . . . , n}. Hereafter, if 1, 2, . . . , n is a perfect
elimination order of G, we denote it by x1 > x2 > · · · > xn.

Theorem 3.3.4 (Dirac, 1961 [44]). A �nite simple graph G is chordal if and only if
G admits a perfect elimination order.

The complementary graph Gc of G is the graph with vertex set V (Gc) = V (G)
and where {i, j} is an edge of Gc if and only if {i, j} /∈ E(G). A graph G is called
cochordal if and only if Gc is chordal.

Theorem 3.3.5 (Fröberg, 1988 [75]). Let G be a �nite simple graph. Then, I(G)
has a linear resolution if and only if G is cochordal.

It is known by [89, Theorem 10.2.6] that I(G) has linear resolution if and only
if it has linear quotients. The theorems of Dirac and Fröberg classify all edge ideals
with linear quotients. Furthermore if x1 > x2 > · · · > xn is a perfect elimination
order of Gc, then I(G) has linear quotients with respect to the lexicographic order
>lex induced by x1 > x2 > · · · > xn.

One can ask when I(G) has linear powers. This problem has been solved by
Herzog, Hibi and Zheng.

Theorem 3.3.6 (Herzog�Hibi�Zheng, 2004 [94]). Let G be a �nite simple graph.
Then, the following conditions are equivalent.

(a) G is cochordal.

(b) I(G)k has linear resolution, for all k ≥ 1.

(c) I(G)k has linear quotients, for all k ≥ 1.
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3.4 Discrete Polymatroids

For a monomial u ∈ S, recall that the xi-degree of u is the integer de�ned as

degxi(u) = max{j ≥ 0 : xji divides u}.

A polymatroidal ideal I ⊂ S = K[x1, . . . , xn] is a monomial ideal I generated in a
single degree verifying the following exchange property : for all u, v ∈ G(I) with u ̸= v
and all i such that degxi(u) > degxi(v), there exists j such that degxj (u) < degxj (v)
and xj(u/xi) ∈ G(I).

The name polymatroidal ideal is justi�ed by the fact that their minimal generating
set corresponds to the set of bases of a discrete polymatroid. Discrete polymatroids
were �rst introduced by Herzog and Hibi in 2002 [87]. A squarefree polymatroidal
ideal is called matroidal.

This class of monomial ideals is very rich. Indeed, it includes

(i) Graphic matroids. They are the ideals generated by the monomials
∏
i∈F xi, for

all spanning forests F of a �nite simple graph G on n vertices.

(ii) Transversal polymatroidal ideals. They are of the form I = pA1pA2 · · · pAr , for
some �nite collection A1, . . . , Ar of arbitrary nonempty subsets of [n].

(iii) Ideals of Veronese type. Let b = (b1, . . . , bn) ∈ Zn be a vector with non negative
entries. Then, the ideal of Veronese type (b, d) is de�ned as

Ib,n,d =
(
xa11 · · ·x

an
n ∈ S :

n∑
i=1

ai = d, ai ≤ bi, for i ∈ [n]
)
.

Any polymatroidal ideal also satisfy a dual version of the exchange property.

Lemma 3.4.1 (Herzog�Hibi, 2006 [86, Lemma 2.1]). Let I ⊂ S be a polymatroidal
ideal. Then, for all u, v ∈ G(I) and all i such that degxi(u) > degxi(v), there exists j
such that degxj (u) < degxj (v) and xi(v/xj) ∈ G(I).

There are many useful characterization of polymatroidal ideals. The following one
is due Bandari and Rahmati-Asghar.

Theorem 3.4.2 (Bandari�Rahmati, 2019 [14, Theorem 2.4]). Let I ⊂ S be a mono-
mial ideal generated in a single degree. Then, I is polymatroidal if and only if I has
linear quotients with respect to the lexicographic order induced by any ordering of the
variables.
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Chapter 4

Vector-spread monomial ideals

Algebraic shifting is one of the most powerful techniques in Combinatorial Commu-
tative Algebra [89, Chapter 11]. It is based on the idea of shifting and spreading the
variables of the generators of a monomial ideal in a coherent way. The origins of this
theory date back to a famous article of Erdös, Ko and Rado, Intersection theorems
for systems of �nite sets [54], and made its way into Commutative Algebra through
the work of Gil Kalai [113]. Lately, algebraic shifting theory and monomial ideals
arising from shifting operators [89] have seen a resurgence. The t-spread monomial
ideals were introduced in 2019 by Ene, Herzog and Qureshi [53]. The homological
and combinatorial properties of these and related classes of ideals are the subject of
a large body of research [1, 2, 3, 4, 5, 7, 8, 9, 28, 32, 42, 43, 53, 34, 65, 102, 120, 132,
151].

Our purpose is to investigate the more general possible class of such ideals. Let
S = K[x1, . . . , xn] be a polynomial ring, with K a �eld. Following [63], given a vector
t = (t1, t2, . . . , td−1) ∈ Zd−1

≥0 , d ≥ 2, of non negative integers, we say that a monomial
u = xj1xj2 · · ·xjℓ ∈ S, with j1 ≤ j2 ≤ · · · ≤ jℓ and ℓ ≤ d, is a vector-spread monomial
of type t or simply a t-spread monomial if

ji+1 − ji ≥ ti, for all i = 1, . . . , ℓ− 1.

For instance, u = x31x2x4 is (0, 0, 1, 2)-spread, but not (1, 0, 1, 2)-spread. A monomial
ideal I ⊆ S is a t-spread monomial ideal if it is generated by t-spread monomials. If
ti = t, for all i, a t-spread monomial is called an ordinary or uniform t-spread mono-
mial, see [53]. A 1 = (1, 1, . . . , 1)-spread monomial ideal is in particular squarefree.

Let t ∈ Zd−1
≥0 , d ≥ 2. We say that a t-spread monomial ideal I ⊂ S = K[x1, . . . , xn]

is a t-spread strongly stable ideal if for any t-spread monomial u ∈ I, and all j < i such
that xi divides u and xj(u/xi) is t-spread, then xj(u/xi) ∈ I. For t = 0 = (0, 0, . . . , 0)
(t = 1 = (1, 1, . . . , 1)) one obtains the classical notion of strongly stable (squarefree
strongly stable) ideals [89]. On the other hand, strongly stable ideals have a central
role in Commutative Algebra. Indeed, for a �eld K of characteristic zero, they appear
as generic initial ideals [89]. Eliahou and Kervaire constructed their minimal free
resolutions [50]. Bigatti and Hulett showed that among all homogeneous ideals with
the same Hilbert function, the lexicographic ideals (which are also strongly stable)
have the biggest Betti numbers [19, 106]. Using shifting theory [53, 89, 113], Aramova,
Herzog and Hibi extended these results to squarefree ideals [11, 12].

In [53], it was shown that ordinary t-spread strongly stable ideals have linear
quotients [89, 100]. For ideals with linear quotients, the graded Betti numbers can
be easily computed. Moreover, if the so�called decomposition function of I is regular
[100], then the minimal free resolution can be explicitly described. Unfortunately, even
ordinary 2-spread strongly stable ideals do not have regular decomposition functions,



28 Chapter 4. Vector-spread monomial ideals

as noted in [53]. Hence, the minimal free resolution of ordinary t-spread strongly
stable ideals could not be determined and has remained elusive ever since.

In this chapter, we construct the minimal free resolution of vector-spread strongly
stable ideals generalizing the Eliahou�Kervaire resolution [50], and extend algebraic
shifting theory to vector-spread strongly stable ideals [113].

This chapter is organized as follows. After we introduce the concept of vector-
spread monomials and ideals in Section 4.1, in Sections 4.2 and 4.3 we construct
the minimal free resolution of I a t-spread strongly stable ideal of S. As pointed
out before, the method of linear quotients is unavailable to us, as the decomposition
functions of vector-spread strongly stable ideals are, in general, non regular. Thus we
use Koszul homology as developed by Aramova and Herzog in [10]. Let Hi(x;S/I) the
ith homology module of x = x1, . . . , xn with respect to S/I. Due to the isomorphism
TorSi (K,S/I)j

∼= Hi(x;S/I)j , one can calculate the graded Betti numbers of S/I
as βi,j(S/I) = dimK Hi(x;S/I)j . Thus one has to determine a basis of this K-
vector space. To do so we compute the Koszul cycles of S/I. As many examples
indicate, Koszul cycles of arbitrary t-spread strongly stable ideals do not have a nice
expression as in the cases t = 0,1 [10, 12] (see Theorems 2.4.6(a), 2.4.8(a), and
Remark 4.2.10). To compute them we introduce the following notion (De�nition
4.2.1). If u = xj1xj2 · · ·xjℓ is a t-spread monomial, the t-spread support of u is the
set

suppt(u) =
ℓ−1⋃
i=1

[
ji, ji + (ti − 1)

]
,

where [a, b] = {c : a ≤ c ≤ b}, for a, b ∈ Z≥1. Let G(I) be the unique minimal set of
monomial generators of I. The main result of Section 4.2 is

Theorem 4.2.8. Let I ⊂ S be a t-spread strongly stable ideal. Then, for all i ≥ 1,
the K-vector space Hi(x;S/I) has as a basis the homology classes of the Koszul cycles

e(u;σ) such that u ∈ G(I), σ ⊆ [max(u)− 1] \ suppt(u), |σ| = i− 1.

Firstly, we show that the elements e(u;σ) (De�nition 4.2.3) are Koszul cycles. We
employ an inductive argument, as a direct proof is rather tedious (Remark 4.2.5).
Then, we inductively determine the basis for the Koszul homologies of S/I on partial
sequences of x. Note that for t = 0 (t = 1) the conditions that σ must satisfy in
Theorem 4.2.8 are the same as in [10, Proposition 2.1] ([12, Proposition 2.2]). So, we
get a formula for the graded Betti numbers (Corollary 4.4.2) independent from the
characteristic of the �eld K, generalizing the known results in [10, 12, 50, 53].

In Section 4.3, we introduce the t-spread decomposition function (De�nition 4.3.1).
As a consequence, the di�erentials of the minimal free resolution of S/I are explicitly
described (Theorem 4.3.2). Examples 4.2.9, 4.2.11, 4.3.3 illustrate our methods.

Finally, Section 4.4 is devoted to a generalization of the algebraic shifting theory.
Classically, a simplicial complex ∆ on the vertex set [n] is called shifted if for all
F ∈ ∆, all i ∈ F , j ∈ [n], j > i, then (F \ {i}) ∪ {j} ∈ ∆ [89, 113]. Note that ∆ is
shifted if and only if the Stanley�Reisner ideal of ∆, I∆, is an ordinary squarefree (1-
spread) strongly stable ideal [89]. The usefulness of Combinatorial shifting comes from
the fact that a simplicial complex shares the same f -vector of its shifted simplicial
complex [89], and moreover the f -vector of the shifted complex is easier to compute.

From the algebraic point of view, Algebraic shifting is de�ned as follows. Let
K be a �eld of characteristic zero. Let Gin(I) the generic initial ideal of I ⊂ S
with respect to the reverse lexicographic order [89], in particular Gin(I) is (0-spread)



4.1. Basic concepts 29

strongly stable. One de�nes Is = (Gin(I))σ, where σ is the squarefree operator that
assign to each monomial u = xi1xi2 · · ·xid the monomial σ(u) = xi1xi2+1 · · ·xid+(d−1)

and to each monomial ideal I, the monomial ideal Iσ with minimal generating set
G(Iσ) = {σ(u) : u ∈ G(I)} [89, 113]. Then, the following properties hold

(Shift1) I
s is a squarefree strongly stable monomial ideal;

(Shift2) I
s = I if I is a squarefree strongly stable ideal;

(Shift3) I and Is have the same Hilbert function;

(Shift4) If I ⊆ J , then Is ⊆ Js.

We are mainly interested in the algebraic side of this construction. We introduce an
analogous �t-spread� algebraic shifting by the assignment Is,t = (Gin(I))σ0,t , where
σ0,t will be a suitable shifting operator. The t-spread versions of (Shift1)-(Shift4) will
be established. For t = 1 = (1, 1, . . . , 1), our construction returns the classical one. In
particular, (Gin(I))σ0,t = I, if I is a t-spread strongly stable ideal (Theorem 4.4.5).

4.1 Basic concepts

From now on, t = (t1, . . . , td−1) is a vector of non negative integers and d ≥ 2.

De�nition 4.1.1 Let u = xj1xj2 · · ·xjℓ ∈ S be a monomial of degree ℓ ≤ d, with
1 ≤ j1 ≤ j2 ≤ · · · ≤ jℓ ≤ n. We say that u is a vector-spread monomial of type t, or
simply a t-spread monomial, if

ji+1 − ji ≥ ti, for all i = 1, . . . , ℓ− 1.

In particular, any variable xj is t-spread. We assume that u = 1 is t-spread too.
Whereas, we say that a monomial ideal I ⊆ S is a vector-spread monomial ideal of
type t, or simply a t-spread monomial ideal, if all monomials u ∈ G(I) are t-spread.

For instance, the monomial u = x31x2x4x5 is (0, 0, 1, 2, 1)-spread, but it is not
(1, 0, 1, 2, 1)-spread. For a t-spread monomial ideal I ⊂ S, it is G(I)k = ∅ for k > d.
Let 0 = (0, 0, . . . , 0) be the null vector with d − 1 components. All monomials of
degree ℓ ≤ d are 0-spread. If ti ≥ 1 for all i, a t-spread monomial is squarefree [89].

In our context, if ti = t ≥ 0, for all i = 1, . . . , d − 1, we say that a t-spread
monomial (ideal) u ∈ Mon(S), (I ⊆ S), is an uniform or ordinary t-spread monomial
(ideal). Such de�nition agrees with that given in [53]. In this case, we drop the bold
character �t� and we simply speak of t-spread monomial ideals.

Let T = K[x1, x2, . . . , xn, . . . ] be the polynomial ring in in�nitely many variables.
We let Mon(T ; t) to be the set of all t-spread monomials of T . Analogously, Mon(S; t)
denotes the set of all t-spread monomials of S. Furthermore, for all 0 ≤ ℓ ≤ d, we
de�ne the following sets

Monℓ(T ; t) =
{
u ∈ Mon(T ; t) : deg(u) = ℓ

}
,

Monℓ(S; t) =
{
u ∈ Mon(S; t) : deg(u) = ℓ

}
.

Note that Monℓ(S; t) = Monℓ(T ; t) ∩ S, Monℓ(S; t) = ∅ for ℓ > d, and Mon(S; t) is
the disjoint union of the sets Monℓ(S; t), ℓ = 0, . . . , d.

Sometimes, we may use the abbreviation Mn,ℓ,t for Monℓ(S; t). For instance,

M5,4,(1,0,2) = {x1x22x4, x1x22x5, x1x2x3x5, x1x23x5, x2x23x5}.
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In order to compute the cardinality of the sets Mn,ℓ,t, we introduce a new shifting
operator, see [11]. Let 0 = (0, 0, , . . . , 0) be the null vector with d− 1 components, we
de�ne the map σ0,t : Mon(T ;0) → Mon(T ; t), by setting σ0,t(1) = 1, σ0,t(xi) = xi
and for all monomials u = xj1xj2 · · ·xjℓ ∈ Mon(T ;0) with j1 ≤ j2 ≤ · · · ≤ jℓ,
2 ≤ ℓ ≤ d,

σ0,t(xj1xj2 · · ·xjℓ) =
ℓ∏

k=1

xjk+
∑k−1

s=1 ts
.

Whereas, σt,t : Mon(T ; t)→ Mon(T ; t) denotes the identity function ofMon(T ; t).

Lemma 4.1.2 The map σ0,t is a bijection.

Proof. We de�ne the map σt,0 : Mon(T ; t) → Mon(T ;0), by setting σt,0(1) = 1,
σt,0(xi) = xi, for all i ∈ N, and for all monomials u = xj1xj2 · · ·xjℓ ∈ Mon(T ; t) with
1 ≤ j1 ≤ j2 ≤ · · · ≤ jℓ, and 2 ≤ ℓ ≤ d,

σt,0(xj1xj2 · · ·xjℓ) =
ℓ∏

k=1

xjk−
∑k−1

s=1 ts
.

One immediately veri�es that σ0,t ◦ σt,0 = σt,t and σt,0 ◦ σ0,t = σ0,0. □

In particular, the restriction σt,0|Mn,ℓ,t
is a injective map whose image is the set

Mn−(t1+t2+...+tℓ−1),ℓ,0 = Monℓ(K[x1, . . . , xn−(t1+t2+...+tℓ−1)]). Thus,

Corollary 4.1.3 For all 0 ≤ ℓ ≤ d,

|Mn,ℓ,t| =
(
n+ (ℓ− 1)−

∑ℓ−1
j=1 tj

ℓ

)
. (4.1)

Now, we introduce three fundamental classes of t-spread ideals.

De�nition 4.1.4 Let U be a non empty subset of Mn,ℓ,t, ℓ ≤ d. We say that

- U is a t-spread stable set, if for all u ∈ U , and j < max(u) such that xj(u/xmax(u))
is t-spread, then xj(u/xmax(u)) ∈ U ;

- U is a t-spread strongly stable set, if for all u ∈ U , and all j < i such that xi
divides u and xj(u/xi) is t-spread, then xj(u/xi) ∈ U ;

- U is a t-spread lexicographic set, if for all u ∈ U , v ∈ Mn,ℓ,t such that v ≥lex u,
then v ∈ U , where ≥lex is the lexicographic order with x1 > x2 > · · · > xn [89].

We assume the empty set ∅ to be a t-spread stable, strongly stable and lexicographic
set. Whereas, for I a t-spread ideal of S, we say that I is a t-spread stable, strongly
stable, lexicographic ideal, if Uℓ = I ∩ Mn,ℓ,t is a t-spread stable, strongly stable,
lexicographic set, respectively, for all ℓ = 0, . . . , d.

For t = 0 = (0, 0, . . . , 0) we obtain the classical notions of stable, strongly stable
and lexicographic sets and ideals [89]. For t = 1 = (1, 1, . . . , 1), the squarefree ana-
logues [12]. Finally, if t = (t, t, . . . , t) we have the ordinary t-spread stable, strongly
stable and lexicographic sets and ideals, as in [53].

The following hierarchy of t-spread monomial ideals of S holds
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t-spread lexicographic ideals ⇒ t-spread strongly stable ideals
⇒ t-spread stable ideals.

The next lemma provides the existence of a standard decomposition for all t-spread
monomials belonging to a t-spread strongly stable ideal.

Lemma 4.1.5 Let I be a t-spread strongly stable ideal of S, and w ∈ I a t-spread
monomial. Then, there exist unique monomials u ∈ G(I) and v ∈ Mon(S) such that
w = uv and max(u) ≤ min(v).

Proof. The statement holds when w ∈ G(I). In such a case, w = w ·1, with w ∈ G(I),
1 ∈ Mon(S) and max(w) ≤ n = min(1). Otherwise, there exists a t-spread monomial
u ∈ G(I) such that u divides w and deg(u) < deg(w). We choose u to be of minimal
degree. Then w = uv, for a suitable monomial v ∈ Mon(S). Write w = xj1xj2 · · ·xjℓ ,
then u = xjk1xjk2 · · ·xjks for 1 ≤ k1 < k2 < · · · < ks < ℓ. Now, u1 = xj1xj2 · · ·xjs ∈ I,
as u1 is t-spread and I is t-spread strongly stable. Moreover, u1 divides w and it is a
minimal generator. Otherwise, if there exists u2 ∈ G(I) such that u2 divides u1 and
deg(u2) < deg(u1), then deg(u2) < deg(u) and u2 divides w, an absurd for the choice
of u. Hence w = u1v1 with u1 = xj1 · · ·xjs ∈ G(I) and v1 = xjs+1 · · ·xjℓ ∈ Mon(S).
Clearly, the monomials u1 and v1 satisfying the statement are unique. □

As a consequence we have the following

Corollary 4.1.6 Let I be a t-spread monomial ideal of S. Then, the following con-
ditions are equivalent:

(i) I is a t-spread strongly stable ideal;

(ii) for all u ∈ G(I), i ∈ supp(u), j < i such that xj(u/xi) is a t-spread monomial,
then xj(u/xi) ∈ I.

Proof. (i) =⇒ (ii) is obvious. For the converse, let w ∈ I be a t-spread monomial,
i ∈ supp(w) and j < i such that w1 = xj(w/xi) is t-spread, we need to prove that
w1 ∈ I. Write w = uv, with u and v as in Lemma 4.1.5. If i /∈ supp(u), then u
divides w1, and so w1 ∈ I. Otherwise, if i ∈ supp(u), then j < i ≤ max(u) and so
j /∈ supp(v). Thus, w1 = xj(w/xi) = xj(u/xi)v = u1v with u1 = xj(u/xi), and u1 is
t-spread, as w1 is. By (ii), u1 ∈ I. Hence u1 divides w1 and so w1 ∈ I. □

4.2 Koszul cycles of vector-spread strongly stable ideals

Our main computational tool is Theorem 4.2.8. It allows to calculate a basis of the
homology modules of the Koszul complex K·(x;S/I), where x = x1, . . . , xn and I is
a t-spread strongly stable ideal of S.

The symbol [n] denotes the set {1, 2, . . . , n}, where n ∈ Z≥1. If j, k ≥ 1 are
integers, we set [j, k] = {ℓ ∈ N : j ≤ ℓ ≤ k}, and [j, k] ̸= ∅ if and only if j ≤ k.
If j = k = 0, we set [0, 0] = [0] = ∅. For a monomial u ∈ S, u ̸= 1, we set
u′ = u/xmax(u).

The next combinatorial tool will be fundamental for our aim.

De�nition 4.2.1 Let u = xj1xj2 · · ·xjℓ ∈ Mon(S; t) a t-spread monomial of S, with
1 ≤ j1 ≤ · · · ≤ jℓ ≤ n. The t-spread support of u is the following subset of [n]:

suppt(u) =
ℓ−1⋃
i=1

[
ji, ji + (ti − 1)

]
.
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Note that supp0(u) = ∅, and if u is squarefree, supp1(u) = supp(u/xmax(u)) =

{j1, j2, . . . , jℓ−1}, where 1 = (1, 1, . . . , 1) ∈ Zd−1
≥0 .

Let us explain now the combinatorial meaning of the vector-spread support. Let
u = xj1xj2 · · ·xjℓ ∈ Mon(S; t), u ̸= 1. For any k ∈ [max(u)− 1] \ suppt(u), we de�ne
k(u) = min{j ∈ supp(u) : j > k}. We note that k(u) always exists as k < max(u)
and max(u) ∈ supp(u). An easy calculation shows that w = xk(u/xk(u)) is again a
t-spread monomial, and moreover, if I is a t-spread strongly stable ideal and u ∈ I,
then w ∈ I also, by de�nition. This property will be crucial in order to construct our
Koszul cycles. For instance,

Example 4.2.2 Let u = x21x2x4x6x8 ∈ Mon(S; (0, 0, 1, 2, 1)), S = K[x1, . . . , x8]. We
have supp(0,0,1,2,1)(x1x1x2x4x6x8) = {2, 4, 5, 6}, and [max(u)−1]\suppt(u) = {1, 3, 7}.
For k = 1, k(u) = 2, for k = 3, k(u) = 4 and for k = 7, k(u) = max(u) = 8. Note
that x1(u/x2) = x31x4x6x8, x3(u/x4) = x21x2x3x6x8 and x7(u/x8) = x21x2x4x6x7 are
all (0, 0, 1, 2, 1)-spread monomials.

Let I be a t-spread strongly stable ideal of S. We are going to construct suitable
cycles of Ki(x;S/I) = Ki(x).

We shall make the following conventions. For a non empty subset A ⊆ [n], we set
xA =

∏
i∈A xi and eA =

∧
i∈A ei, whereas for A = ∅, x∅ = 1 and eτ∧e∅ = e∅∧eτ = eτ

for any non empty subset τ ⊆ [n]. We take account of repetitions. For example, if
A = {1, 1, 2, 3}, then xA = x21x2x3 and eA = e1 ∧ e1 ∧ e2 ∧ e3 = 0.

Let u ∈ S be a t-spread monomial and σ = {k1 < k2 < · · · < ki−1} ⊆ [max(u)−1]
with |σ| = i− 1, i ≥ 1. For each ℓ = 1, . . . , i− 1, we de�ne

k
(u)
ℓ = jℓ = min{j ∈ supp(u) : j > kℓ}.

Clearly, j1 ≤ j2 ≤ · · · ≤ ji−1 ≤ max(u). If F = {ks1 , . . . , ksm} ⊆ σ, we set

F (u) = {js1 ≤ js2 ≤ · · · ≤ jsm} = {min{j ∈ supp(u) : j > ksℓ} : ℓ ∈ [m]}.

De�nition 4.2.3 Let u ∈ S be a t-spread monomial. We set u′ = u/xmax(u). Let
σ = {k1 < k2 < · · · < ki−1} ⊆ [max(u)− 1] \ suppt(u) with |σ| = i− 1, i ≥ 1. Let I
be any t-spread strongly stable ideal of S such that u ∈ I and let ε : S → S/I be the
canonical map. We de�ne the following element of Ki(x;S/I):

e(u;σ) =
∑
F⊆σ

(−1)u(σ;F )ε(xF (u
′/xF (u)))eσ\F ∧ eF (u) ∧ emax(u) (4.2)

= ε(u′)eσ ∧ emax(u) +
∑

∅̸=F⊆σ
(−1)u(σ;F )ε(xF (u

′/xF (u)))eσ\F ∧ eF (u) ∧ emax(u),

with u(σ;∅) = 0 and for F ̸= ∅, F ⊆ σ, u(σ;F ) is de�ned recursively as follows:

- if max(σ) = ki−1 /∈ F , then u(σ;F ) = u(σ \ {ki−1};F ) + |F |;

- if max(σ) = ki−1 ∈ F , then

u(σ;F ) = u(σ \ {kr ∈ σ : jr = ji−1};F \ {kr ∈ F : jr = ji−1})
+ (|{kr ∈ σ : jr = ji−1}| − 1)(|F |+ 1) + 1.
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The de�nition of the u(σ;F )'s will became clear in the proof of Proposition 4.2.4.

The element e(u;σ) ∈ Ki(x) is well de�ned. Indeed, if for some kp < kq, kp, kq ∈ σ
we have jp = jq = j, then x2j may not divide u, however, in such case the wedge

product eσ\F ∧ eF (u) ∧ emax(u) is zero, as jp, jq ∈ F (u) and ejp ∧ ejq = ej ∧ ej = 0. The
same reasoning applies if jp = max(u), for some p. Moreover, ε(u′)eσ ∧ emax(u) is the
biggest summand of e(u;σ) with respect to the order on the wedge products we have
de�ned in Section 2.2.

As noted before, for u ∈ I a t-spread monomial and kℓ ∈ [max(u)− 1] \ suppt(u),
then xkℓ(u/xjℓ) ∈ I, i.e., ε(xkℓ(u/xjℓ)) = 0, as I is a t-spread strongly stable ideal.

Proposition 4.2.4 Let I ⊆ S be a t-spread strongly stable ideal. For all i ≥ 1, the
elements

e(u;σ) such that u ∈ G(I), σ ⊆ [max(u)− 1] \ suppt(u), |σ| = i− 1,

are cycles of Ki(x;S/I).

Remark 4.2.5 Proving the above proposition in the cases i = 1, 2, 3 is straightfor-
ward. For the general case, e(u;σ) is a sum of 2i−1 terms, if |σ| = i − 1. A direct
veri�cation of the equation ∂i(e(u;σ)) = 0 is nasty. Therefore, we employ an inductive
argument. After verifying two base cases (i = 1, 2), we assume that e(u;ϑ) is a cycle
for all proper subsets ϑ ⊂ σ. Depending on some cases, we suitably write e(u;σ) in
terms of the e(u;ϑ)'s, equations (4.3) and (4.4). It is from these equations that we
obtained our coe�cients u(σ;F ), F ⊆ σ, by observing that we must change sign each
time we exchange two consecutive basis elements ek, eℓ in a non zero wedge product
involving them. Finally, using the rule of multiplication,

∂(a ∧ b) = ∂(a) ∧ b+ (−1)deg aa ∧ ∂(b)

for a a, b ∈ K·(x;S/I), with a homogeneous, we complete our proof.

We begin by giving the decomposition for the e(u;σ)'s mentioned above.

Lemma 4.2.6 Let u ∈ S be a t-spread monomial, and let σ = {k1 < · · · < ki−1} ⊆
[max(u)− 1] \ suppt(u), |σ| = i− 1, i ≥ 2. Then the following hold:

(a) If ji−1 = max(u), setting τ = σ \ {ki−1}, then

e(u;σ) = −e(u; τ) ∧ eki−1
. (4.3)

(b) If ji−1 ̸= max(u), setting ℓ = min{ℓ ∈ [i− 1] : jℓ = ji−1}, v = xki−1
u/xji−1 and

ρ = σ \ {kℓ, kℓ+1, . . . , ki−2, ki−1}, then

e(u;σ) = −e(u; τ)∧eki−1
+(−1)i−1−ℓe(v; ρ)∧ekℓ∧ekℓ+1

∧· · ·∧eki−2
∧eji−1 . (4.4)

Proof. (a) Suppose that ji−1 = max(u). In such a case, for all F ⊆ σ with ki−1 ∈ F ,
the corresponding term of e(u;σ) is zero, as eji−1 ∧ emax(u) = emax(u) ∧ emax(u) = 0.
Moreover, for all F ⊆ σ such that ki−1 = max(σ) /∈ F , that is F ⊆ τ , we have
u(σ;F ) = u(τ ;F )+|F |, hence (−1)u(σ;F )(−1)|F |+1 = −(−1)u(τ ;F )+2|F | = −(−1)u(τ ;F ).
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So, we obtain the desired formula (4.3),

e(u;σ) =
∑
F⊆τ

(−1)u(σ;F )ε(xF (u
′/xF (u)))eσ\F ∧ eF (u) ∧ emax(u)

=
∑
F⊆τ

(−1)u(σ;F )(−1)|F |+1ε(xF (u
′/xF (u)))eτ\F ∧ eF (u) ∧ emax(u) ∧ eki−1

= −(
∑
F⊆τ

(−1)u(τ ;F )ε(xF (u
′/xF (u)))eτ\F ∧ eF (u) ∧ emax(u)) ∧ eki−1

= − e(u; τ) ∧ eki−1
.

(b) Suppose ji−1 ̸= max(u). Note that v = xki−1
(u/xji−1) ∈ I, as u ∈ G(I), v is

t-spread, ki−1 < ji−1 and I is t-spread strongly stable. Moreover max(v) = max(u),
ℓ ≤ i − 1 and ρ = {k1, k2, . . . , kℓ−1} ⊆ τ ⊆ [max(v) − 1] \ suppt(v). Hence, we can
consider the element

e(v; ρ) =
∑
G⊆ρ

(−1)v(ρ;G)ε(xG(v
′/xG(v)))eρ\G ∧ eG(v) ∧ emax(u) (4.5)

where G(v) = {min{s ∈ supp(v) : s > g} : g ∈ G}. For kr ∈ G, r < ℓ, so sr = min{s ∈
supp(v) : s > kr} = jr, as jr ∈ supp(u) \ {ji−1}, and ki−1 > jr, lest ki−1 ≤ jr < ji−1

would imply that jr = ji−1, an absurd. So, for all G ⊆ ρ, we have G(u) = G(v). This
implies, by the de�nition of the coe�cients, that v(ρ;G) = u(ρ;G) for all G ⊆ ρ.

Let F ⊆ σ with F ̸= ∅ such that the corresponding term of e(u;σ) is non zero.
If ki−1 /∈ F , then F ⊆ τ and in (a) we have already shown that the corresponding

terms of e(u;σ) and −e(u; τ) ∧ eki−1
are equal.

Suppose now that ki−1 ∈ F . Set D = {kℓ, . . . , ki−2}. We assume that D ∩ F is
empty, otherwise eF (u) = 0, as jr = ji−1 for some kr ∈ D ∩ F . So, we can write
F = G ∪ {ki−1} for a unique G ⊆ ρ. Thus, the relevant sum T of terms of e(u;σ)
indexed by {F = G∪{ki−1} : G ⊆ ρ} is, asmax(u) = max(v) and xki−1

(u′/xji−1) = v′,

T =
∑

G∪{ki−1}
G⊆ρ

(−1)u(σ;G∪{ki−1})ε(xGxki−1
(u′/(xji−1

xG(u))))eσ\(G∪{ki−1}) ∧ eG(u) ∧ eji−1
∧ emax(u)

=
∑
G⊆ρ

(−1)u(σ;G∪{ki−1})ε(xG(v
′/xG(v)))eρ\G ∧ eD ∧ eG(v) ∧ eji−1 ∧ emax(v)

=
∑
G⊆ρ

(−1)u(σ;G∪{ki−1})+1+|D|(|G|+1)ε(xG(v
′/xG(v)))eρ\G ∧ eG(v) ∧ emax(v) ∧ eD ∧ eji−1

.

Now, for all F = G ∪ {ki−1}, with G ⊆ ρ, we have

u(σ;F ) = u(σ \ {kℓ, . . . , ki−1};F \ {kℓ, . . . , ki−1}) + (|{kℓ, . . . , ki−1}| − 1)(|F |+ 1) + 1

= u(σ \ {kℓ, . . . , ki−1};G) + (|{kℓ, . . . , ki−1}| − 1)(|F |+ 1) + 1

= u(ρ;G) + |D|(|F |+ 1) + 1.

Therefore, as |G|+ 1 = |F | and |D| = i− 1− ℓ, we have

(−1)u(σ;F )+1+|D|(|G|+1) = (−1)u(ρ;G)+2+2|D||F |+|D| = (−1)i−1−ℓ(−1)u(ρ;G).
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So, we have e(u;σ) = −e(u; τ) ∧ eki−1
+ T , with, as u(ρ;G) = v(ρ;G) for all G ⊆ ρ,

T = (
∑
G⊆ρ

(−1)i−1−ℓ(−1)u(ρ;G)ε(xG(v
′/xG(v)))eρ\G ∧ eG(v) ∧ emax(v)) ∧ eD ∧ eji−1

= (−1)i−1−ℓ(
∑
G⊆ρ

(−1)v(ρ;G)ε(xG(v
′/xG(v)))eρ\G ∧ eG(v) ∧ emax(v)) ∧ eD ∧ eji−1

= (−1)i−1−ℓe(v; ρ) ∧ ekℓ ∧ ekℓ+1
∧ · · · ∧ eki−2

∧ eji−1 ,

and equation (4.4) holds. □

Finally we can prove Proposition 4.2.4.

Proof of Proposition 4.2.4. For i = 1 we have |σ| = 0, so σ = ∅, u(∅;∅) = 0 by
de�nition, and the element e(u;∅) = ε(u′)emax(u) = ε(u/xmax(u))emax(u) is clearly a
cycle of K1(x). Let i ≥ 2. We proceed by induction on i ≥ 2.

For i = 2, σ = {k1}. Let j1 = min{j ∈ supp(u) : j > k1}. We have u({k1};∅) = 0
and u({k1}, {k1}) = u({k1}\{k1}; {k1}\{k1})+(|{k1}|−1)(|{k1}|+1)+1 = u(∅;∅)+
1 = 1, so

e(u;σ) = ε(u′)ek1 ∧ emax(u) − ε(xk1u′/xj1)ej1 ∧ emax(u).

If j1 = max(u), then e(u;σ) = ε(u′)ek1 ∧ emax(u). In such a case,

∂2(e(u;σ)) = ε(xk1u
′)emax(u) − ε(xmax(u)u

′)ek1 = 0,

as xk1u
′, xmax(u)u

′ = u ∈ I. Otherwise, if j1 < max(u), then

∂2(e(u;σ)) = ε(xk1u
′)emax(u)−ε(xmax(u)u

′)ek1−ε(xk1u′)emax(u)+ε(xk1(u/xj1))ej1 = 0,

as the �rst and third terms cancel each other, and xmax(u)u
′ = u, xk1(u/xj1) ∈ I.

Suppose now i > 2. Let σ = {k1 < · · · < ki−2 < ki−1}, and τ = {k1 < · · · < ki−2}.
We distinguish two cases.

(a) Suppose ji−1 = max(u). By induction e(u; τ) is a cycle. By Lemma 4.2.6 (a),

∂i(e(u;σ)) = ∂i(−e(u; τ) ∧ eki−1
)

= −∂i−1(e(u; τ)) ∧ eki−1
− (−1)deg(e(u;τ))xki−1

e(u; τ)

= −(−1)deg(e(u;τ))xki−1
e(u; τ) = 0.

Indeed, xki−1
u/xji−1 = xki−1

u/xmax(u) = xki−1
u′ ∈ I. Thus, each non zero term of

xki−1
e(u; τ) vanish, as it has coe�cient ε(xFxki−1

u′/xF (u)), and xFxki−1
u′/xF (u) ∈ I

as I is a t-spread strongly stable ideal. In such a case, e(u;σ) is a cycle, as desired.

(b) Suppose ji−1 ̸= max(u). Set ℓ = min{ℓ ∈ [i−1] : jℓ = ji−1}, v = xki−1
u/xji−1 ,

ρ = σ \ {kℓ, . . . , ki−2, ki−1} and D = {kℓ, . . . , ki−2}. By Lemma 4.2.6 (b),

e(u;σ) = −e(u; τ) ∧ eki−1
+ (−1)i−1−ℓe(v; ρ) ∧ eD ∧ eji−1 . (4.6)

Let J be the smallest t-spread strongly stable ideal of S that contains v. J is generated
only in one degree deg(v) = deg(u), and J ⊆ I. By inductive hypothesis, as |ρ| < |σ|,
e(v; ρ) is a cycle of Ki(x;S/J). So, it is also a cycle of Ki(x;S/I) = Ki(x).
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By inductive hypothesis ∂i−1(e(u; τ)) = ∂ℓ(e(v; ρ)) = 0. Since deg(e(u; τ)) = |τ |
and deg(e(v; ρ)) = |ρ|, by equation (4.6) we have

∂i(e(u;σ)) = −∂i−1(e(u; τ)) ∧ eki−1
− (−1)deg(e(u;τ))xki−1

e(u; τ)

+(−1)i−1−ℓ[∂ℓ(e(v; ρ)) ∧ eD ∧ eji−1 + (−1)deg(e(v;ρ))e(v; ρ) ∧ ∂i−ℓ(eD ∧ eji−1)]

=− (−1)|τ |(xki−1
e(u; τ)− (−1)|ρ|−|τ |(−1)i−1−ℓe(v; ρ) ∧ ∂i−ℓ(eD ∧ eji−1)).

We have i−1−ℓ+ |ρ|−|τ | = i−1−ℓ+ℓ−1−(i−2) = 0. So (−1)|ρ|−|τ |(−1)i−1−ℓ = 1.
Set

f = xki−1
e(u; τ)− e(v; ρ) ∧ ∂i−ℓ(ekℓ ∧ ekℓ+1

∧ · · · ∧ eki−2
∧ eji−1).

To show that ∂i(e(u;σ)) = 0, it su�ces to prove that f is zero. Let F ⊆ τ . The set
D∩F = {kℓ, . . . , ki−2}∩F can have at most one element, otherwise eF (u) = 0, as shown
before. Therefore, F = G or F = G ∪ {kr} for a unique G ⊆ ρ and r ∈ {ℓ, . . . , i− 2}.
By construction we have G(u) = G(v) and u(ρ;G) = v(ρ;G) for all G ⊆ ρ, as already
observed in Lemma 4.2.6.

Suppose F = G, then the corresponding term of f is a− b, where

a = (−1)u(τ ;G)ε(xki−1
xG(u

′/xG(u)))eτ\G ∧ eG(u) ∧ emax(u),

and, as i− 1− ℓ = |D|,

b = (−1)i−1−ℓ(−1)v(ρ;G)ε(xji−1xGxki−1
u′/(xji−1xG(v)))eρ\G ∧ eG(v) ∧ emax(v) ∧ eD

= (−1)u(ρ;G)+|D|(−1)|D|(|G|+1)ε(xki−1
xG(u

′/xG(u)))eρ\G ∧ eD ∧ eG(u) ∧ emax(u)

= (−1)u(ρ;G)+|D|(|G|+2)ε(xki−1
xG(u

′/xG(u)))eτ\G ∧ eG(u) ∧ emax(u).

We have, as i− 1− ℓ = |D|,

u(τ ;G) = u(τ \ {ki−2};G) + |G|
= u(τ \ {ki−3, ki−2};G) + 2|G|
...

= u(τ \ {kℓ, . . . , ki−2};G) + (i− 1− ℓ)|G|
= u(ρ;G) + |D| · |G|.

Thus, (−1)u(ρ;G)+|D|(|G|+2) = (−1)u(τ ;G) and a− b = 0, in this case.

Otherwise, if F = G ∪ {kr}, the corresponding term of f is a− b, where

a = (−1)u(τ ;G∪{kr})ε(xki−1
xkrxGu

′/(xji−1xG(u)))eτ\(G∪{kr}) ∧ eG(u) ∧ eji−1 ∧ emax(u)

= (−1)u(τ ;G∪{kr})ε(xki−1
xkrxGu

′/(xji−1xG(u)))eτ\F ∧ eG(u) ∧ eji−1 ∧ emax(u),

and, setting c = v(ρ;G) + r − ℓ,

b = (−1)r−ℓ(−1)v(ρ;G)ε(xkrxGv
′/xG(v))eρ\G ∧ eG(v) ∧ emax(v) ∧ eD\{kr} ∧ eji−1

= (−1)c+(|D|−1)(|G|+1)+1ε(xki−1
xkrxGu

′/(xG(u)xji−1))eρ\G ∧ eD\{kr} ∧ eF (u) ∧ emax(u)

= (−1)c+(|D|−1)(|G|+1)+1ε(xki−1
xkrxGu

′/(xG(u)xji−1))eτ\F ∧ eG(u) ∧ eji−1 ∧ emax(u).
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Now,

u(τ ;G ∪ {kr}) = u(τ \ {ki−2};G ∪ {kr}) + (|G|+ 1)

= u(τ \ {ki−3, ki−2};G ∪ {kr}) + 2(|G|+ 1)

.

.

.

= u(τ \ {kr+1, . . . , ki−2};G ∪ {kr}) + (i− r)(|G|+ 1)

= u(τ \ {kℓ, . . . , ki−2};G) + (|{kℓ, . . . , kr}| − 1)(|G|+ 2) + 1 + (i− r)(|G|+ 1)

= u(ρ;G) + (r − ℓ+ i− r)(|G|+ 1) + (r − ℓ) + 1

= v(ρ;G) + (i− ℓ)(|G|+ 1) + (r − ℓ) + 1.

Hence, since (−1)(i−ℓ)(|G|+1) = (−1)(|D|+1)(|G|+1) = (−1)(|D|−1)(|G|+1), we have

(−1)u(τ ;G∪{kr}) = (−1)v(ρ;G)+(i−ℓ)(|G|+1)+(r−ℓ)+1 = (−1)c+(|D|−1)(|G|+1)+1

and a− b = 0. Therefore, f = 0 and e(u;σ) is a cycle, as desired. □

Remark 4.2.7 Let σ = {k1 < k2 < · · · < ki−1} ⊆ [max(u)− 1] \ suppt(u), i > 2. Set

r(u;σ) =
∑
F⊆σ
k1∈F

(−1)u(σ;F )ε(xF (u
′/xF (u)))eσ\F ∧ eF (u) ∧ emax(u).

We show that e(u;σ) = ek1 ∧ e(u;σ \ {k1}) + r(u;σ). For this aim, it is enough to
prove that, for all F ⊆ σ such that k1 /∈ F , we have (−1)u(σ;F ) = (−1)u(σ\{k1};F ). For
σ = {k1} this is clear. Let |σ| = i− 1 ≥ 2. We distinguish two cases.

Case 1. Suppose max(σ) /∈ F , then u(σ;F ) = u(σ \ {ki−1};F ) + |F |. Moreover
max(σ \ {k1}) = max(σ) as |σ| ≥ 2. Therefore u(σ \ {k1};F ) = u(σ \ {k1, ki−1};F ) +
|F |. By induction on |σ|, (−1)u(σ\{k1,ki−1};F ) = (−1)u(σ\{ki−1};F ), and the desired
conclusion follows in such a case.

Case 2. Suppose max(σ) ∈ F . Set D = {kr ∈ F : jr = ji−1} and d = |{kr ∈ σ :
jr = ji−1}|. Observe that, as k1 /∈ F , d = |{kr ∈ σ \ {k1} : jr = ji−1}|. Therefore, by
the de�nition of the coe�cients, we have

u(σ;F ) = u(σ \D;F \ {ki−1}) + (d− 1)(|F |+ 1) + 1,

u(σ \ {k1};F ) = u(σ \ ({k1} ∪D);F \ {ki−1}) + (d− 1)(|F |+ 1) + 1.

As ki−1 ∈ D so D ̸= ∅, we have |σ \ D| < |σ|. So by inductive hypothesis,
(−1)u(σ\D;F\{ki−1}) = (−1)u(σ\({k1}∪D);F\{ki−1}), and the desired conclusion follows.

Note that ek1 doesn't appear in r(u;σ). Hence, we have the useful decomposition
e(u;σ) = ek1 ∧ e(u;σ \ {k1}) + r(u;σ). Moreover, equations (4.3) and (4.4) give us
recurrence relations for our Koszul cycles.

We are in position to state and prove the main result of this section.

Theorem 4.2.8 Let I ⊂ S be a t-spread strongly stable ideal. Then, for all i ≥ 1,
the K-vector space Hi(x;S/I) has as a basis the homology classes of the Koszul cycles

e(u;σ) such that u ∈ G(I), σ ⊆ [max(u)− 1] \ suppt(u), |σ| = i− 1. (4.7)

Proof. Let us prove the following more general statement,
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Claim 1. For all i ≥ 1 and all j = 1, . . . , n, a minimal generating set for Hi(xj),
as a S/(xj)-module, is given by the homology classes of the Koszul cycles

e(u;σ) such that u ∈ G(I), σ ⊆ ([max(u)− 1] \ suppt(u)) ∩ [j, n], |σ| = i− 1.

We proceed by induction on n − j ≥ 0. For the base case, let n − j = 0. We
only have to consider H1(xn). Indeed, for i ≥ 2, Hi(xn) = 0, since K·(xn;S/I) has
length one. H1(xn) is generated by the elements [e(u;∅)] = [ε(u/xmax(u))emax(u)] with
u ∈ G(I) and max(u) = n. Moreover (xn) = (xn) clearly annihilates these elements,
so they form a minimal generating set of H1(xn) as a S/(xn)-module.

For the inductive step, suppose n−j > 0 and that the thesis holds for j+1. First,
we consider the case i = 1. By the sequence (2.4), we have the exact sequence

H1(xj+1)
α1−−−→ H1(xj)

β1−−→ H0(xj+1)
δ0−−→ H0(xj+1). (4.8)

By the third isomorphism theorem for commutative rings,

H0(xj+1) ∼=
S/I

(xj+1, I)/I
∼=

S

(xj+1, xj+2, . . . , xn, I)
∼= S≤j/I≤j ,

where S≤j = K[x1, . . . , xj ] and I≤j = I ∩ S≤j . We observe that I≤j is a monomial
ideal of S≤j with minimal generating set G(I≤j) = {u ∈ G(I) : max(u) ≤ j}.

Let Ker(δ0) = Im(β1) be the kernel of the rightmost non zero map of sequence
(4.8), we obtain the short exact sequence of S/(xj+1)-modules,

0→ Im(α1)
α1−−−→ H1(xj)

β1−−→ Ker(δ0)→ 0. (4.9)

By inductive hypothesis, H1(xj+1) is generated by the homology classes of the ele-
ments

e(u;∅) = ε(u/xmax(u))emax(u),

such that max(u) ≥ j + 1 and u ∈ G(I). These elements also generate Im(α1), as α1

sends these homology classes to the corresponding homology classes inH1(xj). Whilst,
Ker(δ0) has as a basis the elements ε(u/xmax(u)) with max(u) = j and u ∈ G(I). Each
of these elements is pulled back inH1(xj) to the homology class of the element e(u;∅),
with max(u) = j and u ∈ G(I). Moreover (xj) annihilates H1(xj). Indeed, consider
xℓ[e(u;∅)], ℓ ∈ [j, n]. If ℓ = max(u), then xℓ[e(u;∅)] = [0]. If ℓ ̸= max(u), then
∂2(eℓ ∧ e(u;∅)) = xℓe(u;∅), so xℓ[e(u;∅)] = [0]. Therefore, we see that a generating
set for H1(xj) as a S/(xj)-module is as given in Claim 1.

Now, let i > 1. By (2.4), we have the short exact sequence of S/(xj+1)-modules,

0→ Im(αi)
αi−−→ Hi(xj)

βi−−→ Ker(δi−1)→ 0. (4.10)

By inductive hypothesis, a minimal generating set of the S/(xj+1)-module Hi−1(xj+1)
is given by the homology classes of the Koszul cycles

e(u;σ) such that u ∈ G(I), σ ⊆ ([max(u)−1]\ suppt(u))∩ [j+1, n], |σ| = i−2.

The map δi−1 is multiplication by ±xj . We show that the minimal generating set
of Ker(δi−1) is given by those elements [e(u;σ)] of Hi−1(xj+1) such that j /∈ suppt(u).

Let u ∈ G(I) and let [e(u;σ)] be an element of Hi−1(xj+1) as in Claim 1.
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Case 1. Suppose that j ∈ suppt(u), then xj(u/xmax(u)) /∈ I. So, ±xje(u;σ) ̸= 0,
as ±xjε(u′)eσ ∧ emax(u) ̸= 0. If for absurd [e(u;σ)] ∈ Ker(δi−1), then δi−1([e(u;σ)]) =
±xj [e(u;σ)] = [0]. Since ±xje(u;σ) ̸= 0, there exists a ∈ Ki(xj+1), a =

∑
ε(uγ)eγ ,

for some γ ⊆ [j + 1, n], |γ| = i, uγ ∈ S, such that ∂i(a) = ±xje(u;σ). Hence,

xje(u;σ) = ε(xju/xmax(u))eσ ∧ emax(u) + (smaller terms) = ∂i(a)

= ∂i(
∑

ε(uγ)eγ) =
∑

γ : γ\{ℓ}=σ∪{max(u)}

ε(xℓuγ)eσ ∧ emax(u) +R,

where R is a sum of other terms not involving eσ∧emax(u). We have xj(u/xmax(u)) /∈ I,
i.e., ε(xj(u/xmax(u))) ̸= 0. Hence, for some eγ0 occurring in a and some ℓ0 ∈ γ0
such that γ0 \ {ℓ0} = σ ∪ {max(u)}, we must have xj(u/xmax(u)) = xℓ0uγ0 . We
have ℓ0 ̸= max(u), and since xj(u/xmax(u)) = xℓ0uγ0 and j < j + 1 ≤ max(u), we
also have ℓ0 < max(u). Now, max(u) ∈ γ0 and the term ±ε(xmax(u)uγ0)eγ0\{max(u)}
appears in R. The inequality ℓ0 < max(u) implies that γ0 \ {max(u)} > γ0 \ {ℓ0} =
σ ∪ {max(u)}, and since each wedge product appearing in xje(u;σ) is smaller than
eσ ∧ emax(u), we must have either ε(xmax(u)uγ0) = 0 or there exist γ1 ⊆ [j + 1, n] and
an integer ℓ1 ∈ γ1 such that the term ±ε(xℓ1uγ1)eγ1\{ℓ1} appears in R and cancels
with ±ε(xmax(u)uγ0)eγ0\{max(u)}.

Subcase 1.1. We have xmax(u)uγ0 ∈ I. Hence,

xmax(u)uγ0 = xmax(u)xj(u/xmax(u))/xℓ0 = xj(u/xℓ0) ∈ I.

Therefore, xj(u/xℓ0) ∈ I, absurd. Indeed, write u = xj1xj2 · · ·xjd , then j ∈ suppt(u)
implies that j = jp+r, with 0 ≤ r ≤ tp−1, tp ≥ 1. Moreover, ℓ0 > j, so ℓ0 = jq, q > p.
If xj(u/xℓ0) = xj1 · · ·xjpxjp+rxjp+1 · · ·xjq−1xjq+1 · · ·xjd ∈ I, then for some v ∈ G(I),
v divides xj(u/xℓ0). As v is t-spread but xj(u/xℓ0) is not, we have v ̸= xj(u/xℓ0),
hence deg(v) < deg(xj(u/xℓ0)) = deg(u). So, v must divide xj(u/xℓ0))/xj = u/xℓ0 ,
and u/xℓ0 ∈ I, absurd as u ∈ G(I).

Subcase 1.2. We have γ1 \ {ℓ1} = γ0 \ {max(u)} = σ ∪ {ℓ0} and xmax(u)uγ0 =
xℓ1uγ1 . Therefore, γ1 = σ ∪ {ℓ0, ℓ1}. The term ±ε(xℓ0uγ1)eσ∪{ℓ1} appears in R and it
is bigger than ε(u′)eσ ∧ emax(u). So, we have two cases to consider. As before, in the
�rst case, ε(xℓ0uγ1) = 0, and recalling that xj(u/xmax(u)) = xℓ0uγ0 , we have

xℓ0uγ1 = xℓ0(xmax(u)uγ0)/xℓ1 = xmax(u)(xℓ0uγ0)/xℓ1 = xmax(u)xj(u/xmax(u))/xℓ1

= xj(u/xℓ1) ∈ I,

with ℓ1 > j. Arguing as in Subcase 1.1 we obtain an absurd. Otherwise there exist
γ2 ⊆ [j + 1, n] and an integer ℓ2 ∈ γ2 such that the term ±ε(xℓ2uγ2)eγ2\{ℓ2} appears
in R and cancels with ±ε(xℓ0uγ1)eσ∪{ℓ1}. We have γ2 = σ ∪ {ℓ1, ℓ2} and consider the
term arising from γ2 \ {ℓ1}. We can distinguish two cases as before. After a �nite
number of steps s, we have xj(u/xℓs) ∈ I for some ℓs > j, obtaining an absurd. Hence,
±xje(u;σ) /∈ Im(∂i), and ±xj [e(u;σ)] /∈ Ker(δi−1).

Case 2. Suppose now j /∈ suppt(u). By Remark 4.2.7,

e(u;σ ∪ {j}) = ej ∧ e(u;σ) + r(u;σ).

Recalling the map βi : Ki(xj)→ Ki−1(xj+1), we have that βi(e(u;σ∪{j})) = e(u;σ).
By Proposition 4.2.4, e(u;σ ∪ {j}) is a cycle. We prove that [e(u;σ ∪ {j})] ̸= [0] in
Hi(xj). Suppose on the contrary that there exists a ∈ Ki+1(xj) such that ∂i+1(a) =
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e(u;σ ∪ {j}). Now, a =
∑
ε(uγ)eγ , for some γ ⊆ [j, n], |γ| = i+ 1 and uγ ∈ S. So,

e(u;σ ∪ {j}) = ε(u/xmax(u))eσ∪{j} ∧ emax(u) + (smaller terms) = ∂i(a)

= ∂i(
∑

ε(uγ)eγ) =
∑

γ : γ\{ℓ}=σ∪{j,max(u)}

ε(xℓuγ)eσ∪{j} ∧ emax(u) +R,

where R is a sum of other terms not involving eσ∪{j}∧emax(u). For some eγ0 occurring
in a and some ℓ0 ∈ γ0 such that γ0\{ℓ0} = σ∪{j,max(u)}, we must have u/xmax(u) =
xℓ0uγ0 . We have ℓ0 ̸= max(u) and j < j + 1 ≤ max(u), so ℓ0 < max(u). Therefore,
γ0 = σ ∪ {j, ℓ0,max(u)} and ±ε(xmax(u)uγ0)eγ0\{max(u)} = ±ε(xmax(u)uγ0)eσ∪{j,ℓ0}
appears in R. Now ℓ0 < max(u) implies γ0 \ {max(u)} > γ0 \ {ℓ0} = σ ∪ {j,max(u)},
and since each wedge product appearing in e(u;σ∪{j}) is smaller than eσ∪{j}∧emax(u),
we must have either ε(xmax(u)uγ0) = 0 or there exist γ1 ⊆ [j, n] and ℓ1 ∈ γ1 such that
the term ±ε(xℓ1uγ1)eγ1\{ℓ1} appears in R and cancels with ±ε(xmax(u)uγ0)eγ0\{max(u)}.

Subcase 2.1. We have xmax(u)uγ0 ∈ I. So, xmax(u)uγ0 = xmax(u)(u/xmax(u))/xℓ0 =
u/xℓ0 ∈ I, but this is absurd, as u is a minimal monomial generator of I.

Subcase 2.2. We have γ1 \ {ℓ1} = γ0 \ {max(u)} = σ ∪ {j, ℓ0} and xmax(u)uγ0 =
xℓ1uγ1 . Therefore, γ1 = σ∪{j, ℓ0, ℓ1}. The term ±ε(xℓ0uγ1)eσ∪{j,ℓ1} appears in R and
it is bigger than ε(u′)eσ∪{j} ∧ emax(u). So, we have two cases to consider. As before,
in the �rst case, ε(xℓ0uγ1) = 0, and recalling that u/xmax(u) = xℓ0uγ0 , we have

xℓ0uγ1 = xℓ0(xmax(u)uγ0)/xℓ1 = xmax(u)(xℓ0uγ0)/xℓ1 = xmax(u)(u/xmax(u))/xℓ1

= u/xℓ1 ∈ I,

an absurd, as u ∈ G(I). Otherwise, we iterate the reasoning. After a �nite number of
steps s, we have u/xℓs ∈ I, for some ℓs, an absurd. Hence e(u;σ ∪ {j}) /∈ Im(∂i+1),
and [e(u;σ ∪ {j})] ̸= [0] in Hi(xj). Therefore, βi([e(u;σ ∪ {j})]) = [e(u;σ)], and
[e(u;σ)] ∈ Im(βi) = Ker(δi−1), as desired.

Finally, a basis for β−1
i (Ker(δi−1)) is given by all the elements as in Claim 1 such

that j ∈ σ. By inductive hypothesis, we know a basis for Hi(xj+1), and as αi sends
these homology classes to the corresponding homology classes of Hi(xj), a minimal
generating set for Im(αi) is given by all the elements as in Claim 1 such that j /∈ σ.

We observe that (xj) annihilates these elements. Indeed, the elements [e(u;σ)] as
in Claim 1 minimally generate Hi(xj) as a S/(xj+1)-module. So (xj+1) annihilates
all [e(u;σ)]. It remains to prove that xj annihilates all elements [e(u;σ)]. If j /∈ σ, then
by de�nition of e(u;σ), ej doesn't appear in the �rst term ε(u/xmax(u))eσ ∧ emax(u) of
e(u;σ). We have

∂i+1(ej ∧ e(u;σ)) = xje(u;σ) + ej ∧ (−1)deg(ej)∂i(e(u;σ)) = xje(u;σ),

so xj [e(u;σ)] = [0].
Suppose now j ∈ σ. Then βi(xj [e(u;σ)]) = xj [e(u;σ \{j})] = [0], because [e(u;σ \

{j})] ∈ Ker(δi−1). Hence, xj [e(u;σ)] ∈ Ker(βi) = Im(αi). By Remark 4.2.7,

xj [e(u;σ)] = xj [ej ∧ e(u;σ \ {j}) + r(u;σ)] = xj [r(u;σ)] ∈ Im(αi) ⊆ Hi(xj+1),

the �rst summand vanishes, as ej /∈ Hi(xj+1). If we set a = r(u;σ), xj [a] is a cycle,
and we have ∂i+1(ej∧a) = −xja, so xj

[
r(u;σ)

]
= [0] and xj

[
e(u;σ)

]
= [0], as desired.

So, a minimal generating set for the S/(xj)-module Hi(xj) is as in Claim 1.
Finally for j = 1, S/(x1) = S/(x1, . . . , xn) ∼= K, and Claim 1 implies the result,

as a minimal generating set of a K-vector space is a basis. □
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We provide an example that demonstrate our methods.

Example 4.2.9 Let t = (1, 0, 2), and let I = (x1, x2x
2
3, x2x3x4x6, x2x

2
4x6). We set

w1 = x1, w2 = x2x
2
3, w3 = x2x3x4x6, w4 = x2x

2
4x6. The ideal I ⊆ S = K[x1, . . . , x6] is

a t-spread strongly stable ideal with minimal generating set G(I) = {w1, w2, w3, w4}.
Let x = x1, x2, . . . , x6. The basis for the Koszul homologies of S/I are:

H1(x;S/I): e(w;∅) = ε(w/xmax(w)) emax(w), for w ∈ G(I);
H2(x;S/I): w1 gives no rise to any basis element,

w2 gives e(w2; {1}) = ε(x2x3) e1 ∧ e3,
w3 gives e(w3; {1}) = ε(x2x3x4) e1 ∧ e6,

e(w3; {3}) = ε(x2x3x4) e3 ∧ e6,
w4 gives e(w4; {1}) = ε(x2x

2
4) e1 ∧ e6,

e(w4; {3}) = ε(x2x
2
4) e3 ∧ e6 − ε(x2x3x4) e4 ∧ e6;

H3(x;S/I): w1, w2 give no rise to any basis element,

w3 gives e(w3; {1, 3}) = ε(x2x3x4) e1 ∧ e3 ∧ e6,
w4 gives e(w4; {1, 3}) = ε(x2x

2
4) e1 ∧ e3 ∧ e6 − ε(x2x3x4) e1 ∧ e4 ∧ e6;

Hj(x;S/I): ∅, for all j ≥ 4.

For instance, consider e(w4; {1, 3}) ∈ K3(x;S/I). Then

∂3(e(w4; {1, 3})) = ∂3
(
ε(x2x

2
4) e1 ∧ e3 ∧ e6 − ε(x2x3x4) e1 ∧ e4 ∧ e6

)
= ε(x1x2x

2
4) e3 ∧ e6 − ε(x2x3x24) e1 ∧ e6 + ε(x2x

2
4x6) e1 ∧ e3

− ε(x1x2x3x4) e4 ∧ e6 + ε(x2x3x
2
4) e1 ∧ e6 − ε(x2x3x4x6) e1 ∧ e4

= 0.

In fact, the �rst, third, fourth and sixth terms vanish, as ε(x1x2x
2
4) = ε(x2x

2
4x6) =

ε(x1x2x3x4) = ε(x2x3x4x6) = 0, and the second and �fth terms are opposite.

We illustrate how to obtain some of these elements.
Consider w3 = x2x3x4x6. Then suppt(w3) = supp(1,0,2)(x2x3x4x6) = {2, 4, 5} and

[max(w3) − 1] \ suppt(w3) = {1, 3}. Let ϑ = {1, 3}, then ϑ(w3) = {2, 4}. Moreover
max(w3) = 6 /∈ ϑ(w3). So, we can use equation (4.4) to compute the relevant Koszul
cycles e(w3;σ). Of course, we may also use equation (4.2).

The monomial w3 gives rise to the following Koszul cycles:

σ = ∅; e(w3;∅) = ε(w3/x6)e6 = ε(x2x3x4)e6,

σ = {1}; e(w3; {1}) = −e(w3;∅) ∧ e1 + e(x1(w3/x2);∅) ∧ e2
= −ε(x2x3x4)e6 ∧ e1 + ε(x1x3x4)e6 ∧ e2
= ε(x2x3x4)e1 ∧ e6,

σ = {3}; e(w3; {3}) = −e(w3;∅) ∧ e3 + e(x3(w3/x4);∅) ∧ e4
= −ε(x2x3x4)e6 ∧ e3 + ε(x2x

2
3)e6 ∧ e4

= ε(x2x3x4)e3 ∧ e6,

σ = {1, 3}; e(w3; {1, 3}) = −e(w3; {1}) ∧ e3 + e(x3(w3/x4); {1}) ∧ e4
= −ε(x2x3x4)e1 ∧ e6 ∧ e3 + e(x2x

2
3x6; {1}) ∧ e4

= ε(x2x3x4)e1 ∧ e3 ∧ e6 + ε(x2x
2
3)e1 ∧ e6 ∧ e4

= ε(x2x3x4)e1 ∧ e3 ∧ e6.
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Our computations yield the Betti table of S/I,

0 1 2 3
total: 1 4 5 2
0: 1 1 - -
1: - - - -
2: - 1 1 -
3: - 2 4 2

Remark 4.2.10 The expression of our Koszul cycles is not so nice. Indeed, a basis
element e(u;σ) of Hi(x;S/I), I a t-spread strongly stable ideal, is a sum of 2i−1 wedge
products! However, if t = (1, . . . , 1, 0, . . . , 0) ∈ Zd−1

≥0 , d ≥ 2, the element

z(u;σ) = ε(u/xmax(u))eσ ∧ emax(u).

with u ∈ G(I) and σ ⊆ [max(u)− 1] \ suppt(u) is easily seen to be a cycle. Indeed,

∂i(z(u;σ)) =
i−1∑
j=1

(−1)j+1ε(xkj (u/xmax(u)))eσ\{kj} ∧ emax(u) + (−1)i+1ε(u)eσ

= 0,

as xkj (u/xmax(u)) ∈ I for all j and u ∈ I, since t = (1, . . . , 1, 0, . . . , 0). It's easy
to see that the homology classes [z(u;σ)] are non zero and K-independent. Hence,
they form a basis for Hi(x), as the map z : z(u;σ) 7→ e(u;σ) is a bijection and the
elements e(u;σ) form a basis of Hi(x) by Theorem 4.2.8. These Koszul cycles have
been considered in the articles [10, 12]. But in general they are cycles only when the
vector t has the form t = (1, . . . , 1, 0, . . . , 0).

Example 4.2.11 Let I = (x1x2 , x1x3 , x1x
2
2 , x1x2x3 , x1x2x4 , x1x

2
3 , x1x3x4 , x1x

2
4) be

a (1, 0)-spread strongly stable ideal of K[x1, x2, x3, x4]. By Remark 4.2.10, since
t = (1, 0) and G(I) =

{
x1x2, x1x3, x1x

2
4

}
, the relevant basis for the Koszul homolo-

gies of S/I are:

H1(x;S/I): ε(x1x2/x2) e2, ε(x1x3/x3) e3, ε(x1x
2
4/x4) e4;

H2(x;S/I): ε(x1x3/x3) e2 ∧ e3, ε(x1x
2
4/x4) e2 ∧ e4, ε(x1x

2
4/x4) e3 ∧ e4;

H3(x;S/I): ε(x1x
2
4/x4) e2 ∧ e3 ∧ e4;

Hj(x;S/I): ∅, for all j ≥ 4.

Therefore, using Macaulay2 [82] the Betti table of I is

0 1 2
total: 3 3 1
2: 2 1 -
3: 1 2 1

4.3 The minimal free resolution of vector-spread strongly

stable ideals

In this section we construct the minimal free resolution of t-spread strongly stable
ideals of S. This resolution will generalize that of Eliahou and Kervaire [50], and also
the squarefree lexsegment analogue in [12]. We will follow the construction given by
Aramova and Herzog in [10].
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Let I ⊂ S = K[x1, . . . , xn] be a t-spread strongly stable ideal. Note that, since
TorSi (K,S/I)

∼= Hi(x;S/I) = Hi(x), for all i, the minimal free resolution of S/I may
be written as follows,

F : · · · d3−−→ S ⊗K H2(x)
d2−−→ S ⊗K H1(x)

d1−−→ S ⊗K H0(x)
d0−−→ S/I → 0.

We set Fi = S ⊗K Hi(x), for all i, and note that F0 = S. By Theorem 4.2.8 and also
[10], for all i ≥ 1 a basis of the graded free S-module Fi is given by the elements,

f(u;σ) = 1⊗ (−1)(i−1)(i−2)/2[e(u;σ)],

such that u ∈ G(I), σ ⊆ [max(u) − 1] \ suppt(u) and |σ| = i − 1. For later use, we
shall make the following convention. If σ ̸⊆ [max(u)−1]\suppt(u) we set f(u;σ) = 0.

Thus, it remains to describe the di�erentials di, for all i ≥ 0. For this purpose,
suppose the di�erentials d0, d1, . . . , di−1 have already been constructed such that

F<i : Fi−1
di−1−−−→ Fi−2

di−2−−−→ · · · d1−−→ F0
d0−−→ S/I → 0

is exact. Fix a basis element f(u;σ) of Fi. Let K = K·(x;S/I) be the Koszul complex
attached to x with respect to S/I whose ith module and di�erential are, respectively,
Ki and ∂i : Ki → Ki−1. We consider the double complex K⊗S F<i,

...

id⊗d2
��

...

id⊗d2
��

...

id⊗d2
��

0 // Kn ⊗ F1

id⊗d1
��

∂n⊗id // Kn−1 ⊗ F1
∂n−1⊗id//

id⊗d1
��

· · · ∂1⊗id // K0 ⊗ F1

id⊗d1
��

// 0

0 // Kn ⊗ F0

id⊗d0
��

∂n⊗id // Kn−1 ⊗ F0
∂n−1⊗id//

id⊗d0
��

· · · ∂1⊗id // K0 ⊗ F0

id⊗d0
��

// 0

0 // Kn ⊗ S/I

��

∂n⊗id
// Kn−1 ⊗ S/I

∂n−1⊗id
//

��

· · ·
∂1⊗id

// K0 ⊗ S/I

��

// 0

0 0 0

where �id� denotes each time a suitable identity function.

It is known by [10, Section 1] that to describe how the di�erential di acts on f(u;σ)
it su�ces to determine elements gj ∈ Ki−j ⊗ Fj , j = 0, . . . , i− 1, satisfying

(idKi ⊗ d0)(g0) = (−1)(i−1)(i−2)/21⊗ e(u;σ), and (4.11)

(idKi−j−1 ⊗ dj+1)(gj+1) = (∂i−j ⊗ idFj )(gj) for j = 0, . . . , i− 2. (4.12)

To construct such a sequence is a di�cult combinatorial task. Thus we restrict
ourself to the case when t = (1, . . . , 1, 0, . . . , 0), (Remark 4.2.10). In this case we can
replace the cycles e(u;σ) by the cycles z(u;σ). In order to construct the sequence
of elements satisfying equations (4.11) and (4.12) we need the following notion. We
recall that the pure lexicographic order is de�ned as follows: xa11 x

a2
2 · · ·xann >plex

xb11 x
b2
2 · · ·xbnn if and only if a1 = b1, a2 = b2, . . . , as−1 = bs−1 and as > bs for some

s ∈ {1, . . . , n}.
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De�nition 4.3.1 Let I ⊂ S be a t-spread strongly stable ideal, t = (1, . . . , 1, 0, . . . , 0).
Let M(I) be the set of all monomials belonging to I. We de�ne the map g :M(I)→
G(I), as follows: for w ∈ M(I), we set g(w) = max>plex

{u ∈ G(I) : u divides w}.
The map g is called the t-spread decomposition function of I.

For u ∈ G(I), k ∈ [max(u)− 1] \ suppt(u), we set

uk = g(xku) and vk = (xku)/uk.

We shall need also the following notations. For a subset σ of [n] and for k ∈ σ we
de�ne α(σ; k) = |{s ∈ σ : s < k}|. For τ a subset of σ we let γ(τ) =

∑
k∈σ\τ α(σ; k).

In what follows, we denote σ \ {k} by σ \ k, and σ ∪ {k} by σ ∪ k, omitting the
parentheses. To further simplify the notations, we set idKi−j−1 ⊗ dj+1 = dj+1 and
∂i−j ⊗ idFj = ∂i−j , for all j = 0, . . . , i− 2.

The next theorem gives the desired di�erentials of the resolution F of S/I and
generalize [10, Theorem 2.3]. To write the elements gj more conveniently we switch
the order in the tensor products, that is we think gj as an element of Fj ⊗Ki−j .

Theorem 4.3.2 Let g0 = (−1)
(i−1)(i−2)

2 1 ⊗ (u′eσ ∧ emax(u)), and for j = 1, . . . , i − 1
let

gj = (−1)i−j
∑
τ⊂σ

|τ |=j−1

(−1)γ(τ)f(u; τ)⊗ eσ\τ +
∑
τ⊂σ
|τ |=j

(−1)γ(τ)sτ ⊗ eσ\τ ∧ emax(u),

where
sτ =

∑
k∈τ

(−1)α(τ ;k) vk
xmax(u)

f(uk; τ \ k).

Then the elements g0, g1, . . . , gi−1 satisfy equations (4.11) and (4.12). Moreover, the
ith di�erential of the minimal free resolution of S/I acting on f(u;σ) is given by

di(f(u;σ)) = ∂1(gi−1)

=
∑
k∈σ

(−1)α(σ;k)(−xkf(u;σ \ k) + vkf(uk;σ \ k)). (4.13)

Proof. Note that in the de�nition of sτ , xmax(u) always divide vk. Indeed, if we let

k(u) = min{j ∈ supp(u) : j > k}, then w = xk(u/xk(u)) ∈ I is again a t-spread
monomial. By Lemma 4.1.5, w = w1w2 with w1 ∈ G(I) and max(w1) ≤ min(w2).
Consequently {y ∈ G(I) : y divides xku} is non empty and uk exists. Proceeding as in
the proof of Lemma 4.1.5 we see that max(uk) ≤ min(vk). Finally, vk ̸= 1 otherwise
uk = xku ∈ G(I), which is absurd. Hence xmax(u) divides vk as wanted.

We proceed by induction on i. The case i = 1 is trivial. By induction, we can
assume that the last formula for the di�erential dℓ holds for ℓ < i. We need to verify
the equations ∂i−j(gj) = dj+1(gj+1). For j = 0 this is trivial. Let j > 0.

Firstly, we calculate ∂i−j(gj). Since |σ \ τ | = i− j − 1, we have

∂i−j(gj) = (−1)i−j
∑
τ⊂σ

|τ |=j−1

(−1)γ(τ)f(u; τ)⊗ (
∑
k∈σ\τ

(−1)α(σ\τ ;k)xkeσ\(τ∪k))

+
∑
τ⊂σ
|τ |=j

(−1)γ(τ)sτ ⊗ (
∑
k∈σ\τ

(−1)α(σ\τ ;k)xkeσ\(τ∪k) ∧ emax(u) + (−1)i−j−1xmax(u)eσ\τ ).
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We suitably rewrite both sums.
For the �rst sum, note that for τ ⊆ σ, |τ | = j − 1 and k ∈ σ \ τ , then setting

ρ = τ ∪ k we have that |ρ| = j, γ(τ) = γ(ρ \ k) =
∑

s∈σ\(ρ∪k) α(σ; s) = γ(ρ)+α(σ; k),
α(σ; k) = α(σ \ τ ; k) + α(τ ; k) and also α(τ ; k) = α(ρ; k) for it is k /∈ τ . Hence,

(−1)γ(τ)(−1)α(σ\τ ;k) = (−1)γ(ρ)+α(σ\τ ;k)+α(τ ;k)(−1)α(σ\τ ;k) = (−1)γ(ρ)(−1)α(ρ;k).

As τ ⊆ σ, |τ | = j − 1 and k ∈ σ \ τ are arbitrary, ρ = τ ∪ k ⊆ σ with |ρ| = j is
arbitrary too, thus the �rst sum of ∂i−j(gj) can be rewritten as follows,

A = (−1)i−j−1
∑
ρ⊆σ
|ρ|=j

(−1)γ(ρ)(
∑
k∈ρ

(−1)α(ρ;k)+1xkf(u; ρ \ k))⊗ eσ\ρ. (4.14)

Analogously, the second sum can be written as B + C, where

B =
∑
ϑ⊆σ

|ϑ|=j+1

(−1)γ(ϑ)(
∑
k∈ϑ

(−1)α(ϑ;k)xksϑ\k)⊗ eσ\ϑ ∧ emax(u), (4.15)

C = (−1)i−j−1
∑
ρ⊆σ
|ρ|=j

(−1)γ(ρ)sρ ⊗ xmax(u)eσ\ρ. (4.16)

Taking into account equations (4.14), (4.16), the inductive hypothesis and the
de�nition of sρ we have that

A+ C = (−1)i−(j+1)
∑
ρ⊂σ
|ρ|=j

(−1)γ(ρ)(
∑
k∈ρ

(−1)α(ρ;k)+1xkf(u; ρ \ k) + xmax(u)sρ)⊗ eσ\ρ

= (−1)i−(j+1)
∑
ρ⊂σ
|ρ|=j

(−1)γ(ρ)dj+1(f(u; ρ))⊗ eσ\ρ.

Thus, by the structure of gj+1, to complete our proof we need to prove that

B =
∑
ϑ⊆σ

|ϑ|=j+1

(−1)γ(ϑ)dj+1(sϑ)⊗ eσ\ϑ ∧ emax(u).

That is, we have to prove

dj+1(sϑ) =
∑
k∈ϑ

(−1)α(ϑ;k)xksϑ\k

=
∑
k∈ϑ

∑
r∈ϑ\k

(−1)α(ϑ;k)+α(ϑ\k;r)xk
vr

xmax(u)
f(ur;ϑ \ {k, r}), (4.17)

for all ϑ ⊆ σ, |ϑ| = j + 1.

Since j < i− 1, then j + 1 < i, and by inductive hypothesis,

dj+1(sϑ) =
∑
r∈ϑ

(−1)α(ϑ;r) vr
xmax(u)

(
∑
k∈ϑ\r

(−1)α(ϑ\r;k)×

(−xkf(ur;ϑ \ {k, r}) +
xkur
g(xkur)

f(g(xkur);ϑ \ {k, r}))).
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For u ∈ G(I) and τ ⊆ [n], we de�ne

Γ(u; τ) = {r ∈ τ : τ \ r ⊆ [max(ur)− 1] \ suppt(ur)},

where ur = g(xru). Note that for r ∈ τ \ Γ(u; τ), f(ur; τ \ r) = 0.

Now, for the �rst sum of terms of dj+1(sϑ), note that α(ϑ; r) = α(ϑ\k; r)+α(k; r),
α(ϑ; k) = α(ϑ \ r; k) +α(r; k) and α(k; r)−α(r; k) = 1 if k < r or −1 if k > r. Thus,

(−1)α(ϑ;r)+α(ϑ\r;k)+1 = (−1)α(ϑ\k;r)+α(k;r)+α(ϑ;k)−α(r;k)+1 = (−1)α(ϑ;k)+α(ϑ\k;r).

Taking into account this calculation and exchanging the indices k with r in the second
sum of terms of dj+1(sϑ), we can write dj+1(sϑ) as B1 +B2, where

B1 =
∑

r∈Γ(u;ϑ)

∑
k∈ϑ\r

(−1)α(ϑ;k)+α(ϑ\k;r)xk
vr

xmax(u)
f(ur;ϑ \ {k, r}),

B2 =
∑

k∈Γ(u;ϑ)
r∈Γ(uk;ϑ\k)

(−1)α(ϑ;k)+α(ϑ\k;r) xrukvk
g(xruk)xmax(u)

f(g(xruk);ϑ \ {k, r}).

In all terms of the right�hand side in equation (4.17), for k, r ∈ ϑ, k ̸= r, we have
either r ∈ Γ(u;ϑ) or r /∈ Γ(u;ϑ) and r ∈ Γ(u;ϑ \ k). Let B3 be the sum of terms
such that r ∈ Γ(u;ϑ), and let B4 be the sum of terms such that r /∈ Γ(u;ϑ) and
r ∈ Γ(u;ϑ \ k). To �nish the proof, it is enough to show that B1 = B3 and B2 = B4.

It is clear that B1 = B3.

Let us see that B2 = B4. The hypotheses r /∈ Γ(u;ϑ) and r ∈ Γ(u;ϑ \ k) imply
that k /∈ [max(ur) − 1] \ suppt(ur), where urvr = xru and max(ur) ≤ min(vr). But
k ∈ ϑ ⊆ σ ⊆ [max(u) − 1] \ suppt(u). Thus, either k ∈ [max(ur),max(u) − 1] or
k ∈ suppt(ur) \ suppt(u). We show in both cases that g(xruk) = ur.

If k ∈ [max(ur),max(u) − 1], then k ≥ max(ur) ≥ r, so k > r since k ̸= r. This
implies that r < k ≤ max(uk) too. Hence, ur divides xruk. Finally, g(xruk) = ur.

If k ∈ suppt(ur) \ suppt(u), then k > r, and so r < max(uk). Since k ∈ suppt(ur)
we have that k < max(ur). Let us see that max(ur) ≤ max(uk). Suppose on the
contrary that max(ur) > max(uk). If u = xj1xj2 · · ·xjd , then uk = xk · xj1 · · ·xjp
and ur = xr · xj1 · · ·xjq are both t-spread monomials of I with p < q < d. Then
xr(uk/xk) is a t-spread monomial of I that divides xru and xr(uk/xk) >plex ur, an
absurd. Hence max(ur) ≤ max(uk), so ur divides xruk and again g(xruk) = ur.

Thus, g(xruk) = ur and

xrukvk
g(xruk)xmax(u)

f(g(xruk);ϑ \ {k, r}) (as ukvk = xku),

=
xrxku

urxmax(u)
f(ur;ϑ \ {k, r}) (as xru = urvr),

= xk
vr

xmax(u)
f(ur;ϑ \ {k, r}).

This shows that B2 = B4 and completes our proof. □

We consider the ideal in Example 4.2.11 and construct the di�erentials of its
minimal free resolution. Note that in this case t = (1, 0).
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Example 4.3.3 Let I ⊂ S = K[x1, . . . , x6] be the (1, 0)-spread strongly stable ideal
of Example 4.2.11 with minimal generating set

G(I) = {w1 = x1x2, w2 = x1x3, w3 = x1x
2
4}.

By Example 4.2.11, pd(S/I) = 3. Let

F : 0→ F3
d3−−→ F2

d2−−→ F1
d1−−→ F0 = S

d0−−→ S/I → 0

the minimal free resolution of S/I. We know that d0 = ε : S → S/I is the canonical
map. We shall describe the di�erentials d1, d2, d3 by appropriate monomial matrices.

For i = 1, 2, 3, the basis of the free S-modules Fi = S ⊗K Hi(x) consists of

f(wj ;σ) = (−1)(i−1)(i−2)/21⊗ [z(wj ;σ)],

for j = 1, . . . , 4, σ ⊆ [max(wj)− 1] \ suppt(wj) and |σ| = i− 1.

We introduce a natural order on the basis elements of Fi, as follows,

f(wi;σ) ≻ f(wj ;ϑ) ⇐⇒ i < j or i = j and eσ > eϑ,

where eσ > eϑ with respect to the order on the wedge products given in Section 2.1.
For instance,

f(w2; {2}) ≻ f(w3; {2}) ≻ f(w3; {3}). (4.18)

Then, di, i = 1, 2, 3, may be represented by a matrix whose jth column is given
by the components of di(fj) with respect to the ordered basis of Fi−1, where fj is the
jth basis element of Fi with respect to the order introduced.

By equation (4.13) we have that

F : 0 −→F3


−x24
x3
−x2


−−−−−→ F2


x23 x24 0
−x2 0 x24
0 −x2 −x3


−−−−−−−−−−−−−−−→

F1

(
x1x2 x1x3 x2x

2
4

)
−−−−−−−−−−−−−−−−→ F0

d0−−→ S/I → 0.

For instance, taking into account the order given in (4.18), we have

d3(f(w3; {2, 3})) =

−x24x3
−x2

(
1
)
= −x24f(w2; {2}) + x3f(w3; {2})− x2f(w3; {3}),

d2d3(f(w3; {2, 3})) = − x24
(
− x2f(w2;∅) + x3f(w1;∅)

)
+ x3

(
− x2f(w3;∅) + x24f(w1;∅)

)
− x2

(
− x3f(w3;∅) + x24f(w2;∅)

)
= 0.

4.4 Generalized algebraic shifting theory

In this �nal section, we extend algebraic shifting theory to vector-spread strongly
stable ideals. From now on, K is a �eld of characteristic zero. We recall that by the
symbol Gin(I) we mean the generic initial ideal of a monomial ideal I ⊂ S, with
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respect to the reverse lexicographic order, with x1 > x2 > · · · > xn [89]. It is known
that Gin(I) is a (0-spread) strongly stable ideal.

Firstly, we need some notions.
Let t, s ∈ Zd−1

≥0 , t = (t1, . . . , td−1), s = (s1, . . . , sd−1), with d ≥ 2. We can
transform any t-spread monomial ideal into a s-spread monomial ideal as follows: Let
0 ∈ Zd−1

≥0 be the null vector with d − 1 components. To denote the composition of
functions

Mon(T ; t)
σt,0−−→ Mon(T ;0)

σ0,s−−→ Mon(T ; s)

we use the symbol σt,s, where T = K[x1, x2, . . . , xn, . . . ]. Note that σt,s(1) = 1,
σt,s(xi) = xi, and for all monomials u = xj1xj2 · · ·xjℓ ∈ Mon(T ; t), 2 ≤ ℓ ≤ d,

σt,s(xj1xj2 · · ·xjℓ) =
ℓ∏

k=1

xjk−
∑k−1

r=1 tr+
∑k−1

r=1 sr
.

Finally, for I a t-spread monomial ideal, we let Iσt,s the monomial ideal whose
minimal generating set isG(Iσt,s) = {σt,s(u) : u ∈ G(I)}. Note that Iσt,s = (Iσt,0)σ0,s .

As mentioned in the introduction of this chapter, we de�ne the t-spread algebraic
shifting as follows: for I a monomial ideal of T , we let Is,t the following monomial
ideal

Is,t = (Gin(I))σ0,t .

Note that for t = 1 = (1, 1, . . . , 1), we obtain the classical algebraic shifting. Indeed,
for t = 1, σ0,t is the squarefree operator de�ned in the introduction of the chapter.

We are going to verify the following four properties:

(Shift1) I
s,t is a t-spread strongly stable monomial ideal;

(Shift2) I
s,t = I if I is a t-spread strongly stable ideal;

(Shift3) I and Is,t have the same Hilbert function;

(Shift4) If I ⊆ J , then Is,t ⊆ Js,t.

Proposition 4.4.1 Let I be a monomial ideal. Then, I is a t-spread strongly stable
ideal if and only if Iσt,s is a s-spread strongly stable ideal.

Proof. Suppose that I is a t-spread strongly stable ideal. Set I ′ = Iσt,s . To show that
I ′ is a s-spread strongly stable ideal, it su�ces to check condition (ii) of Corollary
4.1.6. So, let u ∈ G(I), u = xj1xj2 · · ·xjd , then

u1 = σt,s(u) =

d∏
k=1

xjk−
∑k−1

r=1 tr+
∑k−1

r=1 sr
= xj′1xj′2 · · ·xj′d ∈ G(I

′) = G(Iσt,s).

Let i ∈ supp(u1), j < i such that v1 = xj(u1/xi) is s-spread, we prove that v1 ∈ I ′.
Now, i = j′ℓ = jℓ −

∑ℓ−1
r=1 tr +

∑ℓ−1
r=1 sr, for some ℓ ∈ {1, . . . , d}, and j′p−1 + sp−1 ≤

j ≤ j′p − 1, for some p ≤ ℓ, in particular for p = 1, j < j′1. Hence,

v1 = xj(u1/xi) = (

p−1∏
k=1

xj′k)xj(

ℓ−1∏
k=p

xj′k)(

d∏
k=ℓ+1

xj′k).
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Recall that σs,t is the inverse map of σt,s. Set v = σs,t(v1), then v is t-spread, and

v = σs,t(v1) = (

p−1∏
k=1

xjk)xj−
∑p−1

r=1 sr+
∑p−1

r=1 tr
(

ℓ−1∏
k=p

xjk−sk+tk)(

d∏
k=ℓ+1

xjk).

Since jk+1 − jk ≥ tk for all k and j′p = jp −
∑p−1

r=1 tr +
∑p−1

r=1 sr, we have

jk − sk + tk ≤ jk+1 − sk ≤ jk+1, for all k = p, . . . , ℓ− 1, and (4.19)

j −
∑p−1

r=1 sr +
∑p−1

r=1 tr < j′p −
∑p−1

r=1 sr +
∑p−1

r=1 tr = jp. (4.20)

Setting

zm =

{
x
j−

∑p−1
r=1 sr+

∑p−1
r=1 tr

(u/xjp), for m = 1,

xj(p+m−2)−s(p+m−2)+t(p+m−2)
(zm−1/xj(p+m−1)

), for m = 2, . . . , ℓ+ 1− p,

we see that the monomials zm are t-spread. Moreover, as I is t-spread strongly stable,
z1 ∈ I by (4.20), and inductively zm ∈ I, by (4.19). So, v = zℓ+1−p ∈ I, and by Lemma
4.1.5, v = w1w2 for unique monomials w1 ∈ G(I), w2 such that max(w1) ≤ min(w2).
Hence, σt,s(w1) divides v1 = σt,s(v), with σt,s(w1) ∈ G(I ′) = G(Iσt,s). Finally,
v1 ∈ I ′ = Iσt,s , as desired. The converse is trivially true as I, t, s are arbitrary. □

By virtue of this proposition, the property (Shift1) is veri�ed. Indeed, it is known
that Gin(I) is a 0-spread strongly stable ideal [89]. Consequently, Is,t is a t-spread
strongly stable ideal, as desired.

The operators σt,s behave well, in fact they preserve the graded Betti numbers.
We �rst note that Theorem 4.2.8 implies a formula for the graded Betti numbers. We
remark that the next result holds whatever the characteristic of the �eld K is.

Corollary 4.4.2 Let I be a t-spread strongly stable ideal of S. Then,

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− 1−

∑j−1
ℓ=1 tℓ

i

)
, for all i, j ≥ 0. (4.21)

In particular, the graded Betti numbers of a vector-spread strongly stable ideal I ⊂ S
do not depend upon the characteristic of the �eld K.

Proof. By equation (2.2), we have βi,i+j(I) = βi+1,i+j(S/I) = dimK Hi+1(x;S/I)i+j .
By Theorem 4.2.8, the degree of a basis element [e(u;σ)] of Hi+1(x;S/I)i+j is given
by |σ| + 1 + deg(u) − 1 = i + j. Thus u ∈ G(I)j . For a �xed u ∈ G(I)j , we have
σ ⊆ [max(u)− 1] \ suppt(u). Hence, there are(

|[max(u)− 1] \ suppt(u)|
i

)
=

(
max(u)− 1−

∑j−1
ℓ=1 tℓ

i

)
possible choices for σ. Summing all these binomials over u ∈ G(I)j , we obtain the
formula in the statement. □

Suitable choices of t return several well known formulas for the graded Betti num-
bers. t = (0, 0, . . . , 0) returns the Eliahou�Kervaire formula for (strongly) stable
ideals [50] (Theorem 2.4.5(c)); t = (1, 1, . . . , 1) gives the Aramova�Herzog�Hibi for-
mula for squarefree (strongly) stable ideals [12] (Theorem 2.4.8(c)). In the uniform
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case, t = (t, t, . . . , t), we have the Ene�Herzog�Qureshi formula for uniform t-spread
strongly stable ideals [53].

Let PSI (y) =
∑

i βi(I)y
i be the Poincaré series of I. Equation (4.21) implies

Corollary 4.4.3 Let I ⊂ S be a t-spread strongly stable ideal. Then

(a) PSI (y) =
∑

u∈G(I)(1 + y)max(u)−1−
∑deg(u)−1

ℓ=1 tℓ ;

(b) pd(I) = max{max(u)− 1−
∑deg(u)−1

j=1 tj : u ∈ G(I)};

(c) reg(I) = max{deg(u) : u ∈ G(I)}.

Let us return now to our shifting operators. As announced, we have

Lemma 4.4.4 Let I be a t-spread strongly stable ideal. Then Iσt,s is a s-spread
strongly stable ideal, and for all i, j ≥ 0,

βi,i+j(I) = βi,i+j(I
σt,s).

Proof. We have just proved that Iσt,s is a s-spread strongly stable ideal with minimal
generating set G(Iσt,s) = {σt,s(u) : u ∈ G(I)}. Moreover, for u ∈ G(I), we have

max(σt,s(u)) = max(u)−
∑deg(u)−1

ℓ=1 tℓ +
∑deg(u)−1

ℓ=1 sℓ. Hence, Corollary 4.4.2 yields

βi,i+j(I
σt,s) =

∑
σt,s(u)∈G(Iσt,s )j

(
max(σt,s(u))− 1−

∑j−1
ℓ=1 sℓ

i

)

=
∑

u∈G(I)j

(
max(u)−

∑j−1
ℓ=1 tℓ +

∑j−1
ℓ=1 sℓ − 1−

∑j−1
ℓ=1 sℓ

i

)

=
∑

u∈G(I)j

(
max(u)− 1−

∑j−1
ℓ=1 tℓ

i

)
= βi,i+j(I).

□

As a consequence, the property (Shift3) is veri�ed too. Indeed, it is known that I
and Gin(I) have the same Hilbert function. Moreover, by Lemma 4.4.4, Gin(I) and
(Gin(I))σ0,t have the same graded Betti numbers and thus the same Hilbert function.

Note that condition (Shift4) is trivially veri�ed. Finally it remains to establish
condition (Shift2). This is accomplished in the next theorem.

Theorem 4.4.5 Let K be a �eld of characteristic zero. Let I ⊂ S be a t-spread
strongly stable ideal. Then

I = (Gin(I))σ0,t .

Proof. We proceed by induction on the integer ℓ = max{max(u) : u ∈ G(I)} ≥ 1. If
ℓ = 1, then G(I) = {xa1}, I = (xa1), and Gin(I) = I = (xa1), moreover σt,0(x

a
1) = xa1,

for some a ≥ 1. So, the thesis holds for ℓ = 1.
Let ℓ > 1. By [89, Lemma 11.2.8] we can assume ℓ = n. So, there exists a

monomial u ∈ G(I) with max(u) = n. Let

p = max{p : xpn divides w for some w ∈ G(I)},
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our hypothesis implies that p ≥ 1. We consider the following ideals:

I ′ = I : (xpn), I ′′ = (u ∈ G(I) : max(u) < n).

Both are again t-spread strongly stable ideals, and I ′′ ⊆ I ⊆ I ′. By inductive hypoth-
esis, Gin(I ′) = (I ′)σt,0 and Gin(I ′′) = (I ′′)σt,0 . Equivalently,

I ′ = Gin(I ′)σ0,t and I ′′ = Gin(I ′′)σ0,t .

Therefore, I ′′ ⊆ Gin(I)σ0,t ⊆ I ′.
Claim 2. It is

I ⊆ Gin(I)σ0,t . (4.22)

To prove Claim 2, it is enough to show that each u ∈ G(I) with max(u) = n
belongs to Gin(I)σ0,t . Indeed, since I ′′ ⊆ Gin(I)σ0,t , all monomials u ∈ G(I) with
max(u) < n are in Gin(I)σ0,t .

Let u ∈ G(I) withmax(u) = n. We set a = n−1−
∑deg(u)−1

j=1 tj and b = a+deg(u).
By Corollary 4.4.2 we have

βa,b(I) =
∑

v∈G(I)
deg(v)=deg(u)

(
max(v)− 1−

∑deg(u)−1
j=1 tj

n− 1−
∑deg(u)−1

j=1 tj

)

=
∣∣{v ∈ G(I) : max(v) = n, deg(v) = deg(u)

}∣∣.
Similarly, as Gin(I)σ0,t is t-spread strongly stable,

βa,b(Gin(I)σ0,t) =
∑

w∈G(Gin(I)σ0,t )
deg(w)=deg(u)

(
max(w)− 1−

∑deg(u)−1
j=1 tj

n− 1−
∑deg(u)−1

j=1 tj

)

=
∣∣{w ∈ G(Gin(I)σ0,t) : max(w) = n, deg(w) = deg(u)

}∣∣.
Moreover, by [89, Corollary 3.3.3] and by Lemma 4.4.4, we have

βa,b(I) ≤ βa,b(Gin(I)) = βa,b(Gin(I)σ0,t).

Hence ∣∣{w ∈ G(Gin(I)σ0,t) : max(w) = n, deg(w) = deg(u)
}∣∣ ≥∣∣{v ∈ G(I) : max(v) = n, deg(v) = deg(u)
}∣∣. (4.23)

Our aim is to prove that u ∈ G(I) with max(u) = n belongs to Gin(I)σ0,t .

Let w1, . . . , ws be the monomial generators in G(Gin(I)σ0,t) such that max(wi) =
n and deg(w1) ≤ deg(w2) ≤ · · · ≤ deg(ws). Since Gin(I)σ0,t ⊆ I ′, we have wix

p
n ∈ I,

for all i = 1, . . . , s. We prove that wi ∈ I for all i. Since wix
p
n ∈ I, there is a

monomial vi ∈ G(I) such that vi divides wix
p
n. We have deg(vi) ≤ deg(wi) + p, for

all i = 1, . . . , s.

If deg(v1) < deg(w1), setting u = v1 in (4.23), we would have an absurd. Hence
deg(v1) ≥ deg(w1). By �nite induction, deg(vi) ≥ deg(wi), for all i = 1, . . . , s.

Now, if deg(vs) ≥ deg(ws) + 1, setting u = vs in (4.23), we would obtain an
absurd. Hence, deg(vs) ≤ deg(ws), and since we have proved that deg(vs) ≥ deg(ws),
we obtain deg(vs) = deg(ws). Iterating this argument, deg(vi) = deg(wi), for all
i = 1, . . . , s.
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If vi = (wix
p
n)/x

p
n = wi we set ui = vi and note that ui = wi divides wi. Otherwise,

vi = (wix
p
n)/zi for some monomial zi ̸= xpn, we note that vi has bigger sorted indexes

than wi, thus since I is t-spread strongly stable wi ∈ I. Hence, there is a monomial
ui ∈ G(I) that divides wi. Finally, we have constructed monomials u1, . . . , us ∈ G(I)
such that ui divides wi, for all i = 1, . . . , s. Repeating the same argument as before,
using (4.23), we see that deg(ui) ≥ deg(wi), for all i, hence ui = wi, since ui divides
wi, for all i = 1, . . . , s.

Thus, wi = ui ∈ G(I), for all i = 1, . . . , s, and we get the inclusion

{w ∈ G(Gin(I)σ0,t) : max(w) = n} ⊆ {u ∈ G(I) : max(u) = n}.

This equation together with (4.23) yield

{w ∈ G(Gin(I)σ0,t) : max(w) = n} = {u ∈ G(I) : max(u) = n}.

Hence, Claim 2 is true.

Finally, I and Gin(I) have the same Hilbert function. Moreover, by Lemma 4.4.4,
Gin(I) andGin(I)σ0,t have the same Hilbert function. Hence I andGin(I)σ0,t have the
same Hilbert function. Formula (4.22) and this observation imply that I = Gin(I)σ0,t ,
or equivalently Gin(I) = Iσt,0 , proving the theorem. □

We remark that the operator σt,s establishes a bijection between t-spread strongly
stable ideals and s-spread strongly stable ideals.

Notes

Recently, the vector�spread algebraic shifting theory was used to generalize the clas-
sical Bigatti�Hulett theorem [89, Theorem 7.3.1] to the case of vector�spread strongly
stable ideals [37]. In [34], we further investigated the algebraic properties of vector�
spread strongly stable ideals. The mapping cone technique and the concept of ideals
with linear quotients was lately considered in [38], for the case of exterior algebras,
rather than in the symmetric algebra context. In such an article, the homological
properties of vector�spread ideals in the exterior algebra were also investigated. Edge
ideals of t-spread d-partite hypergraphs were recently investigated in [130].

The reader may wonder why the Koszul cycles of a general t-spread strongly stable
ideal are so complicated, while in the classical cases (t = 0 and t = 1) they have a
simple expression (Theorems 2.4.6(a) and 2.4.8(a)). Let I ⊂ S be a monomial ideal.
We recall that z ∈ Ki(x;S/I) is called a monomial cycle if

z = ε(u)eσ, for some monomial u ∈ S, and ∂i(z) = 0.

If we can �nd a basis of Hi(x;S/I) whose homology classes consisting of monomial
cycles, we say that Hi(x;S/I) has a monomial cycle basis. Stable and squarefree
stable ideals are examples of monomial ideals whose Koszul homology modules have
monomial cycles bases. It is trivial to see that

Proposition. H1(x;S/I) has a monomial cycle basis, if I is a monomial ideal.

Proof. Indeed, let [z] ∈ H1(x;S/I), then we can write z =
∑

i ε(fi)eki , where each
fi ∈ S is a monomial and ki is an integer. Then

∂1(z) =
∑
i

ε(xkifi) = ε(
∑
i

xkifi) = 0.



4.4. Generalized algebraic shifting theory 53

Thus
∑

i xkifi ∈ I. We may assume that no two summands in this expression are
opposite. Indeed, if for some j, h with j ̸= h we have xkjfj + xkhfh = 0, then
fh = −xkjfj/xkh . Note that w = ε(fj/xkh)ekh ∧ ekj ∈ K2(x;S/I) and

∂2(w) = ε(fj)ekj + ε(fh)ekh ∈ Im(∂2).

Thus [z] = [z − w] = [
∑

i ̸=j,h ε(fi)eki ]. This argument shows that we may assume
from the very beginning that no two summands in

∑
i xkifi are opposite. Since I is

a monomial ideal, we have xkifi ∈ I for all i. Thus [ε(fi)eki ] ∈ H1(x;S/I) for all i
and [z] =

∑
i[ε(fi)eki ] is a sum of monomial Koszul cycles. Thus H1(x;S/I) has a

monomial cycle basis, as desired. □

A less trivial but beautiful result of Dorin Popescu guarantees that H2(x;S/I)
also has a monomial cycle basis, if I is a monomial ideal [138, Theorem 1.5]. On the
other hand, if 3 ≤ i ≤ n − 1, in general Hi(x;S/I) does not have a monomial cycle
basis, as shown in [138].

Next, we provide an example of a t-spread strongly stable ideal I ⊂ S such that
H3(x;S/I) does not have a monomial cycle basis.

Example. Let t = (2, 2). Then

I = (x1x3x5, x1x3x6, x1x3x7, x1x3x8, x1x4x6, x1x4x7)

is a t-spread strongly stable ideal of S = K[x1, . . . , x7].
Consider u = x1x4x7 and let σ = {3, 6}. Then σ = [max(u) − 1] \ suppt(u).

By Theorem 4.2.8, [e(u;σ)] is a basis element of H3(x;S/I). Using the notation of
De�nition 4.2.3, 3(u) = 4, 6(u) = 7, u′ = x1x4 and max(u) = 7. Thus,

e(u;σ) =
∑

F⊆{3,6}

(−1)x1x4x6(σ;F )ε(xF (x1x4)/xF (u))e{3,6}\F ∧ eF (u) ∧ e7

= ε(x1x4)e3 ∧ e6 ∧ e7 + ε(x1x3)e6 ∧ e4 ∧ e7.

Then,

∂2(e(u;σ)) = ε(x1x3x4)e6 ∧ e7 − ε(x1x4x6)e3 ∧ e7 + ε(x1x4x7)e3 ∧ e6
+ ε(x1x3x6)e4 ∧ e7 − ε(x1x3x4)e6 ∧ e7 + ε(x1x3x7)e6 ∧ e4
= 0,

since the �rst and �fth summands are opposite and all other summands are zero, since
x1x4x6, x1x4x7, x1x3x6, x1x3x7 ∈ I.

We claim that we can not replace [e(u;σ)] with [z], where z is a monomial cycle.
This will show that H3(x;S/I) does not have a monomial cycle basis. Indeed, if it
was possible to �nd such z, then the multidegree of z would be the multidegree of the
monomial x1x3x4x6x7. Hence, z should be one of the following

(
5
2

)
= 10 elements:

ε(x1x3)e4 ∧ e6 ∧ e7, ε(x1x4)e3 ∧ e6 ∧ e7,
ε(x1x6)e3 ∧ e4 ∧ e7, ε(x1x7)e3 ∧ e4 ∧ e6,
ε(x3x4)e1 ∧ e6 ∧ e7, ε(x3x6)e1 ∧ e4 ∧ e7,
ε(x3x7)e1 ∧ e4 ∧ e6, ε(x4x6)e1 ∧ e3 ∧ e7,
ε(x4x7)e1 ∧ e3 ∧ e6, ε(x6x7)e1 ∧ e3 ∧ e4.

However, one can easily check that none of these elements is a cycle of K3(x;S/I).
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Hence, in general the Koszul homology modules of vector�spread strongly stable
ideals do not have monomial cycle basis, and this justi�es the construction of the
cycles given in Section 4.2.

To complete the picture we prove the following.

Proposition. Hn(x;S/I) has a monomial cycle basis, if I is a monomial ideal.

Proof. Let m = (x1, . . . , xn) and E =
⊕n

i=1(S/m)ei. Then

Hn(x;S/I) ∼= (0 :S/I m)
∧n

E = ((I : m)/I)
∧n

E.

Denote by f = ε(f) the residue class of f ∈ S modulo I. Since I is a monomial ideal,
we can �nd a basis f1, . . . , fℓ of (I : m)/I, where f1, . . . , fℓ are the monomials of the
set G((I : m)) \ I. Under the above isomorphisms, we see that Hn(x;S/I) has as a
basis: ε(f1)e1 ∧ e2 ∧ · · · ∧ en, ε(f2)e1 ∧ e2 ∧ · · · ∧ en, . . . , ε(fℓ)e1 ∧ e2 ∧ · · · ∧ en. The
assertion follows. □



55

Chapter 5

Multigraded syzygies of ideals with

linear quotients

In this chapter, we investigate the homological shift ideals of monomial ideals. This
concept has been recently introduced by Herzog, Moradi, Rahimbeigi and Zhu in [101].
For other developments in this theory, see also [15, 16, 17, 35, 36, 60, 59, 102].

Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal. Then, I is multigraded, that
is, it is Zn-graded. For a monomial u = xa11 x

a2
2 · · ·xann ∈ S, the integral vector

a = (a1, a2, . . . , an) is called the multidegree of u. We also write u = xa. In particular,
for a = 0 = (0, 0, . . . , 0), x0 = 1. The minimal graded free S-resolution F of I is
multigraded, that is:

F : 0→
⊕
a

S(−a)βp,a(I) → · · · →
⊕
a

S(−a)β1,a(I) →
⊕
a

S(−a)β0,a(I) → I → 0,

where βi,a(I) is a multigraded Betti number of I.
The set {ai,1, . . . ,ai,k} = {a ∈ Zn≥0 : βi,a(I) ̸= 0} is called the set of the ith

multigraded shifts of I.
We call

HSi(I) = (xa : βi,a(I) ̸= 0)

the ith homological shift ideal of I.
Note that HS0(I) = I and HSi(I) = 0 if i < 0 or i > pd(I).

Example 5.0.1 Let I = (x31, x
2
1x2, x

2
1x3, x1x

2
2) ⊂ K[x1, x2, x3]. Then, the minimal

multigraded free S-resolution of I is

F : 0→ S
(
−(3, 1, 1)

)
→ S

(
−(3, 1, 0)

)
⊕ S

(
−(3, 0, 1)

)
⊕ S

(
−(2, 2, 0)

)
⊕ S

(
−(2, 1, 1)

)
→ S

(
−(3, 0, 0)

)
⊕ S

(
−(2, 1, 0)

)
⊕ S

(
−(2, 0, 1)

)
⊕ S

(
−(1, 2, 0)

)
→ I → 0.

We may identify the multigraded shifts by monomials. We denote S(−a) by [xa].
Hence, we can rewrite F as follows:

F : 0→ [x31x2x3]→ [x31x2]⊕ [x31x3]⊕ [x21x
2
2]⊕ [x21x2x3]

→ [x31]⊕ [x21x2]⊕ [x21x3]⊕ [x1x
2
2]

→ I → 0.
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Therefore,

HS0(I) = I = (x31, x
2
1x2, x

2
1x3, x1x

2
2),

HS1(I) = (x31x2, x
3
1x3, x

2
1x

2
2, x

2
1x2x3),

HS2(I) = (x31x2x3).

The main purpose of the theory of homological shift ideals is to understand what
homological and combinatorial properties are enjoyed by all HSi(I), i = 0, . . . ,pd(I).
We call any such property a homological shift property of I, or if the context is clear,
simply homological property. Two important homological shift properties are the fol-
lowing ones: I has a homological linear resolution if HSi(I) has a linear resolution for
all i; I has homological linear quotients if HSi(I) has linear quotients for all i.

5.1 The �rst homological shift of ideals with linear quo-

tients

In this section, we show that the �rst homological shift ideal of an equigenerated
monomial ideal with linear quotients has again linear quotients.

By Theorem 2.4.9, we have the following result.

Proposition 5.1.1 Let I ⊂ S be a monomial ideal with linear quotients and admis-
sible order u1, u2, . . . , um of G(I). Then,

HSk(I) = (xFui : i = 1, . . . ,m, F ⊆ set(ui), |F | = k). (5.1)

For the proof of our main result we need Corollary 5.1.3 of the following lemma.

Lemma 5.1.2 Let I ⊂ S be an equigenerated graded ideal with linear relations. Let
f1, . . . , fm be a minimal set of generators of I. Then, for any 1 ≤ i ≤ m,

(f1, . . . , fi−1, fi+1, . . . , fm) : fi

is generated by linear forms.

Proof. To simplify the notation, we assume i = m, and we set J = (f1, . . . , fm−1) : fm.
Since the fi are homogeneous elements, J is a graded ideal. Let rm ∈ J be an homo-
geneous element. Then, there exist r1, . . . , rm−1 such that rmfm = −

∑m−1
i=1 rifi with

deg(ri) = deg(rm) for i = 1, . . . ,m− 1. Therefore, r = (r1, . . . , rm) is a homogeneous
relation of I. By assumption, the relation module of I is generated by linear relations,
say ℓi = (ℓi1, . . . , ℓim) for i = 1, . . . , t. Therefore, there exist homogeneous elements
si ∈ S such that r =

∑t
i=1 siℓi. This implies that rm =

∑t
i=1 siℓi,m. Since ℓi,m ∈ J ,

the desired conclusion follows. □

Corollary 5.1.3 Let I be an equigenerated monomial ideal with linear quotients and
let u1, . . . , um be its minimal monomial generators. Then, for any 1 ≤ i ≤ m,

(u1, . . . , ui−1, ui+1, . . . , um) : ui

is generated by variables.
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Theorem 5.1.4 Let I ⊂ S be an equigenerated monomial ideal having linear quo-
tients. Then HS1(I) has linear quotients.

Proof. We proceed by induction on m ≥ 1. For m = 1 or m = 2 there is nothing to
prove.

Letm > 2 and set J = (u1, . . . , um−1). Let L = (xi : i ∈ set(um), xium /∈ HS1(J)).
Then, by equation (5.1),

HS1(I) = HS1(J) + umL.

By inductive hypothesis, HS1(J) has linear quotients. Let v1, . . . , vr be an admissible
order of HS1(J). If L = (xj1 , . . . , xjs), we claim that v1, . . . , vr, xj1um, . . . , xjsum is
an admissible order of HS1(I). We only need to show that

(v1, . . . , vr, xj1um, . . . , xjt−1um) : xjtum (5.2)

is generated by variables, for all t = 1, . . . , s.
Note that each generator xjℓum : xjtum = xjℓ , with ℓ < t is already a variable.

Consider now a generator vℓ : xjtum for some ℓ = 1, . . . , r. Then vℓ = xhuj for some
j < m and h ∈ set(uj). Moreover, we can write xjtum = xpuk for some k < m.

If j = k, then
vℓ : xjtum = xhuk : xpuk = xh

is a variable and there is nothing to prove.
Suppose now j ̸= k. Since u1, . . . , um−1 is an admissible order, by Corollary 5.1.3

Q = (u1, . . . , uk−1, uk+1, . . . , um−1) : uk

is generated by variables. Since j ̸= k and j < m, uj : uk belongs to Q. Hence, we can
�nd b < m, b ̸= k such that ub : uk = xq and xq divides uj : uk. Thus xquk ∈ HS1(J).

Note that xq divides also xhuj : xpuk. Indeed xq divides uj : uk. If xq does not
divide xhuj : xpuk, then necessarily p = q. But this would imply that xjtum = xquk ∈
HS1(J), against the fact that xjt ∈ L. Hence xq divides xhuj : xpuk. But

xquk : xjtum = xquk : xpuk = xq

belongs to the ideal (5.2). Hence xhuj : xpuk is divided by a variable belonging to the
ideal (5.2). This concludes our proof. □

At present we are not able to generalize Theorem 5.1.4 for all monomial ideals with
linear resolution. It is natural to ask the following question. Let I ⊂ S be a monomial
ideal having a linear resolution. Is it true that HS1(I) has a linear resolution, too?
In this case, one could expect even that HS1(I) also has linear quotients, if I has a
linear resolution.

Theorem 5.1.4 is no longer valid for monomial ideals with linear quotients gener-
ated in more than one degree, as next example of Bayati et all shows [17].

Example 5.1.5 ([17, Example 3.3]). Let I = (x21, x1x2, x
4
2, x1x

4
3, x1x

3
3x4, x1x

2
3x

2
4)

be an ideal of S = K[x1, x2, x3, x4]. I is a (strongly) stable ideal whose Borel gener-
ators are x1x2, x

4
2, x1x

2
3x

2
4. It is well�known that stable ideals have linear quotients.

Thus I has linear quotients. Using Macaulay2 [82] the package [59], we veri�ed that

HS1(I) = (x21x2, x1x
4
2, x1x

3
3x

2
4, x1x2x

2
3x

2
4, x

2
1x

2
3x

2
4, x1x

4
3x4,

x1x2x
3
3x4, x

2
1x

3
3x4, x1x2x

4
3, x

2
1x

4
3)
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has the following Betti table
0 1 2 3

3 1 . . .
4 . . . .
5 1 1 . .
6 8 15 8 1
7 . . . .
8 . 3 5 2

We show that HS1(I) does not have linear quotients. Suppose by contradiction that
HS1(I) has linear quotients. Then, since the Betti numbers of an ideal with linear
quotients do not depend upon the characteristic of the underlying �eld K, we may
assume that K has characteristic zero. Hence HS1(I) would be componentwise linear,
see [89, Corollary 8.2.21]. However, this cannot be the case by virtue of [89, Theorems
8.2.22. and 8.2.23(a)]. Indeed β1,1+8(HS1(I)) ̸= 0, while β0,8(HS1(I)) = 0.

5.2 The higher homological shifts of ideals with linear

quotients

Let I ⊂ S be a monomial ideal. In general, one can ask what properties of I are in-
herited by its homological shift ideals. However, even for special classes of monomial
ideals, it is quite di�cult to describe the homological shift ideals, see [101]. Further-
more, these ideals may depend upon the characteristic of the underlying �eld K. For
this reason, one can focus on monomial ideals with linear quotients.

For our aim, a di�erent description of the homological shift ideals of any equigen-
erated ideal with linear quotients given in Proposition 5.1.1 is required. Sometimes
we will talk about the shifts of I, dropping the adjective multigraded.

For the next result, we use the Taylor resolution. Let I be a monomial ideal of S.
Recall that T is a (multi)graded free S-resolution of I. Let βi,a(I) = dimK TorSi (K, I)a
be a multigraded Betti number of I, and let bi,a = dimK(Ti ⊗K)a the dimension of
the ath multigraded piece of the ith free module Ti of T tensorized by K.

Theorem 5.2.1 Let I ⊂ S be a monomial ideal and let G(I) = {u1, u2, . . . , um} be
its minimal monomial generating set. For all j ≥ 0, the set of the jth multigraded
shifts of I is a subset of

{lcm(ui : i ∈ F ) : F ⊆ [m], |F | = j + 1}. (5.3)

In particular,

HSj(I) ⊆ (lcm(ui : i ∈ F ) : F ⊆ [m], |F | = j + 1).

Proof. To prove the statement, it is enough to show that for all i and a, βi,a(I) ≤ bi,a.
Indeed, bi,a ̸= 0 if and only if xa = lcm(uj : j ∈ F ) for some F ⊂ [m] with |F | = i+1.

If T is the minimal free resolution of I, βi,a(I) = bi,a for all i and a. Otherwise we can
�nd ℓ > 0 and eF ∈ Tℓ such that f = ∂ℓ(eF ) ∈ Tℓ−1 \mTℓ−1, where m = (x1, . . . , xn).
Let U be the subcomplex of T with Tj = 0 if j ̸= ℓ, ℓ − 1, Tℓ = SeF and Tℓ−1 = Sf .
Then U is an exact complex. Thus, the short exact sequence of complexes

0→ U −→ T −→ T/U→ 0
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induces the long exact sequence of homology modules

· · · → Hi+1(T/U)→ Hi(U)→ Hi(T)→ Hi(T/U)→ Hi−1(U)→ · · · .

Set G = T/U. Since Hi(T) = Hi(U) = 0 for i > 0, H0(T) = I, and H0(U) = 0, from
the above long exact sequence we see that G is an acyclic complex with 0th homology
H0(G) ∼= H0(T) = I. Furthermore, if we let Gi =

⊕
a S(−a)

b′i,a to be the ith free
module of G, then Gj = Tj for all j ̸= ℓ, ℓ − 1, Gℓ = Tℓ/SeF , and Gℓ−1 = Tℓ−1/Sf .
So all Gj are multigraded free S-modules and G is a multigraded free resolution of I.
Let a∗ be the multidegree of eF . Since b

′
ℓ,a∗ < bℓ,a∗ and b′ℓ−1,a∗ < bℓ−1,a∗ , by induction

we may assume that βi,a(I) ≤ b′i,a for all i and a ∈ Zn. But we clearly have b′i,a ≤ bi,a
for all i and a ∈ Zn. Hence our claim follows and the theorem is proved. □

In view of this proposition, to determine HSj(I) it su�ces to determine the ap-
propriate subset of the set given in (5.3).

As a nice corollary of Theorem 5.2.1 we can recover the following classical result
due to Hochster. Recall that the integral vector a is called squarefree if xa is a
squarefree monomial [89]. Thus a is squarefree if and only if its entries are 0 and 1.

Corollary 5.2.2 ([104], [89, Theorem 8.1.1(a)]). Let I ⊂ S be a squarefree monomial
ideal. Then all the multigraded shifts of I are squarefree. In particular, all homological
shift ideals HSj(I) are squarefree monomial ideals, for all j ≥ 0.

Proof. In view of Theorem 5.2.1 it su�ces to note that all monomials in G(I) are
squarefree and that the least common multiple (lcm) of squarefree monomials is a
squarefree monomial too. □

Our purpose is to describe precisely the subset of the set (5.3) when I is an
equigenerated monomial ideal having linear quotients.

Given u, v ∈ S two monomials of the same degree, we de�ne the distance between
u and v to be the integer:

d(u, v) =
1

2

n∑
i=1

∣∣ degxi(u)− degxi(v)
∣∣.

This function satis�es the usual rules of a distance function.
The following lemma is pivotal for our aim.

Lemma 5.2.3 Let u, v monomials of S of the same degree. Then, u = xk(v/xℓ) for
some k ̸= ℓ, if and only if d(u, v) = 1.

Proof. Suppose u = xk(v/xℓ). Write v = xb11 · · ·xbnn , then u = (
∏
i ̸=k,ℓ x

bi
i )x

bk+1
k xbℓ−1

ℓ .
Note that ∣∣ degxi(u)− degxi(v)

∣∣ =


|bℓ − 1− bℓ| if i = ℓ,

|bk+ 1− bk| if i = k,

0 otherwise.

Thus d(u, v) = 1
2

∑
i |degxi(u)−degxi(v)| =

1
2(|bk+1−bk|+|bℓ−1−bℓ|) = 1

2(1+1) = 1.

Conversely, assume d(u, v) = 1. From the de�nition of d(u, v) it is clear that either
u = x2kv or u = xk(v/xℓ), for some k ̸= ℓ. But the �rst possibility does not occur, lest
deg(u) > deg(v). Therefore, the desired conclusion follows. □

Lemma 5.2.3 allows us to describe the �rst homological shift ideal of any equigen-
erated monomial ideal with linear quotients, regardless of the admissible order of
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I. The next result is a particular case of [101, Proposition 1.3], but for the sake of
completeness a di�erent proof for ideals with linear quotients is presented.

Proposition 5.2.4 Let I ⊂ S be an equigenerated monomial ideal with linear quo-
tients. Then

HS1(I) = (lcm(u, v) : u, v ∈ G(I), d(u, v) = 1).

Proof. Suppose I has linear quotients with admissible order u1, u2, . . . , um of G(I),
and let set(ur) = {i : xi ∈ (u1, . . . , ur−1) : ur}. By equation (5.1) we have HS1(I) =
(urxℓ : r = 2, . . . ,m, ℓ ∈ set(ur)). Let r ∈ {2, . . . ,m} and ℓ ∈ set(ur). Then,
urxℓ ∈ (u1, . . . , ur−1). Since I is equigenerated, urxℓ = usxk, for some s < r and
k ̸= ℓ. Whence, ur = xk(us/xℓ). By Lemma 5.2.3, we have d(ur, us) = 1. Moreover,

lcm(ur, us) = lcm(xk(us/xℓ), us) = xkus = urxℓ.

Thus, we have veri�ed the inclusion HS1(I) ⊆ (lcm(u, v) : u, v ∈ G(I), d(u, v) = 1).
Conversely, let lcm(u, v) with u, v ∈ G(I), d(u, v) = 1. As deg(u) = deg(v),

Lemma 5.2.3 implies u = xk(v/xℓ), hence uxℓ = vxk. Now, u = ur, v = us, for some
r ̸= s. Assume r > s, then xℓ ∈ (u1, . . . , us, . . . , ur−1) : ur. Thus ℓ ∈ set(ur) and
lcm(ur, us) = urxℓ ∈ G(HS1(I)), showing the other inclusion. □

Before giving our main result, we consider some applications of Proposition 5.2.4.
Recall that a monomial order on S is a total order ≻ on the set of monomials of

S such that xa ⪰ 1 for all monomials xa ∈ S, and if xa ≻ xb then xcxa ≻ xcxb,
for all monomials xa,xb,xc ∈ S. In particular, xσ(1) ≻ xσ(2) ≻ · · · ≻ xσ(n) for some
permutation σ of [n]. We may suppose x1 ≻ x2 ≻ · · · ≻ xn, after an innocuous
relabeling. In this case we say that ≻ is induced by x1 > x2 > · · · > xn. When
we write that I has linear quotients with respect to the monomial order ≻ we mean
that I has linear quotients with admissible order u1 ≻ u2 ≻ · · · ≻ um of G(I). A
particular monomial order we are going to use is the lexicographic order >lex induced
by x1 > x2 > · · · > xn. Let x

a,xb be monomials of S. Then xa >lex xb if

a1 = b1, a2 = b2, . . . , as−1 = bs−1, as > bs,

for some 1 ≤ s ≤ n [89].
For a monomial u ∈ S, u ̸= 1, we let supp(u) = {i ∈ [n] : degxi(u) > 0} be its

support and we let its maximum to be the integer max(u) = max supp(u).

Lemma 5.2.5 Let I ⊂ S be an equigenerated monomial ideal with linear quotients
with respect to a monomial order ≻ (e.g., >lex) induced by x1 > x2 > · · · > xn. Then,
for all u ∈ G(I),

set(u) ⊆ [max(u)− 1].

Proof. Indeed, let G(I) ordered as u1 ≻ u2 ≻ · · · ≻ um and let j ∈ {1, . . . ,m}. If
i ∈ set(uj), then xiuj ∈ (u1, . . . , uj−1). Since deg(u1) = · · · = deg(uj−1) = deg(uj),
there exists s ∈ supp(uj), s ̸= i such that xi(uj/xs) = up for some p ≤ j − 1. But
xi(uj/xs) = up ≻ uj . Since ≻ is a monomial order, this implies that xiuj ≻ xsuj ,
i.e., xi ≻ xs. Thus i < s. But s ≤ max(uj) and so i < max(uj). Summarizing our
reasoning, we have shown that set(uj) ⊆ [max(uj)− 1], as desired. □

In [101], the following general inclusion was shown.

Proposition 5.2.6 ([101, Proposition 1.4]). Let I ⊂ S be a monomial ideal with
linear quotients. Then HSj+1(I) ⊆ HS1(HSj(I)), for all j.
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In the same article, it was noted that for arbitrary equigenerated monomial ideals
with linear quotients the equation HSj+1(I) = HS1(HSj(I)) does not hold. Indeed,
the equigenerated monomial ideal I = (x2x4, x1x2, x1x3) has linear quotients with
admissible order x2x4 > x1x2 > x1x3. We have HS1(I) = (x1x2x3, x1x2x4) and
HS2(I) = (0), but HS1(HS1(I)) = (x1x2x3x4) ̸= (0) = HS2(I).

We can re�ne Proposition 5.2.6 in the following special case. For an equigenerated
monomial ideal J ⊂ S, by J>ℓ we denote the monomial ideal whose minimal generating
set is G(J>ℓ) = {u ∈ G(J) : |supp(u)| > ℓ}. Although a part of the next corollary
follows from Proposition 5.2.6 we include a short proof for completeness.

Corollary 5.2.7 Let I ⊂ S be an equigenerated monomial ideal with linear quotients
with respect to a monomial order ≻ (e.g., >lex) induced by x1 > x2 > · · · > xn. Then,

HSj+1(I) ⊆ (HS1(HSj(I)))>j+1.

Proof. For j = 0 the thesis is immediate. Let j > 0. Firstly we show the inclusion
HSj+1(I) ⊆ HS1(HSj(I)). By Proposition 5.2.4,

HS1(HSj(I)) = (lcm(w1, w2) : w1, w2 ∈ G(HSj(I)), d(w1, w2) = 1).

Take w = xFu ∈ G(HSj+1(I)) with u ∈ G(I), F ⊆ set(u) and |F | = j + 1. Since
j +1 ≥ 2 we can �nd r, s ∈ F , r ̸= s. Then w1 = xF\{r}u,w2 = xF\{s}u ∈ G(HSj(I))
and d(w1, w2) = 1. Thus lcm(w1, w2) = w ∈ G(HS1(HSj(I))), as desired. It remains
to prove that any w = xFu ∈ G(HSj+1(I)) has supp(w) > j +1. By Lemma 5.2.5 we
have F ⊆ set(u) ⊆ [max(u) − 1]. Hence max(u) /∈ F and F ∪ {max(u)} ⊆ supp(w),
and since |F | = j + 1 we have that supp(w) ≥ |F |+ 1 = j + 2, as desired. □

Note that even for an ideal satisfying the hypothesis of Corollary 5.2.7, the in-
clusion HSj+1(I) ⊆ (HS1(HSj(I)))>j+1 could be strict. Indeed, consider again the
equigenerated ideal I = (x2x4, x1x2, x1x3). I has linear quotients with respect to the
lexicographic order >lex induced by x2 > x1 > x3 > x4. We have (HS1(HS1(I)))>2 =
(x1x2x3x4) but HS2(I) = (0) and the inclusion HS2(I) ⊆ (HS1(HS1(I)))>2 is strict in
such a case.

By Propositions 5.1.1 and 5.2.4 we obtain the desired description.

Theorem 5.2.8 Let I ⊂ S be an equigenerated monomial ideal with linear quotients
with admissible order u1, u2, . . . , um of G(I). Then, for all j ≥ 0,

HSj(I) = (lcm(ui1 , ui2 ,. . . ,uij+1) = w : i1 < i2 < · · ·< ij+1, deg(w) = deg(uij+1) + j,

and d(uiℓ , uij+1) = 1, for all ℓ = 1, . . . , j).

Proof. We proceed by induction on µ(I) = |G(I)| = m ≥ 1. For m = 1 there is
nothing to prove. Let m = 2, then by the Taylor complex pd(I) ≤ µ(I)− 1 = 1 and
the claim follows from Proposition 5.2.4. Let m > 2 and set J = (u1, . . . , um−1). We
note that G(I) is the disjoint union of G(J) and {um}. By Proposition 5.1.1,

HSj(I) = HSj(J) + um
(
xF : F ⊆ set(um), |F | = j

)
.

By induction HSj(J) covers all required generators w = lcm(ui1 , ui2 , . . . , uij+1) with
i1 < i2 < · · · < ij+1, deg(w) = deg(uij+1) + i and d(uiℓ , uij+1) = 1, for all ℓ = 1, . . . , j
and with ij+1 < mm. To conclude we show that um(xF : F ⊆ set(um), |F | = j) is
generated by the same monomials as above but with uij+1 = um.
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Indeed, let F ⊆ set(um) with |F | = j and consider xFum. For any t ∈ F , xtum ∈ J
and since I is equigenerated, we have xtum = xr(t)ui(t) for some 1 ≤ i(t) ≤ m− 1 and
some r(t) ̸= t. By Lemma 5.2.3, d(um, ui(t)) = 1 for all t ∈ F . Moreover ui(t) ̸= ui(s)
for all t, s ∈ F , t ̸= s, indeed degxt(ui(t)) > degxt(um) ≥ degxt(ui(s)). Thus we have
that xFum = lcm(ui(t), um : i ∈ F ) is as required.

Conversely, let w = lcm(ui1 , , . . . , uij , um) with i1 < · · · < ij < m, deg(w) =
deg(um)+j and d(uiℓ , um) = 1, for all ℓ = 1, . . . , j. Then for all ℓ, uiℓ = xt(ℓ)(um/xs(ℓ))
for some t(ℓ) ̸= s(ℓ). Thus,

w = lcm(uiℓ , um : ℓ = 1, . . . , j) = lcm(xt(ℓ)(um/xs(ℓ)), um : ℓ = 1, . . . , j)

= umlcm(xt(ℓ) : ℓ = 1, . . . , j).

By our hypothesis deg(w) = deg(um) + j, it follows that xt(ℓ) ̸= xt(p) for all ℓ ̸= p.
Moreover, t(ℓ) ∈ set(um) for all m. Setting F = {t(ℓ) : ℓ = 1, . . . ,m}, we have
w = xFum and w ∈ HSj(I) by equation (5.1), concluding the proof. □

The following two examples illustrate the previous result.

Example 5.2.9 Let I = (x2x4, x1x2, x1x3) an ideal of S = K[x1, x2, x3]. I has linear
quotients. Note that d(x2x4, x1x2) = d(x1x3, x1x2) = 1, but x2x4 > x1x3 > x1x2
is not an admissible order of I. Hence by Theorem 5.2.8, lcm(x2x4, x1x3, x1x2) =
x1x2x3x4 does not belong to G(HS2(I)). Indeed pd(I) = 1 and HS2(I) = (0). So the
condition j1 < j2 < · · · < ji+1 given in the previous theorem can not be removed.

Example 5.2.10 Let I = (x21x3, x
2
1x2, x1x2x3) an ideal of S = K[x1, x2, x3]. I

has linear quotients. Note that x21x3 > x21x2 > x1x2x3 is an admissible order, but
deg(w) = 4 < 5 = deg(x1x2x3) + 2. Hence w = lcm(x21x3, x

2
1x2, x1x2x3) = x21x2x3 /∈

G(HS2(I)) by Theorem 5.2.8. Indeed pd(I) = 1 and HS2(I) = (0).

5.3 The highest homological shift of ideals with linear

quotients

In this section we analyze the highest possible non zero homological shift ideal of an
equigenerated monomial ideal with linear quotients.

Let I ⊂ S be a monomial ideal. One can always suppose that supp(I) = [n].
Otherwise we replace I with Ĩ = I ∩ R, where R = K[xi : i ∈ supp(I)], without
changing its projective dimension. By Hilbert syzygy theorem, pd(S/I) ≤ n and
since pd(I) = pd(S/I) − 1 we have that pd(I) ≤ n − 1. We say that I has maximal
projective dimension if pd(I) = |supp(I)| − 1 = n− 1.

We are going to characterize equigenerated monomial ideals with linear quotients
with respect to a monomial order ≻ having maximal projective dimension. We recall
the concept of socle of a monomial ideal. Suppose that I has a d-linear resolution.
Then the socle ideal of I, soc(I), is the unique monomial ideal of S generated in degree
d− 1 [27, Proposition 1.4] such that

I : m = soc(I) + I.

In other words, soc(I) is the unique monomial ideal with G(soc(I)) = G(I : m)d−1.

Lemma 5.3.1 Let I ⊂ S be a monomial ideal with a linear resolution and such that
supp(I) = [n]. Then, the following conditions are equivalent.
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(a) I has maximal projective dimension.

(b) soc(I) ̸= (0).

Proof. Assume I is generated in degree d, then I has a d-linear resolution.

(a) ⇒ (b). Suppose I has maximal projective dimension, i.e., pd(I) = n−1. Then,
since I has a d-linear resolution, the (n − 1)th free module of the minimal free
resolution of I is S(−d− (n− 1))βn−1(I) = S(−d− (n− 1))βn−1,n−1+d(I). Hence

K(−d− (n− 1))βn−1,n+d−1(I) ∼= TorSn−1(K, I)n+d−1

∼= TorSn(K,S/I)n+d−1

∼= Hn(x1, . . . , xn;S/I)n+d−1.

(5.4)

The natural basis of the K-vector space Hn(x1, . . . , xn;S/I)n+d−1 consists of
all the homology classes of the Koszul cycles z = (w + I)e1 ∧ e2 ∧ · · · ∧ en
having degree (d − 1) + n. Since e1 ∧ e2 ∧ · · · ∧ en has degree n it follows that
deg(w) = d− 1. Therefore, since z is a cycle, we must have

∂n(z) =
n∑
k=1

(−1)k+1(xkw + I)e1 ∧ · · · ∧ ek−1 ∧ ek+1 ∧ · · · ∧ en = 0.

Thus we have xkw + I = 0 for all k = 1, . . . , n, that means xkw ∈ I for all
k = 1, . . . , n. Hence w ∈ G(soc(I)) and soc(I) ̸= (0).

(b) ⇒ (a). Conversely, any monomial w ∈ G(soc(I)) gives rise to the following
Koszul cycle z = (w+I)e1∧e2∧· · ·∧en whose homology class is a basis element
of Hn(x1, . . . , xn;S/I). Since soc(I) ̸= (0), we have Hn(x1, . . . , xn;S/I) ̸= 0 and
consequently I has maximal projective dimension.

□

Let 1 be the unit vector (1, 1, . . . , 1) of Zn.

Corollary 5.3.2 Let I ⊂ S be a monomial ideal with a linear resolution and such
that supp(I) = [n]. Then,

HSn−1(I) = x1x2 · · ·xn · soc(I).

Proof. Let Fn−1 be the (n − 1)th free S-module of the minimal free resolution of I.
If I has not maximal projective dimension, then Fn−1 = 0 and HSn−1(I) = (0) too.
By Lemma 5.3.1, soc(I) = (0) and the assertion follows in such a case.

Suppose now that I has maximal projective dimension. The isomorphism given in
(5.4) is also a multigraded isomorphism. Thus S(−a) is a direct summand of Fn−1 if
and only if (xa/x[n]+I)e1∧e2∧· · ·∧en is a Koszul cycle. A comparison with the proof
of Lemma 5.3.1 shows that the set of the (n− 1)th multigraded shifts of I consists of
all vectors b+ 1 such that xb ∈ G(soc(I)). Hence HSn−1(I) = x1x2 · · ·xnsoc(I). □

We recall that an equigenerated monomial ideal I with linear quotients has a linear
resolution. So we can consider the socle ideal of I.

Theorem 5.3.3 Let I ⊂ S = K[x1, . . . , xn] be an equigenerated monomial ideal with
linear quotients with respect to a monomial order ≻ induced by x1 > x2 > · · · > xn
and such that supp(I) = [n]. Then, the following conditions are equivalent.
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(i) I has maximal projective dimension.

(ii) soc(I) ̸= (0).

(iii) There exists u ∈ G(I) such that xi(u/xn) ∈ G(I), for all i = 1, . . . , n.

Furthermore,

G(soc(I)) = {u/xn : xi(u/xn) ∈ G(I), i = 1, . . . , n}. (5.5)

Proof. (i) ⇔ (ii) follows from Lemma 5.3.1. To prove (ii) ⇔ (iii), it su�ces to prove
that equation (5.5) holds. From equation (5.1) and Corollary 5.3.2,

HSn−1(I) = (xFu : u ∈ G(I), F ⊆ set(u), |F | = n− 1)

= x1x2 · · ·xn · soc(I).
(5.6)

On the other hand, by Lemma 5.2.5, if u ∈ G(I) then set(u) ⊆ [max(u) − 1] and so
|set(u)| = n− 1 if and only if max(u) = n and set(u) = [max(u)− 1]. Thus,

HSn−1(I) = (x1x2 · · ·xn−1u : u ∈ G(I), max(u) = n, set(u) = [n− 1]). (5.7)

A comparison with equation (5.6) shows that for any u ∈ G(I) with set(u) = [n− 1]
we must have xset(u)u = x1x2 · · ·xn−1u ∈ x1x2 · · ·xnsoc(I). Thus x1x2 · · ·xn−1u =
x1x2 · · ·xn(u/xn) with u/xn ∈ soc(I). So equation (5.5) holds, as desired. □

Notes

Perhaps, the concept of homological shift ideal appeared for the �rst time in 2005,
inside the book of Miller and Sturmfels [127]. In [127, Theorem 2.18], using a di�er-
ent language, the authors showed that the �rst homological shift ideal HS1(I) of an
equigenerated strongly stable ideal I has a linear resolution. This result was strength-
ened by Bayati, Jahani and Taghipour who showed that if I an equigenerated strongly
stable ideal, then HS1(I) even has linear quotients [17, Proposition 3.2].

One of the main motivations behind the study of homological shift ideals lies in the
Bandari�Bayati�Herzog conjecture (Conjecture 6.1.1) which predicts that HSi(I) is
polymatroidal for all i, if I is polymatroidal. At present, we know that HS1(I) is always
polymatroidal if I is such (Theorem 6.1.2). Moreover, the conjecture was proved
by Bayati for squarefree polymatroidal ideals (Corollary 6.1.5), by Herzog, Moradi,
Rahimbeigi and Zhu for polymatroidal ideals that satisfy the strong exchange property
(Corollary 6.1.6), and by Ficarra and Herzog for polymatroidal ideals generated in
degree 2 (Theorem 7.3.3). This latter result was also recently recovered by Bayati
in [15, Corollary 2.9] using a di�erent method involving adjacency ideals and the
so�called quasi�squarefree part.

The main general properties of homological shift ideals were investigated by Her-
zog, Moradi, Rahimbeigi and Zhu in [101]. An important result of Sbarra [141], which
we are going to use later on, guarantees that taking homological shifts commutes with
the polarization (Lemma 8.4.10). In the next four chapters, (Chapters 6�9), we study
the homological shifts of polymatroidal ideals, edge ideals and cover ideals.
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Chapter 6

Homological shifts of polymatroids

The interest in homological shift ideals has its origins in a meeting between Somayeh
Bandari, Shamila Bayati and Jürgen Herzog that took place in Essen in 2012. Due
to experimental evidence, the three authors conjectured that the property of being
polymatroidal is an homological shift property. Recall that a polymatroidal ideal I is
an equigenerated monomial ideal of S whose minimal generating set G(I) corresponds
to the base of a discrete polymatroid. Polymatroidal ideals constitute one of the most
distinguished classes of monomial ideals. Indeed, the product of polymatroidal ideals
is polymatroidal. Any polymatroidal ideal has linear quotients, linear resolution and
so linear powers, [89, Corollary 12.6.4], a rare property among monomial ideals. In
this chapter we study the homological shift ideals of polymatroidal ideals.

The chapter is organized as follows. In Section 6.1, we study the homological shift
ideals of polymatroidal ideals. We are able to prove that HS1(I) is polymatroidal if
I is polymatroidal (Theorem 6.1.2). Our proof is based on Proposition 5.2.4, whose
main advantage consists in the fact that HS1(I) does not depend upon the admissi-
ble order of I. To study the higher homological shift ideals, �rstly we note that for
j ≥ 1, HSj+1(I) ⊆ (HS1(HSj(I)))>j+1, (Corollary 5.2.7), where J>j+1 is the mono-
mial ideal with minimal generating set G(J>j+1) = {u ∈ G(J) : |supp(u)| > j + 1}.
Unfortunately, equality in the above inclusion does not hold in general, (Example
6.1.7). Nonetheless, it holds for matroidal ideals, (Proposition 6.1.4). As a conse-
quence Conjecture 6.1.1 holds for all matroidal ideals, (Corollary 6.1.5). It would
be of interest to classify all polymatroidal ideals satisfying the equation HSj+1(I) =
(HS1(HSj(I)))>j+1 for all j < pd(I).

In Section 6.2, we discuss the highest possible homological shift ideal. By Corol-
lary 5.3.2, HSn−1(I) is polymatroidal if and only if soc(I) is polymatroidal. It is
conjectured by Bandari and Herzog [13, page 760] that soc(I) is a polymatroidal ideal
if I is such (Conjecture 6.2.1). It turns out that if a polymatroidal ideal I has max-
imal projective dimension the same is true for Ik, k ≥ 1, (Proposition 6.2.3). Hence
if soc(I) ̸= (0), then soc(Ik) ̸= (0) too. In the last section we analyze four families of
polymatroidal ideals, characterize when they have maximal projective dimension and
prove that their socle ideals are polymatroidal. These four families are: matroidal ide-
als, principal Borel ideals [50], PLP�polymatroidal ideals [122] and LP�polymatroidal
ideals [142]. It would be nice to establish Conjecture 6.1.1 for these families. Only
for transversal polymatroidal ideals we are unable to establish Conjecture 6.2.1. In
Question 6.2.18 we predict that the socle ideal of these ideals can be determined by
the spanning trees of a certain intersection graph [96]. We answer positively to this
question in a special case, (Proposition 6.2.22).
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6.1 The �rst homological shift of polymatroidal ideals

Recall that an equigenerated monomial ideal I ⊂ S = K[x1, . . . , xn] is a polymatroidal
ideal if it satis�es the following exchange property,

(∗) for all u, v ∈ G(I) and all i such that degxi(u) > degxi(v), there exists j with
degxj (u) < degxj (v) and such that xj(u/xi) ∈ G(I).

Such ideals are called polymatroidal because their minimal generating set G(I) corre-
sponds to the basis of a discrete polymatroid, see [89, Chapter 12].

For later use, we recall again the dual exchange property, (Lemma 3.4.1),

(∗∗) for all u, v ∈ G(I) and all j such that degxj (u) < degxj (v), there exists i with
degxi(u) > degxi(v) and such that xj(u/xi) ∈ G(I).

It is expected that the following is true.

Conjecture 6.1.1 (Bandari�Bayati�Herzog [16, 101]). Let I ⊂ S be a polymatroidal
ideal. Then all homological shift ideals HSj(I) are again polymatroidal, for all j ≥ 0.

Using Theorem 3.4.2 and the description of HS1(I) given in Proposition 5.2.4 we
can prove the following result.

Theorem 6.1.2 Let I ⊂ S be a polymatroidal ideal. Then HS1(I) is polymatroidal.

Proof. It is convenient to note that by Proposition 5.2.4,

HS1(I) = (xiu : u ∈ G(I), i ∈ set(u))

= (lcm(u, v) : u, v ∈ G(I), d(u, v) = 1).

We must prove the following exchange property,

(∗) for all monomials u, v ∈ G(I), all integers k ∈ set(u), ℓ ∈ set(v) such that
u1 = xku ̸= xℓv = v1 and all i with degxi(u1) > degxi(v1), there exists an integer
j such that degxj (u1) < degxj (v1) and xj(u1/xi) = xj(xku)/xi ∈ G(HS1(I)).

We may assume that i is di�erent both from k and ℓ. Indeed, if k = i, then as
k ∈ set(u) we have u1 = xpz for some z ∈ G(I) \ {u}, p ̸= k, and we may use the
element xpz with p ̸= k = i. The same reasoning applies for ℓ. Thus, we can assume
i ̸= k, ℓ. In particular, this assumption and our hypothesis degxi(u1) > degxi(v1)
imply that degxi(u) > degxi(v) as well. Since I is a polymatroidal ideal, the following
set

Ω = {h ∈ [n] \ {i} : degxh(u) < degxh(v) and xh(u/xi) ∈ G(I)}.

is non empty.
Let h ∈ Ω and set w = xh(u/xi). We may distinguish two cases.

Case 1. Suppose that k ∈ Ω. For h = k ∈ Ω, we have degxk(u) < degxk(v) and
w = xk(u/xi) ∈ G(I). We distinguish two more cases.

Subcase 1.1. Assume w = v. By hypothesis v1 = xℓv ∈ G(HS1(I)). We show that
the property (∗) is veri�ed for the integer j = ℓ. Indeed, as i ̸= ℓ and w = v,

degxℓ(u1) = degxℓ(xku) = degxℓ(xku/xi) = degxℓ(w)

= degxℓ(v) < degxℓ(xℓv),
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and v1 = xℓv = xℓw = xℓ(xku)/xi ∈ G(HS1(I)), as desired.

Subcase 1.2. Assume w ̸= v. Thus, for some r, degxr(w) > degxr(v). Since
I is polymatroidal, there exists an integer m with degxm(w) < degxm(v) and such
that w1 = xm(w/xr) ∈ G(I). Clearly m ̸= r. Hence, Lemma 5.2.3 implies that
d(w,w1) = 1 and Proposition 5.2.4 implies that

lcm(w,w1) = xmw = xm(xℓu)/xi ∈ G(HS1(I)). (6.1)

It remains to prove that the integer m satis�es the �rst condition of property (∗),
namely degxm(u1) < degxm(v1). First note that m ̸= i. Lest, if i = m, by hypothesis
degxi(w) < degxi(v) and then degxi(u) = degxi(w) + 1 ≤ degxi(v), against the fact
that degxi(u) > degxi(v). Thus, since m ̸= i, we have degxm(u) ≤ degxm(w) <
degxm(v). This inequality together with equation (6.1) show that the integer j = m
satis�es the property (∗) in such a case.

Case 2. Suppose that k /∈ Ω. Nonetheless, for some h ∈ Ω, with h ̸= k, we have
degxh(u) < degxh(v) and w = xh(u/xi) ∈ G(I). Since k ∈ set(u), there exist z ∈ G(I),
z ̸= u and xp ̸= xk such that u1 = xku = xpz.

Subcase 2.1. Suppose d(w, z) = 1. As h ∈ Ω but k /∈ Ω we have h ̸= k. Thus, as
w = xh(u/xi) and z = xk(u/xp) it follows that p = i, lest d(w, z) > 1. Hence p = i
and Proposition 5.2.4 implies

lcm(w, z) = lcm(xh(u/xi), xk(u/xp)) = xh(xku)/xi ∈ G(HS1(I)).

Finally, we just need to check that degxh(u1) < degxh(v1). Indeed, as h ̸= k,

degxh(xku) = degxh(u) < degxh(v) ≤ degxh(xℓv).

Subcase 2.2. Suppose d(w, z) > 1. Then p ̸= i, lest d(w, z) = 1 by Subcase 2.1.
Thus d(w, z) = d(xh(u/xi), xk(u/xp)) = 2, i ̸= h, h ̸= k, k ̸= p, p ̸= i and

degxi(w) < degxi(z), degxh(w) > degxh(z),

degxk(w) < degxk(z), degxp(w) > degxp(z).

Moreover, for all q ̸= i, h, k, p we have degxq(w) = degxq(z). Since w, z ∈ G(I) and
degxi(z) > degxi(w) we have z1 = xh(z/xi) ∈ G(I) or z2 = xp(z/xi) ∈ G(I). We
distinguish two more cases.

Subcase 2.2.1. Suppose z1 = xh(z/xi) ∈ G(I). Note that

xp(z1/xk) = xp(xh(z/xi))/xk = xpxhxk((u/xp)/xi)/xk = xh(u/xi) = w.

Since k ̸= p, Lemma 5.2.3 implies that d(z1, w) = 1. Thus, by Proposition 5.2.4

lcm(z1, w) = lcm(xh(z/xi), xh(u/xi))

= lcm(xh(xk(u/xp)/xi), xh(u/xi))

= xh(xku)/xi ∈ G(HS1(I)),

and the property (∗) is satis�ed as h ∈ Ω, that is degxh(u) < degxh(v) and as h ̸= k,
we have degxh(u1) = degxh(xku) = degxh(u) < degxh(v) ≤ degxh(xℓv) = degxh(v1).
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Subcase 2.2.2. Suppose z2 = xp(z/xi) ∈ G(I). Note that

z2 = xp(z/xi) = xp(xk(u/xp)/xi) = xk(u/xi)

and d(z2, w) = 1. Thus, Proposition 5.2.4 implies that

lcm(z2, w) = lcm(xk(u/xi), xh(u/xi)) = xh(xku)/xi ∈ G(HS1(I)),

and as before degxh(u1) < degxh(v1). The proof is complete. □

By Theorem 3.4.2, a polymatroidal ideal I ⊂ S has linear quotients with respect
to any lexicographic order >lex. Thus Corollary 5.2.7 implies that for all j ≥ 0,

HSj+1(I) ⊆ (HS1(HSj(I)))>j+1.

Next, we study when equality holds in the above equation. This is the case when
I is actually matroidal, i.e., it is squarefree polymatroidal. This fact was �rst noted in
[16, Corollary 2.3]. However the proof in [16] makes use of matroid theory and graph
theory. We provide here a totally algebraic proof.

Firstly, we note the following general fact.

Lemma 6.1.3 Let I ⊂ S be a squarefree monomial ideal. Then, for all j ≥ 0,

(HS1(HSj(I)))>j+1 = HS1(HSj(I)).

Proof. Firstly, by Corollary 5.2.2, all homological shift ideals HSj(I) are squarefree.
Secondly, we show that all monomials w ∈ G(HSj(I)) have |supp(w)| > j. Let

F : · · ·
dj+1−−−→ Fj

dj−−→ Fj−1
dj−1−−−→ · · · d2−−→ F1

d1−−→ F0
d0−−→ I → 0,

be the minimal free resolution of I. By induction, for all shifts b of Fj−1 we have
|supp(xb)| ≥ j. Since F is minimal, Im(dj) ⊆ mFj−1, with m = (x1, . . . , xn). Since all
shifts of Fj are squarefree, we see that for all shifts a of Fj we have |supp(xa)| ≥ j+1.

Finally, it is clear that (HS1(HSj(I)))>j+1 ⊆ HS1(HSj(I)). To conclude the proof
it su�ces to show the opposite inclusion. Let y ∈ G(HS1(HSj(I))). We show that
|supp(y)| > j + 1. By Proposition 5.2.4, y = lcm(w1, w2) with w1, w2 ∈ G(HSj(I))
such that d(w1, w2) = 1. By Lemma 5.2.3, w1 = xk(w2/xℓ) for some k ̸= ℓ. Thus
y = lcm(w1, w2) = xℓw1. We have shown that w1 ∈ G(HSj(I)) has |supp(w1)| ≥ j+1.
Since ℓ /∈ supp(w1), |supp(y)| = 1 + |supp(w1)| ≥ j + 2 > j + 1, as desired. □

Proposition 6.1.4 Let I ⊂ S be a matroidal ideal. Then HSj+1(I) = HS1(HSj(I))
for all j < pd(I).

Proof. By Corollary 5.2.2 all homological shift ideals involved in the proof are square-
free. Fix the lexicographic order >lex induced by x1 > x2 > · · · > xn. Then I has
linear quotients with respect to >lex, [14, Theorem 2.4]. For u ∈ G(I), we denote by
set(u) the following set {i : xi ∈ (v ∈ G(I) : v >lex u) : u}. By equation (5.1),

HSj(I) = (xFu : u ∈ G(I), F ⊆ set(u), |F | = j). (6.2)

For j = 0, there is nothing to prove. Let 1 ≤ j < pd(I). By Proposition 5.2.6 we have
HSj+1(I) ⊆ HS1(HSj(I)). So we only need to prove that HS1(HSj(I)) ⊆ HSj+1(I).
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By Proposition 5.2.4, we have

HS1(HSj(I)) = (lcm(w1, w2) : w1, w2 ∈ G(HSj(I)), d(w1, w2) = 1).

Thus, we must show that for all w1, w2 ∈ G(HSj(I)) with d(w1, w2) = 1 we have
lcm(w1, w2) ∈ G(HSj+1(I)). By equation (6.2), w1 = xFu ̸= w2 = xGv with u, v ∈
G(I), F ⊆ set(u), G ⊆ set(v) and |F | = |G| = j. Since d(w1, w2) = 1, Lemma 5.2.3
gives w1 = xk(w2/xℓ) for some k ̸= ℓ. As observed before, w1, w2 are squarefree.
Hence, supp(w1) = {k} ∪ (supp(w2) \ {ℓ}). Note that as ℓ ∈ supp(w2), we can �nd
z ∈ G(I) such that ℓ ∈ supp(z). Indeed if ℓ ∈ supp(v) then we can choose z = v.
Otherwise, ℓ ∈ G ⊆ set(v), and xℓv = xsz with z ∈ G(I) \ {v}, s ̸= ℓ and so
ℓ ∈ supp(z).

Since ℓ ∈ supp(z) \ supp(u) it is degxℓ(z) > degxℓ(u). By the dual exchange
property (∗∗), the set of integers h such that degxh(u) > degxh(z) and xℓ(u/xh) ∈
G(I) is non empty. Hence, the following set is non empty too

Ω = {h ∈ [n] \ {ℓ} : xℓ(u/xh) ∈ G(I)}.

Case 1. Assume there exists h ∈ Ω with h > ℓ. Then xℓ(u/xh) >lex u and ℓ ∈ set(u).
Now lcm(w1, w2) = lcm(w1, xℓ(w1/xk)) = xℓw1 = xℓxFu. Since ℓ /∈ supp(w1), we
also have ℓ /∈ F . Since ℓ ∈ set(u), we have that F ∪ {ℓ} is a subset of set(u) having
cardinality j + 1 and lcm(w1, w2) = xF∪{ℓ}u ∈ G(HSj+1(I)) by equation (5.1), as
desired.

Case 2. Assume that for all h ∈ Ω we have h < ℓ. Choose some h ∈ Ω. Then,
u >lex xℓ(u/xh) ∈ G(I). Set w = xℓ(u/xh). Hence, this time h ∈ set(w). Note that
h ∈ supp(u) and since w1 = xFu is squarefree, h /∈ F . We are going to show that
F ⊆ set(w). Hence, we will have F ∪ {h} ⊆ set(w) and then the desired conclusion:

lcm(w1, w2) = xℓxFu = xhxF (xℓ(u/xh)) = xF∪{h}w ∈ G(HSj+1(I)).

Let m ∈ F , then for some p ̸= m, xm(u/xp) ∈ G(I) and xm(u/xp) >lex u. So m < p.

Subcase 2.1. Let p = h. Then ℓ > h = p > m. Hence xm(u/xp) = xm(u/xh) >lex

xℓ(u/xh) = w. Whence, m ∈ set(w) in this case, as desired.

Subcase 2.2. Let p ̸= h. Then d(xm(u/xp), w) = d(xm(u/xp), xℓ(u/xh)) = 2, h ̸= m,
h ̸= ℓ, ℓ ̸= m, p ̸= h, p ̸= m, and

degxh(w) < degxh(xm(u/xp)), degxℓ(w) > degxℓ(xm(u/xp)),

degxm(w) < degxm(xm(u/xp)), degxp(w) > degxp(xm(u/xp)).

Whereas, for all q ̸= h, ℓ,m, p we have degxq(w) = degxq(xm(u/xp)). Since xm(u/xp),
w ∈ G(I) and degxm(xm(u/xp)) > degxm(w), by the dual exchange property (∗∗) we
have either xm(w/xℓ) ∈ G(I) or xm(w/xp) ∈ G(I).

Subcase 2.2.1. Assume xm(w/xℓ) ∈ G(I). Note that

xm(w/xℓ) = xm(xℓ(u/xh))/xℓ = xm(u/xh) ∈ G(I).

Thus m ∈ Ω and by assumption m < ℓ. Hence xm(w/xℓ) >lex w and so m ∈ set(w).

Subcase 2.2.2. Assume xm(w/xp) ∈ G(I). In this case, since m < p we have
xm(w/xp) >lex w, and again m ∈ set(w). The proof is complete □
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Proposition 6.1.4 and Theorem 6.1.2 yield another proof of Conjecture 6.1.1 for
matroidal ideals, one was already obtained in [16, Theorem 2.2].

Corollary 6.1.5 (Bayati, 2019 [16, Theorem 2.2]). Let I ⊂ S be a matroidal ideal.
Then HSj(I) is again a matroidal ideal for all j.

Unfortunately, the inclusion HSj+1(I) ⊆ (HS1(HSj(I)))>j+1 could be strict for an
arbitrary polymatroidal ideal I, as we show in next Example 6.1.7.

Recall that a polymatroidal ideal I satisfy the strong exchange property if

(†) for all u, v ∈ G(I), all i such that degxi(u) > degxi(v) and all j such that
degxj (u) < degxj (v) we have xj(u/xi) ∈ G(I).

A monomial ideal I is called of Veronese type if there exist an integer d and an
integral vector b = (b1, . . . , bn) with non negative entries such that

G(I) =
{
xc = xc11 · · ·x

cn
n :

n∑
i=1

ci = d and ci ≤ bi for i ∈ [n]
}
.

In this case, we denote the ideal I by Ib,n,d. It is known that a polymatroidal ideal I
satis�es the strong exchange property (†) if and only if I is of Veronese type up to a
multiplication by a monomial, [93, Theorem 1.1]. That means that I = xaIb,n,d for
some monomial xa. It was proved in [101, Theorem 3.3.(a)] that

HSℓ(Ib,n,d) = (Ib,n,d+ℓ)>ℓ.

The ideal (Ib,n,d+ℓ)>ℓ is polymatroidal by [101, Proposition 3.4]. Let I be a polyma-
troidal ideal satisfying the strong exchange property. Then I = xaIb,n,d. If

F : · · · →
βi(I)⊕
j=1

S(−ai,j)→
βi−1(I)⊕
j=1

S(−ai−1,j)→ · · · → Ib,n,d → 0

is the minimal multigraded free resolution of Ib,n,d, then the minimal multigraded free
resolution of xaIb,n,d = I is

xaF : · · · →
βi(I)⊕
j=1

S(−ai,j − a)→
βi−1(I)⊕
j=1

S(−ai−1,j − a)→ · · · → xaIb,n,d → 0.

Thus HSj(I) = HSj(x
aIb,n,d) = xaHSj(Ib,n,d) = (xa)(Ib,n,d+ℓ)>ℓ is a polymatroidal

ideal for all j ≥ 0, for it is a product of two polymatroidal ideals. By this discussion,
we have the following consequence.

Corollary 6.1.6 [101, Corollary 3.6] Let I ⊂ S be a polymatroidal ideal satisfying the
strong exchange property. Then HSj(I) is again polymatroidal, for all j.

Now, we are ready for our example.

Example 6.1.7 Let I ⊂ S = K[x1, . . . , x5] be the polymatroidal ideal

I = (x1, x2, x3, x4)(x3, x4, x5)

= (x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x
2
3, x3x4, x3x5, x

2
4, x4x5),

where the minimal generators of I are sorted according to the lexicographic order >lex

induced by x1 > x2 > x3 > x4 > x5. Using Macaulay2, [82], we have collected in the
next tables the linear quotients of I,
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x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x23

set ∅ {3} {3, 4} {1} {1, 3} {1, 3, 4} {1, 2}

x3x4 x3x5 x24 x4x5

set {1, 2, 3} {1, 2, 3, 4} {1, 2, 3} {1, 2, 3, 4}

Thus, by equation (5.1) we have

HS0(I) = I = (x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x
2
3, x3x4, x3x5, x

2
4, x4x5),

HS1(I) = (x1x2x3, x1x2x4, x1x2x5, x1x
2
3, x1x3x4, x1x3x5, x1x

2
4, x1x4x5, x2x

2
3,

x2x3x4, x2x3x5, x2x
2
4, x2x4x5, x

2
3x4, x

2
3x5, x3x

2
4, x3x4x5, x

2
4x5),

HS2(I) = (x1x2x
2
3, x1x2x3x4, x1x2x3x5, x1x2x

2
4, x1x2x4x5, x1x

2
3x4,

x1x
2
3x5, x1x3x

2
4, x1x3x4x5, x1x

2
4x5, x2x

2
3x4, x2x

2
3x5,

x2x3x
2
4, x2x3x4x5, x2x

2
4x5, x

2
3x4x5, x3x

2
4x5),

HS3(I) = (x1x2x
2
3x4, x1x2x

2
3x5, x1x2x3x4x5, x1x2x

2
4x5,

x1x
2
3x4x5, x1x3x

2
4x5, x2x

2
3x4x5, x2x3x

2
4x5),

HS4(I) = (x1x2x
2
3x4x5, x1x2x3x

2
4x5),

HSj(I) = (0), j ≥ 5.

Each of these ideals is polymatroidal, so they have linear quotients. Indeed, HS0(I) =

I is polymatroidal since I is and HS1(I) is polymatroidal too by Theorem 6.1.2. For
the other three ideals, note that HS2(I) = (I(1,1,2,2,1),5,4)>2, HS3(I) = (I(1,1,2,2,1),5,5)>3

and HS4(I) = (I(1,1,2,2,1),5,6)>4 are all polymatroidal by [101, Proposition 3.4]. Note
that for all j = 1, 2, 3, 4 = pd(I) we have HSj+1(I) = (HS1(HSj(I)))>j+1. However,
for all j = 1, 2, 3, 4 we have HSj+1(I) ̸= HS1(HSj(I)). Indeed,

for j = 1, note that x23x4, x3x
2
4 ∈ G(HS1(I)) and d(x23x4, x3x

2
4) = 1. Proposition

5.2.4 implies that lcm(x23x4, x3x
2
4) = x23x

2
4 ∈ G(HS1(HS1(I))). However

this monomial does not belong to HS2(I). Thus HS2(I) ̸= HS1(HS1(I));

for j = 2, the monomials x23x4x5, x3x
2
4x5 ∈ G(HS2(I)) have distance equal to 1, but

lcm(x23x4x5, x3x
2
4x5) = x23x

2
4x5 ∈ G(HS1(HS2(I))) \G(HS3(I));

for j = 3, consider x2x
2
3x4x5, x2x3x

2
4x5 ∈ G(HS3(I)) whose distance is 1. But their

lcm(x2x
2
3x4x5, x2x3x

2
4x5) = x2x

2
3x

2
4x5 ∈ G(HS1(HS3(I))) \G(HS4(I));

for j = 4, we have HS1(HS4(I)) = (x1x2x
2
3x

2
4x5) ̸= (0) = HS5(I).

Let J = x1x2x3x4x5I. We verify that HSj+1(J) ̸= (HS1(HSj(J)))>j+1 for all j =
1, 2, 3, 4. Note that

HSj(J) = x1x2x3x4x5HSj(I) = x[5]HSj(I)

for all j. Furthermore, (HS1(HSj(J)))>j+1 = HS1(HSj(J)), for all j, because all
monomials in J have support [5]. For j = 1, by what was shown above, we have that
x[5]x

2
3x

2
4 ∈ G(HS1(HS1(J)))\G(HS2(J)), hence HS2(J) ̸= (HS1(HS1(J)))>2. One can

proceed similarly for j = 2, 3, 4.
We would like to point out that I does not satisfy the strong exchange property.

Indeed, u = x1x3, v = x2x4 ∈ G(I), degx3(u) > degx3(v), degx2(u) < degx2(v), but
x2(u/x3) = x1x2 does not belong to G(I).
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6.2 Classes of polymatroidal ideals with maximal projec-

tive dimension

In view of Corollary 5.3.2, a positive answer to Conjecture 6.1.1 would imply a positive
answer to the following conjecture mentioned for the �rst time in [13, page 760] and
also studied in the article [27].

Conjecture 6.2.1 (Bandari�Herzog, Chu�Herzog�Lu), [13, 27]. Let I ⊂ S be a
polymatroidal ideal. Then soc(I) is polymatroidal.

Proposition 6.2.2 Conjecture 6.2.1 holds if I is generated in degree two or n ≤ 3.

Proof. If I is generated in degree two, then soc(I) is generated in degree at most
one and it is polymatroidal. If n = 1 there is nothing to prove. If n = 2, HS1(I) =
x1x2 · soc(I) is polymatroidal, (Theorem 6.1.2). Finally, if n = 3, then I satisfy
the strong exchange property [13, Proposition 2.7], and the statement follows from
Corollary 6.1.6. □

If pd(I) < n − 1, then soc(I) = (0) and Conjecture 6.2.1 is trivially veri�ed. So
one only need to consider polymatroidal ideals with maximal projective dimension.
To the best of our knowledge no classi�cation of polymatroidal ideals with maximal
projective dimension is known. However we have the following persistence property.

Proposition 6.2.3 Let I ⊂ S be a polymatroidal ideal with maximal projective di-
mension. Then Ik has maximal projective dimension, for all k ≥ 1.

Proof. The product of polymatroidal ideals is a polymatroidal ideal. Hence Ik is
polymatroidal and it has linear quotients with respect to the lexicographic order >lex

induced by x1 > · · · > xn, for all k. Theorem 5.3.3 guarantees that Ik has maximal
projective dimension if and only if G(soc(Ik)) ̸= ∅. By hypothesis there exists u ∈
G(I) with u/xn ∈ G(soc(I)). We claim that uk/xn ∈ G(soc(Ik)). It su�ces to show
that xi(u

k/xn) ∈ G(Ik), for all i = 1, . . . , n. But xi(u/xn) ∈ G(I) for all i. Hence
xi(u

k/xn) = uk−1(xi(u/xn)) ∈ Ik−1I = Ik is a minimal generator of G(Ik). □

Next, we consider various classes of polymatroidal ideals and classify those with
maximal projective dimension. In particular, we show that Conjecture 6.2.1 is true for
the following classes of polymatroidal ideals: matroidal ideals, principal Borel ideals,
PLP�polymatroidal ideals and a particular class of transversal polymatroidal ideals
that coincides with the class of LP�polymatroidal ideals.

6.2.1 Matroidal ideals

For a matroidal ideal I, to decide when I has maximal projective dimension is rather
trivial. Indeed, more generally we even have,

Proposition 6.2.4 Let I ⊂ S be an equigenerated squarefree monomial ideal with
linear quotients with respect to a monomial order ≻ induced by x1 > x2 > · · · > xn
and such that supp(I) = [n]. Then I has maximal projective dimension if and only if
I = m = (x1, . . . , xn). In such a case HSn−1(m) = (x1x2 · · ·xn) and soc(m) = (1).

Proof. By Theorem 5.3.3, I has maximal projective dimension if and only if there
exists a monomial u such that xi(u/xn) ∈ G(I) for all i = 1, . . . , n. Since I is
squarefree, we must have i /∈ supp(u) for i = 1, . . . , n− 1. Hence u = xn ∈ G(I) and
xi ∈ G(I) for i = 1, . . . , n− 1 as well. Finally, I = m = (x1, . . . , xn). □

Corollary 6.2.5 Let I ⊂ S be a matroidal ideal. Then I has maximal projective
dimension if and only if I = m. Moreover, soc(I) is a matroidal ideal.
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6.2.2 Principal Borel ideals

Another interesting class of polymatroidal ideals is the class of principal Borel ideals.
Recall that an ideal I ⊂ S is strongly stable if for all u ∈ G(I) and all 1 ≤ j <
i ≤ n with i ∈ supp(u) it follows that xj(u/xi) ∈ I. If u1, . . . , um are monomials
of S, B(u1, . . . , um) denotes the unique smallest strongly stable monomial ideal of S
containing u1, . . . , um. It is clear that for any strongly stable monomial ideal I there
exist unique monomials u1, . . . , um such that I = B(u1, . . . , um). These monomials
are called the Borel generators of I. If m = 1, then I = B(u) is called a principal
Borel ideal. Note that if u = xi1xi2 · · ·xid , 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n, then
v = xj1xj2 · · ·xjd ∈ B(u) if and only if i1 ≤ j1, i2 ≤ j2, . . . , id ≤ jd. It is known that
any principal Borel ideal is a polymatroidal ideal.

Thanks to the Eliahou�Kervaire formula for a (strongly) stable ideal I ⊂ S, [50],

βi,i+j(I) =
∑

u∈G(I)j

(
max(u)− 1

j

)
,

we obtain the following corollary.

Corollary 6.2.6 Let I ⊂ S be a strongly stable ideal. Then I has maximal projective
dimension if and only if there exists a monomial u ∈ G(I) with max(u) = n.

Note that an equigenerated strongly stable ideal has a linear resolution. So the
notion of socle ideal for such an ideal makes sense.

Proposition 6.2.7 Let I = B(u1, . . . , um) ⊂ S = K[x1, . . . , xn] be an equigenerated
strongly stable ideal. Then, soc(I) = B(uj/xn : max(uj) = n, j = 1, . . . ,m), and

HSn−1(I) = x1x2 · · ·xn ·B(uj/xn : max(uj) = n, j = 1, . . . ,m).

Proof. Theorem 5.3.3 and Corollary 6.2.6 imply soc(I) = (v/xn : v ∈ G(I),max(v) =
n). We prove that soc(I) is a strongly stable ideal whose Borel generators are the
monomials uj such that max(uj) = n, j = 1, . . . ,m. Indeed let w = v/xn ∈ soc(I),
and let 1 ≤ j ≤ i ≤ max(w) < n such that i ∈ supp(w). Then v ∈ G(I), i ∈ supp(v)
and i < n. Since I is strongly stable and equigenerated, ṽ = xj(v/xi) ∈ G(I).
Moreover, max(ṽ) = n since i < n. Hence, ṽ/xn = xj(v/xi)/xn = xj(w/xi) ∈ soc(I),
as desired. Finally, it is clear that the monomials uj/xn such that max(uj) = n are
the Borel generators of soc(I), and all our statements follow. □

Any strongly stable ideal has linear quotients with respect to the lexicographic
order induced by x1 > x2 > · · · > xn. So the previous proposition implies immediately

Corollary 6.2.8 Let I ⊂ S be an equigenerated strongly stable ideal having maximal
projective dimension. Then HSn−1(I) has linear quotients.

Corollary 6.2.9 Let I = B(u) ⊂ S be a principal Borel ideal having maximal pro-
jective dimension. Then HSn−1(I) is again a principal Borel ideal and in particular
it is polymatroidal.

Now we discuss the socle of powers of principal Borel ideals.

Proposition 6.2.10 Let I = B(u) be a principal Borel ideal. Then, for all k ≥ 1,
Ik = (B(u))k = B(uk). Moreover, if I has maximal projective dimension, for all
k ≥ 1,

soc((B(u))k) = B(uk/xn).
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Proof. The inclusion Ik ⊂ B(uk) is clear. Conversely, let u = xi1xi2 · · ·xid with
1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n. Let w = xj1xj2 · · ·xjkd ∈ B(uk) with 1 ≤ j1 ≤ j2 ≤ · · · ≤
jkd ≤ n. By de�nition of B(uk) it follows that

j1, j2, . . . , jd ≤ i1,

jd+1, jd+2, . . . , j2d ≤ i2,

...

j(k−1)d+1, j(k−1)d+2, . . . , jkd ≤ id.

De�ne wℓ = xjℓxjℓ+d
· · ·xjℓ+(k−1)d

, for ℓ = 1, . . . , d. Then wℓ ∈ I = B(u) for all ℓ, and

w = w1w2 · · ·wd ∈ Ik = (B(u))k proving the inclusion B(uk) ⊆ (B(u))k. □

6.2.3 Pruned path lattice polymatroidal ideals

In this Subsection we consider a special class of polymatroidal ideals introduced by
Schweig in [142] and by Lu in [122].

Hereafter, given integral vectors a = (a1, . . . , an) and b = (b1, . . . , bn) of non
negative integers, when we write a ≤ b we mean that ai ≤ bi for all i = 1, . . . , n.
We say that a monomial u = xc is b-bounded if c ≤ b. We denote the null vector
(0, 0, . . . , 0) by 0 and the unit vector (1, 1, . . . , 1) by 1.

Let a, b, α, β be four integral vectors of non negative integers such that a ≤ b,
α ≤ β, α1 ≤ · · · ≤ αn = d, β1 ≤ · · · ≤ βn = d with d ≥ 1. The pruned path lattice
polymatroidal ideal or simply the PLP�polymatroidal ideal of type (a,b|α,β) is the
following polymatroidal ideal of S = K[x1, . . . , xn], [122, 142],

I(a,b|α,β) = (xc : a ≤ c ≤ b, αi ≤ c1 + · · ·+ ci ≤ βi, i ∈ [n]).

If a = 0, I(0,b|α,β) is called a basic PLP�polymatroidal ideal. Any PLP�polymatroidal
is the product of a basic PLP�polymatroidal and a monomial, [122, Remark 4.1],

I(a,b|α,β) = xaI(0,b−a|α∗,β∗).

Thus we restrict our attention on basic PLP�polymatroidal ideals of type (0,b|α,β).

Examples 6.2.11 (a) If a = 0 and b ≥ d1 = (d, d, . . . , d), then I = I(a,b|α,β) is a
lattice path polymatroidal or simply a LP�polymatroidal ideal [122].

(b) If α = 0 and β = d1 = (d, d, . . . , d), then I(a,b|α,β) = xaIb−a,n,d is an ideal that
satisfy the strong exchange property (†).

(c) The ideal I = (x1, x2, x3, x4)(x3, x4, x5) ⊂ K[x1, . . . , x5] of Example 6.1.7 is a
PLP�polymatroidal ideal of type

(
0, (1, 1, 2, 2, 1)

∣∣(0, 0, 0, 1, 2), (1, 1, 2, 2, 2)). As
noted in Example 6.1.7, I does not satisfy the strong exchange property. Hence
not all PLP�polymatroidal ideals satisfy the strong exchange property.

The following result is essentially due to Lu.
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Lemma 6.2.12 (Lu, 2017 [122, Lemma 4.2(b)]). Let I(0,b|α,β) ⊂ S be a PLP�
polymatroidal ideal and suppose that G(I(0,b|α,β)) is ordered with respect to the lexi-
cographic order >lex induced by x1 > x2 > · · · > xn. Then, for u ∈ G(I(0,b|α,β)),

set(u) =
{
i ∈ [max(u)− 1] : degxi(u) < bi,

i∑
k=1

degxk(u) < βi
}
.

Proof. Let u ∈ G(I(0,b|α,β)) and i ∈ set(u). By [122, Lemma 4.2(b)] it follows that

i ∈ set(u) if and only if degxi(u) < bi and
∑i

k=1 degxk(u) < βi. Whereas, by Lemma
5.2.5 it follows that set(u) ⊆ [max(u)− 1]. □

As a consequence we recover [27, Proposition 3.3] due to Chu, Herzog and Lu. Let
ε1, . . . , εn be the standard basis vectors of Qn, i.e., εi has all component zeros except
for the ith component which is equal to 1. Note that 1 = ε1 + ε2 + · · ·+ εn.

Corollary 6.2.13 Let I(0,b|α,β) ⊂ S be a PLP�polymatroidal ideal. Then

soc(I(0,b|α,β)) = I(0,b−1|α−εn,β−1).

Proof. By Theorem 5.3.3, G(soc(I)) = {u/xn : xi(u/xn) ∈ G(I), i = 1, . . . , n}. Let
u ∈ G(I) such that u/xn ∈ G(soc(I)). Since xi(u/xn) ∈ G(I) for all i, we see
that set(u) = [n − 1], where we consider that I has linear quotients with respect to
>lex induced by x1 > x2 > · · · > xn. By Lemma 6.2.12, we have for all i < n,
degxi(u/xn) = degxi(u) < bi and

∑i
k=1 degxk(u/xn) =

∑i
k=1 degxk(u) < βi. Since

degxn(u/xn) < degxn(u) ≤ bn too, we see that u is b− 1-bounded. Finally, for i = n,∑i
k=1 degxk(u/xn) = deg(u)− 1 = αn − 1 = βn − 1 = d− 1. Therefore

soc(I(0,b|α,β)) ⊆ I(0,b−1|α−εn,β−1).

The opposite inclusion is trivial and the proof is complete. □

Corollary 6.2.14 Let I(0,b|α,β) ⊂ S be a PLP�polymatroidal ideal. Then the last
homological shift ideal HSn−1(I(0,b|α,β)) is again a PLP�polymatroidal ideal.

Proof. Indeed, HSn−1(I(0,b|α,β)) = x[n] · soc(I(0,b|α,β)) = x[n] · I(0,b−1|α−εn,β−1) is the
product of a monomial and a basic PLP�polymatroidal ideal. □

We can classify all PLP�polymatroidal ideals with maximal projective dimension.

Proposition 6.2.15 Let I(0,b|α,β) ⊂ S be a PLP�polymatroidal ideal. Then I(0,b|α,β)
has maximal projective dimension if and only if

βi + bi+1 + · · ·+ bj ≥ αj + (j + 1− i), for all 1 ≤ i ≤ j < n, and

βi + bi+1 + · · ·+ bn ≥ αn + (n− i), for all 1 ≤ i ≤ n.

Proof. Let b∗ = b − 1, α∗ = α − εn and β∗ = β − 1. I has maximal projective
dimension if and only if soc(I(0,b|α,β)) = I(0,b∗|α∗,β∗) is non zero. By [27, Lemma 3.1]
due to Chu, Herzog and Lu, I(0,b∗|α∗,β∗) is non zero if and only if

(β∗)[i] +

j∑
k=i+1

(b∗)[k] ≥ (α∗)[j], for all 1 ≤ i ≤ j ≤ n,
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where (c)[i] stands for ci the ith component of the vector c = (c1, c2, . . . , cn) ∈ Zn.
By expanding these inequalities we obtain the inequalities in the statement. □

For instance, the basic PLP�polymatroidal of Example 6.2.11(c) has maximal
projective dimension. Indeed, the inequalities in the previous proposition are all
satis�ed. Next, we turn to powers.

Corollary 6.2.16 Let I(0,b|α,β) ⊂ S be a PLP�polymatroidal ideal having maximal
projective dimension. Then, for all k ≥ 1,

soc((I(0,b|α,β))
k) = I(0,kb−1|kα−εn,kβ−1).

Proof. By [122, Proposition 2.10], (I(0,b|α,β))
k = I(0,kb|kα,kβ). So the statement

follows at once from Corollary 6.2.13. □

6.2.4 Transversal polymatroidal ideals

Let A ⊆ [n] be non empty. It is clear that pA = (xi : i ∈ A) is polymatroidal. A poly-
matroidal ideal I ⊂ S is called a transversal polymatroidal ideal if I = pA1 · · · pAt for
some non empty subsets A1, . . . , At of [n]. The ideal of Example 6.1.7 is a transversal
PLP�polymatroidal ideal. However, the ideal (x1, x3)(x2, x4) is a transversal but non
PLP�polymatroidal ideal [122, Example 2.5].

Note that for a transversal polymatroidal ideal the condition supp(I) = [n] is
ful�lled if and only if

⋃t
i=1Ai = [n].

Theorem 6.2.17 Let I =
∏t
i=1 pAi ⊂ S be a transversal polymatroidal ideal such

that
⋃t
i=1Ai = [n]. Then, the following conditions are equivalent.

(i) I has maximal projective dimension.

(ii) for all pair of integers 1 ≤ i < j ≤ t there exist integers i = ℓ1, ℓ2, . . . , ℓr−1, ℓr =
j such that Aℓs ∩Aℓs+1 ̸= ∅, for all s = 1, . . . , r − 1.

Proof. Following [96], we attach to I the following graph, which is called the in-
tersection graph of I. Let GI = (V,E) be the simple graph whose vertex set V is
{Ai : i ∈ [t]} and whose edge set E consists of all the unordered pairs {k, ℓ} such
that Ak ∩ Aℓ ̸= ∅. By [96, Theorem 4.3], m ∈ Ass(I) if and only if GI is connected.
Now, pd(I) = n − 1 if and only if depth(S/I) = 0. This is the case, if and only if
m ∈ Ass(I), concluding the proof. □

We recall some concepts of graph theory. It is known that any connected graph G
has a spanning tree T . That means a collection T of edges of G such that

⋃
e∈T e = V ,

here V is the vertex set of G, and such that the graph T = (V, T ) is a tree.
The proof of [96, Theorem 4.3] shows that for all spanning trees T = {ek}k=1,...,t−1

of GI , any monomial xℓ1xℓ2 · · ·xℓt−1 with ℓk ∈ Aik ∩Ajk is such that I : w = m, i.e., w
is in G(soc(I)). Thus, one may wonder if all monomial generators of G(soc(I)) arise
in this way. We are led to ask the following question.

Question 6.2.18 Let I =
∏t
i=1 pAi ⊂ S be a transversal polymatroidal ideal such

that I has maximal projective dimension. Is it true that

soc(I) = (xℓ1xℓ2 · · ·xℓt−1 : ℓk ∈ Aik ∩Ajk , ek = {ik, jk} ∈ E(GI), k = 1, . . . , t− 1,

and T = {ek}k=1,...,t−1 is a spanning tree of GI) ?
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At present we do not know if Question 6.2.18 has a positive answer in general.
Therefore, we restrict to a particular subclass of transversal polymatroidal ideals.
Given integers p ≤ q, we denote by p[p,q] the monomial prime ideal (xi : i ∈ [p, q]).
Let α : α1 ≤ α2 ≤ · · · ≤ αt and β : β1 ≤ β2 ≤ · · · ≤ βt be two non�decreasing
sequences of positive integers such that αi ≤ βi for all i = 1, . . . , t. We de�ne the
transversal polymatroidal ideal

I(α,β) = p[α1,β1] · p[α2,β2] · · · p[αt,βt].

The class of all such ideals is the class of LP�polymatroidal ideals, [122, Lemma 2.1].
Note that if supp(I(α,β)) = [n] then α1 = 1 and βt = n. So, from now on we

assume that α1 = 1 and βt = n.

Proposition 6.2.19 Let I(α,β) =
∏t
i=1 p[αi,βi] ⊂ S be a LP�polymatroidal ideal with

α1 = 1, βt = n. Then I(α,β) has maximal projective dimension if and only if

αi+1 ≤ βi, for all i = 1, . . . , t− 1.

Proof. Let Ai = [αi, βi], i = 1, . . . , t. If αi+1 ≤ βi for i = 1, . . . , t−1, then A1∩A2 ̸= ∅,
A2 ∩A3 ̸= ∅, . . . , At−1 ∩At ̸= ∅. So by Theorem 6.2.17(ii) it follows that I(α,β) has
maximal projective dimension in such a case, for GI(α,β)

is connected.
Conversely, we must have αℓ+1 ≤ βℓ for ℓ = 1, . . . , t − 1. Indeed, suppose on the

contrary that for some 1 ≤ ℓ ≤ t− 1 we have αℓ+1 > βℓ, then

(

ℓ⋃
k=1

Ak) ∩ (

t⋃
k=ℓ+1

Ak) = [1, βℓ] ∩ [αℓ+1, n] = ∅.

Hence the graph GI(α,β)
would have two connected components and it would be not

connected. This violates condition (ii) of Theorem 6.2.17, a contradiction. □

The proof of the previous proposition points out that if the ideal I(α,β) =
∏t
i=1 p[αi,βi]

has maximal projective dimension, setting Ai = [αi, βi], then the graph GI(α,β)
has

edge set {{1, 2}, {2, 3}, . . . , {t− 1, t}}. Hence, we have the following result.

Corollary 6.2.20 Let I(α,β) =
∏t
i=1 p[αi,βi] ⊂ S be a LP�polymatroidal ideal having

maximal projective dimension. Then GI(α,β)
is a path graph.

Let I ⊂ S be a monomial ideal. We de�ne the bounding multidegree of I to be the
integral vector deg(I) = (degx1(I),degx2(I), . . . ,degxn(I)) ∈ Zn de�ned by

degxi(I) = max
u∈G(I)

degxi(u).

As an immediate consequence of Theorem 5.2.1 we have that

Corollary 6.2.21 Let I ⊂ S be a monomial ideal and let deg(I) be its bounding
multidegree. For all multigraded shifts a of I, we have a ≤ deg(I).

Proposition 6.2.22 Let I(α,β) =
∏t
i=1 p[αi,βi] ⊂ S be a LP�polymatroidal ideal with

t ≥ 2, α1 = 1, βt = n and having maximal projective dimension. Then,

soc(I(α,β)) =

t−1∏
i=1

p[αi+1,βi].
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In particular, Question 6.2.18 is true in this case, and HSn−1(I(α,β)) is again a
transversal polymatroidal ideal.

Proof. Let Ai = [αi, βi], for i ∈ [t]. By Corollary 6.2.20, GI(α,β)
is a path graph,

with edge set {{1, 2}, {2, 3}, . . . , {t − 1, t}}. Hence GI(α,β)
has only one spanning

tree, namely itself. As said before, the proof of [96, Theorem 4.3] shows that all the
monomials w = xℓ1xℓ2 · · ·xℓt−1 with ℓi ∈ Ai∩Ai+1 = [αi, βi]∩ [αi+1, βi+1] = [αi+1, βi],
i = 1, . . . , t − 1, are minimal generators of soc(I(α,β)). Hence, we have proved the
inclusion

t−1∏
i=1

p[αi+1,βi] ⊆ soc(I(α,β)).

Now we apply Corollary 6.2.21 to show the opposite inclusion. For this purpose, let
us compute the bounding multidegree of I(α,β). An easy calculation shows that

(deg(I(α,β)))[j] = degxj (I(α,β)) =
∣∣{i ∈ [t] : j ∈ Ai}

∣∣
=

{
1 if j ∈ [n] \ (

⋃t−1
i=1[αi+1, βi]),

1 +
∣∣{ℓ ∈ [t] : αℓ+1 ≤ j ≤ βℓ}

∣∣ if j ∈
⋃t−1
i=1[αi+1, βi].

By Corollary 5.3.2, HSn−1(I(α,β)) = x1x2 · · ·xn ·soc(I(α,β)), so each minimal generator
w of soc(I(α,β)) has multidegree bounded by deg(I(α,β))− 1. Thus w is a monomial

of degree t− 1 whose support is a subset of
⋃t−1
i=1[αi+1, βi]. For t = 2, we furthermore

have that w = xs with s ∈ [α2, β1]. Thus in this case soc(I(α,β)) = p[α2,β1].
Now, let t > 2, and consider

α∗ : α1 ≤ α2 ≤ · · · ≤ αt−1 and β∗ : β1 ≤ β2 ≤ · · · ≤ βt−1.

We have I(α,β) = I(α∗,β∗)p[αt,βt]. Let u ∈ G(I(α,β)) with u/xn ∈ soc(I(α,β)). Then
max(u/xn) ∈ [αt, βt−1]. It is clear that max(u/xn) ≤ βt−1. Suppose by contradiction
that max(u/xn) < αt, then if ℓ < αt we would have supp(xℓ(u/xn)) ⊆ [1, αt − 1] and
by the structure of I(α,β), xℓ(u/xn) /∈ G(I(α,β)), an absurd. So s = max(u/xn) ≥ αt.
We claim that w = u/(xsxn) ∈ soc(I(α∗,β∗)). Let j ∈ {1, . . . , βt−1}, then xj(u/xn) ∈
G(I(α,β)). If j < αt, we see that xj · u/(xsxn) ∈ G(I(α∗,β∗)), as desired. If j = s,
then xju/(xsxn) = u/xn ∈ G(I(α∗,β∗)). Finally, if j ∈ [αt, βt−1] \ {s}, then since

u/(xsxn) ∈
∏t−2
i=1 p[αi,βi], we see that xj · u/(xsxn) ∈

∏t−1
i=1 p[αi,βi] = G(I(α∗,β∗)).

Summarizing, we have shown that soc(I(α,β)) ⊆ p[αt,βt−1] · soc(I(α∗,β∗)). Since by

inductive hypothesis, soc(I(α∗,β∗)) =
∏t−2
i=1 p[αi+1,βi], the conclusion follows. □

Example 6.2.23 Let I = p[1,4]p[3,5] ⊂ S = K[x1, . . . , x5] be the LP�polymatroidal
ideal considered in Example 6.1.7. In such a case deg(I) = (1, 1, 2, 2, 1), and I
has maximal projective dimension (pd(I) = 4) since [1, 4] ∩ [3, 5] = [3, 4] ̸= ∅. By
Proposition 6.2.22 we have soc(I) = p[1,4]∩[3,5] = p[3,4] = (x3, x4) and by Corollary
5.3.2 we can compute the highest homological shift ideal of I as

HS4(I) = x[5] · soc(I) = (x1x2x
3
3x4x5, x1x2x3x

2
4x5).

The many characterizations of ideals with maximal projective dimension we have
obtained, for the various classes of polymatroidal ideals we have considered, seem to
be very di�erent in nature. Thus, it seems unlikely that a nice characterization of all
polymatroidal ideals with maximal projective dimension is possible.
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Chapter 7

Homological shifts of edge ideals

The classi�cation of all Cohen�Macaulay edge ideals and the classi�cation of all edge
ideals with linear resolution are fundamental problems. While the �rst problem is
widely open and considered to be intractable in general, for the second problem we
have a complete answer as follows by Dirac and Fröberg (Theorems 3.3.4). In this
chapter we discuss the algebraic consequences of Dirac's theorem on chordal graphs
related to the theory of homological shift ideals of edge ideals.

The chapter is structured as follows.
Sections 7.1 and 7.2 are devoted to homological shifts of edge ideals with linear

resolution. Let G be a graph. Unfortunately, even if I(G) has linear resolution, it
may not have homological linear resolution (Example 7.1.1). At present we do not
have a complete classi�cation of all edge ideals with homological linear quotients or
homological linear resolution. Thus, we determine many classes of cochordal graphs
whose edge ideals have homological linear resolution. In particular, for proper interval
graphs and forests, we prove that the edge ideals of their complementary graphs have
homological linear quotients, (Theorems 7.1.2 and 7.2.1). To prove the �rst result we
introduce the class of reversible chordal graphs, and show that any proper interval
graph is a reversible graph, (Lemma 7.1.3). For the second result, we consider two
operations on chordal graphs that preserve the homological linear quotients property.
Namely, adding whiskers to a chordal graph and taking unions of disjoint chordal
graphs, (Propositions 7.2.2 and 7.2.4). Using these results, it is easy to see that I(G)
has homological linear quotients, if Gc is a forest. Indeed, any forest is the union of
pairwise disjoint trees, and any tree can be constructed by iteratively adding whiskers
to a previously constructed tree on a smaller vertex set.

In the last section, we consider polymatroidal ideals. An equigenerated mono-
mial ideal I is called polymatroidal if its minimal set of monomial generators G(I)
corresponds to the set of bases of a discrete polymatroid, see [89, Chapter 12]. Poly-
matroidal ideals are characterized by the fact that they have linear quotients with
respect to the lexicographic order induced by any ordering of the variables (Theorem
3.4.2). It is conjectured by Bandari, Bayati and Herzog that all homological shift
ideals of a polymatroidal ideal are polymatroidal (Conjecture 6.1.1). At present this
conjecture is widely open. On the other hand, Bayati proved that the conjecture
holds for any squarefree polymatroidal ideal [16]. Herzog, Moradi, Rahimbeigi and
Zhu proved that it holds for polymatroidal ideals that satisfy the strong exchange
property [101, Corollary 3.6]; in [60] it was proved that HS1(I) is again polymatroidal
if I is such, pointing towards the validity of the conjecture in general.

We settle Conjecture 6.1.1 for polymatroidal ideals generated in degree two (The-
orem 7.3.3). In the squarefree case, I may be seen as the edge ideal of a cochordal
graph and we apply our criterion on reversibility of perfect elimination orders. Un-
fortunately our methods are very special and they can not be applied for a general
polymatroidal ideal.
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7.1 Homological shifts of proper interval graphs

Let G be a �nite simple graph with vertex set V (G) = [n] and edge set E(G). LetK be
a �eld. The edge ideal of G is the squarefree monomial ideal I(G) of S = K[x1, . . . , xn]
generated by the monomials xixj such that {i, j} ∈ E(G).

By Theorem 3.3.6 I(G) has linear resolution if and only if it has linear quotients.
Thus, the theorems of Dirac and Fröberg classify all edge ideals with linear quotients.
It is known that if x1 > x2 > · · · > xn is a perfect elimination order of Gc, then
I(G) has linear quotients with respect to the lexicographic order >lex induced by
x1 > x2 > · · · > xn.

Now we turn to the homological shifts of edge ideals with linear quotients. Unfor-
tunately, in general an edge ideal with linear quotients does not even has homological
linear resolution as next example shows.

Example 7.1.1 Let G be the following cochordal graph on six vertices.

1

2 3

4

5 6

Let I = I(G) ⊂ S = K[x1, . . . , x6]. Using the package [59] we veri�ed that
HS0(I) and HS1(I) have linear quotients. However the last homological shift ideal
HS2(I) = (x1x2x3x4, x1x4x5x6) has the following non-linear resolution

0→ S(−6)→ S(−4)2 → (x1x2x3x4, x1x4x5x6)→ 0.

In graph theory, one distinguished class of chordal graphs is the family of proper
interval graphs. A graph G is called an interval graph, if one can label its vertices
with some intervals on the real line so that two vertices are adjacent in G, when the
intersection of their corresponding intervals is non-empty. A proper interval graph is
an interval graph such that no interval properly contains another.

Now we are ready to state our main result in the section.

Theorem 7.1.2 Let G be a cochordal graph on [n] whose complementary graph Gc is
a proper interval graph. Then, I(G) has homological linear quotients.

In order to prove the theorem we introduce a more general class of graphs.
We call a perfect elimination order x1 > x2 > · · · > xn of a chordal graph G

reversible if xn > xn−1 > · · · > x1 is also a perfect elimination order of G. We
call a chordal graph G reversible if G admits a reversible perfect elimination order.
Moreover, a cochordal graph G is called reversible if and only if Gc is reversible.

Lemma 7.1.3 Let G be a proper interval graph. Then G is reversible.

Proof. By [121, Theorem 1 and Lemma 1], up to a relabeling of the vertex set of G,
the following property is satis�ed:
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(∗) for all i < j, {i, j} ∈ E(G) implies that the induced subgraph of G on {i, i +
1 . . . , j} is a clique, i.e., a complete subgraph.

With such a labeling, both x1 > x2 > · · · > xn and xn > xn−1 > · · · > x1 are perfect
elimination orders of G. By symmetry, it is enough to show that x1 > x2 > · · · > xn
is a perfect elimination order. Let i ∈ [n], j, k ∈ NG(i) with j, k > i. We prove that
{j, k} ∈ E(G). Suppose j > k. By (∗), the induced subgraph of G on {i, i+ 1 . . . , j}
is a clique. Since j > k > i, we obtain that {j, k} ∈ E(G), as wanted. □

With this lemma at hand, Theorem 7.1.2 follows from the following more general
result.

Theorem 7.1.4 Let G be a cochordal graph on [n], and let x1 > · · · > xn be a
reversible perfect elimination order of Gc. Then, HSk(I(G)) has linear quotients with
respect to the lexicographic order >lex induced by x1 > · · · > xn, for all k ≥ 0.

For the proof of this theorem, we need a description of the homological shift ideals.

Lemma 7.1.5 Let G be a cochordal graph on [n], and let x1 > x2 > · · · > xn be a
perfect elimination order of Gc. Then, for all {i, j} ∈ E(G), with i < j,

set(xixj) = {1, . . . , i− 1} ∪ ({i+ 1, . . . , j − 1} ∩NG(i)). (7.1)

In particular,

HSk(I(G)) =
(
xAxB : A,B ⊆ [n], A,B ̸= ∅,max(A) < min(B), |A ∪B| = k + 2,

{max(A), b} ∈ E(G), for all b ∈ B
)
.

Proof. As remarked before I(G) has linear quotients with respect to the lexicographic
order >lex induced by x1 > x2 > · · · > xn. Let {i, j} ∈ E(G) with i < j. Let us deter-
mine set(xixj). If k ∈ set(xixj), then xk(xixj)/xℓ ∈ I(G) and xk(xixj)/xℓ >lex xixj
for some ℓ ∈ {i, j}. Note that k < j, indeed for k > j, both xixk, xjxk are smaller
than xixj in the lexicographic order. Thus either k < i or i < k < j. We distinguish
the two possible cases.

Case 1. Suppose k < i. Assume that none of xkxi, xkxj is in I(G). Then {k, i}, {k, j} ∈
E(Gc). Since x1 > x2 > · · · > xn is a perfect elimination order, the induced graph of
Gci on the vertex set NGc

k
(k) is complete. But i, j > k and i, j ∈ NGc

k
(k). Thus we

would have {i, j} ∈ E(Gc), that is, xixj /∈ I(G), absurd.
Case 2. Suppose i < k < j. Since k > i, xkxj <lex xixj . Thus k ∈ set(xixj) if and
only if xixk ∈ E(G), that is k ∈ NG(i).

The two cases above show that equation (7.1) holds. The formula for HSk(I(G)) fol-
lows immediately by applying equations (5.1) and (7.1). □

Proof of Theorem 7.1.4. We proceed by induction on n ≥ 1. Let G′ be the induced
subgraph of G on the vertex set {2, 3, . . . , n}. Then x2 > x3 > · · · > xn is again a
reversible perfect elimination order of (G′)c and G′ is a reversible cochordal graph.

Let J = (xi : x1xi ∈ I(G)). Then, I(G) = x1J+I(G
′) is a Betti splitting, because

G(I(G)) is the disjoint union of G(x1J) and G(I(G′)), and x1J , I(G
′) have linear

resolutions, see [74, Corollary 2.4]. Since I(G′)∩ x1J = x1I(G
′), [35, Proposition 1.7]

gives
HSk(I(G)) = x1(HSk−1(I(G

′)) +HSk(J)) +HSk(I(G
′)).
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We claim that HSk(I(G)) has linear quotients with respect to the lexicographic
order >lex induced by x1 > x2 > · · · > xn. For k = 0 this is true. Let k > 0.

Let u = xi1xj1xF1 , v = xi2xj2xF2 ∈ G(HSk(I(G))), with u >lex v, i1 < j1, i2 < j2,
xi1xj1 , xi2xj2 ∈ I(G), F1 ⊆ set(u), F2 ⊆ set(v). We are going to prove that there
exists w ∈ G(HSk(I(G))) such that w >lex v, w : v = xp and xp divides u : v.

We can write

u = xp1xp2 · · ·xpk+2
, v = xq1xq2 · · ·xqk+2

,

with p1 < p2 < · · · < pk+2, q1 < q2 < · · · < qk+2. Since u >lex v then p1 = q1,
p2 = q2, . . . , ps−1 = qs−1, ps < qs for some s ∈ {1, . . . , k + 2}. If s = k + 2, then
u : v = xpk+2

= xj1 and there is nothing to prove. Therefore, we may assume s < k+2.
Thus ps < qs < qk+2 = j2. Set p = ps and q = qs, then xp divides u : v.

Suppose for the moment that x1 divides v. Then by de�nition of >lex, p1 = q1 = 1
and x1 divides u, too. There are four cases to consider.

Case 1. Suppose i1 = i2 = 1. Setting u′ = u/x1 and v′ = v/x1, we have
u′, v′ ∈ G(HSk(J)) and u′ >lex v

′. Since J is an ideal generated by variables, it has
homological linear quotients with respect to >lex. Hence, there exists w

′ ∈ G(HSk(J))
with w′ >lex v

′ such that w′ : v′ = xℓ and xℓ divides u
′ : v′. Setting w = x1w

′, we have
that w >lex v and w ∈ G(x1HSk(J)) ⊆ G(HSk(I(G))). Hence w : v = w′ : v′ = xℓ
and xℓ divides u : v = u′ : v′.

Case 2. Suppose i1 > 1 and i2 > 1. Setting u′ = u/x1 and v′ = v/x1, we have
u′, v′ ∈ G(HSk−1(I(G

′))) and u′ >lex v
′. By inductive hypothesis, I(G′) has homolog-

ical linear quotients with respect to >′
lex induced by x2 > x3 > · · · > xn. Hence, there

exists w′ ∈ G(HSk−1(I(G
′))) with w′ >′

lex v
′ such that w′ : v′ = xℓ and xℓ divides

u′ : v′. Setting w = x1w
′, we have that w >lex v and w ∈ G(x1HSk−1(I(G

′))) ⊆
G(HSk(I(G))). Hence w : v = w′ : v′ = xℓ and xℓ divides u : v = u′ : v′.

Case 3. Suppose i1 > 1 and i2 = 1. Then 1 = i2 < p < j2.

Subcase 3.1. Assume x1xp ∈ I(G), then p ∈ set(xi2xj2). Setting w = xp(v/xq), by
equation (5.1) w ∈ G(HSk(I(G))), and w >lex v, because p < q. Moreover w : v = xp
and xp divides u : v.

Subcase 3.2. Assume that x1xp /∈ I(G). By hypothesis, xn > xn−1 > · · · > x1
is also a perfect elimination order of Gc. Thus, by Lemma 7.1.5, we can write
u = xAxB with A = {pk+2, pk+1, . . . , pr}, B = {pr−1, . . . , p2, p1} for some r > 1
and with {pr, pℓ} ∈ E(G) for all ℓ = r − 1, . . . , 2, 1. Since {1, p} = {p1, ps} /∈ E(G),
by the above presentation of u, s > r. Using again Lemma 7.1.5, but considering the
reversed perfect elimination order xn > xn−1 > · · · > x1, we see that

w = xqs+1xqs+2 · · ·xqk+2
u/(xps+1xps+2 · · ·xpk+2

)

= x(A\{ps+1,ps+2,...,pk+2})∪{qs+1,qs+2,...,qk+2}xB ∈ G(HSk(I(G))).

Moreover, w >lex v, w : v = xp and xp divides u : v, as desired.

Case 4. Suppose i1 = 1 and i2 > 1. Recall that p < j2. Moreover p ̸= i2, because xp
divides u : v but xi2 divides v. Thus there are two cases to consider.

Subcase 4.1. Assume p < i2. By Lemma 7.1.5, p ∈ set(xi2xj2). If q ̸= i2, then
q < j2 and by equation (5.1) w = xp(v/xq) is a minimal generator of HSk(I(G)).
Moreover w >lex v and w : v = xp divides u : v, as wanted. Suppose now that q = i2.
If there exists ℓ such that xℓ divides v and i2 < ℓ < j2, then ℓ > p and w = xp(v/xℓ)
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is a minimal generator of HSk(I(G)) such that w >lex v and with w : v = xp dividing
u : v, as wanted. Otherwise, suppose no such integer ℓ exists. Then, s = k + 1,
qk+1 = i2 and qk+2 = j2. Since p ∈ set(xi2xj2), then xpxℓ ∈ I(G), where ℓ ∈ {i2, j2}.
Then p < ℓ and by Lemma 7.1.5 we see that w = xp(v/xℓ) is a minimal generator of
HSk(I(G)) such that w >lex v and with w : v = xp dividing u : v.

Subcase 4.2. Assume now i2 < p < j2. If xi2xp ∈ I(G), by Lemma 7.1.5, p ∈
set(xi2xj2). Setting w = xp(v/xq), we have w ∈ G(HSk(I(G))), w >lex v and w : v =
xp divides u : v. Suppose now that xi2xp /∈ I(G). By hypothesis, xn > xn−1 > · · · >
x1 is also a perfect elimination order of Gc. Thus, by Lemma 7.1.5, we can write
u = xAxB with A = {pk+2, pk+1, . . . , pr}, B = {pr−1, . . . , p2, p1} for some r > 1 and
with {pr, pℓ} ∈ E(G) for all ℓ = r−1, . . . , 2, 1. Note that i2 < p, so xi2 divides u. Since
{i2, p} = {i2, ps} /∈ E(G), by the above presentation of u, s > r. Using again Lemma
7.1.5, but considering the reversed perfect elimination order xn > xn−1 > · · · > x1,
we see that

w = xqs+1xqs+2 · · ·xqk+2
u/(xps+1xps+2 · · ·xpk+2

)

= xAx(B\{ps+1,ps+2,...,pk+2})∪{qs+1,qs+2,...,qk+2} ∈ G(HSk(I(G))).

Moreover, w >lex v, w : v = xp and xp divides u : v, as desired.

Suppose now that x1 does not divide v. Then v ∈ G(HSk(I(G′))). If x1 does not
divide u, then u ∈ G(HSk(I(G′))), too. Let >′

lex be the lexicographic order induced
by x2 > x3 > · · · > xn. Since by induction I(G′) has homological linear quotients
with respect to >′

lex and also u >′
lex v, there exists w ∈ G(HSk(I(G′))), with w >′

lex v,
w : v = xℓ and xℓ divides u : v. But also we have w ∈ G(HSk(I(G))) and w >lex v.
Otherwise if x1 divides u, then x1 divides u : v. Since HSk(I(G

′)) ⊆ HSk−1(I(G
′))

and k > 0, we can write v = xtw
′ with w′ ∈ G(HSk−1(I(G

′))). Let w = x1w
′. Then

w >lex v and w : v = x1 divides u : v.

Hence, the inductive proof is complete and the theorem is proved. □

Remark 7.1.6 Let x1 > x2 > · · · > xn be a reversible perfect elimination order of
Gc. By symmetry, Theorem 7.1.4 shows also that HSk(I(G)) has linear quotients with
respect to the lexicographic order induced by xn > xn−1 > · · · > x1.

Example 7.1.7 Let n,m be two positive integers.

(a) Let G = Kn,m be the complete bipartite graph. That is, V (G) = [n +m] and
E(G) =

{
{i, j} : i ∈ [n], j ∈ {n + 1, . . . , n +m}

}
. For example, for n = 3 and

m = 4

1

2

3

4

5

6

7

It is easy to see that Gc is the disjoint union of two complete graphs Γ1 and Γ2 on
vertex sets [n] and {n+1, . . . , n+m} respectively. Furthermore, any ordering of
the vertices is a perfect elimination order of Gc. Applying the previous theorem,

I(G) = (x1, . . . , xn)(xn+1, . . . , xm)
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has homological linear quotients with respect to the lexicographic order induced
by any ordering of the variables.

(b) Let G be the graph with vertex set V (G) = [n+m] and edge set

E(G) =
{
{i, j} : i ∈ [n+m], n+ 1 ≤ j ≤ n+m, i < j

}
.

We claim that G is a reversible cochordal graph. Indeed Gc is the disjoint union
of the complete graph Kn on the vertex set [n] together with the set of isolated
vertices {n+ 1, . . . , n+m}. It easily seen that any ordering of the vertices is a
perfect elimination order of Gc. Applying Theorem 7.1.4

I(G) = (x1, . . . , xn)(xn+1, . . . , xm) + (xixj : n+ 1 ≤ i < j ≤ n+m)

has homological linear quotients with respect to the lexicographic order induced
by any ordering of the variables.

7.2 Homological shifts of trees

In this section we construct several classes of edge ideals with homological linear
quotients, by considering various operations on cochordal graphs that preserve the
homological linear quotients property. As a main application of all these results we
will prove the following theorem.

Theorem 7.2.1 Let G be a graph such that Gc is a forest. Then I(G) has homological
linear quotients.

For the next proof we recall that the squarefree Veronese ideal In,d has homological
linear quotients, (see for instance [101, Corollary 3.2]).

The �rst operation we consider consists in adding whiskers. Let Γ′ be a graph on
vertex set [n− 1]. Let i ∈ [n− 1] and let Γ be the graph with vertex set [n] and edge
set V (Γ) = V (Γ′) ∪ {{i, n}}. Γ is called the whisker graph of Γ′ obtained by adding
the whisker {i, n} to Γ′.

Proposition 7.2.2 Let Γ′ be a graph on vertex set [n − 1] and Γ be the graph on
vertex set [n] and edge set V (Γ) = V (Γ′) ∪ {{i, n}} for some i ∈ [n− 1]. Set G = Γc.
Suppose I((Γ′)c) has homological linear quotients. Then I(G) has homological linear
quotients, too.

Proof. Since Γ′ is chordal, obviously Γ is chordal, too. Set J = I((Γ′)c), I = I(G)
and L = (xj : j ∈ [n− 1] \ {i}). Since NGc(n) = {i}, we have the Betti splitting:

I = xnL+ J. (7.2)

Since G is cochordal, HS0(I) and HS1(I) have linear quotients. So we only have to
show that HSk(I) has linear quotients for k ≥ 2. By equation (7.2), for all k ≥ 2,

HSk(I) = xnHSk(L) + xnHSk−1(J) +HSk(J).

Note that HSk(L) is the squarefree Veronese ideal of degree k + 1 in the polynomial
ring K[xj : j ∈ [n− 1] \ {i}]. Thus HSk(L) has admissible order, say, u1, . . . , um. Let
v1, . . . , vr and w1, . . . , ws be admissible orders of HSk−1(J) and HSk(J), respectively.
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Let vj1 , . . . , vjp , with j1 < · · · < jp, the monomials in G(HSk−1(J)) \G(HSk(L)). We
claim that the following is an admissible order of HSk(J):

xnu1, . . . , xnum, xnvj1 , . . . , xnvjp , w1, . . . , ws (7.3)

Note that (xnu1, . . . , xnuℓ−1) : xnuℓ = (u1, . . . , uℓ−1) : uℓ is generated by variables.
Let ℓ ∈ [p]. We show that

Q = (xnu1, . . . , xnum, xnvj1 , . . . , xnvjℓ−1
) : xnvjℓ

= (u1, . . . , um, vj1 , . . . , vjℓ−1
) : vjℓ

is generated by variables. Consider vjq : vjℓ , then we can �nd d < jℓ such that vd : vjℓ
is a variable that divides vjq : vjℓ . Either d = jb, for some b < ℓ, or vd ∈ HSk(L). In
any case, vd ∈ (u1, . . . , um, vj1 , . . . , vjℓ−1

) and vd : vjℓ ∈ Q divides vjq : vjℓ .
Consider now uq : vjℓ , 1 ≤ q ≤ m. Hence xi divides vjℓ , lest vjℓ ∈ G(HSk(L)). But
then vjℓ/xi ∈ HSk−1(L). Let xt dividing uq : vjℓ . Then u = xtvjℓ/xi ∈ HSk(L) and
u : vjℓ = xt ∈ Q divides uq : vjℓ .

Finally, let ℓ ∈ [s]. We show that

Q = (xnu1, . . . , xnum, xnvj1 , . . . , xnvjp , w1, . . . , wℓ−1) : wℓ

= (xnHSk(L) + xnHSk−1(J)) : wℓ + (w1, . . . , wℓ−1) : wℓ

is generated by variables. Since w1, . . . , ws is an admissible order, (w1, . . . , wℓ−1) : wℓ
is generated by variables. Consider now a generator xnz : wℓ with z ∈ HSk(L) or
z ∈ HSk−1(J). Then xn divides xnz : wℓ. On the other hand wℓ/xt ∈ HSk−1(J) for
some t. But then xnwℓ/xt : wℓ = xn ∈ Q divides our generator.

The three cases above show that (7.3) is an admissible order, as desired. □

Since any tree can be constructed iteratively by adding a whisker to a tree on a
smaller vertex set at each step, the previous proposition implies immediately

Corollary 7.2.3 Let G be a graph such that Gc is a tree. Then I(G) has homological
linear quotients.

The second operation we consider consists in joining disjoint graphs. Two graphs
Γ1 and Γ2 are called disjoint if V (Γ1) ∩ V (Γ2) = ∅. The join of Γ1 and Γ2 is the
graph Γ with vertex set V (Γ) = V (Γ1) ∪ V (Γ2) and edge set E(Γ) = E(Γ1) ∪ E(Γ2).

Proposition 7.2.4 Let Γ1 and Γ2 be disjoint chordal graphs such that I(Γc1), I(Γ
c
2)

have homological linear quotients. Let Γ be the join of Γ1 and Γ2 and set G = Γc.
Then I(G) has homological linear quotients, too.

Proof. Obviously Γ is chordal, too. Let G1 = Γc1, G2 = Γc2, V (G1) = [n] and
V (G2) = [n+ 1, n+m]. Set L = (x1, . . . , xn)(xn+1, . . . , xm). Then,

I(G) = I(G1) + I(G2) + L

Suppose x1 > · · · > xn and xn+1 > · · · > xn+m are perfect elimination orders of Γ1

and Γ2. Then G = Γc is cochordal. Indeed, x1 > · · · > xn > xn+1 > · · · > xn+m is a
perfect elimination order of Γ. Let >lex be the lexicographic order induced by such an
ordering of the variables. Set, I = I(G), I1 = I(G1) and I2 = I(G2). Then, I, I1, I2
and J have linear quotients with respect to >lex.

Let k ≥ 0 and u ∈ G(HSk(I)) such that xixj divides u for some integers i ∈ [n],
n+1≤j ≤n+m. We claim that u ∈ G(HSk(L)). Let i0 = max{i ∈ [n] : xi divides u}
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and j0 = max{j ∈ [n + 1, n + m] : xj divides u}. Let u/(xi0xj0) = xF . Then
F ⊆ [i0 − 1] ∪ [n + 1, j0 − 1] = setI(xi0xj0) and xi0xj0 ∈ L. Thus, by equation
(5.1), u = xi0xj0xF ∈ HSk(L), as desired. This argument shows that any squarefree
monomial w ∈ K[x1, . . . , xn+m] of degree k + 2, containing as a factor any monomial
xixj with i ∈ [n] and n+ 1 ≤ j ≤ n+m, is a generator of HSk(L).

From this remark, for all k ≥ 0, it follows that

HSk(I) = HSk(L) +HSk(I1) +HSk(I2).

Note that L is the edge ideal of a complete bipartite graph. By Examples 7.1.7(a),
L has homological linear quotients. Let u1, . . . , um be an admissible order of HSk(L).
Moreover, let v1, . . . , vr and w1, . . . , ws be admissible orders of HSk(I1) and HSk(I2),
respectively. Note that the monomials ui, vj , wt are all di�erent, because all monomials
ui contain a factor xi0xj0 with i0 ∈ [n] and j0 ∈ [n + 1, n +m]. Whereas, the vj are
monomials in K[x1, . . . , xn] and the wt are monomials in K[xn+1, . . . , xn+m].

We claim that the following is an admissible order of HSk(I):

u1, . . . , um, v1, . . . , vr, w1, . . . , ws (7.4)

Let ℓ ∈ [m]. Then (u1, . . . , uℓ−1) : uℓ is generated by variables.
Let ℓ ∈ [r]. We show that

Q = (u1, . . . , um, v1, . . . , vℓ−1) : vℓ

is generated by variables. Clearly (v1, . . . , vℓ−1) : vℓ is generated by variables. Con-
sider now uq : vℓ, 1 ≤ q ≤ m. Recall that vℓ is a monomial in K[x1, . . . , xn]. Thus
xj divides uq : vℓ for some j ∈ {n + 1, . . . , n +m}. Consider vℓ/xt for some t. Then
u = xj(vℓ/xt) ∈ HSk(L) and u : vℓ = xj ∈ Q, as desired.

Finally, let ℓ ∈ [s]. We show that Q = (u1, . . . , um, v1, . . . , vr, w1, . . . , wℓ−1) : wℓ is
generated by variables.

Since w1, . . . , ws is an admissible order, (w1, . . . , wℓ−1) : wℓ is generated by vari-
ables. Consider now a generator z : wℓ with z = uq or z = vq, for some q. Since wℓ
is a monomial in K[xn+1, . . . , xn+m], z : wℓ is divided by a variable xi, where i ∈ [n].
Consider wℓ/xt for some t. Then u = xi(wℓ/xt) ∈ HSk(L) and u : wℓ = xi ∈ Q, as
desired.

The three cases above show that (7.4) is an admissible order, as desired. □

Proof of Theorem 7.2.1. Let Γ = Gc be a forest and let c be the number of connected
components of Γ. If c = 1, then Γ is a tree, and by Corollary 7.2.3, I(G) has homo-
logical linear quotients. Suppose c > 1 and write Γ = Γ1 ∪ Γ2, where Γ1 and Γ2 are
disjoint forests. The numbers of connected components of Γ1 and Γ2 are smaller than
c. Thus, by induction I(Γc1) and I(Γ

c
2) have homological linear quotients. Applying

Proposition 7.2.4, it follows that I(G) has homological linear quotients, too. □

Let G be a complete multipartite graph, then Gc is the disjoint union of some
complete graphs. Repeated applications of Proposition 7.2.4 yield

Corollary 7.2.5 Let G be a complete multipartite graph. Then I(G) has homological
linear quotients.
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7.3 Polymatroidal ideals generated in degree two

As we said before, it is expected by Bandari, Bayati and Herzog that the homological
shift ideals HSk(I) of a polymatroidal ideal I are all polymatroidal, see [16, 101]. In
this section, we provide an a�rmative answer to this conjecture for all polymatroidal
ideals generated in degree two.

Firstly, we deal with the squarefree case.

Lemma 7.3.1 Let I ⊂ S be a matroidal ideal generated in degree two, and let G be
the simple graph on [n] such that I = I(G). Then, any ordering of the variables is a
perfect elimination order of Gc.

Proof. Up to relabeling, we can consider the ordering x1 > x2 > · · · > xn. Let
j, k ∈ NGc(i) with j, k > i. We must prove that {j, k} ∈ E(Gc). By our assumption,
{i, j}, {i, k} /∈ E(G), that is xixj , xixk /∈ I(G) = I. Suppose by contradiction that
{j, k} /∈ E(Gc), then {j, k} ∈ E(G), that is, xjxk ∈ I(G). Pick any monomial
xixs ∈ I(G). Then degxi(xixs) > degxi(xjxk). By Lemma 3.4.1, we can �nd ℓ with
degxℓ(xixs) < degxℓ(xjxk) and xi(xjxk)/xℓ ∈ I(G). Thus, either xixj ∈ I(G) or
xixk ∈ I(G). This is a contradiction. Hence {j, k} ∈ E(Gc), as desired. □

Corollary 7.3.2 Let I ⊂ S be a matroidal ideal generated in degree two. Then HSk(I)
is a matroidal ideal, for all k ≥ 0.

Proof. Let G be the simple graph on [n] such that I = I(G). By Lemma 7.3.1 and
Theorem 3.3.5, Gc is a reversible chordal graph and any ordering of the variables is
a reversible perfect elimination order of Gc. By Theorem 7.1.4, for all k ≥ 0, HSk(I)
has linear quotients with respect to the lexicographic order induced by any ordering
of the variables. Thus, by Theorem 3.4.2, HSk(I) is matroidal, for all k ≥ 0. □

Now, we turn to the non squarefree case.

Theorem 7.3.3 Let I ⊂ S be a polymatroidal ideal generated in degree two. Then,
HSk(I) is polymatroidal, for all k ≥ 0.

Proof. If I is squarefree, the thesis follows from Corollary 7.3.2. Suppose I is not
squarefree. Up to a suitable relabeling, we can write I = (J, x21, x

2
2, . . . , x

2
t ), where J

is the squarefree part of I, i.e., G(J) = {u ∈ G(I) : u is squarefree} and 1 ≤ t ≤ n.
Then J is a matroidal ideal. Let G be the simple graph on [n] with J = I(G), then
Gc is cochordal. Let u1, . . . , um be an admissible order of J . We claim that

u1, . . . , um, x
2
1, x

2
2, . . . , x

2
t

is an admissible order of I. We only need to prove that

Q = (u1, . . . , um, x
2
1, . . . , x

2
ℓ−1) : x

2
ℓ = (J, x21, . . . , x

2
ℓ−1) : x

2
ℓ

is generated by variables. Indeed, let xixj : x
2
ℓ ∈ Q be a generator with i ≤ j. If xixj :

x2ℓ is a variable, there is nothing to prove. Otherwise xixj : x
2
ℓ = xixj , and ℓ ̸= i, j.

Since degxℓ(x
2
ℓ ) > degxℓ(xixj), by the exchange property, w = xk(x

2
ℓ )/xℓ = xkxℓ ∈ I,

with k = i or k = j. Then k ̸= ℓ, w = xkxℓ ∈ J and w : x2ℓ = xk ∈ Q is a variable
that divides xixj : x

2
ℓ , as desired.

We claim that set(x2ℓ ) = [n] \ {ℓ}, for all ℓ = 1, . . . , t. Let i ∈ [n] \ {ℓ}. Then
xixj ∈ G(I) for some j. If j = ℓ, then xixℓ ∈ I. Suppose j ̸= ℓ, then degxj (xixj) >

degxj (x
2
ℓ ). By the exchange property, xixℓ ∈ I, as desired.
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By equation (5.1), for all k > 0,

HSk(I) = HSk(J) +
t∑

ℓ=1

x2ℓ ·HSk−1((xi : i ∈ [n] \ {ℓ})).

We set Jℓ = (xi : i ∈ [n] \ {ℓ}), ℓ = 1, . . . , t. Since J is matroidal, HSk(J) is
matroidal by Corollary 7.3.2. Moreover, each ideal Jℓ is generated by variables, and
so it is matroidal. Hence all ideals x2ℓ ·HSk−1(Jℓ) are polymatroidal.

To verify that HSk(I) is polymatroidal, we check the exchange property. Let
u, v ∈ G(HSk(I)) and i such that degxi(u) > degxi(v).

To achieve our goal, we note the following fact. Let w ∈ S be any squarefree
monomial of degree k+1 and let ℓ ∈ [t]. Then xℓw ∈ HSk(I). Indeed, if xℓ divides w,
then xℓw ∈ x2ℓ ·HSk−1(Jℓ) ⊂ HSk(I). Suppose xℓ does not divide w. For all i such that
xi divides w, xixℓ ∈ J because i ̸= ℓ. Fix a lexicographic order ≻ such that xℓ > xi
for all i ∈ [n] \ {ℓ}. Up to relabeling, we can assume ℓ = 1 and that ≻ is induced by
x1 > x2 > · · · > xn. Writing xℓw = xℓxj2 · · ·xjk+2

with ℓ = 1 < j2 < · · · < jk+2 ≤ n,
then xℓxjk+2

∈ J , xℓxji ∈ J and xℓxji ≻ xℓxjk+2
, for i = 2, . . . , k + 1. Hence

{j2, . . . , jk+1} ⊆ {j | xj ∈ (u ∈ G(J) : u ≻ xℓxjk+2
) : xℓxjk+2

}.

This shows that xℓw ∈ HSk(J) ⊂ HSk(I), because by Theorem 3.4.2, J has linear
quotients with respect to ≻.

If u, v ∈ HSk(J) or u, v ∈ x2ℓ · HSk−1(Jℓ), we can �nd j with degxj (u) < degxj (v)

such that xj(u/xi) ∈ HSk(I), because both HSk(J), x
2
ℓ ·HSk−1(Jℓ) are polymatroidal.

Suppose now u ∈ HSk(J) and v ∈ x2ℓ · HSk−1(Jℓ). Then degxℓ(u) < degxℓ(v) and
xℓ(u/xi) ∈ HSk(I), because u/xi is a squarefree monomial of degree k + 1.

Suppose u ∈ x2ℓ ·HSk−1(Jℓ) and v ∈ HSk(J). Let j such that degxj (u) < degxj (v).
Then degxj (u) = 0. If i = ℓ, then xj(u/xℓ) ∈ HSk(I) because it is the product of
xℓ times a squarefree monomial of degree k + 1. If i ̸= ℓ, then xj(u/xi) can also be
written as such a product. In any case xj(u/xi) ∈ HSk(I).

Finally, suppose u ∈ xℓ · HSk−1(Jℓ) and v ∈ x2h · HSk−1(Jh) with ℓ ̸= h. Suppose
i = ℓ and let j such that degxj (u) < degxj (v). Then u′ = xj(u/xi) is either xℓ
times a squarefree monomial of degree k + 1, or is equal to xh times a squarefree
monomial of degree k + 1. In both cases, u′ ∈ HSk(I). Suppose now i ̸= ℓ. If
there exist more than one j with degxj (u) < degxj (v), we can choose j ̸= h. Then
degxj (v) = 1 and so xj does not divide u. Consequently xj(u/xi) is equal to xℓ times
a squarefree monomial of degree k + 1, and so xj(u/xi) ∈ HSk(I). If there is only
one j such that degxj (u) < degxj (v), then j = h. We claim that xh does not divide
u, then xh(u/xi) is equal to xℓ times a squarefree monomial of degree k + 1, and
so xh(u/xi) ∈ HSk(I), as wanted. Writing v = x2hxj1 · · ·xjk , with jp ∈ [n] \ {h},
p = 1, . . . , k, then degxjp (v) = 1 ≤ degxjp (u), for all p = 1, . . . , k. Then xj1 · · ·xjk
divides u/(xixℓ) because degxℓ(u) > 1 ≥ degxℓ(v) and degxi(u) = 1 > degxi(v). This
implies that u = xixℓ · xj1 · · ·xjk . From this presentation it follows that xh does not
divide u, because i, ℓ ̸= h and jp ̸= h for p = 1, . . . , k, as well.

The cases above show that the exchange property holds for all monomials of
G(HSk(I)). Hence HSk(I) is polymatroidal and the proof is complete. □
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Chapter 8

Homological shifts of very

well�covered graphs

Since the foundations of Algebraic Graph Theory, one of the fundamental problem has
been to classify all Cohen�Macaulay graphs, that is all Cohen�Macaulay edge ideals
[149]. This is an hopeless task. However, the dual problem, namely to classify all
Cohen�Macaulay cover ideals of a graph, is completely solved. Indeed the cover ideal
J(G) of a graph G is the Alexander dual of the edge ideal of G, i.e., J(G) = I(G)∨,
and the fundamental Eagon�Reiner Criterion says that I(G)∨ is Cohen�Macaulay if
and only if I(G) has a linear resolution [46]. All graphs G such that I(G) has a linear
resolution have been characterized by Ralph Fröberg in [75]. Furthermore, Herzog,
Hibi and Zheng showed that for any graph G such that I(G) has a linear resolution,
then I(G) has linear powers, i.e., for all k ≥ 1, I(G)k has a linear resolution [94].

Inspired by the problems above, in this chapter we consider the dual problem of
classifying the graphs G for which J(G) has a homological linear resolution and those
with homological linear quotients. Of course, �rst one needs to know all graphs G
such that J(G) has a linear resolution. One can observe that for J(G) to have a linear
resolution, it is necessary that it is equigenerated, which is equivalent to requiring
that G is unmixed in the sense that all the minimal vertex covers of G have the same
cardinality. On the other hand, if G is unmixed and without isolated vertices, then
2 height(I(G)) ≥ |V (G)| [76]. Therefore, to study the question above it is natural to
restrict ourself to the �best possible class� of graphs: all unmixed graphs G without
isolated vertices and such that 2 height(I(G)) = |V (G)|. In such a case, G is called
a very well�covered graph. Such a class of graphs has been studied by many authors
(see, for instance, [40, 58, 115, 116, 117, 119, 124]).

In Section 8.2, we investigate Betti splittings of the cover ideals of Cohen�Macaulay
very well�covered graphs (Proposition 8.2.3). The Betti splitting technique introduced
in [74] by Francisco, Ha and Van Tuyl is a very useful tool throughout.

In Section 8.3, if G is a Cohen�Macaulay very well�covered graph, we use the Betti
splitting, discussed in Section 8.2, to construct explicitly a minimal free resolution
of J(G). A minimal free resolution of J(G) has also been constructed in [115] by
di�erent tools. The main advantage of the Betti splitting technique is that one does
not need to verify if the de�ned complex is exact or minimal, but only to determine
the suitable comparison maps [74, Proposition 2.1]. The features of our resolution
are required in Section 8.4 to achieve our main goal. In the last part of Section
8.3, we draw some consequences of Theorem 8.3.5. Firstly, we get a formula for the
Betti numbers of J(G) which is independent on the characteristic of the base �eld
K (Corollary 8.3.6). Then, some formulas for the projective dimension of the cover
ideal of a Cohen�Macaulay very well�covered graph G are determined. In particular,
in Corollary 8.3.7, we recover a result due to Mahmoudi et all [124, Lemma 3.4] and,
furthermore, we provide a new proof of it by Betti splitting (Remark 8.3.8). Finally,
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we show that J(G) has the alternating sum property [150, De�nition 4.1] and also we
determine a formula for the multiplicity of S/J(G) (Proposition 8.3.10).

Section 8.4 contains our main result which states that the cover ideal of a Cohen�
Macaulay very well�covered graph has homological linear quotients (Theorem 8.4.1).
Then, we infer that a very well�covered graph G is Cohen�Macaulay if and only if
J(G) has homological linear resolution which is equivalent to J(G) having homological
linear quotients (Theorem 8.4.2). An interesting consequence about the cover ideal of
the whisker graph G∗ of a graph G is drawn in Corollary 8.4.3.

Our experiments and the results obtained have lead us to conjecture that given a
Cohen�Macaulay very well�covered graph G, all the powers of J(G) have homological
linear quotients (Conjecture 8.4.4). At present we are able to prove our conjecture
only for the subclass of Cohen�Macaulay bipartite graphs. For this goal, we carefully
study the powers of the Hibi ideals. In 1987, Hibi introduced a fundamental class of
ideals associated to a �nite poset [103]. More precisely, let (P,⪰) be a �nite poset, a
poset ideal I of P is a subset of P such that for any α ∈ I and any β ∈ P with β ⪯ α,
then β ∈ I. If J (P ) is the set of all poset ideals of P , ordered by inclusion, then
J (P ) is a distributive lattice. Indeed, Birkho�'s fundamental theorem [143, Theorem
3.4.1] shows that any distributive lattice arises in such a way. To any I ∈ J (P ) one
can associate the squarefree monomial uI = (

∏
p∈I xp)(

∏
p∈P\I yp) in the polynomial

ring K[{xp, yp}p∈P ]. Then the Hibi ideal HP associated to (P,⪰) is the squarefree
monomial ideal generated by all uI , I ∈ J (P ). The importance of such a class lies
in the fact that the class of Hibi ideals coincides with the class of the cover ideals
of Cohen�Macaulay bipartite graphs [88] (see, also, [89, Lemma 9.1.9 and Theorem
9.1.13]). Therefore, one can focus on the homological shifts of powers of Hibi ideals.
In Construction 8.4.6, we associate to any poset (P,⪰) and any integer ℓ ≥ 1 a new
poset (P (ℓ),⪰ℓ) and then we show that the ℓth power of HP is equal to HP (ℓ) up to
polarization (Theorem 8.4.9).

Finally, observing that polarization commutes with homological shifts (Lemma
8.4.10) and preserves also the linear quotients property (Lemma 3.1.2), we state that
all the powers of an Hibi ideal have homological linear quotients (Corollary 8.4.11).

All the examples in this chapter have been veri�ed using Macaulay2 [82] and the
package HomologicalShiftIdeals [59].

8.1 A glimpse to very well�covered graphs.

In this section, we analyze the class of very well�covered graphs (see, for instance, [116]
and the references therein). Let G be an unmixed graph without isolated vertices and
let I(G) be its edge ideal in S. Gitler and Valencia [76, Corollary 3.4] showed that

2 height(I(G)) ≥ |V (G)|.

De�nition 8.1.1 A graph G is called very well�covered if it is unmixed without
isolated vertices and with 2 height(I(G)) = |V (G)|.

Hereafter, with abuse of notation and to simplify the notation, we denote a vertex
i ∈ V (G) by xi, and an edge {i, j} ∈ E(G) by xixj .

By [58, Theorem 1.2], very well�covered graphs have always perfect matchings.
Hence, for a very well�covered graph G with 2n vertices, we may assume

(∗) V (G) = X∪Y , X∩Y = ∅, withX = {x1, . . . , xn} a minimal vertex cover of G and
Y = {y1, . . . , yn} a maximal independent set of G such that {x1y1, . . . , xnyn} ⊆ E(G).
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It is important to point out that when we assume the condition (∗) for a very
well�covered graph, we do not force any restriction on the graph. Indeed, it is only a
relabeling of the vertices.

For the remainder of this chapter, we set S = K[x1, . . . , xn, y1, . . . , yn] with K a
�eld. For a positive integer n, we denote the set {1, 2, . . . , n} by [n].

Theorem 8.1.2 (Crupi�Rinaldo�Terai, 2011 [40, Theorem 3.6]). Let G be a graph
with 2n vertices, which are not isolated, with height(I(G)) = n. We assume condition
(∗) and also we assume that if xiyj ∈ E(G) then i ≤ j. Then, the following conditions
are equivalent:

(a) G is a Cohen�Macaulay very well�covered graph.

(b) The following conditions hold:

(i) if xiyj ∈ E(G) then xixj /∈ E(G),

(ii) if zixj , yjxk ∈ E(G) then zixk ∈ E(G) for any distinct i, j, k and zi ∈
{xi, yi}.

For our convenience, we reformulate Theorem 8.1.2, as follows.

Characterization 8.1.3 ([40], [124, Lemma 3.1]). Let G be a very well�covered graph
with 2n vertices. Then, the following conditions are equivalent.

(a) G is Cohen�Macaulay.

(b) There exists a relabeling of V (G) = {x1, . . . , xn, y1, . . . , yn} such that

(i) X = {x1, . . . , xn} is a minimal vertex cover of G and Y = {y1, . . . , yn} is
a maximal independent set of G,

(ii) xiyi ∈ E(G) for all i ∈ [n],

(iii) if xiyj ∈ E(G) then i ≤ j,
(iv) if xiyj ∈ E(G) then xixj /∈ E(G),

(v) if zixj , yjxk ∈ E(G) then zixk ∈ E(G) for any distinct i, j, k and zi ∈
{xi, yi}.

The next example illustrates the previous characterization.

Example 8.1.4 The following graph G is an example of a Cohen�Macaulay very
well�covered graph with 8 vertices.
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Indeed, for S = K[x1, x2, x3, x4, y1, y2, y3, y4], dimS/I(G) = 4 = depthS/I(G)
and moreover, its minimal vertex covers are: {x1, x2, x3, x4}, {x1, y2, x3, x4}, {y1, x2, x3, x4},
{x1, x2, x3, y4}, {x1, x2, y3, y4}.
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The next graphG is an example of a not Cohen�Macaulay very well�covered graph.
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Indeed, G is very well�covered. Its minimal vertex covers are the sets {x1, x2, x3, x4},
{x1, y2, x3, x4}, {y1, x2, x3, x4}, {x1, x2, y3, y4}. But G is not Cohen�Macaulay. Note
that dimS/I(G) = 4 ̸= depthS/I(G) = 3, with S = K[x1, x2, x3, x4, y1, y2, y3, y4].

8.2 Betti splittings of cover ideals of very well�covered

graphs

In this section we analyze the Betti splittings of the cover ideals of the class of Cohen�
Macaulay very well�covered graphs.

Our �rst result shows that if we remove some pairs of vertices of a Cohen�Macaulay
very well�covered graph in a suitable way, then we obtain �smaller graphs� which are
again Cohen�Macaulay very well�covered graphs.

Proposition 8.2.1 Let G be a Cohen�Macaulay very well�covered graph with 2n ver-
tices and assume the condition (∗). Then G \ {xi, yi : i ∈ A} is a Cohen�Macaulay
very well�covered graph, for any subset A ⊆ [n].

Proof. Firstly, note that since G is a Cohen�Macaulay very well�covered graph with
2n vertices and condition (∗) holds, then height(I(G)) = n. Moreover, from [40,
Lemma 3.5], we may assume that if xiyj ∈ E(G) then i ≤ j.

If A = ∅, there is nothing to prove. Now, let A ̸= ∅ and set A = {i1, i2, . . . , it}.
We show that

G0 = G \ {xi, yi : i ∈ A} = G \ {xi1 , yi1 , xi2 , yi2 , . . . , xit , yit}

is a Cohen�Macaulay very well�covered graph. Note that G0 has 2(n−t) vertices that
are not isolated. Moreover, G0 satis�es condition (∗) for X0 = X \ {xi1 , . . . , xit} and
Y0 = Y \{yi1 , . . . , yit}, and I(G0) has height n−t, sinceX0 is a minimal vertex cover of
G0. It is clear that G0 satis�es the conditions (i)�(ii) of Theorem 8.1.2(b), because G
satis�es such conditions. By Theorem 8.1.2, we get that G0 is also a Cohen�Macaulay
very well�covered graph. □

Let F ⊆ [n] be a non empty set, we set xF =
∏
i∈F xi, yF =

∏
i∈F yi. Otherwise,

we set x∅ = y∅ = 1. For a monomial u ∈ S = K[x1, . . . , xn, y1, . . . , yn], we de�ne
support of u the set

supp(u) = {xi : xi divides u} ∪ {yj : yj divides u}.

From now, when we tell about a Cohen�Macaulay very well�covered graph G with
2n vertices, we tacitly assume that there exists a relabeling of the set of vertices
V (G) = {x1, . . . , xn, y1, . . . , yn} which satisfy the conditions (i)�(v) of Characteriza-
tion 8.1.3.
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Lemma 8.2.2 Let G be a Cohen�Macaulay very well�covered graph with 2n vertices.
For each u ∈ G(J(G)) there exists a unique subset F of [n] such that u = xFy[n]\F .

Proof. Let u ∈ G(J(G)). By de�nition, u is a squarefree monomial whose support
C = supp(u) is a minimal vertex cover of G. Since G is very well�covered, u has
degree |V (G)|/2 = n. By Characterization 8.1.3(b)(ii), xnyn ∈ E(G). Hence zn ∈ C
with zn ∈ {yn, xn}. Note that C1 = C \ {zn} is a vertex cover of G1 = G \ {yn, xn}.
By Proposition 8.2.1, G1 is again Cohen�Macaulay very well�covered. Since |C1| =
|C| − 1 = |V (G)|/2− 1 = |V (G1)|/2, then C1 is a minimal vertex cover of G1. Thus
the monomial u1 whose support is C1 is a minimal generator of J(G1). By induction,
u1 = xF1y[n−1]\F1

for a unique subset F1 of [n − 1]. If zn = xn, let F = F1 ∪ {n}.
Otherwise, if zn = yn, let F = F1. In both cases, u = znu1 = xFy[n]\F . □

If G is a Cohen�Macaulay very well�covered graph with 2n vertices, then

N [xn] = {xi1 , xi2 , . . . , xit , xn, yn}, with ir < n, r ∈ [t],

N [yn] = {xj1 , xj2 , . . . , xjp , xn, yn}, with jq < n, q ∈ [p].

Moreover, from Characterization 8.1.3, ir ̸= jq, for all r ∈ [t] and q ∈ [p]. We will
consider again such sets in the next section (see, Setup 8.3.1 and Lemma 8.3.2).

Proposition 8.2.3 Let G be a Cohen�Macaulay very well�covered graph with 2n ver-
tices. Let N [xn] = {xi1 , xi2 , . . . , xit , xn, yn}, N [yn] = {xj1 , xj2 , . . . , xjp , xn, yn} and

G1 = G \ {xi1 , yi1 , xi2 , yi2 , . . . , xit , yit , xn, yn},
G2 = G \ {xj1 , yj1 ,xj2 ,yj2 , . . . , xjp , yjp , xn, yn}.

Then
J(G) = xi1xi2 · · ·xit · ynJ(G1) + xj1xj2 · · ·xjp · xnJ(G2)

is a Betti splitting.

Proof. Let J1 = xi1xi2 · · ·xit ·ynJ(G1) and J2 = xj1xj2 · · ·xjt ·xnJ(G2). Note that yn
does not divide any minimal monomial generator of J2. Thus G(J1)∩G(J2) = ∅. We
claim that J1 and J2 have n�linear resolutions. Indeed, by Proposition 8.2.1, G1 and
G2 are again Cohen�Macaulay very well�covered graphs and our claim follows from
Criterion 3.2.4. By virtue of Proposition 2.4.13, to prove that J(G) = J1 + J2 is a
Betti splitting, it is enough to show that J(G) = J1 + J2 is a yn-partition of J(G).
Indeed, let u be a minimal generator of J(G). Then C = supp(u) is a minimal vertex
cover of G. By Lemma 8.2.2, u = xFy[n]\F for some F ⊆ [n]. Thus, either yn ∈ C or
xn ∈ C. We distinguish two cases.

Case 1. Suppose yn ∈ C. Since xn /∈ C, but xi1xn, . . . , xitxn ∈ E(G) and C is a
vertex cover, then we obtain that xi1 , . . . , xit ∈ C. Hence xi1xi2 · · ·xit · yn divides u.
Note that the support of v = u/(xi1xi2 · · ·xit ·yn) is a vertex cover of G1. Furthermore,
supp(v) is a minimal vertex cover, since |supp(v)| = n− (t+ 1) = |V (G1)|/2 and G1

is a very well�covered graph (Proposition 8.2.1). Hence v ∈ J(G1) and u ∈ J1.
Case 2. Suppose xn ∈ C. Since yn /∈ C, but xj1yn, . . . , xjpyn ∈ E(G) and C is a
vertex cover, then xj1 , . . . , xjp ∈ C. Hence xj1xj2 · · ·xjp · xn divides u. Note that the
support of w = u/(xj1xj2 · · ·xjp · xn) is a vertex cover of G2. Furthermore, supp(w)
is a minimal vertex cover, since |supp(w)| = n− (p+1) = |V (G2)|/2 and G2 is a very
well�covered graph (Proposition 8.2.1). Hence, w ∈ J(G2) and u ∈ J2.

Hence, we have shown that G(J(G)) is contained in G(J1) ∪G(J2).
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For the opposite inclusion, let v ∈ G(J(G1)), then supp(v) is a minimal vertex
cover of G1. We claim that C = supp(xi1 · · ·xit · ynv) is a minimal vertex cover of
G. Indeed, all edges of G incident with a vertex belonging to {xi1 , . . . , xit , yn} are
incident with a vertex of C. Since N [xn] \ {xn, yn} = {xi1 , . . . , xit} ⊂ C, then each
edge which is incident with xn is also incident with a vertex of C. Finally, let e be
an edge incident with yik for some k ∈ [t]. Then e = xjyik ∈ E(G). Since xjyik and
xikxn are both edges of G, by Characterization 8.1.3(v), xjxn ∈ E(G), too. It follows
that xj ∈ N [xn]\{xn, yn} and {xj , yik}∩C ̸= ∅. Finally, C is a minimal vertex cover
of G. This shows that G(J1) ⊆ G(J(G)). Similarly, one proves that G(J2) ⊆ G(J(G))
by exploiting again condition (v) of Characterization 8.1.3. The result follows. □

Example 8.2.4 Let S = K[x1, . . . , x6, y1, . . . , y6]. Consider the following graph G.
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By Characterization 8.1.3, one veri�es that G is a Cohen�Macaulay very well�
covered graph with 12 vertices. We have

I(G) = (x1y1, x2y2, x3y3, x4y4, x5y5, x6y6, x1x2, x1x3, x1x4, x1x5,

x1x6, x2x3, x2x4, x2x5, x2x6, x3y4, x3y5, x3y6, x4y5, x4y6),

J(G) = (x1x2x3x4x5x6, y1x2x3x4x5x6, x1y2x3x4x5x6, x1x2x3x4y5x6,

x1x2x3x4x5y6, x1x2x3x4y5y6, x1x2x3y4y5y6, x1x2y3y4y5y6).

Furthermore, N [x6] = {x1, x2, x6, y6}, N [y6] = {x3, x4, x6, y6} and consequently

G1 = G \ {x1, y1, x2, y2, x6, y6}, G2 = G \ {x3, y3, x4, y4, x6, y6},

i.e., s sy3 y4
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It follows that

J(G1) = (x3x4x5, x3x4y5, x3y4y5, y3y4y5),

J(G2) = (x1x2x5, y1x2x5, x1y2x5, x1x2y5).

Finally,
J(G) = x1x2y6J(G1) + x3x4x6J(G2)

is a Betti splitting.
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8.3 The resolution of cover ideals of very well�covered

graphs

In this section we construct the minimal free resolution of the cover ideal J(G) of any
Cohen�Macaulay very well�covered graph G. Our method uses induction on half of
the number of vertices of G and the mapping cone construction. Indeed, the mapping
cone applied to the Betti splitting of J(G) (Proposition 8.2.3) yields a minimal free
resolution of J(G), if we know the minimal free resolutions of the cover ideals of three
suitable subgraphs which we can associate to the given graph G.

Firstly, let G1 and G2 be two graphs, we de�ne intersection graph of G1 ad G2

the graph G with V (G) = V (G1)∩ V (G2) and E(G) = {e : e ∈ E(G1)∩E(G2)}. We
denote G by G1 ∩G2.

Setup 8.3.1 Let G be a Cohen�Macaulay very well�covered graph with 2n vertices.
Let N [xn] = {xi1 , xi2 , . . . , xit , xn, yn}, N [yn] = {xj1 , xj2 , . . . , xjp , xn, yn} and de�ne

G1 = G \ {xi1 , yi1 , xi2 , yi2 , . . . , xit , yit , xn, yn},
G2 = G \ {xj1 , yj1 ,xj2 ,yj2 , . . . , xjp , yjp , xn, yn}.

By Proposition 8.2.3, both G1 and G2 are Cohen�Macaulay very well�covered graphs.
Furthermore, |V (G1)| = 2(n− 1− t) and |V (G2)| = 2(n− 1− p).
Set J = J(G), J1 = xi1xi2 · · ·xit · ynJ(G1) and J2 = xj1xj2 · · ·xjp · xnJ(G2). Then,
Proposition 8.2.3 implies that J = J1 + J2 is a Betti splitting of J .
Finally, let us consider the subgraph G3 = G1 ∩ G2 of G. Since the structure of G1

and G2, it is clear that G3 is Cohen�Macaulay very well�covered, too.

For instance, in Example 8.2.4, G3 = G \ {xi, yi : i ̸= 5}.

The following lemmas will be crucial in the sequel.

Lemma 8.3.2 Assume Setup 8.3.1. Then

N [xn] ∩N [yn] = {xn, yn}.

Proof. For all s ∈ [p], xjsyn ∈ E(G). Thus Characterization 8.1.3(iv) implies that
xjsxn /∈ E(G), and so xjs /∈ N [xn], for all s ∈ [p]. Finally N [xn] ∩N [yn] = {xn, yn},
as desired. □

Lemma 8.3.3 Assume Setup 8.3.1. Then

J1 ∩ J2 = xi1xi2 · · ·xit · xj1xj2 · · ·xjp · xnynJ(G3).

Proof. Set J1,2 = J1 ∩ J2. Since J = J1 + J2 is a Betti splitting and J has an n�
linear resolution, then J1,2 has an (n + 1)�linear resolution (Proposition 2.4.14). A
generating set for J1,2 is the set {lcm(u1, u2) : u1 ∈ G(J1), u2 ∈ G(J2)}. Since J1,2 is
equigenerated in degree n+ 1, then

G(J1,2) = {lcm(u1, u2) : u1 ∈ G(J1), u2 ∈ G(J2), deg(lcm(u1, u2)) = n+ 1}.

By Lemma 8.3.2, N [xn]∩N [yn] = {xn, yn}. Thus, by the presentation of J1 and J2, we
get that each monomial w ∈ G(J1,2) is divided by xi1 · · ·xit ·xj1 · · ·xjp ·xnyn. Note that
(X∪Y )\{xi1 , yi1 , . . . , xit , yit , xj1 , yj1 , . . . , xjp , yjp , xn, yn} is the vertex set of the graph
G3. Moreover the support of v1 = u1/(xi1xi2 · · ·xit · xj1xj2 · · ·xjp · yn) is a minimal
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vertex cover of the very well�covered graph G3. Since lcm(u1, u2) = xnu1, we get that
lcm(u1, u2) = xi1 · · ·xit · xj1 · · ·xjp · xnynv1 ∈ G(xi1 · · ·xit · xj1 · · ·xjp · xnynJ(G3)).

Conversely, let w = xi1 · · ·xit ·xj1 · · ·xjp ·xnynv ∈ G(xi1 · · ·xit ·xj1 · · ·xjp ·xnynJ(G3)),
with v ∈ J(G3). Then supp(xj1xj2 · · ·xjp · v) is a minimal vertex cover of G1 and
supp(xi1xi2 · · ·xit · v) is a minimal vertex cover of G2. Thus u1 = w/xn ∈ G(J1)
and u2 = w/yn ∈ G(J2). Since w = lcm(u1, u2) and deg(w) = n + 1, we have that
w ∈ G(J1,2), showing the other inclusion. □

We now turn to the construction of the minimal free resolution. For a subset C of
the set of variables X ∪ Y = {x1, . . . , xn, y1, . . . , yn}, we set

zC = xCxyCy , (8.1)

with Cx = {i : xi ∈ C} and Cy = {j : yj ∈ C}.
If G is graph such that V (G) = {x1, . . . , xn, y1, . . . , yn} and C ∈ C(G), we de�ne

the set C(G;C) = {xs : ys ∈ C and (C \ ys)∪ xs ∈ C(G)}. Recall that C(G) is the set
of all minimal vertex cover of G.

For instance, in Example 8.1.4, for C = {x1, x2, y3, y4}, C(G;C) = {x3}. Indeed,
{x1, x2, y4} ∪ x3 = {x1, x2, x3, y4} is a minimal vertex cover of the given graph G.
One can observe that x4 /∈ C(G;C), since {x1, x2, y3} ∪ x4 is not a vertex cover of G.
Moreover, for C = {x1, x2, x3, x4}, C(G;C) = ∅.

In what follows, we denote by
(C(G;C)

i

)
the set of all subsets of size i of C(G;C),

0 ≤ i ≤ |C(G;C)|. With abuse of notation, for σ ∈
(C(G;C)

i

)
, we set xσ =

∏
xs∈σ xs.

In particular, x∅ = 1.

Construction 8.3.4 Assume Setup 8.3.1. Let

F : · · · → Fi
di−−→ Fi−1

di−1−−−→ · · · d2−−→ F1
d1−−→ F0

d0−−→ J → 0

be the complex

- whose ith free module Fi has as a basis the symbols f(C;σ) having multidegree
zCxσ, where C ∈ C(G) and σ ∈

(C(G;C)
i

)
, i.e., σ ⊆ C(G;C) is a subset of size i;

- and whose ith di�erential is given by d0(f(C;∅)) = zC for i = 0 and for i > 0
is de�ned as follows:

di(f(C;σ)) =
∑
xs∈σ

(−1)α(σ;xs)
[
ysf((C \ ys) ∪ xs;σ \ xs)− xsf(C;σ \ xs)

]
,

where α(σ;xs) = |{xj ∈ σ : j > s}|.

From now on, we set J1,2 = J1∩J2 and denote by (FJ1,2 , dJ1,2), (FJ1 , dJ1), (FJ2 , dJ2)
the minimal free resolutions of J1,2, J1, J2, respectively.

Theorem 8.3.5 The complex F given in Construction 8.3.4 is the minimal free res-
olution of J = J(G).

Proof. We proceed by strong induction on |V (G)|/2 = n. For n = 1, I(G) = (x1y1)
and J = J(G) = (x1, y1). In this case one readily veri�es that the complex F of
Construction 8.3.4 is the minimal free resolution of J = J(G). So, let n > 1. The
graphs G1, G2, G3 have vertex sets whose cardinality is less than |V (G)|, thus by
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induction we can assume that the minimal free resolutions of J(G1), J(G2), J(G3) are
as given in Construction 8.3.4. As a consequence, we know explicitly the resolutions
FJ1,2 ,FJ1 ,FJ2 , since each of these resolutions is equal to one of the three previously
mentioned resolutions up to multiplication by a suitable monomial.

Let (FJ , dJ) be the resolution obtained by the mapping cone applied to the Betti
splitting J = J1 + J2. Then FJ is the minimal free resolution of J . We show that FJ
can be identi�ed with F. We achieve this goal in three steps.

Step 1. Let us show that the free modules of FJ have the basis described in Con-
struction 8.3.4. By the mapping cone, we have F Ji = F

J1,2
i−1 ⊕ F

J1
i ⊕ F

J2
i .

The bases of F J1i , F J2i and F
J1,2
i are the following ones, respectively:

B1 =
{
xi1xi2 · · ·xit · yn · fJ1(C1;σ1) : C1 ∈ C(G1), σ1 ∈

(
C(G1;C1)

i

)}
,

B2 =
{
xj1xj2 · · ·xjp · xn · fJ2(C2;σ2) : C2 ∈ C(G2), σ2 ∈

(
C(G2;C2)

i

)}
,

B3 =
{
xi1 · · ·xit · xj1 · · ·xjp · xnyn · fJ1,2(C3;σ3) : C3 ∈ C(G3), σ3 ∈

(
C(G3;C3)

i

)}
.

Let f(C;σ) be a basis element of Fi as in Construction 8.3.4, i.e., with multidegree
zCxσ and with C ∈ C(G), σ ∈

(C(G;C)
i

)
. We distinguish three possible cases.

Case 1.1. Let xn ∈ C. Then N [yn] \ N [xn] = {xj1 , . . . , xjp} ⊂ C. Indeed, C is
a vertex cover of G, yn /∈ C (Lemma 8.2.2) but xjryn ∈ E(G) for r ∈ [p]. Hence,
C2 = C \ {xj1 , . . . , xjp , xn} is a minimal vertex cover of G2. Furthermore, for all
xs ∈ σ, (C2 \ ys) ∪ xs is a minimal vertex cover of G2 because (C \ ys) ∪ xs is a
minimal vertex cover of G. Since b = xj1xj2 · · ·xjp · xn · fJ2(C2;σ) ∈ B2 has the same
multidegree of f(C;σ), we can identify f(C;σ) with b.

Case 1.2. Let yn ∈ C and xn /∈ σ. Then C1 = C\{x1, . . . , xit , yn} is a minimal vertex
cover of G1. As before, we can identify f(C;σ) with xi1 . . . xit · yn · fJ1(C1;σ) ∈ B1.
Case 1.3. Let yn ∈ C and xn ∈ σ. Then both C and (C \yn)∪xn are minimal vertex
covers of G. Hence, (N [xn] ∪ N [yn]) \ {xn, yn} = {xi1 , . . . , xit , xj1 , . . . , xjp} ⊂ C.
Setting C3 = C \ {xi1 , . . . , xit , xj1 , . . . , xjp , yn} and σ3 = σ \ xn, we obtain that C3

and (C3 \ ys)∪xs are both minimal vertex covers of G3 for all xs ∈ σ3. Hence, in this
case we can identify f(C;σ) with xi1 · · ·xit · xj1 · · ·xjp · xnyn · fJ1,2(C3;σ3) ∈ B3.

Conversely, any basis element b ∈ Bi (i = 1, 2, 3) can be identi�ed with a basis
element f(C;σ), as given in Construction 8.3.4. Thus, we realize that the modules
F Ji have the required bases as described in Construction 8.3.4.

Step 2. Let ψ−1 : u ∈ J1,2 7→ (u,−u) ∈ J1⊕J2. In order to apply the mapping cone,
we need to construct the comparison maps ψi making the following diagram

FJ1,2 : · · · // F
J1,2
2

ψ2

��

d
J1,2
2 // F

J1,2
1

ψ1

��

d
J1,2
1 // F

J1,2
0

ψ0

��

d
J1,2
0 // J1,2

ψ−1

��

// 0

FJ1 ⊕ FJ2 : · · · // F J12 ⊕ F
J2
2
d
J1
2 ⊕dJ22

// F J11 ⊕ F
J2
1
d
J1
1 ⊕dJ21

// F J10 ⊕ F
J2
0
d
J1
0 ⊕dJ20

// J1 ⊕ J2 // 0

commutative. Using the notation in (8.1), let b = xi1 · · ·xit · xj1 · · ·xjp · xnyn ·
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fJ1,2(C3;σ3) = zN [xn]∪N [yn] · fJ1,2(C3;σ3) ∈ B3 be a basis element of F
J1,2
i . We de-

�ne

ψi(b) =
(
zN [xn] · fJ1(C3 ∪ {xj1 , . . . , xjp};σ3), −zN [yn] · fJ2(C3 ∪ {xi1 , . . . , xit};σ3)

)
.

To simplify the notation, we set C1 = C3∪{xj1 , . . . , xjp} and C2 = C3∪{xi1 , . . . , xit}.
One can note that ψi is well de�ned. Indeed, C1 ∈ C(G1), C2 ∈ C(G2), σ3 ⊆ C(G1;C1),
and σ3 ⊆ C(G2;C2).

We need to verify that for all i ≥ 0 and all b ∈ B3, it is

ψi−1 ◦ d
J1,2
i (b) = (dJ1i ⊕ d

J2
i ) ◦ ψi(b).

For i = 0, we have σ3 = ∅, thus xσ3 = 1 and both sides of the equation are equal to

(zN [xn]∪N [yn]zC3 ,−zN [xn]∪N [yn]zC3).

Let i > 0. To further simplify the notation, let us write the generic basis element
(zN [xn]fJ1(C1;σ1), zN [yn]fJ2(C2;σ2)) ∈ F J1i ⊕F

J2
i as zN [xn]fJ1(C1;σ1)+zN [yn]fJ2(C2;σ2).

By induction we know explicitly d
J1,2
i , dJ1i , d

J2
i . Let us compute ψi−1 ◦ d

J1,2
i (b). We

have

d
J1,2

i (b) = zN [xn]∪N [yn]

∑
xs∈σ3

(−1)α(σ3;xs)
[
ysfJ1,2((C3 \ ys) ∪ xs;σ3 \ xs)− xsfJ1,2(C3;σ3 \ xs)

]
.

Hence,

ψi−1 ◦ d
J1,2
i (b) =

∑
xs∈σ3

(−1)α(σ3;xs)
[
yszN [xn] · fJ1((C1 \ ys) ∪ xs;σ3 \ xs)

− yszN [yn] · fJ2((C2 \ ys) ∪ xs;σ3 \ xs)
− xszN [xn] · fJ1(C1;σ3 \ xs)
+ xszN [yn] · fJ2(C2;σ3 \ xs)

]
.

(8.2)

Now, let us compute (dJ1i ⊕ d
J2
i ) ◦ ψi(b). Firstly, we have

ψi(b) = zN [xn] · fJ1(C1;σ3)− zN [yn] · fJ2(C2;σ3),

then

(dJ1i ⊕ d
J2
i ) ◦ ψi(b) = zN [xn] · d

J1
i (fJ1(C1;σ3))− zN [yn] · d

J2
i (fJ2(C2;σ3))

= zN [xn]

∑
xs∈σ3

(−1)α(σ3;xs)
[
ysfJ1((C1 \ ys) ∪ xs;σ3 \ xs)− xsfJ1(C1;σ3 \ xs)

]
− zN [yn]

∑
xs∈σ3

(−1)α(σ3;xs)
[
ysfJ2((C2 \ ys) ∪ xs;σ3 \ xs)− xsfJ2(C2;σ3 \ xs)

]
.

A comparison with equation (8.2) shows that ψi−1 ◦ d
J1,2
i (b) = (dJ1i ⊕ d

J2
i ) ◦ ψi(b).

Step 3. It remains to prove that the di�erentials dJi act as described in Construction

8.3.4. So, let f(C;σ), C ∈ C(G) and σ ∈
(C(G;C)

i

)
be a basis element. Let us compute

dJi (f(C;σ)). For i = 0, we easily see that dJ0 (f(C;∅)) = zC , as desired.

Let i > 0. We distinguish three cases.

Case 3.1. Let xn ∈ C. Set C2 = C \ {xj1 , . . . , xjp , xn}. By the mapping cone, we
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have:

dJi (f(C;σ)) = dJ2i (xj1 · · ·xjp · xn · fJ2(C2;σ))

= xj1 · · ·xjp · xn
∑
xs∈σ

(−1)α(σ;xs)
[
ysfJ2((C2 \ ys) ∪ xs;σ \ xs)− xsfJ2(C2;σ \ xs)

]
=

∑
xs∈σ

(−1)α(σ;xs)
[
ysf((C \ ys) ∪ xs;σ \ xs)− xsf(C;σ \ xs)

]
,

as required.

Case 3.2. Let yn ∈ C and xn /∈ σ. Setting C1 = C \ {xi1 , . . . , xit , xn}, by the
mapping cone we see that dJi (f(C;σ)) = dJ1i (xi1xi2 · · ·xit · yn · fJ1(C1;σ)) has the
required expression.

Case 3.3. Let yn ∈ C and xn ∈ σ. Setting C3 = C \ {xi1 , . . . , xit , xj1 , . . . , xjp , yn},
σ3 = σ \ xn and b = xi1 · · ·xit · xj1 · · ·xjp · xnyn · fJ1,2(C3;σ3), by the mapping cone,
we have that

dJi (f(C;σ)) = −dJ1,2i−1 (b) + ψi−1(b).

Let us compute −dJ1,2i−1 (b). Since zN [xn]∪N [yn] = xi1 · · ·xit · xj1 · · ·xjp · xnyn, we have

−dJ1,2

i−1 (b)=−zN [xn]∪N [yn]

∑
xs∈σ3

(−1)α(σ3;xs)
[
ysfJ1,2

((C3 \ ys) ∪ xs;σ3 \ xs)− xsfJ1,2
(C3;σ3 \ xs)

]
= −

∑
xs∈σ3

(−1)α(σ\xn;xs)
[
ysf((C \ ys) ∪ xs;σ \ xs)− xsf(C;σ \ xs)

]
=

∑
xs∈σ\xn

(−1)α(σ;xs)
[
ysf((C \ ys) ∪ xs;σ \ xs)− xsf(C;σ \ xs)

]
,

where the last equation follows from the fact that α(σ;xs) = α(σ \ xn;xs) + |{xn}|
for all xs ∈ σ \ xn.

Whereas, for the term ψi−1(b), by the de�nition of the comparison maps, we have

ψi−1(b) = zN [xn] · fJ1(C3 ∪ {xj1 , . . . , xjp};σ3)− zN [yn] · fJ2(C3 ∪ {xi1 , . . . , xit};σ3)
= ynf((C \ yn) ∪ xn;σ \ xn)− xnf(C;σ \ xn)
= (−1)α(σ;xn)

[
ynf((C \ yn) ∪ xn;σ \ xn)− xnf(C;σ \ xn)

]
,

where the last equation follows because α(σ;xn) = |∅| = 0. Hence, we see that

dJi (f(C;σ)) =
∑
xs∈σ

(−1)α(σ;xs)
[
ysf((C \ ys) ∪ xs;σ \ xs)− xsf(C;σ \ xs)

]
,

as desired. The induction is complete and the result follows. □

Corollary 8.3.6 Let G be a Cohen�Macaulay very well�covered graph. Then

βi(J(G)) =
∑

C∈C(G)

(
|C(G;C)|

i

)
, i ≥ 0,

pd(J(G)) = max{
∣∣C(G;C)∣∣ : C ∈ C(G)}.

In particular, the graded Betti numbers of J(G) do not depend upon the characteristic
of the underlying �eld K.

Let G be a graph and let zizj , zkzℓ ∈ E(G) be a pair of edges. We say that zizj
and zkzℓ are 3-disjoint if the induced subgraph of G on the vertex set {zi, zj , zk, zℓ}
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consists of two disjoint edges. The maximum size of a set of pairwise 3-disjoint edges
in G is denoted by a(G) [124].

The next result holds.

Corollary 8.3.7 Let G be a Cohen�Macaulay very well�covered graph. Then

a(G) = reg(S/I(G)) = max{
∣∣C(G;C)∣∣ : C ∈ C(G)} = pd(J(G)).

Proof. By a result of Terai, [89, Proposition 8.1.10], we have pd(J(G)) = reg(S/I(G)).
Thus the assertion follows from [124, Lemma 3.4] and Corollary 8.3.6. □

Remark 8.3.8 The equality a(G) = reg(S/I(G)) has been �rstly proved in [124,
Lemma 3.4]. Here we give a new proof by Betti splittings. By [114, Lemma 2.2], one
always have reg(S/I(G)) ≥ a(G). It remains to prove that pd(J(G)) ≤ a(G). Assume
Setup 8.3.1.

By [74, Corollary 2.2] applied to the Betti splitting provided in Proposition 8.2.3,
and by Lemma 8.3.3, we have

pd(J(G)) = max{pd(J(G1)), pd(J(G2)), pd(J(G3)) + 1}.

By induction on n = |V (G)|/2, we may assume that pd(J(Gi)) ≤ a(Gi) for i = 1, 2, 3.
Note that a(Gi) ≤ a(G), for i = 1, 2, 3, clearly. Thus it remains to prove the inequality
a(G3)+1 ≤ a(G). Let D be a set of pairwise 3-disjoint edges of G3 with |D| = a(G3).
Then D∪xnyn is again a set of pairwise 3-disjoint edges of G. Indeed, if e = zkzℓ ∈ D,
then {zk, zℓ} ⊆ V (G3) = V (G) \ {xi, yi : xi ∈ N [xn] ∪ N [yn]}. Thus there can not
be any edge connecting zk or zℓ with either xn or yn. This shows that the induced
subgraph with vertex set {zk, zℓ, xn, yn} has only two edges. Hence a(G) ≥ |D|+1 =
a(G3) + 1.

LetM be a �nitely generated S-module of dimension d, and let PM be the Hilbert
polynomial of M [23, 89]. Then, PM (t) =

∑d−1
i=0 (−1)d−1−ied−1−i

(
t+i
i

)
, ed−1−i ∈ Q,

for all i. We de�ne the multiplicity of M as

e(M) =

{
e0 if d > 0,

length(M) if d = 0.

Now, we verify that J(G) has the alternating sum property and thanks to Corollary
8.3.6 we get a formula for the multiplicity of S/J(G), e(S/J(G)).

We quote next de�nition from [150, De�nition 4.1].

De�nition 8.3.9 Let I be a monomial ideal in S with G(I) = {u1, . . . , um} and let
d = min{deg(ui) : i = 1, . . . ,m}. We say that I has the alternating sum property, if

∑
i≥1

(−1)iβi,i+j(S/I) =

{
−1, for j = d,

0, for j > d.

Proposition 8.3.10 Let G be a Cohen�Macaulay very well�covered graph. Then

(a)
∑

i≥1(−1)iβi(S/J(G)) = −1.

(b) e(S/J(G)) = |E(G)| = 1
2

∑
C∈C(G)

∑|C(G;C)|
i=0 (−1)i+1

(|C(G;C)|
i

)
(n+ i)2.
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Proof. Let |V (G)| = 2n.
(a). We proceed by induction on n ≥ 1. For n = 1, 2 the only Cohen�Macaulay

very well�covered graphs are the following ones.

For each of these graphs, (a) holds. Let n > 2. Using the same notation as in Setup
8.3.1, from Proposition 8.2.3, Lemma 8.3.3 and by the inductive hypothesis on the
graphs G1, G2, G3, we have that∑

i≥1

(−1)iβi(S/J(G)) =
∑
i≥0

(−1)i
[
βi(S/J(G1)) + βi(S/J(G2)) + βi−1(S/J(G3))

]
=

∑
i≥0

(−1)iβi(S/J(G1)) +
∑
i≥0

(−1)iβi(S/J(G2))−
∑
i≥0

(−1)iβi(S/J(G3)) =

= − 1− 1 + 1 = −1.

(b). Since J(G) =
⋂
zizj∈E(G)(zi, zj) we see that J(G) has height two and, further-

more, e(S/J(G)) = |E(G)| by [89, Corollary 6.2.3]. The �rst equality holds true.
On the other hand, by a formula of Peskine and Szpiro [136] (see also [89, Corollary

6.1.7]), since βi(S/J(G)) = βi−1(J(G)), one has that

e(S/J(G)) =
(−1)h

h!

pd(S/J(G))∑
i=1

(−1)i+1

βi(S/J(G))∑
j=1

ahij =

=
(−1)h

h!

pd(J(G))∑
i=0

(−1)i+1

βi(J(G))∑
j=1

ahij ,

where h = height(J(G)) and aij are the shifts of the ith free module of the minimal

free resolution F of S/J(G), i.e.,
⊕βi(S/J(G))

j=1 S(−aij). Since J(G) has a n�linear
resolution and height(J(G)) = h = 2, from Corollary 8.3.6, we have that

e(S/J(G)) =
1

2

∑
i≥0

(−1)i+1
∑

C∈C(G)

(
|C(G;C)|

i

)
(n+ i)2 =

=
1

2

∑
C∈C(G)

|C(G;C)|∑
i=0

(−1)i+1

(
|C(G;C)|

i

)
(n+ i)2.

□

Example 8.3.11 Let us consider the Cohen�Macaulay well�covered graph G with 12
vertices in Example 8.2.4. Set C1 = {x1, x2, x3, x4, x5, x6}, C2 = {y1, x2, x3, x4, x5, x6},
C3 = {x1, y2, x3, x4, x5, x6}, C4 = {x1, x2, x3, x4, y5, x6}, C5 = {x1, x2, x3, x4, x5, y6},
C6 = {x1, x2, x3, x4, y5, y6}, C7 = {x1, x2, x3, y4, y5, y6} and C8 = {x1, x2, y3, y4, y5, y6}.
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Then

C(G) C(G;C) |C(G;C)|
C1 ∅ 0
C2 {x1} 1
C3 {x2} 1
C4 {x5} 1
C5 {x6} 1
C6 {x5, x6} 2
C7 {x4} 1
C8 {x3} 1

Using [82], one can verify that β1(S/J(G)) = 8, β2(S/J(G)) = 8, β3(S/J(G)) = 1.
Hence,

∑
i≥1(−1)iβi(S/J(G)) = −1 and the alternating sum property holds. More-

over, a(G) = reg(S/I(G)) = 2 = max{
∣∣C(G;C)∣∣ : C ∈ C(G)} = pd(J(G)).

Finally, for the multiplicity of S/J(G), we have e(S/J(G)) = |E(G)| = 20.

8.4 Homological shifts of vertex cover ideals of very well�

covered graphs and applications to Hibi ideals

In this section, we investigate the homological shift ideals of powers of the vertex cover
ideal of Cohen�Macaulay very well�covered graphs. Here is our main result.

In what follows we refer to the notation in Setup 8.3.1.

Theorem 8.4.1 Let G be a Cohen�Macaulay very well�covered graph with 2n ver-
tices. Then HSk(J(G)) has linear quotients with respect to the lexicographic order
>lex induced by xn > yn > xn−1 > yn−1 > · · · > x1 > y1, for all k ≥ 0.

Proof. We proceed by strong induction on n = |V (G)|/2 ≥ 1. For n = 1, I(G) =
(x1y1) and J = J(G) = (x1, y1). Hence, HS0(J) = J , HS1(J) = (x1y1) have linear
quotients with respect to >lex.

Let n > 1. By Proposition 8.2.3,

J(G) = xj1xj2 · · ·xjp · xnJ(G2) + xi1xi2 · · ·xit · ynJ(G1) (8.3)

is a Betti splitting.
Set f = xj1 · · ·xjp · xn and g = xi1 · · ·xit · yn. Since HSk(wI) = w · HSk(I) for

all monomial ideals I in S and all non zero monomials w ∈ S, from (8.3), by Lemma
8.3.3, we have that

HSk(J(G)) = fg ·HSk−1(J(G3)) + f ·HSk(J(G2)) + g ·HSk(J(G1)).

Note that, since |V (Gj)| < |V (G)| (j = 1, 2, 3), by the inductive hypothesis,
HSk(J(Gj)) have linear quotients with respect to >lex.

Let

G(HSk−1(J(G3))) = {w1 >lex w2 >lex · · · >lex wq}, (8.4)

G(HSk(J(G2))) = {v1 >lex v2 >lex · · · >lex vr}, (8.5)

G(HSk(J(G1))) = {u1 >lex u2>lex · · · >lex us}, (8.6)
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thus G(HSk(J(G))) is ordered as follows:

fgw1 >lex · · · >lex fgwq >lex fv1 >lex · · · >lex fvr >lex gu1 >lex · · · >lex gus.

We prove that such an order is an admissible order of HSk(J(G)). For our purpose,
we need to show that all the following three colon ideals

(fgw1, . . . , fgwℓ−1) : fgwℓ, ℓ ∈ {2, . . . , q}, (8.7)

(fgHSk−1(J(G3)), fv1, . . . , fvℓ−1) : fvℓ, ℓ ∈ {1, . . . , r}, (8.8)

(fgHSk−1(J(G3)), fHSk(J(G2)), gu1, . . . , guℓ−1) : guℓ, ℓ ∈ {1, . . . , s}, (8.9)

are generated by variables.

First Colon Ideal. Let us consider the colon ideal in (8.7). Since,

(fgw1, . . . , fgwℓ−1) : fgwℓ = (w1, . . . , wℓ−1) : wℓ,

the assertion follows from the fact that HSk−1(J(G3)) has linear quotients with respect
to the order in (8.4).

Second Colon Ideal. Let us consider the colon ideal in (8.8).
Set P = (fgHSk−1(J(G3)), fv1, . . . , fvℓ−1) : fvℓ. One can observe that

P = (fgHSk−1(J(G3))) : fvℓ + (v1, . . . , vℓ−1) : vℓ,

with (v1, . . . , vℓ−1) : vℓ generated by variables. Indeed, HSk(J(G2)) has linear quo-
tients with respect to the order in (8.5).
Thus, if we show that each generator of (fgHSk−1(J(G3))) : fvℓ is divided by a vari-
able of P , we conclude that P is generated by variables, as wanted. The colon ideal
(fgHSk−1(J(G3))) : fvℓ is generated by the monomials

lcm(fgwj , fvℓ)

fvℓ
, j = 1, . . . , q.

Fix j ∈ {1, . . . , q}. By Construction 8.3.4, we have that

fgwj = wxσ, w ∈ G(J(G)), yn ∈ supp(w), σ ⊆ C(G; supp(w)), xn ∈ σ, |σ| = k,

fvℓ = vxτ , v ∈ G(J(G)), xn ∈ supp(v), τ ⊆ C(G; supp(v)), xn /∈ τ, |τ | = k.

Let h = lcm(wxσ, vxτ )/(vxτ ). If deg(h) = 1, h is a variable and there is nothing to
prove. Suppose deg(h) > 1. Let us consider the following integer

i = min
{
i : zi divides h =

lcm(wxσ, vxτ )

vxτ
, zi ∈ {xi, yi}

}
. (8.10)

Since deg(h) > 1 and yn divides h, we have that i < n. From Lemma 8.2.2, we have
that yi divides at least one of the monomials wxσ, vxτ . Indeed, if yi does not divide
any of these monomials, then xi will divide both these monomials, and consequen-
tially, zi ∈ {xi, yi} does not divide h. Against our assumption.
Now, let N [yi] = {xk1 , . . . , xkb , xi, yi}. We claim that xk1 · · ·xkb divides both mono-
mials w, v. Indeed, xi divides at least one of the monomials w, v. For instance,
say xi divides wxσ, then either xi divides w or xi(w/yi) ∈ G(J(G)). In both cases,
xk1 · · ·xkb must divide w, since w or xi(w/yi) are minimal vertex covers. The same
reasoning works if xi divides vxτ . Thus xk1 · · ·xkb must divide w or v. Without loss
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of generality, suppose that xk1 · · ·xkb divides w. Then, by Construction 8.3.4, none of
the variables yk1 , . . . , ykb divides w. By Characterization 8.1.3(iii), k1 < · · · < kb < i.
Thus, by the meaning of i, zd ∈ {xd, yd} does not divide h for all d = k1, . . . , kb.
Hence, we see that xk1 · · ·xkb divides both the monomials w, v. Now, we distinguish
two cases.

Case 1. Suppose xiyi divides one between the monomials wxσ and vxτ , and that yi
divides the other one. Suppose, for instance, that xiyi divides wxσ and that yi divides
vxτ . Then, xi(v/yi)xτ >lex vxτ . Moreover, xi(v/yi) ∈ G(J(G)), because xk1 · · ·xkb
divides v and so supp(xi(v/yi)) is again a minimal vertex cover of G.
We claim that xi(v/yi)xτ ∈ HSk(J(G)). Indeed for all c ∈ τ , N [yc] \ {xc, yc} ⊆
supp(v). Since N [yc] \ {xc, yc} is a subset of X = {x1, . . . , xn} and supp(xi(v/yi)) =
(supp(v) \ yi) ∪ xi, we see that N [yc] \ {xc, yc} is again a subset of supp(xi(v/yi)).
Thus, for all c ∈ τ , xcxi(v/yi)/yc ∈ G(J(G)), i.e., τ ⊆ C(G; supp(xi(v/yi))). Finally,
xi(v/yi)xτ ∈ HSk(J(G)). Moreover,

lcm(xi(v/yi)xτ , vxτ )

vxτ
= xi and xi divides h.

It follows that h is divided by the variable xi belonging to P , as desired.

Otherwise, suppose xiyi divides vxτ and yi divides wxσ. Then, xi(w/yi)xσ >lex wxσ
and, as before, xi(w/yi)xσ ∈ G(HSk(J(G))). Moreover,

h′ =
lcm(xi(w/yi)xσ, vxτ )

vxτ
= h/xi divides h

and so h′ ∈ P and deg(h′) < deg(h). Hence, we can iterate the previous reasoning by
considering the integer i′ arising from h′, as in formula (8.10). In such a situation it
is i′ > i.

Case 2. Suppose xi divides one of the monomials wxσ, vxτ and yi divides the other
one. Suppose xi divides wxσ and yi divides vxτ . Then xi(v/yi)xτ >lex vxτ , and
arguing as before, one gets xi(v/yi)xτ ∈ HSk(J(G)). Moreover,

lcm(xi(v/yi)xτ , vxτ )

vxτ
= xi and xi divides h.

Therefore, h is divided by the variable xi belonging to P , as desired.

Otherwise, suppose xi divides vxτ and yi divides wxσ. It follows that xi(w/yi)xσ ∈
G(HSk(J(G))) and xi(w/yi)xσ >lex wxσ. Moreover,

h′ =
lcm(xi(w/yi)xσ, vxτ )

vxτ
= h/xi divides h.

Thus h′ ∈ P and deg(h′) < deg(h). In such a case, we iterate the reasoning made
above by considering the integer i′ arising from h′ as in (8.10), and this time i′ > i.
It is clear that iterating the reasoning above we get that P is generated by variables.

Third Colon Ideal. Set P =(fgHSk−1(J(G3)), fHSk(J(G2)), gu1, . . . , guℓ−1) :guℓ.
One can observe that P is generated by the monomials

lcm(fgwi, guℓ)

guℓ
,

lcm(fvj , guℓ)

guℓ
,

lcm(guh, guℓ)

guℓ
,

with i ∈ [q], j ∈ [r] and h ∈ [ℓ − 1]. To prove that P is generated by variables it
is enough to show that any of the monomials above is divided by a variable zb ∈ P .
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Note that HSk(J(G1)) has linear quotients with respect to the order in (8.6), thus
the colon ideal (gu1, . . . , guℓ−1) : guℓ = (u1, . . . , uℓ−1) : uℓ is generated by variables.
Thus, lcm(guh, guℓ)/(guℓ) ∈ (u1, . . . , uℓ−1) : uℓ is divided by a variable of P . For the
other two type of monomial generators it su�ces to repeat the same argument as in
the Second Colon Ideal case. □

As an immediate consequence we have the following classi�cation.

Theorem 8.4.2 Let G be a very well�covered graph with 2n vertices. Then, the
following conditions are equivalent:

(i) G is Cohen�Macaulay.

(ii) J(G) has homological linear quotients.

(iii) J(G) has homological linear resolution.

Let G be a �nite simple graph with vertex set V (G) = X = {x1, . . . , xn}. The
whisker graph G∗ of G is the graph with vertex set V (G∗) = {x1, . . . , xn}∪{y1, . . . , yn}
and edge set E(G∗) = E(G)∪{xiyi : i = 1, . . . , n}. In other words, the whisker graph
of G is obtained by adding to each vertex xi a whisker, that means that for each vertex
xi ∈ V (G) we add a new vertex yi and an edge xiyi connecting these two vertices.

Corollary 8.4.3 Let G be any simple graph with n vertices. Then the vertex cover
ideal of the whisker graph G∗ of G has homological linear quotients.

Proof. It is easy to see that G∗ satis�es the conditions (i)�(v) of Characterization
8.1.3. Thus G∗ is a Cohen�Macaulay very well�covered graph and the result follows
from the previous theorem. □

Our experiments and the results above, suggest the following conjecture.

Conjecture 8.4.4 Let G be a Cohen�Macaulay very well�covered graph with 2n ver-
tices. Then HSk((J(G))

ℓ) has linear quotients with respect to the lexicographic order
induced by xn > yn > xn−1 > yn−1 > · · · > x1 > y1, for all k ≥ 0, and all ℓ ≥ 1.

Note that our conjecture would also imply that J(G) has linear powers.

At present it seems too di�cult to prove our conjecture in full generality. Therefore
we concentrate our attention on the subclass of Cohen�Macaulay bipartite graphs. For
this purpose, we need to recall what an Hibi ideal is [103].

Let (P,⪰) be a �nite partially ordered set (a poset, for short) and set P =
{p1, . . . , pn}. A poset ideal of P is a subset I of P such that if pi ∈ P , pj ∈ I and pi ⪯
pj , then pi ∈ I [88]. To any poset ideal I of P , we associate the squarefree monomial
uI = (

∏
pi∈I xi)(

∏
pi∈P\I yi) in the polynomial ring S = K[x1, . . . , xn, y1, . . . , yn].

Then the Hibi ideal (associated to P ) is the monomial ideal of S de�ned as follows:

HP = (uI : I is a poset ideal of P ).

As an immediate consequence of Theorem 8.4.1 we have the next result.

Corollary 8.4.5 Let (P,⪰) be a �nite poset. Then HP has homological linear quo-
tients.



106 Chapter 8. Homological shifts of very well�covered graphs

Proof. By [89, Lemma 9.1.11], the Alexander dual H∨
P may be seen as the edge ideal

of a Cohen�Macaulay bipartite graph GP . In particular GP is a Cohen�Macaulay
very well�covered graph. Hence, seeing HP as the cover ideal of GP , the result follows
immediately from Theorem 8.4.1. □

Now, we turn to the powers of an Hibi ideal. We denote by J (P ) the distributive
lattice consisting of all poset ideals of (P,⪰) ordered by inclusion.

From now on, with abuse of language but with the aim of simplifying the notation,
we identify each pi ∈ P with the variable xi, i ∈ [n].

Construction 8.4.6 Let (P,⪰) be a �nite poset. For any integer ℓ ≥ 1, we construct
a new poset (P (ℓ),⪰ℓ) de�ned as follows:

- P (ℓ) = {xi,1, xi,2, . . . , xi,ℓ : i = 1, . . . , n},

- and xi,r ⪰ℓ xj,s if and only if xi ⪰ xj and r ≥ s.

By [103, pag 99] we have the following useful property.

Lemma 8.4.7 Let (P,⪰) be a �nite poset. Each minimal monomial generator of Hℓ
P

posses a unique expression of the form

uI1uI2 · · ·uIℓ , with I1 ⊆ I2 ⊆ · · · ⊆ Iℓ, Ii ∈ J (P ), i = 1, . . . , ℓ.

Now, we need the technique of polarization. Let (P,⪰) be a �nite poset and
ℓ ≥ 1 be a positive integer. Note that X and ∅ are both poset ideals of P , thus
both uX = x1x2 · · ·xn and u∅ = y1y2 · · · yn belong to HP . Thus, we have that
uℓX = xℓ1x

ℓ
2 · · ·xℓn and uℓ∅ = yℓ1y

ℓ
2 · · · yℓn belong to Hℓ

P . Hence, the polynomial ring in
which Hℓ

P lives is

R = K[xi,j , yi,j : i = 1, . . . , n, j = 1, . . . , ℓ].

In order to preserve the structure of Hibi ideals, we innocuously modify polariza-
tion. More precisely, let 1 ≤ k ≤ ℓ and i ∈ [n], then we set

(xki )
℘ = xi,1xi,2 · · ·xi,ℓ,

(yki )
℘ = yi,ℓyi,ℓ−1 · · · yi,ℓ+1−k,

and extend the polarization of an arbitrary monomial in the obvious way. In other
words, with respect to the usual polarization, we are just applying the relabeling of
the variables yi,j 7→ yi,ℓ+1−j for i = 1, . . . , n and j = 1, . . . , ℓ.

Example 8.4.8 Consider the poset (P,⪰) with P = {x1, x2, x3}, x3 ≻ x1 and x3 ≻
x2. The poset (P,⪰) and the distributive lattice J (P ) are depicted below:

x1

x3

x2

{x1}

{x1, x2}

{x1, x2, x3}

{x2}

∅
(P,⪰) J (P )
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The poset (P (2),⪰2) and the distributive lattice J (P (2)) are the following ones:

x1,1 x2,1

x1,2 x2,2

x3,1

x3,2

(P (2),⪰2)

{x1,1, x1,2, x2,1, x2,2, x3,1, x3,2}

{x1,1, x1,2, x2,1, x2,2, x3,1}

{x1,1, x1,2, x2,1, x3,1} {x1,1, x2,1, x2,2, x3,1}{x1,1, x1,2, x2,1, x2,2}

{x1,1, x1,2, x2,1} {x1,1, x2,1, x2,2}
{x1,1, x2,1, x3,1}

{x1,1, x1,2}
{x1,1, x2,1}

{x2,1, x2,2}

{x1,1} {x2,1}

∅

J (P (2))

We have that

HP = (x1x2x3, x1x2y3, x1y2y3, y1x2y3, y1y2y3),

HP (2) = (x1,1x1,2x2,1x2,2x3,1x3,2, x1,1x1,2x2,1x2,2x3,1y3,2, x1,1x1,2x2,1x2,2y3,1y3,2,

x1,1x1,2x2,1y2,2x3,1y3,2, x1,1y1,2x2,1y2,2x3,1y3,2, x1,1y1,2x2,1x2,2x3,1y3,2,

x1,1x1,2x2,1y2,2y3,1y3,2, x1,1y1,2x2,1y2,2y3,1y3,2, x1,1y1,2x2,1x2,2y3,1y3,2,

x1,1x1,2y2,1y2,2y3,1y3,2, y1,1y1,2x2,1x2,2y3,1y3,2, x1,1y1,2y2,1y2,2y3,1y3,2,

y1,1y1,2x2,1y2,2y3,1y3,2, y1,1y1,2y2,1y2,2y3,1y3,2).

One can easily verify that (H2
P )

℘ = HP (2) with respect to our modi�ed polarization.
For instance, consider (x1y2y3)(y1x2y3) ∈ G(H2

P ). Then(
(x1y2y3)(y1x2y3)

)℘
= (x1y1x2y2y

2
3)
℘ = x1,1y1,2x2,1y2,2y3,1y3,2 = uI ∈ G(HP (2)),

where I = {x1,1, x2,1} ∈ J (P (2)).

Theorem 8.4.9 Let (P,⪰) be a �nite poset. Then, for any ℓ ≥ 1,

(Hℓ
P )

℘ = HP (ℓ).

Proof. By Lemma 8.4.7, Hℓ
P is minimally generated by the monomials

uI1uI2 · · ·uIℓ , with I1 ⊆ I2 ⊆ · · · ⊆ Iℓ, Ij ∈ J (P ), j = 1, . . . , ℓ,

while HP (ℓ) ⊂ K
[
xi,j , yi,j : i ∈ [n], j ∈ [ℓ]

]
is generated by the squarefree monomials

uI = (
∏
xi,j∈I

xi,j)(
∏

xi,j∈P (ℓ)\I

yi,j), I ∈ J (P (ℓ)).

Hence, to get the assertion, we must show that for all uI1uI2 · · ·uIℓ ∈ G(Hℓ
P ), the

monomial (uI1uI2 · · ·uIℓ)℘ is equal to uI , for some poset ideal I ∈ J (P (ℓ)), and
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conversely, given any uI ∈ G(HP (ℓ)), with I ∈ J (P (ℓ)), then there exist I1 ⊆ I2 ⊆
· · · ⊆ Iℓ, Ii ∈ J (P ), i = 1, . . . , ℓ, such that uI = (uI1uI2 · · ·uIℓ)℘.

Let uI1uI2 · · ·uIℓ ∈ G(Hℓ
P ), with I1 ⊆ I2 ⊆ · · · ⊆ Iℓ. Set ki = |{r : xi ∈ Ir}|

and mi = |{s : xi /∈ Is}|. Therefore, ki +mi = ℓ and

(uI1uI2 · · ·uIℓ)
℘ = (

∏
xi∈P

ki∏
r=1

xi,r)(
∏
xi∈P

ℓ∏
s=ki+1

yi,s).

We claim that I = {xi,r : r = 1, . . . , ki} is a poset ideal of P (ℓ). From this, it
will follow that (uI1uI2 · · ·uIℓ)℘ = uI ∈ G(HP (ℓ)), as wanted. Indeed, let xi,r ∈ I
and xj,s ∈ P (ℓ) such that xj,s ⪯ℓ xi,r. We must prove that xj,s ∈ I. By de�nition
of the order ⪰ℓ we have xj ⪯ xi and r ≥ s. If j = i, then also xi,s ∈ I, by the
polarization technique. Let j ̸= i. We note that kj ≥ ki. Indeed, for any c such that
xi ∈ Ic, one has that xj ∈ Ic, since xj ⪯ xi. Thus, if xi,r divides (uI1uI2 · · ·uIℓ)℘,
then xj,r divides (uI1uI2 · · ·uIℓ)℘. For any d ≤ r, xj,d divides (uI1uI2 · · ·uIℓ)℘, by
the polarization technique. Since s ≤ r, then xj,s divides (uI1uI2 · · ·uIℓ)℘, as wanted.

Conversely, let I ∈ J (P (ℓ)) be a poset ideal and uI ∈ G(HP (ℓ)). Set

Ik = {xi : xi,ℓ+1−k ∈ I}, for k = 1, . . . , ℓ.

We claim that the sets Ij are poset ideals of P and that I1 ⊆ I2 ⊆ · · · ⊆ Iℓ. From
this, it will follow that uI = (uI1uI2 · · ·uIℓ)℘ ∈ G((Hℓ

P )
℘), as wanted.

Fix k ∈ [ℓ] and let xi ∈ Ik and xj ⪯ xi. We must prove that xj ∈ Ik, too. Since
xj ⪯ xi, then xj,ℓ+1−k ⪯ℓ xi,ℓ+1−k by de�nition of the order ⪰ℓ. Thus xj,ℓ+1−k ∈ I
and consequently xj ∈ Ik, as wanted.

Now, let k ∈ [ℓ] with k < ℓ. We prove that Ik ⊆ Ik+1. As a consequence, it
follows that I1 ⊆ I2 ⊆ · · · ⊆ Iℓ, as desired. Let xi ∈ Ik, then xi,ℓ+1−k ∈ I. Since
ℓ+1−k > ℓ+1−(k+1), we get that xi,ℓ+1−k ⪰ℓ xi,ℓ+1−(k+1) and so xi,ℓ+1−(k+1) ∈ I,
too. Thus xi ∈ Ik+1. The assertion follows. □

Lemma 3.1.2 obviously also holds with respect to our modi�ed polarization.
The polarization commutes with the homological shift ideals as follows from the

next result of Sbarra [141].

Lemma 8.4.10 (Sbarra, 2001 [141, Corollary 1.8], [101, Proposition 1.14]). Let I ⊂ S
be a monomial ideal. Then HSi(I

℘) = HSi(I)
℘ for all i ≥ 0.

Finally, we obtain the next result which gives a positive answer to Conjecture 8.4.4
for the class of bipartite graphs.

Corollary 8.4.11 Let G be a Cohen�Macaulay bipartite graph with 2n vertices. Then,
for all k ≥ 0 and all ℓ ≥ 1, HSk((J(G))

ℓ) has linear quotients with respect to the lexi-
cographic order induced by xn > yn > xn−1 > yn−1 > · · · > x1 > y1.

Proof. By [89, Theorem 9.1.13], there exists a poset (P,⪰) such that J(G) = HP .
Let ℓ ≥ 1. Then by Theorem 8.4.9, (Hℓ

P )
℘ = HP (ℓ). By Theorem 8.4.1, for all k ≥ 0,

HSk(HP (ℓ)) has linear quotients with respect to the lexicographic order induced by

xn,ℓ > yn,ℓ > xn,ℓ−1 > yn,ℓ−1 > · · · > xn,1 > yn,1 > xn−1,ℓ > yn−1,ℓ > · · · > x1,1 > y1,1.

By Lemma 8.4.10, HSk(HP (ℓ)) = HSk((H
ℓ
P )

℘) = HSk(H
ℓ
P )

℘. Finally, applying Lem-

mas 3.1.2 and 9.3.3, we obtain that HSk(H
ℓ
P ) = HSk((J(G))

ℓ) has linear quotients
with respect to the lexicographic order induced by xn > yn > xn−1 > yn−1 > · · · >
x1 > y1, as wanted. □
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Chapter 9

Powers of very well�covered graphs

Very well�covered graphs have been studied from view points of both Commutative
Algebra and Combinatorics. See, for instance, [40, 58, 76, 115, 116, 117, 124, 56]. In
[35] very well�covered graphs were studied by means of Betti splittings [74]. Recently,
many authors have managed the Betti splitting technique for studying algebraic and
combinatorial properties of classes of monomial ideals (see, for instance, [33, 39, 66]
and references therein).

In the present chapter, we continue the algebraic study of Cohen�Macaulay very
well�covered graphs started in [35]. If G is a graph in such a class, our main tool will
be the Rees algebra of the cover ideal J(G). We state that if G is a Cohen�Macaulay
very well�covered graph, then the Rees algebra of J(G) is a normal Cohen�Macaulay
domain and as a consequence we obtain some relevant properties on the behavior of
the powers of J(G), when G is a whisker graph. Adding a whisker to a graph G at a
vertex v means adding a new vertex w and an edge vw to the set E(G). If a whisker
is added to every vertex of G, then the resulting graph, denoted by G∗, is called the
whisker graph or suspension of G. It is important to point out that the whisker graph
G∗ of a graph G with n vertices is a very well-covered Cohen�Macaulay graph with
2n vertices (see, for instance, [116] and references therein). In [84, Question 6.6] it is
asked in which way attaching whiskers to a graph H gives rise to a graph G such that
J(G) has linear powers. In Corollary 9.3.6 we partially answer this question. See also
[123, Corollary 4.5] and [129, Theorem 2.3].

Here are the outline of the chapter. In Section 9.1 we discuss a normality criterion
for squarefree monomial ideals (Criterion 9.1.2). This result is borrowed from [133].
Section 9.2 deeply investigates the Rees algebra R(J(G)) of J(G), with G a Cohen�
Macaulay very well�covered graph. Our main result states that R(J(G)) is a normal
Cohen�Macaulay domain (Theorem 9.2.1). To obtain this result we use Criterion
9.1.2 as well as the structure theorem of Cohen�Macaulay very well�covered graphs
(Characterization 8.1.3) stated in [40]. In Section 9.3, if G is a whisker graph with
2n vertices, we prove that J(G) satis�es the ℓ-exchange property (Theorem 9.3.5).
As a consequence, we state that J(G)k has linear quotients, for all k ≥ 1, and then
that J(G) has linear powers (Corollary 9.3.6). Furthermore, if G is a whisker graph,
we show that each power of J(G) has homological linear quotients (Theorem 9.3.8).
This result supports a conjecture stated in [35, Conjecture 4.4]. Moreover, as applica-
tions of the previous results, we compute the limit depth, the depth stability and the
analytic spread of J(G). Finally, if G is a whisker graph with 2n vertices, we get a
partial result on the structure of the reduced Gröbner basis of the presentation ideal
of R(J(G)) (Corollary 9.3.11). At present we do not know the reduced Gröbner basis
of the presentation ideal of R(J(G)). However, our experiments in Macaulay2 [82]
suggest that for a suitable monomial order, the reduced Gröbner basis is quadratic
and hence that R(J(G)) is Koszul (Conjecture 9.3.13), for any Cohen�Macaulay very
well�covered graph with 2n vertices.
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9.1 A normality criterion for monomial ideals

Let I be an ideal of a domain R. An element f ∈ R is integral over I if it satis�es an
equation of the type

fk + a1f
k−1 + · · ·+ ak−1f + ak = 0, ai ∈ Ii.

The set of all these elements, denoted by I, is an ideal containing I and called the
integral closure of I. We say that I is integrally closed if I = I, and we say that I is
normal if all its powers Ik, k ≥ 1, are integrally closed.

Let I be an ideal of a commutative ring R generated by u1, . . . , um. The Rees
algebra of I, denoted by R(I) or R[It], is the subring of R[t], de�ned as follows

R(I) = R[It] = R[u1t, . . . , umt] =
⊕
k≥0

Iktk ⊂ R[t],

where t is a new variable.
We quote the next fundamental result from [97] (see, also, [149, Theorem 4.3.17]).

Theorem 9.1.1 Let I be an ideal of a normal domain R. Then the following are
equivalent:

(a) I is a normal ideal;

(b) the Rees algebra R(I) is normal.

Now, let R = K[x1, . . . , xn] be the standard graded polynomial ring with coef-
�cients in a �eld K and let I be a monomial ideal of R. As usual we denote by
G(I) = {u1, . . . , um} the unique minimal set of monomial generators of I. Then the
Rees algebra of I is the following K-algebra

R(I) = K[x1, . . . , xn, u1t, . . . , umt] ⊂ R[t].

The next criterion quickly follows from [133, Theorem 3.1] (or [131, Theorem 3.1]).

Criterion 9.1.2 Let I1, I2 ⊂ K[x2, . . . , xn] be two squarefree monomial ideals. If
I1 ⊆ I2 are normal ideals, then I = I1 + x1I2 ⊂ R is a normal ideal, too.

Indeed, by [133, Theorem 3.1], it is enough to check that I1 + I2 is normal and
that gcd(x1, u) = 1 for all u ∈ G(I1)∪G(I2). Since I1 ⊆ I2, the �rst assertion follows
because I1 + I2 = I2 is normal by hypothesis. The second assertion follows because
the generators of I1 and I2 are monomials of K[x2, . . . , xn].

9.2 The Rees algebra

In this section we study the Rees algebra of the vertex cover ideal of a Cohen�Macaulay
very well�covered graph.

The main result in this section is the following.

Theorem 9.2.1 Let G be a Cohen�Macaulay very well�covered graph. Then the Rees
algebra R(J(G)) is a normal Cohen�Macaulay domain.

As in the previous chapter, if G is a Cohen�Macaulay very well�covered graph
with 2n vertices, we assume that its set of vertices V (G) = {x1, . . . , xn, y1, . . . , yn}
satis�es the conditions (i)�(v) of Characterization 8.1.3, without having to relabel it.
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Hereafter, denote by S the polynomial ring K[x1, . . . , xn, y1, . . . , yn] in the 2n
variables x1, . . . , xn, y1, . . . , yn with coe�cients in the �eld K.

Lemma 9.2.2 Let G be a Cohen�Macaulay very well�covered graph with 2n vertices.
Then

J(G) = zN(x1)J(G1) + x1J(G \ {x1, y1}), (9.1)

where G1 = G \ {xi, yi : i ∈ N(x1)x ∪N(x1)y}.

Proof. The proof is similar to that of [35, Proposition 2.3]. We include it for com-
pleteness. Let u ∈ G(J(G)). By Lemma 8.2.2, either x1 divides u or y1 divides u.

Case 1. Suppose x1 divides u. Note that N(y1) = {x1}. Indeed, by Characterization
8.1.3(i), N(y1) is a subset of X, since Y is a maximal independent set. Moreover, by
(iii) if xiy1 ∈ E(G) then i ≤ 1. Hence, N(y1) = {x1}. Consequently zN(y1) = x1
and the support C ′ of u/zN(y1) = u/x1 is a vertex cover of G \ {x1, y1}. But C ′

is a minimal vertex cover, for u/x1 has degree n − 1 and G \ {x1, y1} is a Cohen�
Macaulay very well�covered graph with 2(n − 1) vertices (Proposition 8.2.1). Thus
u/x1 ∈ G(J(G \ {x1, y1})) and so u ∈ G(x1J(G \ {x1, y1})).

Case 2. Suppose y1 divides u. Since the support C of u is a minimal vertex cover of G
and x1 /∈ C, then zi ∈ C for all zi ∈ N(x1). Consequently, the support C1 of u/zN(x1)

is a vertex cover of G1. But C1 is a minimal vertex cover of G1, for |C1| = n−|N(x1)|
and G1 is a Cohen�Macaulay very well�covered graph with 2(n − |N(x1)|) vertices
(Proposition 8.2.1). Hence u ∈ G(zN(x1)J(G1)).

These two cases show the inclusion �⊆" in equation (9.1). The other inclusion is
acquired as in the last part of the proof of [35, Proposition 2.3]. □

Corollary 9.2.3 Let G be a Cohen�Macaulay very well�covered graph with 2n ver-
tices. Then J(G) is a normal ideal.

Proof. By Lemma 9.2.2, equation (9.1) holds. Set J = J(G), J1 = zN(x1)\y1J(G1)
and J2 = J(G \ {x1, y1}). Thus

J = y1J1 + x1J2.

Since y1J1, J2 ⊂ K[x2, . . . , xn, y1, y2, . . . , yn], it is enough to show that J1 ⊆ J2. Then
y1J1 ⊂ J2 and the result follows from Criterion 9.1.2 and induction on n.

Let u ∈ G(J1). We must prove that u ∈ G(J2), too. That is, we must show that
C = supp(u) is a minimal vertex cover of G \ {x1, y1}. It is enough to prove C is
a vertex cover of G \ {x1, y1}. Minimality follows because |C| = n − 1. Hence, we
must prove that e∩C ̸= ∅ for all edges e ∈ E(G \ {x1, y1}). Let e ∈ E(G \ {x1, y1}).
Since y1u ∈ G(J), it follows that C ∪ y1 is a minimal vertex cover of G. Hence
e ∩ (C ∪ y1) ̸= ∅. Therefore e ∩ C ̸= ∅ because y1 /∈ e. Our assertion follows. □

Finally, we are in the position to prove the main result in the section.

Proof of Theorem 9.2.1. By Corollary 9.2.3, J(G) is a normal ideal. Hence, the
Rees algebra R(J(G)) is normal (Theorem 9.1.1). Next, by a theorem of Hochster
[105], since R(J(G)) is a normal a�ne semigroup ring, it follows that R(J(G)) is
Cohen�Macaulay. □

The toric ring of G(J(G)) is the K-algebra K[J(G)] = K[u : u ∈ G(J(G))] ⊂ S.
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Corollary 9.2.4 Let G be a Cohen�Macaulay very well�covered graph. Then the toric
ring K[J(G)] is a normal Cohen�Macaulay domain.

Proof. Since J(G) is generated in one degree, the statement follows from Theorem
9.2.1 together with [149, Proposition 4.3.42]. □

Now let I be an ideal of a noetherian ring R. As usual, denote by V (I) the set
of prime ideals containing I and by Ass(I) the set of associated prime ideals of R/I.
For all P ∈ Spec(R), we denote by mP the maximal ideal of the local ring RP . Recall
that I satis�es the persistence property (with respect to associated ideals) if

Ass(I) ⊆ Ass(I2) ⊆ Ass(I3) ⊆ · · · .

In [95], Herzog and Qureshi introduced the notion of strong persistence property. More
in detail, let P ∈ V (I). We say that I satis�es the strong persistence property with
respect to P if for all k and all f ∈ (IkP : mP ) \ IkP there exists g ∈ IP such that
fg /∈ Ik+1

P . The ideal I is said to satisfy the strong persistence property if it satis�es
the strong persistence property for all P ∈ V (I). The strong persistence property
implies the persistence property [95] (see, also, [133, Proposition 2.1]).

Theorem 9.2.1 yields the next result.

Corollary 9.2.5 Let G be a Cohen�Macaulay very well�covered graph. Then J(G)
satis�es the strong persistence property, and in particular, the persistence property.

Proof. The assertion follows from Theorem 9.2.1 and [95, Corollary 1.6]. □

9.3 Whisker graphs

In this section we study some algebraic properties of the powers of the cover ideals of
a special class of Cohen�Macaulay very well�covered graphs. Our main tool is the so
called ℓ-exchange property introduced in [93].

Let I ⊂ R = K[x1, . . . , xn] be a monomial ideal generated in one degree, and let
K[I] = K[u : u ∈ G(I)] be the toric ring of G(I). Then K[I] has the presentation

ψ : T = K[tu : u ∈ G(I)]→ K[I]

de�ned by ψ(tu) = u for all u ∈ G(I). The kernel Ker(ψ) = J is called the toric ideal
of K[I].

Fix a monomial order > on T . We say that the monomial tu1 · · · tuN ∈ T is
standard with respect to >, if tu1 · · · tuN does not belong to the initial ideal, in<(J),
of the toric ideal J of K[I].

De�nition 9.3.1 ([43, De�nition 3.3]). The equigenerated monomial ideal I ⊂ R
satis�es the ℓ-exchange property with respect to >, if the following condition is satis�ed:
for all standard monomials tu1 · · · tuN , tv1 · · · tvN ∈ T of degree N such that

(i) degxi(u1 · · ·uN ) = degxi(v1 · · · vN ), for all 1 ≤ i ≤ j − 1 with j ≤ n− 1,

(ii) degxj (u1 · · ·uN ) < degxj (v1 · · · vN ),

there exist h and k with j < h ≤ n and 1 ≤ k ≤ N , such that xj(uk/xh) ∈ G(I).

The following lemmata will be needed later.
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Lemma 9.3.2 Let G be a Cohen�Macaulay very well�covered graph with 2n vertices.
Let C ∈ C(G) such that Cy ̸= ∅ and let i = minCy. Then (C \ yi) ∪ xi ∈ C(G).

Proof. Firstly we prove that C ′ = (C \yi)∪xi is a vertex cover of G. Let e ∈ E(G), we
must show that e ∩ C ′ is non empty. Since C is a vertex cover of G, then e ∩ C ̸= ∅.
If {xi, yi} ∩ e = ∅, then e ∩ C ′ ̸= ∅, too. If xi ∈ e then e ∩ C ′ contains xi and
therefore the intersection is non empty. Finally, suppose yi ∈ e but xi /∈ e. Since Y
is a maximal independent set, it follows that N(yi) ⊆ X. Hence, e = xjyi for some
j. By Characterization 8.1.3(iii) we have j ≤ i. Thus j < i, because xi /∈ e. Since
i = minCy and j < i, it follows from Lemma 8.2.2 that xj ∈ C. Hence xj ∈ e ∩ C ′

and again the intersection is non empty.
The fact that C ′ is a minimal vertex cover of G follows because |C ′| = n. □

Lemma 9.3.3 Let G be a Cohen�Macaulay very well�covered graph with 2n vertices.
Then, for all k ≥ 1, all i ∈ [n] and all u ∈ G(J(G)k) we have

degxi(u) + degyi(u) = k.

Proof. By Lemma 8.2.2, for all u ∈ G(J(G)), we have

degxi(u) + degyi(u) = 1 for all 1 ≤ i ≤ n.

Since J(G) is generated in a single degree, the minimal generators of J(G)k are the
products u = u1 · · ·uk of k arbitrary monomials of G(J(G)). Hence, for all 1 ≤ i ≤ n,
we have degxi(u) + degyi(u) =

∑k
j=1[degxi(uj) + degyi(uj)] = k. □

Now, we consider a wide class of Cohen�Macaulay very well�covered graphs.
Let H be a graph on the vertex set X = {x1, . . . , xn} and take a new set of

variables Y = {y1, . . . , yn}. Then, the whisker graph G = H∗ of H is the graph
obtained from H by attaching to each vertex xi a new vertex yi and the edge xiyi.
The edge xiyi is called a whisker. More in detail, the whisker graph G = H∗ of H
is the graph on the vertex set X ∪ Y = {x1, . . . , xn} ∪ {y1, . . . , yn} and the edge set
E(G) ∪ {x1y1, x2y2, . . . , xnyn}.

Lemma 9.3.4 Let G be a whisker graph with vertex set X∪Y . Then, for all C ∈ C(G)
and all yi ∈ C we have that (C \ yi) ∪ xi ∈ C(G).

Proof. By assumption G = H∗, for some graph H on the vertex set X = {x1, . . . , xn},
thus a Cohen�Macaulay very well�covered graph with the 2n vertices x1, . . . , xn,
y1, . . . , yn. Since for all i, the only vertex adjacent to yi is xi, then for any label-
ing of X ∪ Y , the conditions (i)�(v) of Characterization 8.1.3 are satis�ed. Hence, if
C ∈ C(G) and yi ∈ C, we can choose a labeling such that miny C = i. The assertion
follows by applying Lemma 9.3.2. □

From now on, if G is a whisker graph with 2n vertices, we implicitly assume that

- G is the whisker graph associated to a given graph whose vertex set is the set
X = {x1, . . . , xn}, and with whiskers xiyi, i = 1, . . . , n, that is, V (G) = X ∪ Y ,
with Y = {y1, . . . , yn}.

- G is a very well�covered Cohen�Macaulay graph whose vertex set X∪Y satis�es
the conditions (i)�(v) of Characterization 8.1.3.
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Theorem 9.3.5 Let G be a whisker graph with 2n vertices. Then J(G) satis�es the
ℓ-exchange property with respect to the lexicographic order >lex induced by x1 > y1 >
x2 > y2 > · · · > xn > yn.

Proof. Set z2p−1 = xp and z2p = yp, for p = 1, . . . , n. Then

z1 > z2 > z3 > z4 > · · · > z2n−1 > z2n.

We prove the following slightly more general statement.

(∗) For all monomials tu1 · · · tuN , tv1 · · · tvN of K[tu : u ∈ G(J(G))] such that

(i) degzi(u1 · · ·uN ) = degzi(v1 · · · vN ), for all 1 ≤ i ≤ j − 1 with j ≤ 2n− 1,

(ii) degzj (u1 · · ·uN ) < degzj (v1 · · · vN ),

there exist h and k, with j < h ≤ 2n and 1 ≤ k ≤ N , such that zj(uk/zh) ∈ G(J(G)).

Let tu1 · · · tuN , tv1 · · · tvN monomials of K[tu : u ∈ G(J(G))] satisfying the condi-
tions (i) and (ii).

We claim that the integer j is odd. Suppose for a contradiction that j is even,
then j = 2p for some p ∈ [n]. Thus zj = yp and

degyp(u1 · · ·uN ) < degyp(v1 · · · vN ). (9.2)

On the other hand, since J(G) is generated in a single degree, u1 · · ·uN and v1 · · · vN
belong to G(J(G)N ). Thus, Lemma 9.3.3 gives

degxp(u1 · · ·uN ) + degyp(u1 · · ·uN ) = degxp(v1 · · · vN ) + degyp(v1 · · · vN ) = N. (9.3)

Equations (9.2) and (9.3) yield degxp(u1 · · ·uN ) > degxp(v1 · · · vN ), but this contra-
dicts condition (i), since xp = zj−1. Hence j is odd, and so zj = xp for some p ∈ [n].

Since degxp(u1 · · ·uN ) < degxp(v1 · · · vN ) ≤ N , by Lemma 9.3.3 it follows that
degyp(u1 · · ·uN ) > 0. Hence, there exists k with 1 ≤ k ≤ N such that yp divides
uk. By Lemma 9.3.4, it follows that xp(uk/yp) ∈ G(J(G)). Since yp = zj+1, and
zj > zj+1, the claim (∗) is proved. □

We recall that an ideal I of a polynomial ring R = K[x1, . . . , xn] has linear powers
if Ik has linear resolution, for all k ≥ 1. Moreover, a monomial ideal I of R, has
linear quotients if for some order u1, . . . , um of its minimal generating set G(I), all
colon ideals (u1, . . . , uℓ−1) : uℓ, ℓ = 2, . . . ,m, are generated by a subset of the set of
variables {x1, . . . , xn}.

As a �rst consequence of Theorem 9.3.5 we prove that the cover ideal of a whisker
graph G has linear powers. Such a result has been recently obtained in [123, Corollary
4.5] (see, also, [129, Theorem 2.3]) by showing that the ordinary powers of J(G) are
weakly polymatroidal, which implies having linear powers. It also follows from a more
general result proved in [90, Theorem 3.3].

Corollary 9.3.6 Let G be a whisker graph with 2n vertices. Then,

(a) for all k ≥ 1, J(G)k has linear quotients with respect to the lexicographic order
>lex induced by x1 > y1 > x2 > y2 > · · · > xn > yn.

(b) J(G) has linear powers. In particular, the depth function depthS/J(G)k is a
non-increasing function of k, that is, depthS/J(G)k ≥ depthS/J(G)k+1 for all
k ≥ 1.
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Proof. (a) Since J(G) is generated in a single degree, each minimal monomial generator
of J(G)N is a product u1 · · ·uN of N arbitrary, non necessarily distinct, monomials
ui ∈ G(J(G)). Let u = u1 · · ·uN ∈ G(J(G)N ), where each ui ∈ G(J(G)). Setting
P = (v1 · · · vN : vi ∈ G(J(G)), v1 · · · vN >lex u1 · · ·uN ), we must prove that the ideal
P : u is generated by variables.

Let v = v1 · · · vN ∈ G(P ). Using the labeling zi on the variables, given in the
proof of Theorem 9.3.5, by the de�nition of >lex, for some i and j we have

(i) degzi(v1 · · · vN ) = degzi(u1 · · ·uN ), for all 1 ≤ i ≤ j − 1 with j ≤ 2n− 1,

(ii) degzj (v1 · · · vN ) > degzj (u1 · · ·uN ).

Hence, by the property (∗) proved in Theorem 9.3.5, there exist integers k and h such
that zj = xh and xh(uk/yh) ∈ G(J(G)). Since xh > yh, we have xh(uk/yh) >lex uk.
Consequently,

u′ = xh(u/yh) = u1 · · ·uk−1 · xh(uk/yh) · uk+1 · · ·uN ∈ P

and xh = u′/gcd(u′, u) ∈ P : u divides the monomial v/gcd(v, u) ∈ P . Indeed, the
set {v/gcd(v, u) : v ∈ G(P )} generates P : u ([89, Proposition 1.2.2]). Hence, we see
that P : u is generated by variables, as desired.
(b) That J(G) has linear powers follows from (a) and the fact that all powers J(G)k are
monomial ideals generated in a single degree. The claim about the non-increasingness
of the function depthS/J(G)k follows from [89, Proposition 10.3.4]. □

A weaker form of Conjecture 8.4.4 is the following one.

Conjecture 9.3.7 ([35, Conjecture 4.4]). Let G be a Cohen�Macaulay very well�
covered graph with 2n vertices. Then HSk(J(G)

ℓ) has linear quotients, for all k ≥ 0,
and all ℓ ≥ 1.

In [35], we gave a positive answer to this conjecture for ℓ = 1 (Theorem 8.4.1) and
for all Cohen�Macaulay bipartite graphs (Corollary 8.4.11). Now we prove that the
powers of cover ideals of whisker graphs have homological linear quotients, partially
answering Conjecture 9.3.7.

Theorem 9.3.8 Let G be a whisker graph with 2n vertices. Then, for all ℓ ≥ 1 and
all k ≥ 0, HSk(J(G)

ℓ) has linear quotients with respect to the lexicographic order >lex

induced by x1 > x2 > · · · > xn > y1 > y2 > · · · > yn.

Proof. Let > be the lexicographic order induced by x1 > y1 > x2 > y2 > · · · > xn >
yn. Then, by Corollary 9.3.6(a), J(G)ℓ has linear quotients with respect to > for all
ℓ ≥ 1. Let u ∈ G(J(G)ℓ), we de�ne

set(u) = {i : zi ∈ {xi, yi}, zi ∈ (v ∈ G(J(G)ℓ) : v > u) : (u)}.

The de�nition of the order > and Lemma 9.3.3 imply that the set of variables gener-
ating the ideal (v ∈ G(J(G)ℓ) : v > u) : (u) is a subset of X = {x1, . . . , xn}.

Thus, by [60, Proposition 1.2] we have

HSk(J(G)
ℓ) = (xFu : u ∈ G(J(G)ℓ), F ⊆ set(u), |F | = k).

Let xDv ∈ G(HSk(J(G)ℓ)), D ⊆ set(v), v ∈ G(J(G)ℓ) and consider the colon ideal

P = (xFu ∈ G(HSk(J(G)ℓ)) : xFu >lex xDv) : (xDv).
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We must prove that P is generated by variables.
Let xFu ∈ G(HSk(J(G)ℓ)), F ⊆ set(u), u ∈ G(J(G)ℓ), such that xFu >lex xDv.

Let h = lcm(xFu,xDv)/(xDv). If deg(h) = 1, h is a variable. Assume deg(h) > 1.
Let zi be the labeling on the variables such that z1 = x1, z2 = x2, . . . , zn = xn,
zn+1 = y1, zn+2 = y2, . . . , z2n = yn. Then, by de�nition of >lex, there exists p such
that degzj (xFu) = degzj (xDv) for all j < p and

degzp(xFu) > degzp(xDv). (9.4)

Now, we distinguish two cases.

Case 1. Suppose zp = xi for some i. We claim that

degxi(xFu) ≤ ℓ. (9.5)

Indeed, by Lemma 9.3.3 and the structure of xFu, it follows that degxi(xFu) ≤ ℓ+1.
Suppose by contradiction that degxi(xFu) = ℓ + 1, then i ∈ set(u). Necessarily yi
must divide u. But this would imply that degxi(xFu) + degyi(xFu) exceeds ℓ + 1,
which is impossible. Hence, equation (9.5) follows.

By Lemma 9.3.3 and equations (9.4) and (9.5), ℓ ≥ degxi(xFu) > degxi(xDv)
and degyi(xDv) > 0. Writing v = v1v2 · · · vℓ, with each vq ∈ G(J(G)), we have
that yi divides vq for some q. Then i ∈ set(v). Indeed, xi(vq/yi) ∈ G(J(G)) and
v′ = xi(v/yi) = v1 · · · vq−1(xi(vq/yi))vq+1 · · · vℓ ∈ G(J(G)ℓ). We distinguish two
cases.

Subcase 1.1. Let i /∈ D. Then xDv
′ ∈ G(HSk(J(G)ℓ)) and xDv

′ >lex xDv. More-
over, lcm(xDv

′,xDv)/(xDv) = xi ∈ P divides h.

Subcase 1.2. Let i ∈ D. Then degxi(xDv) + degyi(xDv) = ℓ + 1 (Lemma 9.3.3).
Since by (9.4) and (9.5) degxi(xDv) < ℓ, it follows that degyi(v) ≥ 2. Hence, there
exist h1 ̸= h2 such that yi divides vh1 and vh2 . Set v

′ = v1 · · · (xi(vh1)/yi) · · · vh2 · · · vℓ.
Then, it follows that v′ ∈ G(J(G)ℓ) and D ⊆ set(v′). Thus xDv

′ >lex xDv and more-
over lcm(xDv

′,xDv)/(xDv) = xi ∈ P divides h.

Case 2. Suppose zp = yi for some i. For all j such that degyj (xFu) > degyj (xDv),
since degxj (xFu) = degxj (xDv), Lemma 9.3.3 gives

ℓ+ 1 = degxj (xFu) + degyj (xFu) > degxj (xDv) + degyj (xDv) = ℓ.

Hence j /∈ D and degyj (xFu) − degyj (xDv) = 1. Let j1, . . . , jt be the integers such
that degyjs (xFu) > degyjs (xDv), s = 1, . . . , t. Then, the above argument shows that
h = yj1yj2 · · · yjt and js /∈ D for all s = 1, . . . , t. Since deg(h) > 1 we have t ≥ 2.
As before v′ = xj2 · · ·xjtv/(yj2 · · · yjt) ∈ G(J(G)ℓ), D ⊆ set(v′) and xDv

′ >lex xDv.
Finally lcm(xDv

′,xDv)/(xDv) = yj1 ∈ P divides h .

The above Cases 1 and 2 show that P is generated by variables, as wanted. □

Another relevant consequence of Theorem 9.3.5 concerns the limit depth of J(G).
The role of the Rees algebra of the cover ideal J(G) will be crucial to calculating it.

Let I be a graded ideal of a polynomial ring R with n variables. By a theorem of
Brodmann [22], depthR/Ik is constant for k large enough. This eventually constant
value is called the limit depth of I, and it is denoted by limk→∞ depthR/Ik.

The depth stability of I, denoted by dstab(I), is the least integer k0 such that
depthR/Ik = depthR/Ik0 for all k ≥ k0. Brodmann proved that

lim
k→∞

depthR/Ik ≤ n− ℓ(I),
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where ℓ(I) is the analytic spread of I, that is, the Krull dimension of the �ber ring
R(I)/mR(I), where m is the maximal graded ideal of R.

If the Rees algebra of I is Cohen�Macaulay, then by [89, Proposition 10.3.2] (see,
also, [49] combined with [107, Proposition 1.1]), we have

lim
k→∞

depthR/Ik = n− ℓ(I). (9.6)

Hence, we have

Theorem 9.3.9 Let G be a whisker graph with 2n vertices. Then

lim
k→∞

depthS/J(G)k = n− 1.

Moreover, dstab(J(G)) ≤ n and ℓ(J(G)) = n+ 1.

For the proof of this result, we need the next more general lemma. Let u ∈ S be
a monomial. Using the notation in Section 9.2, we have supp(u)x = {i : xi divides u}
and supp(u)y = {i : yi divides u}.

Lemma 9.3.10 Let G be a Cohen�Macaulay very well�covered graph with 2n vertices.
Then, for all i ∈ [n], there exists u ∈ G(J(G)) such that min supp(u)y = i.

Proof. We proceed by induction on n ≥ 1. For the base case, J(G) = (x1, y1) and
the statement holds. Now, let n > 1. Then, by Lemma 9.2.2 we have J(G) =
zN(x1)J(G1) + x1J(G \ {x1, y1}). If u ∈ G(zN(x1)J(G1)), then min supp(u)y = 1.
Let i ∈ [n] with i ̸= 1. Since G \ {x1, y1} is a Cohen�Macaulay very well�covered
graph (Proposition 8.2.1), by induction there exists v ∈ G(J(G \ {x1, y1})) with
min supp(v)y = i. Setting u = x1v, we have u ∈ G(J(G)) and min supp(u)y =
min supp(v)y = i. The proof is complete. □

Now, we are in the position to prove Theorem 9.3.9.

Proof of Theorem 9.3.9. For any N ≥ 1 and any u1 · · ·uN ∈ G(J(G)N ), with
ui ∈ G(J(G)), let P = (v1 · · · vN : vi ∈ G(J(G)), v1 · · · vN >lex u1 · · ·uN ) and denote
by s(u1, . . . , uN ) the number of variables generating the colon ideal P : u1 · · ·uN .
Since J(G)N has linear quotients with respect to >lex (Corollary 9.3.6(a)) we have
that depthS/J(G)N = 2n − max{s(u1, . . . , uN ) + 1 : u1, . . . , uN ∈ G(J(G))}. This
follows from [89, Corollary 8.2.2] and the Auslander�Buchsbaum formula. The de�ni-
tion of the order >lex and Lemma 9.3.3 imply that the set of variables generating the
ideal P : u1 · · ·uN is a subset of X = {x1, . . . , xn}. Pick n monomials ui = xFiy[n]\Fi

,
where min([n] \ Fi) = i, for i = 1, . . . , n. The existence of these monomials fol-
lows from Lemma 9.3.10. By Lemma 9.3.2, xi(ui/yi) ∈ G(J(G)) for i = 1, . . . , n.
Hence, s(u1, . . . , un) = n. This shows that depthS/J(G)n = n − 1. We claim that
depthS/J(G)N = n− 1 for all N ≥ n. It is enough to consider u1, . . . , un and N − n
arbitrary monomials vn+1, . . . , vN ∈ G(J(G)). Then s(u1, . . . , un, vn+1, . . . , vn) = n
and depthS/J(G)N = n − 1. Hence, dstab(J(G)) ≤ n. Moreover, from Theorem
9.2.1 and equation (9.6), since S is a polynomial ring in 2n variables, ℓ(J(G)) =
2n− limk→∞ depthS/J(G)k = n+ 1. □

We close the section with some remarks on the reduced Gröbner basis of the
presentation ideal J of R(J(G)). Hereafter, we follow closely [51, Section 6.4.1].

Let G be a Cohen�Macaulay very well�covered graph with 2n vertices X ∪ Y =
{x1, . . . , xn, y1, . . . , yn}. Let G(J(G)) = {u1, . . . , um} and let R(J(G)) be the Rees
algebra of J(G). Let x = x1, . . . , xn, y = y1, . . . , yn and t = tu1 , . . . , tum .
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Then the Rees algebra R(J(G)) has the presentation

φ : S′ = K[x,y, t]→ R(J(G))

de�ned by setting

φ(xi) = xi, φ(yi) = yi, for 1 ≤ i ≤ n,

and
φ(tuj ) = ujt for 1 ≤ j ≤ m.

The ideal J = Ker(φ) is called the presentation ideal of R(J(G)).
Analogously, the toric ring K[J(G)] = K[u1, . . . , um] has the presentation

ψ : T = K[t]→ K[u1, . . . , um]

de�ned by setting ψ(tuj ) = uj for 1 ≤ j ≤ m. The ideal L = Ker(ψ) is called the toric
ideal of K[u1, . . . , um]. Let m = (x1, . . . , xn, y1, . . . , yn) be the graded maximal ideal
of S. Since J(G) is generated in a single degree, the �ber ring R(J(G))/mR(J(G))
is isomorphic to the toric ring K[J(G)].

Let >′ be an arbitrary monomial order on T and let >lex be the lexicographic
order on S induced by x1 > y1 > x2 > y2 > · · · > xn > yn. We de�ne the monomial
order >′

lex as follows: for two monomials w1t
a1
u1 · · · t

am
um and w2t

b1
u1 · · · t

bm
um in S′, with

w1, w2 ∈ S, we set w1t
a1
u1 · · · t

am
um >′

lex w2t
b1
u1 · · · t

bm
um if and only if w1 >lex w2 or w1 = w2

and ta1u1 · · · t
am
um >′ tb1u1 · · · t

bm
um . According to [51, Section 2] the order >′

lex is the product
order of >′ and >lex.

From Theorem 9.3.5 and [51, Theorem 6.24], we get the next result.

Corollary 9.3.11 Let G be a whisker graph with 2n vertices. Then the reduced Gröb-
ner basis of the presentation ideal J of R(J(G)) with respect to >′

lex consists of all
binomials belonging to the reduced Gröbner basis of L with respect to >′ together with
the binomials

xitu − yitxi(u/yi),

where u, xi(u/yi) ∈ G(J(G)).

The statement of Corollary 9.3.11 seems to be true for all Cohen�Macaulay very
well�covered graphs.

Example 9.3.12 Consider the graph G with 12 vertices depicted below
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By Characterization 8.1.3, G is a Cohen�Macaulay very well�covered graph with
12 vertices. We have

I(G) = (x1y1, x2y2, x3y3, x4y4, x5y5, x6y6, x1x2, x1x3, x1x4, x1x5,

x1x6, x2x3, x2x4, x2x5, x2x6, x3y4, x3y5, x3y6, x4y5, x4y6),

J(G) = (x1x2x3x4x5x6, x1x2x3x4x5y6, x1x2x3x4y5x6, x1x2x3x4y5y6,

x1x2x3y4y5y6, x1x2y3y4y5y6, x1y2x3x4x5x6, y1x2x3x4x5x6).

We order the monomials u1, . . . , u8 of G(J(G)) with respect to the lexicographic
order induced by x1 > y1 > · · · > x6 > y6. Thus, for instance u1 = x1x2x3x4x5x6,
u2 = x1x2x3x4x5y6 and so on.

Now, let
φ : S′ = K[x,y, t]→ R(J(G))

be the map de�ned by setting φ(xi) = xi, φ(yi) = yi, for 1 ≤ i ≤ 6, and φ(tuj ) = ujt
for 1 ≤ j ≤ 8. Furthermore, let T = K[t].

Let >′
lex be the product order of the lexicographic order >lex on S induced by

x1 > y1 > · · · > xn > yn, and the lexicographic order >′ on T such that tui >
′ tuj if

and only if ui >lex uj . By using Macaulay2 [82], we have that the reduced Gröbner
basis of ker(φ) with respect to the order >′

lex is the following one:

G = {x6tu2 − y6tu1 , x5tu3 − y5tu1 , x6tu4 − y6tu3 , x5tu3 − y5tu1 , x4tu5 − y4tu4 ,
x3tu6 − y3tu5 , x2tu7 − y2tu1 , x1tu8 − y1tu1 , tu1tu4 − tu2tu3}.

Our experiments using Macaulay2 [82] suggest the next conjecture.

Conjecture 9.3.13 Let G be a Cohen�Macaulay very well�covered graph with 2n
vertices. Then the presentation ideal of the Rees algebra of J(G) has a quadratic
reduced Gröbner basis with respect to the product order >′

lex of the lexicographic order
>lex on S induced by x1 > y1 > · · · > xn > yn, and the lexicographic order >′ on
T such that tui >

′ tuj if and only if ui >lex uj. In particular, R(J(G)) is a Koszul
algebra.

Notes

To determine when a homogeneous ideal has linear powers, or more generally when all
powers of I are componentwise linear is a classical question in Commutative Algebra.
One of the strongest results in this direction is the theorem of Herzog, Hibi and Zheng
about edge ideals with linear powers (Theorem 3.3.6). It says that I(G) has linear
powers, that is, reg(I(G)) = 2k for all k ≥ 1, if and only if G is a cochordal graph.

More generally, the study of the regularity of powers of a homogeneous ideal
I ⊂ S is motivated by the result of Cutkosky, Herzog and Trung [41], as well as
that of Kodiyalam [118], which says that reg(Ik) is asymptotically a linear function
a(I)k + b(I), with a(I) a positive integer less or equal to the highest degree of a
minimal generator of I, and b(I) ≥ 0. For edge ideals, a key problem is to determine
the constants a(I(G)) and b(I(G)) appearing in reg(I(G)k) = a(I(G))k + b(I(G))
(k ≫ 0) in terms of the combinatorics of G. However, this problem is doomed to be a
dream in general. Indeed, while a(I(G)) = 2, Minh and Vu exhibited an example of
an edge ideal whose Castelnuovo�Mumford regularity of each of its powers depends on
the characteristic of the underlying �eld [128, Remark 5.5]. Thus the above problem
can be solved only if we con�ne ourself to particular classes of graphs.
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Our Conjecture 8.4.4 is inspired by the Herzog�Hibi�Ohsugi conjecture [91, Con-
jecture 2.5] which predicts that J(G)k is componentwise linear for all k ≥ 1, if G is a
chordal graph. In such paper [91], componentwise linearity is characterized as follows.

Theorem. (Herzog�Hibi�Ohsugi, 2011 [91, Corollary 1.5]). Let K be an in�nite �eld,
I ⊂ S = K[x1, . . . , xn] be a graded ideal and z a generic K-basis of S1. Then, the
following conditions are equivalent.

(a) All powers of I are componentwise linear.

(b) z is a d-sequence with respect to the Rees algebra R(I) of I.

The concept of d-sequence was introduced by Huneke in [108] as a generalization of
the concept of regular sequence. There is a characterization for d-sequences, similar
to the case of regular sequences (Theorem 2.2.1), in terms of the acyclicity of the
so�called approximation complexes, see [98] and [99, Theorem 4.1].

The above theorem, while being a very powerful algebraic characterization, in
practice can be rarely applied to concrete examples. Indeed, most of the partial re-
sults that support Herzog�Hibi�Ohsugi conjecture use either Rees algebras methods
involving Gröbner basis and the so�called x-condition [94], or linear quotients tech-
niques, like checking the weakly polymatroidal property. For recent progress on the
conjecture, see the survey [84] of Ha and Van Tuyl.

In a similar direction, Fakhari considered the problem of determining all graphs
G whose cover ideal J(G) has linear powers. The following beautiful result holds.

Theorem. (Fakhari, 2021 [57, Theorem 3.4]). Let G be a simple graph. Then, the
following conditions are equivalent:

(a) J(G) has linear powers.

(b) J(G)(k) has linear resolution, for some k ≥ 2.

(c) J(G)(k) has a linear presentation, for all k ≥ 1.

(d) J(G)(k) has a linear presentation, for some k ≥ 2.

(e) G is a Cohen�Macaulay very well�covered graph.

Symbolic powers are in general di�erent from the ordinary powers. For an edge
ideal it is known that I(G)k = I(G)(k) for all k ≥ 1, if and only if, G is a bipartite
graph. In the bipartite case, we also have J(G)k = J(G)(k) for all k ≥ 1. On the
other hand, for a Cohen�Macaulay very well�covered graph G which is not bipartite,
in general we have J(G)k ̸= J(G)(k).

In a private communication with Crupi and Fakhari, we learned that the initial
idea of Fakhari [57] was to prove that all ordinary powers of the cover ideal J(G)
of a Cohen�Macaulay very well�covered graph G have a linear resolution. On the
other hand, our Conjecture 8.4.4 is much stronger, because it would imply not just
that J(G) has linear powers, but that also all homological shifts of J(G)k have linear
resolution (indeed even linear quotients), for all k.
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Chapter 10

Asymptotic behaviour of the

v-number of homogeneous ideals

In 1921, Emmy Noether revolutionized Commutative Algebra by establishing the pri-
mary decomposition Theorem for Noetherian rings [134]. It says that any ideal I of
a Noetherian ring R can be decomposed as the irredundant intersection of �nitely
many primary ideals I = Q1 ∩ · · · ∩Qt and Ass(I) = {

√
Q1, . . . ,

√
Qt}, the set of as-

sociated primes of I, is uniquely determined. This fundamental result is a landmark
in Commutative Algebra, and always inspires new exciting research trends. A basic
question in the seventies was the following. What is the asymptotic behaviour of the
set Ass(Ik) for k ≫ 0 large enough? In 1976, it was predicted by Ratli� [139], and
later proved by Brodmann in 1979 [21], that Ass(Ik) stabilizes. That is, there exists
k0 > 0 such that Ass(Ik+1) = Ass(Ik) for all k ≥ k0. Another remarkable result of
Brodmann says that depth(R/Ik) is constant for k ≫ 0 [22]. Suppose furthermore
that I is a graded ideal of a standard graded polynomial ring S = K[x1, . . . , xn] with
coe�cients in a �eld K. In 1999, Kodiyalam [118], and, independently, Cutkosky,
Herzog and Trung [41], showed that the Castelnuovo�Mumford regularity of S/Ik is
a linear function in k for k ≫ 0. The legacy of Brodmann theorem has opened up the
most �ourished research topic in Commutative Algebra: the asymptotic behaviour of
the homological invariants of (ordinary) powers of graded ideals, see [25].

Now, let S = K[x1, . . . , xn] be the standard graded polynomial ring with coe�-
cients in a �eldK, I ⊂ S be a graded ideal and m = (x1, . . . , xn) be the maximal ideal.
Note that S is Noetherian. The graded version of the primary decomposition theorem
says that for any prime p ∈ Ass(I), there exists a homogeneous element f ∈ S such
that (I : f) = p. It is natural to de�ne the following invariants. Denote by Sd the dth
graded component of S. The v-number of I at p is de�ned as

vp(I) = min{d : there exists f ∈ Sd such that (I : f) = p}.

Whereas, the v-number of I is de�ned as

v(I) = min{d : there exists f ∈ Sd such that (I : f) ∈ Ass(I)}.

The concept of v-number was introduced by Cooper et all in [31], and further
studied in [6, 29, 62, 83, 112, 111, 140, 137].

This invariant plays an important role in Algebraic Geometry and in the theory
of (projective) Reed�Muller�type codes [31, 45, 77, 81, 80, 79, 78]. Let X be a �nite
set of points of the projective plane Ps−1, and let δX(d) be the minimum distance
function of the projective Reed�Muller�type code CX(d). Then δX(d) = 1 if and only
if v(I(X)) ≤ d [31, Corollary 5.6]. In such article, for a radical complete intersection
ideal I, the famous Eisenbud-Green-Harris conjecture [48] is shown to be equivalent
to [31, Conjecture 6.2] (see [31, Proposition 6.8]). This latter conjecture is related
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to the v-number. Indeed, for such an ideal I we have v(I) = reg(S/I). For a nice
summary, see [137, Section 12].

The v-number of edge ideals was studied in [111]. A graph G belongs to the class
W2 if and only if G is well�covered without isolated vertices, and G\v is well�covered
for all vertices v ∈ V (G). Let I(G) ⊂ S = K[xv : v ∈ V (G)] be the edge ideal of
G. Then G is in W2 if and only if v(I(G)) = dim(S/I(G)) [111, Theorem 4.5]. The
v-number of binomial edge ideals was recently considered in [6] and [112].

In this chapter, we investigate the eventual behaviour of the function v(Ik) for
k ≫ 0, where I ⊂ S is a graded ideal. Such a function, for large k measures the
�asymptotic homogeneous growth� of the primary decomposition of Ik.

The chapter is structured as follows. In Section 10.1, we recall how to compute the
v-number of a graded ideal I ⊂ S (Theorem 10.1.1) as shown by Grisalde, Reyes and
Villarreal [83]. Hereafter, for a �nitely generated graded S-module M =

⊕
dMd ̸= 0,

we set α(M) = min{d : Md ̸= 0} and ω(M) = max{d : (M/mM)d ̸= 0}. Firstly,
we determine the �local� numbers vp(I), for all p ∈ Ass(I). After computing a basis
of the S-module (I : p)/I, we select a generator f ∈ (I : p)/I of least degree d such
that (I : f) = p. This latter condition is automatically satis�ed if p ∈ Max(I). Then
vp(I) = d and v(I) = min{vp(I) : p ∈ Ass(I)}.

Let I ⊂ S be a graded ideal, we call v(Ik) the v-function of I. In Section 10.2,
we investigate the asymptotic behaviour of v(Ik) for k ≫ 0. By Theorem 10.1.1(b),
we have v(Ik) = min{vp(Ik) : p ∈ Ass(Ik)}. By Brodmann [21], Ass(Ik) = Ass(Ik+1)
for all k ≫ 0. We denote this common set by Ass∞(I), and call each prime p ∈
Ass∞(I) a stable prime ideal of I. Let Max∞(I) be the set of stable prime ideals of I
maximal with respect to the inclusion. Thus, v(Ik) = min{vp(Ik) : p ∈ Ass∞(I)}. To
understand the asymptotic behaviour of the v-function, we consider the vp-functions
vp(I

k) for each p ∈ Ass∞(I). In the classical case, to prove the asymptotic linearity of
the Castelnuovo�Mumford regularity of the powers of I, reg(Ik), one introduces the
Rees ring of I, R(I) =

⊕
k≥0 I

k, and shows that this is a bigraded �nitely generated
module over a suitable polynomial ring [41].

Let p ∈ Ass∞(I). For the vp-function vp(I
k), we consider a similar approach as

above. It should be noted, however, that the S-module (Ik : p)/Ik has a more subtle
module structure than the ordinary power Ik. We introduce the module

Socp(I) =
⊕
k≥0

(Ik : p)/Ik.

over the ring Fp(I) =
⊕

k≥0(I
k/pIk).

A priori, it is not clear that Socp(I) is a �nitely generated bigraded Fp(I)-module.
This is shown in Theorem 10.2.2 by carefully analyzing the module structure of
Socp(I). We prove that Socp(I) is equal to a truncation of the ideal (0 :grI(S) p),
and this ideal of grI(S) is �nitely generated as a Fp(I)-module. Here grI(S) =⊕

k≥0(I
k/Ik+1) denotes the associated graded ring of I. The proof relies essentially

on a property showed by Ratli� [139, Corollary 4.2], namely that (Ik+1 : I) = Ik for
all k ≫ 0, and on the fact that grI(S) is Noetherian ring [126, Proposition (10.D)].

The �rst main result in Section 10.2 is Theorem 10.2.1, which states that

α((Ik : p)/Ik) ≤ vp(I
k) ≤ ω((Ik : p)/Ik)

for all k ≫ 0 and all p ∈ Ass∞(I), and that the functions α((Ik : p)/Ik), ω((Ik : p)/Ik)
are linear in k for k ≫ 0. In particular, Theorem 10.2.1(b) follows by a careful analysis
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of the bigraded structure of Socp(I) and in the end boils down to a linear programming
argument (Proposition 10.2.5).

The second main result in the section is Theorem 10.2.6, which states, under rea-
sonable assumptions that the functions v(Ik) and vp(I

k) (p ∈ Ass∞(I)) are linear
in k for k ≫ 0. This result is valid for several classes of graded ideals. To name a
few, ideals of maximal minors, binomial edge ideals of closed graphs, and normally
torsionfree squarefree monomial ideals (Example 10.2.7). We believe that the func-
tions vp(I

k), p ∈ Ass∞(I), and v(Ik) are always linear in k for k ≫ 0. We conclude
Section 10.2 with an estimate on the growth of vp(I

k), p ∈ Ass∞(I). We prove that
vp(I

k+1) ≤ vp(I
k) + ω(I), for all k ≫ 0. Thus, we have v(Ik+1) ≤ v(Ik) + ω(I) for

k ≫ 0.
Section 10.3 concerns monomial ideals I ⊂ S = K[x, y] in two variables. Denote

by G(I) = {u1, . . . , um} the unique minimal monomial generating set of I, with
ui = xaiybi for all i. Then I determines the sequences a : a1 > a2 > · · · > am and
b : b1 < b2 < · · · < bm, and we set I = Ia,b. Conversely, given any two such sequences
a and b, {xa1yb1 , . . . , xamybm} is the minimal generating set of a monomial ideal of
S. In terms of a and b we determine Ass∞(Ia,b) (Corollary 10.3.4) and the v-number
v(Ia,b) (Theorem 10.3.7). We prove that v(Ika,b) is a linear function f(k) = ak+ b for
k ≫ 0 (Theorem 10.3.1). Our experiments in Macaulay2 [82] suggest that b ≥ −1.
On the other hand, for any integers a ≥ 1 and b ≥ −1, we construct a monomial ideal
of S such that v(Ik) = ak + b for all k ≥ 1 (Theorem 10.3.8).

In the last section, we study the v-function of ideals with linear powers. We expect
that if I is a graded ideal with linear powers, then v(Ik) = α(I)k − 1, for all k ≥ 1
(Conjecture 10.4.1). We settle this conjecture for edge ideals with linear resolution,
polymatroidal ideals and Hibi ideals. To prove these results, we use an inductive
argument based on a bound proved by Saha and Sengupta (Proposition 10.4.2). On
the other hand, if I does not have linear powers, then the conclusion of Conjecture
10.4.1 is no longer valid, as we show with an example due to Terai [30, Remark 3].
For such an ideal I, we have v(I) = α(I) = 3 and v(Ik) = α(I)k − 1 for all k ≥ 2.
Nonetheless, the v-function of I is linear.

10.1 How to compute the v-number of a graded ideal?

Let I be an ideal of a Noetherian domain R. We denote the set of associated primes
of I by Ass(I), and by Max(I) the set of associated primes of I that are maximal
with respect to the inclusion. It is clear that I has no embedded primes if and only if
Ass(I) = Max(I).

Let S = K[x1, . . . , xn] =
⊕

d Sd be the standard graded polynomial ring with n
variables and coe�cients in a �eld K, and let m = (x1, . . . , xn) be the graded maximal
ideal. The concept of v-number was introduced by Cooper et all in [31]. Let I ⊂ S
be a graded ideal and let p ∈ Ass(I). Then, the v-number of I at p is de�ned as

vp(I) = min{d : there exists f ∈ Sd such that (I : f) = p}.

Whereas, the v-number of I is de�ned as

v(I) = min{d : there exists f ∈ Sd such that (I : f) ∈ Ass(I)}.

Note that if I = m = (x1, . . . , xn), then vm(I) = v(I) = 0.
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The following result due to Grisalde, Reyes and Villarreal [83, Theorem 3.2] shows
how to compute the v-number of a graded ideal. For a �nitely generated graded S-
module M =

⊕
dMd ̸= 0, we call α(M) = min{d : Md ̸= 0} the initial degree of M .

In the next theorem, the bar denotes the residue class modulo I.

Theorem 10.1.1 Let I ⊂ S be a graded ideal and let p ∈ Ass(I). The following hold.

(a) If G = {g1, . . . , gr} is a homogeneous minimal generating set of (I : p)/I, then

vp(I) = min{deg(gi) : 1 ≤ i ≤ r and (I : gi) = p}.

(b) v(I) = min{vp(I) : p ∈ Ass(I)}.

(c) vp(I) ≥ α((I : p)/I), with equality if p ∈ Max(I).

(d) If I has no embedded primes, then v(I) = min{α((I : p)/I) : p ∈ Ass(I)}.

10.2 Asymptotic behaviour of the v-number

Let R be a commutative Noetherian domain and I ⊂ R an ideal. It is known by
Brodmann [21] that Ass(Ik) stabilizes for large k. That is, Ass(Ik+1) = Ass(Ik) for
all k ≫ 0. A prime ideal p ⊂ R such that p ∈ Ass(Ik) for all k ≫ 0, is called a stable
prime of I.

The set of the stable primes of I is denoted by Ass∞(I). Likewise, Max∞(I)
denotes the set of stable primes of I, maximal with respect to the inclusion. The least
integer k0 such that Ass(Ik) = Ass(Ik0) for all k ≥ k0 is denoted by astab(I).

Now, let S = K[x1, . . . , xn] be the standard graded polynomial ring, with K a
�eld, and unique graded maximal ideal m = (x1, . . . , xn). Let I ⊂ S be a graded ideal
and let p ∈ Ass∞(I). In light of Theorem 10.1.1 and Brodmann result, to understand
the asymptotic behaviour of the function vp(I

k), one has to understand the asymptotic
behaviour of the modules (Ik : p)/Ik for k ≫ 0.

Let M ̸= 0 be a �nitely generated graded S-module. Let ω(M) be the highest
degree of a homogeneous element of the K-vector space M/mM . Equivalently, the
highest degree j such that the graded Betti number β0,j(M) is non-zero. Thus

ω(M) = max{d : β0,d(M) ̸= 0} = max{d : TorS0 (S/m,M)d ̸= 0}.

Similarly, one has that α(M) = min{d : TorS0 (S/m,M)d ̸= 0}.

The following theorem provides natural asymptotic upper and lower bounds for
the v-function v(Ik) which are linear functions in k for k ≫ 0.

Theorem 10.2.1 Let I ⊂ S = K[x1, . . . , xn] be a graded ideal, and let p ∈ Ass∞(I).
Then, the following holds.

(a) For all k ≥ 1, we have

α((Ik : p)/Ik) ≤ vp(I
k) ≤ ω((Ik : p)/Ik).

(b) The functions α((Ik : p)/Ik), ω((Ik : p)/Ik) are linear in k for k ≫ 0.

(c) There exist eventually linear functions f(k) and g(k) such that

f(k) ≤ v(Ik) ≤ g(k), for all k ≫ 0.
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Statement (a) follows immediately from Theorem 10.1.1(a). Assume for a moment
that statement (b) holds, then (c) can be proved as follows. By Brodmann, we have
v(Ik) = min{vp(Ik) : p ∈ Ass∞(I)} for all k ≫ 0. Thus, by (a), for all k ≫ 0

min
p∈Ass∞(I)

α((Ik : p)/Ik) ≤ v(Ik) ≤ min
p∈Ass∞(I)

ω((Ik : p)/Ik).

Setting f(k) = minp∈Ass∞(I) α((I
k : p)/Ik) and g(k) = minp∈Ass∞(I) ω((I

k : p)/Ik), by
statement (b) it follows that f(k) and g(k) are the required eventually linear functions
in k. Statement (c) follows.

To prove statement (b), we construct a suitable module that encodes the growth
of the modules (Ik : p)/Ik. Indeed, we de�ne it in the following more general context.
Let I be an ideal of a commutative Noetherian domain R and let p ∈ Ass∞(I). Then
we set

Socp(I) =
⊕
k≥0

(Ik : p)/Ik,

and Socp(I)k = (Ik : p)/Ik for all k ≥ 0.
The symbol �Soc� is used, because when R = S or R is local and p = m is the

(graded) maximal ideal, then (Ik : m)/Ik is the socle module of S/Ik, see [27].
The �rst step consists in showing that Socp(I) is a �nitely generated graded module

over a suitable ring. For this aim, we introduce the following ring,

Fp(I) =
⊕
k≥0

(Ik/pIk),

and we set Fp(I)k = Ik/pIk. We de�ne addition in the obvious way and multiplication
as follows. If a ∈ Ik/pIk and b ∈ Iℓ/pIℓ, then ab ∈ Ik+ℓ/pIk+ℓ. It is routine to check
that this multiplication is well�de�ned.

As before, we note that if R = S or R is local and p = m is the maximal ideal,
then Fm(I) =

⊕
k≥0(I

k/mIk) is the well�known �ber cone of I.
With the notation introduced, we have

Theorem 10.2.2 Let I be an ideal of a Noetherian commutative domain R and let
p ∈ Ass∞(I). Then, Socp(I) is a �nitely generated graded Fp(I)-module.

Proof. Firstly, we show that Socp(I) has the structure of a graded Fp(I)-module.
For this purpose, let f ∈ Iℓ/pIℓ. It is clear that multiplication by f induces a map
(Ik : p)/Ik → (Ik+ℓ : p)/Ik+ℓ for any k ≥ 0. Hence Fp(I)ℓSocp(I)k ⊆ Socp(I)k+ℓ.

To prove that Socp(I) is a �nitely generated Fp(I)-module, we consider

J = (0 :grI(R) p) = {f ∈ grI(R) : fp = 0},

i.e., the annihilator of p in the associated graded ring of I, grI(R) =
⊕

k≥0(I
k/Ik+1).

Recall that grI(R) is a Noetherian ring [126, Proposition (10.D)]. Thus, as an ideal
of grI(R), J is a �nitely generated graded grI(R)-module. Since p annihilates J , then
J has also the structure of a �nitely generated graded grI(R)/pgrI(R)-module. But

grI(R)/pgrI(R) =

⊕
k≥0(I

k/Ik+1)

p
⊕

k≥0(I
k/Ik+1)

=

⊕
k≥0(I

k/Ik+1)⊕
k≥0(pI

k/Ik+1)

=
⊕
k≥0

Ik/Ik+1

pIk/Ik+1
=

⊕
k≥0

(Ik/pIk)

= Fp(I).
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Consequently, J is a �nitely generated graded Fp(I)-module.
Let us show that Socp(I)k+1 = Jk for k ≫ 0. For this purpose, we compute the

kth graded component of J . We have

Jk = {f ∈ grI(R)k : fp = 0} = {f ∈ Ik/Ik+1 : fp = 0}
= {f ∈ Ik : fp ∈ Ik+1}/Ik+1 = ({f ∈ R : fp ∈ Ik+1} ∩ Ik)/Ik+1

= ((Ik+1 : p) ∩ Ik)/Ik+1.

By Ratli� [139, Corollary 4.2], there exists r such that (Ik+1 : I) = Ik for all
k ≥ r. Whereas, by Brodmann [21], there exists b such that Ass(Ik) = Ass∞(I) for
all k ≥ b. Let k∗ = max{r, b}. Next, we show that Socp(I)k+1 = Jk for k ≥ k∗.

Let k ≥ k∗. We claim that p contains I. Indeed, p ∈ Ass(Ik), hence Ik ⊆ p. Let
a ∈ I, then ak ∈ Ik ⊆ p. Since p is prime, actually a ∈ p and so I ⊆ p. Therefore,
(Ik+1 : p) ⊆ (Ik+1 : I) = Ik by the Ratli� property. Hence,

Jk = ((Ik+1 : p) ∩ Ik)/Ik+1 = (Ik+1 : p)/Ik+1 = Socp(I)k+1.

Consequently, we obtain that Socp(I)≥k∗+1 = J≥k∗ , where M≥ℓ denotes
⊕

k≥ℓMℓ if
M =

⊕
k≥0Mk is graded. Since J is �nitely generated as a Fp(I)-module, it follows

that Socp(I) is a �nitely generated Fp(I)-module as well. □

Now, we assume furthermore that R = S = K[x1, . . . , xn] is the standard graded
polynomial ring with K a �eld, that I is a graded ideal of S and p ∈ Ass∞(I) is a
stable prime of I. Then, Ik/pIk is a graded S-module, for all k ≥ 0. Therefore, Fp(I)
is in a natural way a bigraded ring:

Fp(I) =
⊕
d,k≥0

(Ik/pIk)d.

In particular, we set Fp(I)(d,k) = (Ik/pIk)d and bideg(f) = (d, k) for f ∈ Fp(I)(d,k).

Note that each module (Ik : p)/Ik is a graded S-module. Thus, we can write

Socp(I) =
⊕
d,k≥0

Socp(I)(d,k)

where Socp(I)(d,k) = ((Ik : p)/Ik)d. Hence, Socp(I) is a bigraded Fp(I)-module,
because Fp(I)(d1,ℓ)Socp(I)(d2,k) ⊆ Socp(I)(d1+d2,k+ℓ).

Therefore, we have proved that

Corollary 10.2.3 Let I be a graded ideal of S = K[x1, . . . , xn] with K a �eld and let
p ∈ Ass∞(I). Then, Socp(I) is a �nitely generated bigraded Fp(I)-module.

Let u1, . . . , um be a minimal system of homogeneous generators of I. It is well�
known that the associated graded ring grI(S) has a presentation

φ : T = K[x1, . . . , xn, y1, . . . , ym]→ grI(S)

de�ned by setting

φ(xi) = xi + I ∈ grI(S)0 = S/I, for 1 ≤ i ≤ n,
φ(yi) = ui + I2 ∈ grI(S)1 = I/I2, for 1 ≤ i ≤ m.
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Since I is graded, grI(S) is naturally bigraded, with grI(S)(d,k) = (Ik/Ik+1)d.
Moreover, T can be made into a bigraded ring by setting bideg(xi) = (1, 0) for 1 ≤
i ≤ n, and bideg(yi) = (deg(ui), 1) for 1 ≤ i ≤ m, where deg(ui) is the degree of ui in
S. With these bigradings, φ is a bigraded surjective ring homomorphism.

In the proof of Theorem 10.2.2 we have seen that Fp(I) = grI(S)/pgrI(S). Let
π : grI(S) → Fp(I) be the canonical epimorphism. Then, the composition map
ψ = π ◦φ : T → Fp(I) is a surjective ring homomorphism. It is clear that ψ preserves
the bigraded structure. Thus, Socp(I) has also the structure of a bigraded T -module,
if we set

af = ψ(a)f for all a ∈ T and all f ∈ Socp(I).

Since ψ is surjective and Socp(I) is a �nitely generated Fp(I)-module, it follows that
Socp(I) is a �nitely generated T -module, as well.

The following lemma is required. For a bigraded T -module M =
⊕

d,kMd,k, we
set M(∗,k) =

⊕
dM(d,k). Note that M(∗,k) becomes a graded S-module.

Lemma 10.2.4 Let T = K[x1, . . . , xn, y1, . . . , ym] be a bigraded polynomial ring, with
K a �eld, bideg(xi) = (1, 0) for 1 ≤ i ≤ n and bideg(yi) = (di, 1) for 1 ≤ i ≤ m. Let
m = (x1, . . . , xn) and S = K[x1, . . . , xn] ⊂ T . Let M be a �nitely generated bigraded
T -module. Then,

TorSi (S/m,M(∗,k)) ∼= TorTi (T/m,M)(∗,k)

for all i and k.

Proof. Let F : 0 → · · · → Fj → · · · → F1 → F0 → M → 0 be a minimal bigraded
T -resolution of M . Then,

Fk : 0→ · · · → (Fj)(∗,k) → · · · → (F1)(∗,k) → (F0)(∗,k) →M(∗,k) → 0

is a graded (possibly non-minimal) free S-resolution of M(∗,k) =
⊕

dM(d,k). Since

TorTi (T/m,M) = Hi(F/mF) we have that TorTi (T/m,M)(∗,k) = Hi(Fk/mFk) which in

turn is isomorphic to TorSi (S/m,M(∗,k)). The desired conclusion follows. □

Note that T/m = K[y1, . . . , ym] and that TorT0 (T/m, Socp(I)) is a �nitely gener-
ated bigraded T/m-module. Therefore, by the above lemma, we have

α((Ik : p)/Ik) = α(TorS0 (S/m, (I
k : p)/Ik)) = α(TorS0 (S/m, Socp(I)(∗,k)))

= α(TorT0 (T/m, Socp(I))(∗,k)).

Similarly, ω((Ik : p)/Ik) = ω(TorT0 (T/m, Socp(I))(∗,k)).

From this discussion, Theorem 10.2.1(b) follows from the next more general state-
ment, which is a variation of [41, Theorem 3.4].

Proposition 10.2.5 Let T = K[y1, . . . , ys] a polynomial ring, with bideg(yi) = (di, 1)
for 1 ≤ i ≤ s and K a �eld, and letM be a �nitely generated bigraded T -module. Then,
αM (k) = min{d : M(d,k) ̸= 0} and ωM (k) = max{d : M(d,k) ̸= 0} are linear functions
in k for k ≫ 0.

Proof. The claim about the linearity of ωM (k) follows from [41, Theorem 3.4]. The
proof of the claim of the linearity of αM (k) is similar, but we include here all the
details for the convenience of the reader.

For any exact sequence 0 → M → N → P → 0 of �nitely generated bigraded
T -modules we have αN (k) = min{αM (k), αP (k)}, for all k.
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Since M is a �nitely generated T -module and T is Noetherian, by the bigraded
version of [47, Proposition 3.7] there exists a sequence of bigraded T -submodules

0 =M0 ⊂M1 ⊂ · · · ⊂Mi−1 ⊂Mi =M

ofM such thatMj/Mj−1
∼= T/pj , with pj a bigraded prime ideal of T , for all 1 ≤ j ≤ i.

Hence, we may suppose that M = T/J with J a bigraded ideal of T . We show that J
can be replaced by a monomial ideal. For this aim, let > be a monomial order on T ,
and let in(J) be the initial ideal of J with respect to >. The natural K-basis of T/J
consists of all residue classes (modulo J) of all monomials not belonging to in(J), see
[89, Proposition 2.2.5.(a)]. The same residue classes modulo in(J) form a K-basis for
T/in(J). Thus αM (k) = αT/J(k) = αT/in(J)(k), and we can assume that M = T/J
with J a monomial ideal of T .

Recall that bideg(yi) = (di, 1) for 1 ≤ i ≤ s. For later convenience, after a harmless
relabeling of the variables, we may suppose that

d1 ≤ d2 ≤ · · · ≤ ds. (10.1)

Assume that J is minimally generated by the monomials yci = y
ci,1
1 y

ci,2
2 · · · yci,ss ,

for 1 ≤ i ≤ r.
Let a = (a1, a2, . . . , as) ∈ Ns, we denote by ya the residue class of ya = ya11 y

a2
2 · · · yass

in T/J . Let k ≥ 0, by Bk we denote the minimal basis of (T/J)k. Then, we can write
αM (k) = min{v(a) : ya ∈ Bk}, where v(a) =

∑s
i=1 ai deg(yi) =

∑s
i=1 aidi.

Clearly, ya ∈ Bk if and only if
∑s

j=1 aj = k, and for all i = 1, . . . , s, there exists j
such that aj < ci,j . Denote by L the set of all maps {1, . . . , r} → {1, . . . , s}. We can
decompose the set Bk as the union

⋃
f∈LBk,f , where

Bk,f =
{
ya :

s∑
j=1

aj = k and af(i) < ci,f(i), i = 1, . . . , r
}
.

With this in mind, we can write αM (k) = minf∈L αf (k), where αf (k) is de�ned as
αf (k) = min{v(a) : ya ∈ Bk,f}. Hence, it is enough to prove that αf (k) is a linear
function with integer coe�cients for all f ∈ L and all k ≫ 0.

Fix f ∈ L. Let {j1 < j2 < · · · < jt} be the image of f . For h = 1, . . . , t, we set
cjh = min{ci,jh : i = 1, . . . , r} − 1. Then, we have that

Bk,f =
{
ya :

s∑
j=1

aj = k and ajh ≤ cjh , h = 1, . . . , t
}
.

Thus, αf (k) is given by the maximum of the functional v(a) on the following convex
bounded set

Ck,f =
{
a :

s∑
j=1

aj = k and ajh ≤ cjh , h = 1, . . . , t
}
.

Let ℓ be the smallest integer such that j1 = 1, . . . , jℓ = ℓ and jℓ+1 > ℓ+ 1. Thus,
for a = (a1, a2, . . . , as) ∈ Ck,f we have a1 < cj1 , a2 < cj2 , . . . , aℓ < cjℓ and no bound
on ajℓ+1

, except that
∑s

j=1 aj = k. We distinguish the two possible cases.

Case 1. Suppose ℓ = s. Then
∑s

j=1 aj can be at most cj1 + cj2 + · · ·+ cjℓ . Thus, for
all k ≫ 0, Bk,f = ∅ and so αf (k) = 0.

Case 2. Suppose ℓ < s. We let k such that k ≥ cj1 +cj2 + · · ·+cjℓ . We claim that the
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functional v has its minimal value for a∗ = (cj1 , cj2 , . . . , cjℓ , k −
∑ℓ

p=1 cjp , 0, 0, . . . , 0).
Then, for all large k ≫ 0, we have that

αf (k) = v(a∗) =

ℓ∑
p=1

cjpdjp + djℓ+1
(k −

ℓ∑
p=1

cjp),

which is a linear function in k with integer coe�cients, as desired.
Let a = (a1, a2, . . . , as) ∈ Ck,f . Assume that for some 1 ≤ i < j ≤ s we have

ai < ci and aj > 0. Then, a′ = (a1, a2 . . . , ai + 1, . . . , aj − 1, . . . , as) also belongs to
Ck,f and v(a′) ≤ v(a) because by equation (10.1) we have di ≤ dj . Thus, we see that
the minimal value of v on Ck,f is achieved when we �ll up the �rst �boxes� of a ∈ Ck,f
as much as possible. Finally, the functional v reaches its minimal value when a = a∗,
completing the proof. □

Now, we come to our second fundamental result.

Theorem 10.2.6 Let I ⊂ S = K[x1, . . . , xn] be a graded ideal. Suppose that

(a) either Ass∞(I) = Max∞(I) or

(b) for all p ∈ Ass∞(I) and all k ≫ 0, (Ik : p)/Ik is generated in a single degree.

Then, vp(I
k), for all p ∈ Ass∞(I), and v(Ik) are linear functions in k for k ≫ 0.

Proof. Under hypothesis (a), for all p ∈ Ass∞(I) and all k ≫ 0, by Theorem 10.1.1(c)
we have vp(I

k) = α((Ik : p)/Ik). Thus, by Theorem 10.2.1(b), vp(I
k) is a linear

function in k for k ≫ 0. By Theorem 10.1.1(d), v(Ik) = min{α((Ik : p)/Ik) : p ∈
Ass∞(I)} for k ≫ 0. Thus v(Ik) is a linear function in k for k ≫ 0.

Under hypothesis (b), for all p ∈ Ass∞(I) and all k ≫ 0, we have α((Ik : p)/Ik) =
ω((Ik : p)/Ik). By Theorem 10.2.1(a)-(b), it follows that vp(I

k) = α((Ik : p)/Ik) is a
linear function in k for k ≫ 0. The assertion about v(Ik) follows once again. □

Example 10.2.7 Let I ⊂ S be a graded ideal without embedded primes. Thus
Ass(I) = Max(I). Recall that the kth symbolic power of I ⊂ S is the ideal de�ned as
I(k) =

⋂
p∈Ass(I)(I

kSp ∩ S). Suppose that Ik = I(k) for all k ≥ 1. Since I does not

have embedded primes, Ik = I(k) =
⋂

p∈Ass(I)(I
kSp ∩ S) is a primary decomposition

of Ik, for all k ≥ 1. Thus Ass∞(I) = Ass(I) = Max(I) = Max∞(I). Hence, for such
an ideal the conclusion of Theorem 10.2.6 holds. Next, we give some examples.

(i) Ideals of maximal minors [24, Corollary 3.5.3].

(ii) Binomial edge ideals of closed graphs [52, Corollary 3.4].

(iii) Normally torsionfree squarefree monomial ideals [89, De�nition 1.4.5 and The-
orem 1.4.6].

Theorem 10.1.1(c) combined with Theorem 10.2.1(b) yields

Corollary 10.2.8 Let I ⊂ S = K[x1, . . . , xn] be a graded ideal and let p ∈ Max∞(I).
Then vp(I

k) is a linear function in k for k ≫ 0.

We conclude this section with the following estimate on the growth of the functions
vp(I

k) for k ≫ 0. For the proof, we recall the following basic rules. Let I, I1, I2, {Ji}i
be ideals of a commutative Noetherian ring R and let p be a prime ideal of R. Then,
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(i) (I :
∑

i Ji) =
⋂
i(I : Ji),

(ii) ((I : I1) : I2) = (I : I1I2),

(iii) if p =
⋂
i Ji, then p = Ji for some i.

Proposition 10.2.9 Let I ⊂ S = K[x1, . . . , xn] be a graded ideal and let p ∈ Ass∞(I).
Then, we have

vp(I
k+1) ≤ vp(I

k) + ω(I), for all k ≫ 0.

In particular, v(Ik+1) ≤ v(Ik) + ω(I) for all k ≫ 0.

Proof. By Brodmann and Ratli�, there exists k∗ > 0 such that Ass∞(I) = Ass(Ik)
and (Ik+1 : I) = Ik for all k ≥ k∗. Fix k ≥ k∗ and let p ∈ Ass∞(I).

Let f ∈ S be a homogeneous element such that (Ik : f) = p and deg(f) = vp(I
k).

Let f1, . . . , fm be a minimal homogeneous generating set of I. By rules (ii) and (i),

p = (Ik : f) = (Ik+1 : I) : f = (Ik+1 : fI)

= (Ik+1 :
m∑
i=1

(ffi)) =
m⋂
i=1

(Ik+1 : ffi).

Hence, by rule (iii), we have p = (Ik+1 : ffi) for some i. By the de�nition of vp(I
k+1),

this means that vp(I
k+1) ≤ deg(ffi) = deg(f) + deg(fi). The assertion follows,

because deg(f) = vp(I
k) and deg(fi) ≤ ω(I). □

Theorems 10.1.1(a) and 10.2.1(a) combined with the previous result give immedi-
ately

Corollary 10.2.10 Let I ⊂ S = K[x1, . . . , xn] be a graded ideal and let p ∈ Ass∞(I).
Then, we have

α((Ik+1 : p)/Ik+1) ≤ ω((Ik : p)/Ik) + ω(I), for all k ≫ 0.

10.3 The v-number of monomial ideals in two variables

In this section, we consider monomial ideals of the polynomial ring in two variables
S = K[x, y]. Let I ⊂ S be a monomial ideal. As customary, we denote by G(I) the
unique minimal monomial generating set of I. Then

G(I) = {xa1yb1 , xa2yb2 , . . . , xamybm},

where a : a1 > a2 > · · · > am ≥ 0 and b : 0 ≤ b1 < b2 < · · · < bm. Conversely, given
any two such sequences a and b, the set {xa1yb1 , xa2yb2 , . . . , xamybm} is the minimal
monomial generating set of a monomial ideal of S.

Therefore, the monomial ideals of S = K[x, y] are in bijection with all pairs (a,b)
of sequences a : a1 > a2 > · · · > am ≥ 0 and b : 0 ≤ b1 < b2 < · · · < bm as above.
Hereafter, we write I = Ia,b for I = (xa1yb1 , xa2yb2 , . . . , xamybm).

The natural K-basis of S/Ia,b consists of the residue classes (modulo Ia,b) of the
monomials not belonging to Ia,b. These basis elements can be represented by the
lattice points (c, d) ∈ Z≥0 × Z≥0 such that xcyd /∈ Ia,b, as in the next picture.
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≻
≻

≻

(an, bn)

(a2, b2)

(a1, b1)

I

Our main goal in this section is to prove the following theorem.

Theorem 10.3.1 Let I ⊂ S = K[x, y] be a monomial ideal. Then, vp(I
k), for all

p ∈ Ass∞(I), and v(Ik) are linear functions in k for k ≫ 0.

The associated prime ideals of a monomial ideal I are monomial prime ideals, that
is, ideals generated by a subset of the variables [89, Corollary 1.3.9]. Thus, in our case
Ass(I) ⊆ {(x), (y), (x, y)}. We set px = (x), py = (y) and m = (x, y).

We can compute Ass(Ia,b) in terms of the sequences a and b.

Proposition 10.3.2 Let I = Ia,b ⊂ S be a monomial ideal. Then,

(a) px ∈ Ass(I) if and only if am > 0.

(b) py ∈ Ass(I) if and only if b1 > 0.

(c) m ∈ Ass(I) if and only if m > 1, i.e., I is not a principal ideal.

Proof. If px ∈ Ass(I) then I ⊆ px = (x). Hence x divides all minimal monomial
generators of I. In particular, x divides xamybm and am > 0.

Conversely, let am > 0. Then x divides all minimal monomial generators of I.
Hence I ⊆ px = (x). Since px is of height one, it follows that px ∈ Ass(I).

This proves (a), statement (b) can be proved similarly.
Finally, for the proof of (c), suppose m ∈ Ass(I). If I is a principal ideal, then for

some c and d, I = (xcyd) = (xc) ∩ (yd) = pcx ∩ pdy is the primary decomposition of I,
which contradicts our assumption. Hence I is not principal.

Conversely, suppose I is not principal, but m /∈ Ass(I). Then Ass(I) ⊆ {px, py}.
Since px and py are height one prime ideals, I = pcx ∩ pdy = (xc) ∩ (yd) = (xcyd) for
some c and d, against our assumption. The assertion follows. □

The following lemma is required.

Lemma 10.3.3 Let I = Ia,b ⊂ S be a monomial ideal. Then,

xka1ykb1 , xkamykbm ∈ G(Ik), for all k ≥ 1.

Proof. Let k ≥ 1. We know that

Ik =
( m∏
i=1

(xaiybi)ki :
m∑
i=1

ki = k
)
.

Let xrys be an arbitrary generator of Ik di�erent from xka1ykb1 . Then, we have
r = k1a1 + . . . kmam, s = k1b1 + . . . kmbm,

∑m
i=1 ki = k and ki > 0 for some i ̸= 1.

Thus,
ka1 = k1a1 + k2a1 + . . . kma1 > k1a1 + k2a2 + . . . kmam = r
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and
kb1 = k1b1 + k2b1 + . . . kmb1 < k1b1 + k2b2 + . . . kmbm = s.

Therefore, xrys does not divide xka1ykb1 . This shows that xka1ykb1 is a minimal
generator of Ik. By a similar argument we obtain that xkamykbm ∈ G(Ik). □

Corollary 10.3.4 Let I = Ia,b ⊂ S be a monomial ideal. Then Ass(Ik) = Ass∞(I),
for all k ≥ 1. In particular, astab(I) = 1.

Proof. Let us prove that Ass(I) = Ass(Ik) for all k ≥ 2. By the previous proposition,
px ∈ Ass(I) if and only if x divides all minimal monomial generators of I. Hence, if
px ∈ Ass(I), then px ∈ Ass(Ik) for all k ≥ 2, as well.

Now, suppose that px ∈ Ass(Ik) for some k ≥ 2, but px /∈ Ass(I). Then, by
Proposition 10.3.2(a) we have am = 0. Hence ybm ∈ G(I). By the previous corollary,
ykbm ∈ G(Ik), as well. But this is impossible, because ykbm /∈ px, but by assumption
px contains Ik. Hence am > 0 and px ∈ Ass(I), as wanted.

The same reasoning can be applied to show that py ∈ Ass(I) if and only if py ∈
Ass(Ik), for any k ≥ 2.

Finally, by the previous proposition, m ∈ Ass(I) if and only I is not principal.
Lemma 10.3.3 implies that I is not principal if and only if Ik is not principal for any
k ≥ 2. Thus m ∈ Ass(I) if and only if m ∈ Ass(Ik) for any k ≥ 2. □

Next, we compute the functions vpx(I
k
a,b), vpy(I

k
a,b).

Corollary 10.3.5 Let I = Ia,b ⊂ S be a monomial ideal. The following holds.

(a) If am > 0, then vpx(I
k) = k(am + bm)− 1, for all k ≥ 1.

(b) If b1 > 0, then vpy(I
k) = k(a1 + b1)− 1, for all k ≥ 1.

Proof. The only generator u ∈ (I : px)/I such that (I : u) = px is xam−1ybm , for it
has the largest y-degree. For each k ≥ 1, from Lemma 10.3.3, xkamykbm ∈ G(Ik) and
such generator has the highest y-degree. Thus, u = xkam−1ykbm is the only generator
of (Ik : px)/I

k such that (Ik : u) = px. Similarly, one can prove (b). □

We are in the position to prove our main result in the section.

Proof of Theorem 10.3.1. By Corollary 10.3.4, Ass(Ik) = Ass∞(I) for all k ≥ 1. If px
or py belongs to Ass∞(I), then vpx(I

k) or vpy(I
k) is a linear function in k for k ≫ 0,

by Corollary 10.3.5. If m ∈ Ass∞(I), then vm(I
k) is a linear function in k for k ≫ 0

because m ∈ Max∞(I) (Corollary 10.2.8). Finally, it follows by de�nition that v(Ik)
is a linear function in k for k ≫ 0, as well. □

In the next proposition, we show how to compute vm(I) for a non principal mono-
mial ideal I = Ia,b ⊂ S. For our convenience, if c ≥ 1, in the proof of the next result
we regard x−c and y−c as 1.

Proposition 10.3.6 Let I = Ia,b ⊂ S be a non principal monomial ideal. Then,

(I : m)/I =
(
xaj−1ybj+1−1 : 1 ≤ j ≤ m− 1

)
/I. (10.2)

In particular,
vm(I) = min{aj + bj+1 − 2 : 1 ≤ j ≤ m− 1}.
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Proof. Firstly, we compute I : m. We have

I : m = (I : px) ∩ (I : py)

= (xa1−1yb1 , . . . , xam−1ybm) ∩ (xa1yb1−1, . . . , xamybm−1)

=
(
lcm(xai−1ybi , xajybj−1) : 1 ≤ i ≤ m, 1 ≤ j ≤ m

)
=

(
lcm(xai−1ybi , xaj+1ybj+1−1) : 1 ≤ i ≤ m, 0 ≤ j ≤ m− 1

)
=

(
xmax{ai−1,aj+1}ymax{bi,bj+1−1} : 1 ≤ i ≤ m, 0 ≤ j ≤ m− 1

)
.

(10.3)

Fix j ∈ {0, . . . ,m− 1} and let i ∈ {1, . . . ,m}.
If i ≤ j, we have ai ≥ aj > aj+1 and bi ≤ bj < bj+1. Therefore xaj+1 |xai−1 and

ybi |ybj+1−1. Hence,

xaj−1ybj+1−1 ∈ (I : m) divides xmax{ai−1,aj+1}ymax{bi,bj+1−1} for i ≤ j. (10.4)

If i > j, we have ai − 1 ≤ aj+1 and bi ≥ bj+1 − 1, so xai−1|xaj+1 and ybj+1−1|ybi .
Hence,

xaj+1ybi ∈ (I : m) divides xmax{ai−1,aj+1}ymax{bi,bj+1−1} for i > j. (10.5)

Thus, by equations (10.3), (10.4) and (10.5) we have

I : m =
(
xaj−1ybj+1−1, xaj+1ybi : 1 ≤ j ≤ m− 1, j + 1 ≤ i ≤ m

)
.

Note that for each i ≥ j + 1 we have xaj+1ybi ∈ I. It is clear that xaj−1ybj+1−1 /∈ I,
for all j = 1, . . . ,m− 1. Hence, equation (10.2) follows.

The claim about vm(I) follows from (10.2) and Theorem 10.1.1(c). □

As a consequence of our discussion, we obtain the next formula that shows us how
to compute the v-number of Ia,b solely in terms of the sequences a and b.

Theorem 10.3.7 Let I = Ia,b ⊂ S be a monomial ideal. Then

v(I) =


min{ai + bi+1 − 2 : 1 ≤ i ≤ m− 1}, if b1 = 0 and am = 0,

min{a1 + b1 − 1, ai + bi+1 − 2 : 1 ≤ i ≤ m− 1}, if b1 ̸= 0 and am = 0,

min{am + bm − 1, ai + bi+1 − 2 : 1 ≤ i ≤ m− 1}, if b1 = 0 and am ̸= 0,

min{a1 + b1 − 1, am + bm − 1, ai + bi+1 − 2 : 1 ≤ i ≤ m− 1}, otherwise.

Proof. Suppose I is non principal. Then, the statement follows by combining Propo-
sition 10.3.2, Corollary 10.3.5 and Proposition 10.3.6. Now, if I is principal, the above
formulas also hold. Indeed, in this case m = 1 and in the above last three minimums
one does not have to consider the terms ai + bi+1 − 2 because m− 1 = 0. □

In all the examples we could check with Macaulay2 [82], for a monomial ideal
I ⊂ S = K[x, y], if the v-function of I is v(Ik) = ak + b, k ≫ 0, we always have that
b ≥ −1. At present, we do not know how to prove this lower bound. On the other
hand, for any such linear function f(k) = ak + b, (a ≥ 1, b ≥ −1), there exists a
monomial ideal I ⊂ S = K[x, y] such that v(Ik) agrees with f(k) for all k ≥ 1, as we
show next.

Theorem 10.3.8 Let a ≥ 1 and b ≥ −1 be integers. Then, there exists a monomial
ideal I ⊂ S = K[x, y] such that

v(Ik) = ak + b, for all k ≥ 1.
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Proof. We claim that I = (xa, xa−1yb+2) = xa−1(x, yb+2) satis�es our assertion. For
this aim, let us show that Ik = (xka−iyi(b+2) : 0 ≤ i ≤ k) for all k ≥ 1. Indeed,

Ik = xk(a−1)(x, yb+2)k = xk(a−1)
k∑
i=0

(xk−iyi(b+2))

= (xka−iyi(b+2) : 0 ≤ i ≤ k).

Since ka > ka− 1 > · · · > ka− k and b+2 < 2(b+2) < · · · < k(b+2), it follows that
G(Ik) = {xka−iyi(b+2) : 0 ≤ i ≤ k}.

Note that Ass∞(I) = {px,m} if a > 1 and Ass∞(I) = {m} if a = 1.
By Corollary 10.3.5(a), if a > 1 we have

vpx(I
k) = k(a+ b+ 1)− 1.

Whereas, by Proposition 10.3.6,

vm(I
k) = min{(ka− i) + (i+ 1)(b+ 2)− 2 : 0 ≤ i ≤ k − 1}

= min{ka+ (i+ 1)b+ i : 0 ≤ i ≤ k − 1}
= ak + b.

If a > 1, then v(Ik) = min{vpx(Ik), vm(Ik)} = min{k(a+ b+1)− 1, ak+ b} = ak+ b.
Otherwise, if a = 1, then v(Ik) = vm(I

k) = ak + b once again. □

10.4 The v-number of ideals with linear powers

In this section, we consider several classes of graded ideals I arising from combinatorial
contexts, with a particular focus on ideals having linear powers, and in some cases we
compute explicitly the v-function v(Ik).

Hereafter, S denotes the standard graded polynomial ring K[x1, . . . , xn] with K a
�eld, and m = (x1, . . . , xn) denotes the unique graded maximal ideal of S.

We say that I has linear powers if Ik has a linear resolution, for all k ≥ 1. Famous
examples of ideals with linear powers are given in the following list.

(i) Edge ideals with linear resolution [89, Theorem 10.2.6].

(ii) Polymatroidal ideals [89, Corollary 12.6.4].

(iii) Hibi ideals [89, Corollary 10.2.9 and Theorem 9.1.13], or [35, Corollary 4.11].

In the following Theorems 10.4.4, 10.4.8 and 10.4.10, we show that for any ideal
I in the above list, we have that v(Ik) = α(I)k − 1, for all k ≥ 1,

Due to these results, and experimental evidence, we expect that

Conjecture 10.4.1 Let I ⊂ S be a graded ideal with linear powers. Then

v(Ik) = α(I)k − 1, for all k ≥ 1.

If I does not have linear powers, the conclusion of Conjecture 10.4.1 is no longer
valid. Next example is due to Terai [30, Remark 3]. Let char(K) ̸= 2, then the
Stanley Reisner ideal I = (abd, abf, ace, adc, aef, bde, bcf, bce, cdf, def) of the minimal
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triangulation of the projective plane has a linear resolution, while I2 has not. By using
Macaulay2 [82], we have v(I) = α(I) = 3 and v(Ik) = 3k − 1 for all k ≥ 2.

Before verifying Conjecture 10.4.1 for the ideals listed in (i), (ii) and (iii), we state
some useful results that will be needed later.

If I ⊂ S is a monomial ideal, then all associated primes of I are monomial prime
ideals, that is, ideals generated by a subset of the variables [89, Corollary 1.3.9]. Let A
be a non empty subset of [n]. We denote by pA the monomial prime ideal (xi : i ∈ A).

The following result [140, Proposition 3.11] of Saha and Sengupta provides an
useful general method to bound v(I) from above, when I is a monomial ideal.

Proposition 10.4.2 Let I ⊂ S be a monomial ideal and f ∈ S\I a monomial. Then,

v(I) ≤ v(I : f) + deg(f).

On the other hand, one always has

Proposition 10.4.3 Let I ⊂ S be a monomial ideal. Then,

vp(I) ≥ α(I)− 1, for all p ∈ Ass(I).

Proof. Let p ∈ Ass(I) and let u ∈ S be a monomial such that (I : u) = p and
deg(u) = vp(I). Then p = pA = (xi : i ∈ A) for some A ⊆ [n]. Thus xiu ∈ I for all
i ∈ A. In particular, deg(xiu) ≥ α(I). Hence, deg(u) ≥ α(I)− 1, as desired. □

10.4.1 Edge ideals with linear resolution

Let G be a �nite simple graph with vertex set V (G) = [n] and edge set E(G).
As a consequence of Dirac and Fröberg theorems we have

Theorem 10.4.4 Let I(G) be the edge ideal of a graph G. Suppose that I(G) has a
linear resolution. Then,

v(I(G)k) = 2k − 1, for all k ≥ 1.

The proof is based upon the next lemma.

Lemma 10.4.5 Let I(G) be an edge ideal with linear resolution, and let x1 > x2 >
· · · > xn be a perfect elimination order of Gc. Then,

(I(G) : x1) = (xj : j ∈ NG(1)). (10.6)

Proof. It is clear that
(xj : j ∈ NG(1)) ⊆ (I(G) : x1).

Let us show the opposite inclusion. Let xkxℓ ∈ I(G) and suppose that both k and
ℓ are not in NG(1). Then {1, k}, {1, ℓ} ∈ E(Gc), that is k, ℓ ∈ NGc(1). Since, x1 >
x2 > · · · > xn is a perfect elimination order of Gc, it follows that that NGc(1) induces
a complete subgraph of Gc2, where G

c
2 is the induced subgraph of Gc on the vertex

set {2, . . . , n}. Since k, ℓ > 1, it follows that {k, ℓ} ∈ E(Gc), in contradiction with
{k, ℓ} ∈ E(G). Thus either k ∈ NG(1) or ℓ ∈ NG(1) and formula (10.6) follows. □

As a consequence, we recover [111, Proposition 3.19].
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Corollary 10.4.6 Let I(G) be the edge ideal of a graph G. Suppose that I(G) has a
linear resolution. Then, v(I(G)) = 1.

Proof. We proceed by induction on |V (G)| ≥ 2 with the base case being trivial. Let
|V (G)| > 2. Let x1 > x2 > · · · > xn be a perfect elimination order of Gc. Then,
by Lemma 10.4.5, equation (10.6) holds. Thus, by Proposition 10.4.2, v(I(G)) ≤
v(I(G) : x1) + deg(x1) = 0 + 1 = 1. On the other hand, by Proposition 10.4.3,
v(I(G)) ≥ α(I(G))− 1 = 1. The assertion follows. □

Remark 10.4.7 Let I ⊂ S be a graded ideal. Suppose that (Ik+1 : I) = Ik and
p ∈ Ass(Ik) for all k ≥ 1. Then, the proof of Proposition 10.2.9 shows that

vp(I
k+1) ≤ vp(I

k) + ω(I) for all k ≥ 1.

Now, we are in the position to prove Theorem 10.4.4.

Proof of Theorem 10.4.4. By the previous result, v(I(G)) = 1. Therefore, for some
p ∈ Ass(I(G)), we have vp(I(G)) = 1. By [125, Theorem 2.15], we have

Ass(I(G)) ⊆ Ass(I(G)2) ⊆ · · · ⊆ Ass(I(G)k) ⊆ · · · .

Hence, p ∈ Ass(I(G)k) for all k ≥ 1. By [125, Lemma 2.12], (I(G)k+1 : I(G)) = I(G)k

for all k ≥ 1. Since α(I(G)k+1) = 2(k + 1) and ω(I(G)) = 2, by Remark 10.4.7 and
Proposition 10.4.3, we have

2(k + 1)− 1 ≤ vp(I(G)
k+1) ≤ vp(I(G)

k) + 2

for all k ≥ 1. By induction on k ≥ 1, we may assume that vp(I(G)
k) = 2k − 1. The

above chain of inequalities gives vp(I(G)
k+1) = 2(k + 1) − 1 = α(I(G)k+1) − 1. By

Proposition 10.4.3 it follows that v(I(G)k) = 2k − 1 for all k ≥ 1, as well. □

10.4.2 Polymatroidal ideals

In this section, we prove that

Theorem 10.4.8 Let I ⊂ S be a polymatroidal ideal. Then

v(Ik) = α(I)k − 1, for all k ≥ 1.

The proof is based upon the next lemma.

Lemma 10.4.9 Let I ⊂ S be a polymatroidal ideal generated in degree α(I) ≥ 2.
Then (I : xi) is a polymatroidal ideal generated in degree α(I)− 1, for all i ∈ [n].

Proof. We may assume that i = 1. We can write I = x1I1 + I2, where I1 and I2 are
the unique monomial ideals of S such that

G(x1I1) = {u ∈ G(I) : x1 divides u},
G(I2) = {u ∈ G(I) : x1 does not divide u}.

We claim that I2 ⊂ I1. It is enough to show that G(I2) ⊆ I1. Let u ∈ G(I2)
and let v ∈ G(x1I1). Then degx1(u) = 0 < degx1(v). Thus, by the dual exchange
property, we can �nd j such that degxj (u) > degxj (v) and x1(u/xj) ∈ G(I). Hence
x1(u/xj) ∈ x1I1, and so u/xj ∈ I1. Consequently, u ∈ I1 too, and thus I2 ⊂ I1.
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By the previous paragraph, we have (I : x1) = I1 + I2 = I1. It is clear that I1 is
equigenerated in degree α(I) − 1. It remains to prove that I1 is polymatroidal. Let
u1, v1 ∈ G(I1) and i such that degxi(u1) > degxi(v1). Our job is to �nd j such that
degxj (u1) < degxj (v1) and xj(u1/xi) ∈ G(I1). Set u = x1u1 and v = x1v1. Then
u, v ∈ G(x1I1) ⊂ G(I) and degxi(u) > degxi(v). Since I is polymatroidal, there exists
j such that degxj (u) < degxj (v) and xj(u/xi) ∈ G(I). We claim that x1 divides
xj(u/xi). Indeed x1 divides u. If i ̸= 1, then x1 divides xj(u/xi) as well. If i = 1,
since x1 divides v and degxi(u) > degxi(v) > 0, it follows that x21 divides u and so
x1 divides xj(u/xi) = xj(u/x1). Therefore, in any case x1 divides xj(u/xi). Hence,
(xj(u/xi))/x1 = xj(u1/xi) ∈ G(I1) and the proof is complete. □

We are ready for the proof of the theorem.

Proof of Theorem 10.4.8. Firstly, we show that v(I) = α(I) − 1. We proceed
by strong induction on α(I) ≥ 1. If α(I) = 1, then I = pA for some A ⊆ [n],
α(I) = 1 and v(I) = vpA(I) = 0. Suppose α(I) > 1. By the previous proposition,
(I : x1) is a polymatroidal ideal and α(I : x1) = α(I) − 1. By induction hypothesis,
v(I : x1) = α(I : x1)− 1 = α(I)− 2. Hence, by Proposition 10.4.2,

v(I) ≤ v(I : x1) + deg(x1) = α(I)− 1.

By Proposition 10.4.3, v(I) ≥ α(I)− 1. Equality follows.
Let k > 1. It is well�known that the product of polymatroidal ideals is polyma-

troidal [89, Theorem 12.6.3]. Hence, Ik is a polymatroidal ideal generated in degree
α(I)k. By what shown above, v(Ik) = α(Ik)− 1 = α(I)k − 1. □

10.4.3 Hibi ideals

Let (P,⪰) be a �nite poset with P = {p1, . . . , pn}. Recall that the Hibi ideal HP =
(uI : I ∈ J (P )) is equigenerated in degree |P |. It is well known that Hibi ideals have
linear powers. Next, we calculate the v-function of HP .

Theorem 10.4.10 Let HP be a Hibi ideal. Then,

v(Hk
P ) = k|P | − 1, for all k ≥ 1.

Proof. By [89, Lemma 9.1.9], we have the minimal primary decomposition

HP =
⋂
pi⪯pj

(xi, yj).

Therefore Ass(HP ) = {(xi, yj) : pi ⪯ pj}. Let pi ∈ P be a minimal element of P with
respect to ⪰. After a relabeling, we may assume that i = 1. Then {p1} ∈ J (P ) and
x1y2 · · · yn ∈ HP . Note that y1y2 · · · yn ∈ HP because ∅ ∈ J (P ). Thus,

(HP : y2 · · · yn) ⊇ (x1, y1).

Note that any generator of HP is divided by either x1 or y1. Thus, any mono-
mial u ∈ (HP : y2 · · · yn) must be divided by either x1 or y1. Hence, we see that
(HP : y2 · · · yn) = (x1, y1). Therefore, v(x1,y1)(HP ) ≤ deg(y2 · · · yn) = |P | − 1. By
Proposition 10.4.3, it follows that v(HP ) = v(x1,y1)(HP ) = α(HP )− 1 = |P | − 1.

By [88, Corollary 1.2] the Rees algebra R(HP ) is a normal domain. Hence, HP

is a normal ideal (see, also, [36, Corollary 3.5]). Thus, by [139, Proposition (4.7)],
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(Hk+1
P : HP ) = Hk

P , for all k ≥ 1. By [89, Theorem 9.1.13] HP is the cover ideal J(G)
of a Cohen�Macaulay bipartite graph G. Next, by [137, Theorem 6.10] we have that
J(G)k = J(G)(k) for all k ≥ 1, that is, ordinary and symbolic powers of J(G) = HP

coincide. Since HP is a squarefree monomial ideal, by [89, Proposition 1.4.4 and
Corollary 1.3.6] we have

Hk
P = H

(k)
P =

⋂
pi⪯pj

(xi, yj)
k.

Hence, Ass(Hk
P ) = Ass(HP ) for all k ≥ 1. Thus, by Remark 10.4.7, for all k ≥ 1,

v(x1,y1)(H
k+1
P ) ≤ v(x1,y1)(H

k
P ) + |P |. (10.7)

Now, we prove that v(x1,y1)(H
k
P ) = k|P | − 1 for all k ≥ 1. This is true for k = 1

as shown above. Assume k > 1 and that v(x1,y1)(H
k
P ) = k|P | − 1. Then, Proposition

10.4.3, equation (10.7) and the inductive hypothesis give

(k+1)|P | − 1 = α(Hk+1
P )− 1 ≤ v(x1,y1)(H

k+1
P ) ≤ v(x1,y1)(H

k
P ) + |P | = k|P | − 1+ |P |.

Hence, v(x1,y1)(H
k+1
P ) = (k + 1)|P | − 1, as wanted. Finally v(Hk

P ) = k|P | − 1, for all
k ≥ 1, as well. □

Notes

An essential part of the proofs of the results in this chapter relies on Proposition
10.2.5, which is based on an initial ideal trick to reduce to the monomial case and the
subsequent linear programming argument. This is also a crucial step in the paper of
Cutkosky, Herzog and Trung [41]. However, in 2005, Trung and Wang proved more
generally that the Castelnuovo�Mumford regularity of IkM is eventually a linear func-
tion in k [147, Theorem 3.2], where I is a graded ideal of a Noetherian commutative
ring R and M is a �nitely generated graded R-module. This result is remarkable
because in this more general case, the initial ideal trick and the subsequent linear
programming argument employed in the proof of Proposition 10.2.5 are not available.
It would be nice to extend the concept of v-number and the results on the v-function
in this more general situation.

At present, not much is known about the v-function of a graded ideal besides
what proved here. On the other hand, the v-number of edge ideals I(G), and more
generally the v-number of edge ideals I(C) of a clutter, was combinatorially computed
in terms of G, respectively C, by Jaramillo and Villarreal [111, Theorem 3.5]. That
such a combinatorial description is possible is not that surprising. Indeed, both the
the colon ideal of two monomial ideals and the primary decomposition of a monomial
ideal are independent from the characteristic of the underlying �eld K. Thus, the
v-functions, vp(I) (p ∈ Ass∞(I)) and v(I), of a monomial ideal I stay the same for
any underlying �eld K of S = K[x1, . . . , xn].

Due to the results above, to study the v-number of monomial ideals, one could
expect, via polarization, that it is enough to consider squarefree monomial ideals.
However, this is not the case. The behaviour of the v-number under polarization was
studied by Saha and Sengupta [140]. They showed that in general v(I℘) ≤ v(I) with
equality if I has no embedded primes. Such a condition, however, is not necessary to
guarantee that v(I℘) = v(I). The very useful Proposition 10.4.2 is also taken from
their paper.
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Chapter 11

Conclusions

We close this dissertation by discussing some open problems related to our work.

11.0.1 Vector�spread strongly stable ideals

Besides the case t = (1, . . . , 1, 0, . . . , 0), the di�erentials of the minimal free resolution
of a t-spread strongly stable ideal are still unknown for a general choice of t. Part
of the di�culty of this problem stems from the fact that for a general choice of t, a
t-spread strongly stable ideal needs not to have a monomial cycles basis as shown in
the Notes at the ending of Chapter 4. Perhaps, a similar statement as in Theorem
4.3.2 also holds for each summand

(−1)σ(u;F )ε(xFu
′/xF (u))eσ\F ∧ eF (u) ∧ emax(u), F ⊆ σ,

of the cycle e(u;σ), u ∈ G(I), σ ⊆ [max(u)− 1] \ suppt(u). Then, from these �local�
pieces of e(u;σ) perhaps one could determine the di�erentials? Maybe Betti splittings
as used in Theorem 8.3.5 could also solve this problem.

In a discussion related to this kind of problems, Herzog and myself wondered if
the following question could be true.

Question. Let I ⊂ S be a monomial ideal with linear quotients. Suppose that I has
a regular decomposition function. Is it true that I has a monomial cycle basis? Or,
conversely, assume that I has monomial cycle basis, is it true that the decomposition
function of I is regular?

Many other questions remain unsolved about vector�spread strongly stable ideals.
To mention some, to describe the primary decomposition of t-spread lexsegment ideals
and when is a t-spread lexsegment ideal sequentially Cohen�Macaulay are still open
questions [32].

11.0.2 Homological shift ideals

Of course, the main question that still remains is to solve the Bandari�Bayati�Herzog
conjecture. One could try to settle it for PLP�polymatroidal ideals and transversal
polymatroidal ideals.

Since we know that HS1(I) always has linear quotients if I has linear quotients,
by symmetry one would expect that this is also true for HSn−1(I), when I has linear
quotients. However, this needs not to be the case. For instance, let

I = (x21x
2
2, x1x

3
2, x1x

2
2x3, x1x

2
2x4, x1x2x

2
3, x

2
2x

2
3, x2x

3
3,

x2x
2
3x4, x1x2x3x4, x

2
2x3x4, x2x

2
3x4, x2x3x

2
4).
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By using [59], we checked that I has linear quotients and pd(I) = 3 = n−1. However,

HS3(I) = x1x2x3x4 · soc(I) = (x1x
2
2x

2
3x

2
4, x1x

2
2x

3
3x4, x

2
1x

3
2x3x4)

does not has linear quotients, not even linear resolution.
Therefore, in general, if I is equigenerated with linear quotients and has maxi-

mal projective dimension, soc(I) needs not to have linear quotients, not even linear
resolution. Nonetheless, we still expect that for a polymatroidal ideal I, soc(I) is
polymatroidal. As I learned from Herzog, this would then imply that the saturation
Isat =

⋃
k(I : mk) is a componentwise polymatroidal ideal, and thus a componen-

twise linear ideal. Here, componentwise polymatroidal means that I⟨j⟩ is polyma-
troidal for all j. Polymatroidal ideals are componentwise polymatroidal ideals, be-
cause I⟨j⟩ = md−jI where d is the initial degree of I, and products of polymatroidal
ideals are polymatroidal.

11.0.3 The v-number

In Chapter 11, we showed under additional assumptions that the v-functions are
linear. Of course it would be nice to prove this in general. One could ask if v(I(k))
is also a (periodically) linear function in k for k ≫ 0. For the Castelnuovo�Mumford
regularity reg(I(k)) of symbolic powers of a homogeneous ideal this is not the case in
general, unless I is for example a monomial ideal [92, Corollary 3.3].

An interesting question in the context of Theorem 10.2.2 is to give criteria for when
Socp(I) is indeed an ideal of Fp(I). This is for sure the case, when Socp(I) is equal,
without any truncation, to (0 :grI(R) p). In this latter situation, several questions arise.
In which degrees is Socp(I) minimally generated? And how is this information related
to the function vp(I

k) for k ≫ 0? When is Socp(I) Cohen�Macaulay, Gorenstein,
complete intersection?

In Section 10.4, we computed the v-number of edge ideals with linear resolution,
polymatroidal ideals and Hibi ideals. For any ideal I of these classes, we have v(Ik) =
α(I)k−1 for all k ≥ 1. It would also be interesting to compute combinatorially vp(I

k)
for any p ∈ Ass∞(I) and any I of the above classes. For instance, in the case of Hibi
ideals, the following could be true.

Conjecture. Let HP be the Hibi ideal of the poset (P,⪰) with P = {p1, . . . , pn}.
Then Ass(Hk

P ) = Ass∞(HP ) = {(xi, yj) : pi ⪯ pj} for all k ≥ 1. Let p = (xi, yj) with
pi ⪯ pj and pi ̸= pj. Is it true that

vp(H
k
P ) =

{
|P |k − 1 if pi = pj ,

|P |k + |{pℓ ∈ P : pi ≺ pℓ ≺ pj}| otherwise.

for all k ≥ 1?

In [111], Jaramillo and Villarreal asked whether the inequality v(I) ≤ reg(I) holds
for any squarefree monomial ideal I. Civan showed in [29] that this is not the case.
Indeed, for any given integer a, there exists a graph G with v(I(G)) = reg(I(G)) + a
[29, Theorem 2]. Therefore, the number v(I)− reg(I) can be arbitrarily large. On the
other hand, assuming that the v-function of a given homogeneous ideal I is linear, a
natural question arises.

Question. Let I ⊂ S be a graded ideal and suppose that v(Ik) is an eventually linear
function. Is it true that v(Ik) ≤ reg(Ik) for all k ≫ 0?
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