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ABSTRACT

In various stereological problems an n-dimensional convex body is intersected with an (n− 1)-dimensional
Isotropic Uniformly Random (IUR) hyperplane. In this paper the cumulative distribution function associated
with the (n− 1)-dimensional volume of such a random section is studied. This distribution is also known
as chord length distribution and cross section area distribution in the planar and spatial case respectively.
For various classes of convex bodies it is shown that these distribution functions are absolutely continuous
with respect to Lebesgue measure. A Monte Carlo simulation scheme is proposed for approximating the
corresponding probability density functions.
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INTRODUCTION

In a typical stereological problem we are presented
with observations which originate from a lower
dimension than the dimension of interest. A classical
example is the Wicksell corpuscle problem (Wicksell,
1925). The setting of the problem is as follows, balls
of varying sizes are randomly positioned in 3D space.
This system of balls is intersected with a plane and the
circular section profiles of the balls which happened to
be cut by the section plane are observed. The problem
is to determine the distribution of the radii of the 3D
balls given the distribution of the radii of the observed
2D circular profiles.

An interesting generalization of this problem is
to choose a convex shape other than the ball for
the shape of the particles. Then, the distribution
of observed section areas may be used to estimate
the size distribution of the particles. The particles
we consider are convex bodies, i.e. compact and
convex sets with non-empty interiors. In order to deal
with such problems we study a class of distributions
which is especially important in this setting. Suppose
we take some convex body K ⊂ R3 of choice and
intersect K with a random section plane. More
generally, we may take a convex body K ⊂ Rn,
and intersect it with a random (n − 1)-dimensional
hyperplane. The random section planes we consider
are known as Isotropic Uniformly Random (IUR)
planes. This roughly means that every plane which
has a non-empty intersection with the convex body

has equal probability of occurring. What can be said
regarding the cumulative distribution function (CDF)
GK associated with the (n−1)-dimensional volume of
such a random section of K? In this paper we study
this kind of distribution functions. In particular, we
obtain results on absolute continuity. Whenever we
refer to absolute continuity of a cumulative distribution
function we mean absolute continuity with respect
to Lebesgue measure. We know that the existence
and the accurate approximation of the density of GK
is an essential ingredient for defining estimators for
particle size distributions in stereological problems.
The existence results and the approximation procedure
proposed in this paper are used in (van der Jagt et al.,
2023) to design a nonparametric maximum likelihood
procedure for estimating particle size distributions.

Given a convex body K ⊂ R2 an IUR section
of K is the intersection of K with a random line.
The distribution function GK is then also known
as a chord-length distribution function. Some results
regarding this function may be found in (Gates, 1987).
The author notes that it is typically assumed without
proof that the CDF of a chord length distribution is
absolutely continuous. Only for a limited set of convex
polygons there are some results on absolute continuity.
See for example (Harutyunyan and Ohanyan, 2009)
for the chord length distribution function of a regular
polygon which is absolutely continuous.

For convex bodies K ⊂ R3 the distribution
function GK is sometimes called a cross section area
distribution. In (Santaló and Kac, 2004) it is noted
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that in a stereological setting it is of interest to obtain
the density of GK for some basic shapes such as the
simplex or the cube. However, to the best of our
knowledge there are no results on whether GK has a
density for a large class of convex bodies, especially in
Rn with n ≥ 3. To overcome the difficulty in obtaining
an expression for GK , simulations may be used to find
an approximation. In (Ohser and Mücklich, 2000) a
description is given for approximating GK (when K
is a polytope in R3) and for how it may be used to
estimate the size distribution of particles from a sample
of observed section areas.

The outline of this paper is as follows. First,
necessary notation and definitions are introduced.
Then, we discuss the importance of absolute continuity
of GK for stereological estimation of particle size
distributions. This is followed by various results
on the distribution function GK . In particular, we
show that for a large class of convex bodies, GK
is absolutely continuous. Finally, we propose a
Monte Carlo simulation scheme to approximate the
corresponding probability density function gK using
density estimation techniques.

PRELIMINARIES

In this section we introduce the necessary
notation and definitions. In particular, we introduce
some terminology from convex geometry, a standard
reference is (Schneider, 2013). In Rn a convex body
is a convex and compact set with non-empty interior.
Let K n denote the class of convex bodies in Rn.
Let Vn(K) be the n-dimensional volume of K, its
n-dimensional Lebesgue measure. K and L indicate
convex bodies. Given a point x ∈ Rn, the translation
of K with x is given by: K + x = {k + x : k ∈ K}.
The sum of two sets, also known as the Minkowski
sum, is defined as: K + L = {k + l : k ∈ K, l ∈ L}.
The dilatation or scaling of K with λ > 0 is given
by: λK = {λk : k ∈ K}. ∂K denotes the boundary of
K. Given x ∈ Rn and r > 0, we write B(x,r) = {y ∈
Rn : ||x−y||< r} and B̄(x,r) = {y ∈Rn : ||x−y|| ≤ r}
for the open and closed ball respectively, with radius
r centered at x. SO(n) denotes the rotation group of
order n, containing all orthogonal n × n-matrices of
determinant one. Given M ∈ SO(n), the rotation of K
with M is denoted by: MK = {Mk : k ∈ K}. We write
intK and relintK to denote the interior and relative
interior of K respectively. A convex body K ∈ K n is
strictly convex if for all x,y ∈ K and λ ∈ (0,1) we
have λx + (1 − λ )y ∈ intK. A strictly convex body
does not have any line segments in its boundary. The
unit sphere in Rn is denoted by Sn−1 = {(x1, . . . ,xn) ∈

Rn : x2
1 + · · ·+ x2

n = 1}. The upper hemisphere in Rn

is given by: Sn−1
+ = {(x1, . . . ,xn) ∈ Sn−1 : xn ≥ 0}.

Let σn−1 denote the spherical measure on Sn−1, also
known as the spherical Lebesgue measure on Sn−1.
In integrals over (a subset of) Sn−1 the notation dθ

should be interpreted as dσn−1(θ). A hyperplane may
be parameterized via a unit normal vector θ ∈ Sn−1

+ and
its signed distance s ∈ R to the origin:

Tθ ,s = {x ∈ Rn : ⟨x,θ⟩= s}, (1)

with ⟨·, ·⟩ being the usual inner product in Rn. Given
a convex body K ∈ K n its inner section function mK :
Sn−1 → [0,∞) is defined by:

mK(θ) = max
s∈R

Vn−1
(
K ∩Tθ ,s

)
. (2)

This function returns the maximal section volume
for any given direction. We can now define what is
meant by an Isotropic, Uniformly Random (IUR) plane
hitting K. The notion of IUR planes was originally
introduced in (Davy and Miles, 1977). The following
definition gives a convenient parameterization of IUR
planes, see (Baddeley and Jensen, 2004) for IUR plane
sections of convex bodies in R3 (the generalization to
Rn is straightforward):

Definition 1 (IUR plane). An IUR plane T hitting a
fixed K ∈ K n, n ≥ 2, is defined as T = TΘ,S where
(Θ,S) has joint probability density, fK : Sn−1

+ ×R →
[0,∞) given by:

fK(θ ,s) =

{
1

µ([K]) if K ∩Tθ ,s ̸= /0
0 otherwise,

with Tθ ,s as in Eq. (1) and

µ([K]) =
∫

Sn−1
+

∫ ∞

−∞
1{K ∩Tθ ,s ̸= /0}dsdθ . (3)

It is important to highlight that there are other
kinds of random planes which appear in stereological
problems, hence care should be taken in considering
the appropriate distribution. See (Miles, 1978) for
more details. Note that the distribution in Definition
1 is a joint uniform distribution; the marginals are
in general not uniform. We stress that the density fK
prescribes the probability associated with the possible
locations and orientations of the section plane, not the
volumes of hyperplane sections. Fix K ∈ K n and let
fK be as in Definition 1. Integrating out the variable s,
we obtain the marginal density:

fK,Θ(θ) =
L(pθ (K))

µ([K])
, θ ∈ Sn−1

+ . (4)

In Eq. (4), pθ (K) represents the orthogonal projection
of K on the line through the origin with direction
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θ . L(pθ (K)) is then the length of this orthogonal
projection, hence L(pθ (K)) may also be called the
width of K in direction θ . The constant µ([K]) is
related to the average width b̄(K), via:

µ([K]) = αnb̄(K). (5)

The average width is defined as:

b̄(K) =
1

αn

∫
Sn−1
+

L(pθ (K))dθ ,

and the constant αn is given by:

αn = σn−1
(
Sn−1
+

)
=

π
n
2

Γ
(n

2

) .
Conditioning an IUR plane on a fixed direction yields a
so-called Fixed orientation Uniformly Random (FUR)
plane. Fix θ ∈ Sn−1, let a = a(θ) be the smallest
number such that K ∩Tθ ,a ̸= /0, similarly let b = b(θ)
be the largest number such that K ∩ Tθ ,b ̸= /0. Then,
conditional on this direction Θ = θ , S is uniformly
distributed on the interval [a,b], and we denote this
conditional density by:

fS|Θ(s|θ) =
{

1
b(θ)−a(θ) if s ∈ [a(θ),b(θ)]

0 otherwise.
(6)

We may also write: S|Θ = θ ∼ U (a(θ),b(θ)). Given
a cumulative distribution function (CDF) F or a
probability density function (PDF) f , we write X ∼ F
or X ∼ f to indicate that the random variable X is
distributed according to F or f respectively. We are
now ready to introduce the CDF of interest in this
paper.

Definition 2 (section volume CDF). Fix K ∈ K n,
n ≥ 2, let fK be as in Definition 1. Let (Θ,S)∼ fK , the
random variable Z = Vn−1(K ∩ TΘ,S) has cumulative
distribution function GK which is given by:

GK(z) =∫
Sn−1
+

∫
R
1{Vn−1(K ∩Tθ ,s)≤ z} fK(θ ,s)dsdθ .

We refer to GK as the section volume CDF of K.

We remark that the expression of the CDF
GK follows from the fact that GK(z) = P(Z ≤
z) = E(1{Z ≤ z}) and the law of the unconscious
statistician. In R2 we may still refer to GK as chord
length distribution function and in R3 we may call it
cross section area distribution function.

STEREOLOGICAL ESTIMATION
OF SIZE DISTRIBUTIONS

In this section we show how absolute continuity
of GK and accurate approximation of its density gK
is important for stereological estimation of particle
size distributions. We consider the generalization of
the Wicksell corpuscle problem as mentioned in the
introduction. Suppose we pick some particle, a convex
body K ⊂ R3, and instances of K of varying size
are randomly positioned and oriented in R3. Such an
isotropic system of particles is often described in terms
of a germ-grain model, see for example (Ohser and
Mücklich, 2000) and sections 6.5 and 10.5 in (Chiu
et al., 2013). In this setting an isotropic typical particle
is chosen and the particles are positioned in R3 using
a stationary point process. The particles have random
sizes and a particle of size λ is equal to λK up to
rotation and translation. If the diameter of K equals 1,
then the size λ of a particle is simply its diameter. The
sizes of the particles are independent and identically
distributed according to the distribution function H.
The mean particle size is given by:

E(Λ) =
∫ ∞

0
λdH(λ ).

Intersecting this system of particles with a plane, the
distribution function associated with the area of a
typical section profile is denoted by FA. It can be
shown, see for example (van der Jagt et al., 2023), that
FA is given by:

FA(a) =
1

E(Λ)

∫ ∞

0
GK

( a
λ 2

)
λdH(λ ).

Let amax denote the largest possible section area over
all planar sections of K. If GK is absolutely continuous
and has Lebesgue density gK , supported on (0,amax),
then FA has a density given by:

fA(a) =
1

E(Λ)

∫ ∞
√ a

amax

gK

( a
λ 2

) 1
λ

dH(λ ). (7)

Another derivation of Eq. (7) appears in chapter 16
of (Santaló and Kac, 2004). The main implication of
Eq. (7) is that given a sample of observed section
areas, corresponding to some system of particles, the
likelihood is well-defined. This means that the size
distribution H may be estimated using likelihood-
based methods of statistical inference. For any given
candidate H ′ for H evaluating such a likelihood
requires gK to be known. This density is in general
hard to compute and one way to deal with this is to
use the density approximation procedure presented in
this paper, which can approximate it arbitrarily closely.

Suppose that we obtain a sample A1, . . . ,AN which
is independent and identically distributed according to
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fA. We wish to estimate the distribution function H of
the size distribution. This problem is identifiable, in
(van der Jagt et al., 2023) it is shown that the profile
area distribution fA uniquely determines H under
lenient assumptions. Moreover, the authors also derive
a non-parametric estimator for the so-called length-
biased size distribution via non-parametric maximum-
likelihood, and show that it is consistent. We now
briefly discuss the definition of this estimator, for
further details we refer to (van der Jagt et al., 2023).
The length-biased size distribution, or length-biased
version of H is given by:

Hb(λ ) :=
∫

λ

0 xdH(x)∫ ∞
0 xdH(x)

.

As in the Wicksell corpuscle problem we are
dealing with length-biased sampling, meaning that the
probability that a particle is hit by the section plane
is proportional to its size. Hence, while the size of a
typical particle is distributed according to H, the size
of a typical particle in the section plane is distributed
according to Hb. Letting A ∼ fA, set S =

√
A and let

fS denote the density of S. Analogously, let Z ∼ gK ,
and let gS

K denote the density of
√

Z. Plugging the
definitions of these densities into Eq. (7) yields:

fS(s) =
∫ ∞

0
gS

K

( s
λ

) 1
λ

dHb(λ ). (8)

Because gS
K is supported on (0,

√
amax), in Eq. (8) the

lower bound of the integration region is effectively
s/
√

amax instead of 0. Set Si =
√

Ai for i ∈ {1, . . . ,N},
and let s1 < s2 < · · ·< sN be a realization of the order
statistics of S1, . . . ,SN . The estimator Ĥb

N for Hb is
defined as a maximizer of the (scaled by 1/N) log-
likelihood:

Ĥb
N ∈ argmax

Hb∈F+
N

1
N

N

∑
i=1

log
(∫ ∞

0
gS

K

( si

λ

) 1
λ

dHb(λ )

)
.

Here, we maximize over F+
N , the class of all piece-

wise constant distribution functions on (0,∞), with
jump-locations restricted to the set of observations, the
si’s. A single realization of Ĥb

N is shown in Fig 1.

For the simulation result in Fig 1, each particle
is a convex dodecahedron and the underlying size
distribution is a standard exponential distribution.
The corresponding length-biased distribution Hb is a
gamma distribution. A sample of size N = 1000 from
fS is used to compute Ĥb

N . We note that for some
applications an estimate of Hb may be sufficient. If an
estimate of H is desired, a procedure which uses Ĥb

N to
obtain an estimate of H may be found in van der Jagt
et al. (2023).
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Fig. 1: A single realization of the maximum likelihood
estimator Ĥb

N (N = 1000) and the true length-biased
size distribution Hb.

PROPERTIES OF THE SECTION
VOLUME CDF

In this section we derive various properties of
the section volume CDF as described in Definition 2.
Given a convex body K the following lemma highlights
some basic properties.

Lemma 1. Fix K,L ∈ K n, let GK , GL be their section
volume CDF respectively. Let z ∈ R, then:

1. Translation invariance: GK+x(z) = GK(z) for all
x ∈ Rn.

2. Rotation invariance: GMK(z) = GK(z) for all M ∈
SO(n).

3. Scaling: GλK(z) = GK
(
z/λ n−1

)
for all λ > 0.

4. Inclusion: If K ⊂ L then:

GL(z)≤ GK(z)
b̄(K)

b̄(L)
+

(
1− b̄(K)

b̄(L)

)
.

The translation and rotation invariance of IUR
planes is a defining property of IUR planes, (Davy
and Miles, 1977), and it may be used to prove
property 1 and 2 in Lemma 1. The third property
also appears in (Santaló and Kac, 2004) for n =
3. All of these properties are well-known for chord
length distributions and the generalization to (n− 1)-
dimensional sections of convex bodies in Rn is not
difficult. For the sake of completeness, the proof of this
Lemma may be found in the Appendix at the end of
this paper.

Throughout this paper we need Brunn’s theorem
(see for example (Koldobsky, 2005)):
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Theorem 1 (Brunn). Let K ∈K n, n≥ 2. Fix θ ∈ Sn−1.
The function fθ : R→ [0,∞) given by:

fθ (s) = Vn−1(K ∩Tθ ,s)
1

n−1

is concave on its support.

Ignoring the exponent 1/(n−1) in the definition of
fθ , this function returns the volume of the intersection
of K with Tθ ,s. Because we fix θ , this means the
function considers volumes of parallel slices of K, and
it is a function of the (signed) distance of the section
plane to the origin. The statement of Brunn’s theorem
inspires us to study a distribution function which is
closely related to GK :

Definition 3 (Transformed section volume CDF). Fix
K ∈ K n, n ≥ 2, let fK be as in Definition 1. Let
(Θ,S) ∼ fK , the random variable Z = Vn−1(K ∩
TΘ,S)

1/(n−1) has cumulative distribution function GS
K

which is given by:

GS
K(z) =∫

Sn−1
+

∫
R
1
{

Vn−1(K ∩Tθ ,s)
1

n−1 ≤ z
}

fK(θ ,s)dsdθ .

We refer to GS
K as the transformed section volume CDF

of K.

This distribution function GS
K turns out to be more

natural to study compared to GK as will become clear
in the proof of the upcoming theorem. Note that, for
K ∈ K n, GK and GS

K are related as follows:

GS
K(z) = GK

(
zn−1) .

Remark 1. GK is absolutely continuous if and only
if GS

K is absolutely continuous. After all, suppose
that GS

K has probability density function gS
K . Let X ∼

gS
K , then Xn−1 ∼ GK and via the well-known change

of variables formula this random variable has the
following probability density function:

gK(z) = gS
K

(
z

1
n−1

) z
2−n
n−1

n−1
. (9)

The converse case is analogous.

We now present one of the main theorems in this
paper:

Theorem 2. Let K ∈ K n, n ≥ 2. Define the function
fθ : R→ [0,∞) by:

fθ (s) = Vn−1(K ∩Tθ ,s)
1

n−1 .

If fθ has a unique maximum and is continuous on R for
almost all θ ∈ Sn−1

+ , then GK is absolutely continuous
with respect to Lebesgue measure.

Proof. Given K ∈ K n, let GK be its section volume
CDF and let GS

K be its transformed section volume
CDF. We show that GS

K is absolutely continuous, from
this it follows that GK is absolutely continuous by
Remark 1. By conditioning the distribution function
GS

K on Θ having a particular value, GS
K may be written

as a mixture distribution:

GS
K(z) = P( fΘ(S)≤ z)

=
∫

Sn−1
+

P
(

fθ (S)≤ z
∣∣∣Θ = θ

)
fK,Θ(θ)dθ ,

with fK,Θ(θ) being the marginal density of Θ as in Eq.
(4) and fθ (·) as in the statement of the theorem. For
notation convenience, write:

GS
K(z|θ) := P

(
fθ (S)≤ z

∣∣∣Θ = θ

)
. (10)

Let a = a(θ) and b = b(θ) be as in Eq. (6) such that
S|Θ = θ ∼ U (a,b). Choose θ ∈ Sn−1

+ such that fθ

has a unique maximum and is continuous on R. By
definition of a we know that Tθ ,a intersects K only
through the boundary of K. By the assumed continuity
of fθ we have fθ (a) = 0 and similarly: fθ (b) = 0. Note
that fθ has the following domain and codomain:

fθ : [a,b]→ Dθ , with Dθ =
[
0,mK(θ)

1
n−1

]
, (11)

and mK(·) as in Eq. (2). By Brunn’s theorem fθ is
concave on its support and by assumption it attains its
maximum in a single point c. As a result, fθ is strictly
increasing on (a,c) and strictly decreasing on (c,b).
Therefore, fθ restricted to (a,c) is invertible, and its
inverse is convex and strictly increasing. Let:

f+
θ

:
(

0,mK(θ)
1

n−1

)
→ (a,c),

denote this inverse. Similarly, fθ restricted to (c,b) has
an inverse:

f−
θ

:
(

0,mK(θ)
1

n−1

)
→ (c,b),

which is concave and strictly decreasing. Write:

p := P(S ∈ (a,c)|Θ = θ).

By using the fact that S|Θ = θ ∼ U (a,b) we find
p=(c−a)/(b−a). Moreover, we obtain the following
expression for GS

K(z|θ):

GS
K(z|θ) = P

(
fθ (S)≤ z

∣∣∣Θ = θ ,S ∈ (a,c)
)

p+

+P
(

fθ (S)≤ z
∣∣∣Θ = θ ,S ∈ (c,b)

)
(1− p)

= P
(

S ≤ f+
θ
(z)

∣∣∣Θ = θ ,S ∈ (a,c)
)

p+

+P
(

S ≥ f−
θ
(z)

∣∣∣Θ = θ ,S ∈ (c,b)
)
(1− p)

=
f+
θ
(z)−a
c−a

p+
(

1− f−
θ
(z)− c

b− c

)
(1− p).
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Because f−
θ

is concave and strictly decreasing, − f−
θ

is convex and strictly increasing. Therefore, GS
K(·|θ)

is a convex combination of two functions both of
which are convex and strictly increasing on the interval
Dθ (as in Eq. (11)). As a result, GS

K(·|θ) is convex,
continuous, and strictly increasing on Dθ , which is
the support of this distribution function. We conclude
that for almost all θ ∈ Sn−1

+ , GS
K(·|θ) is absolutely

continuous because it is convex on its support and
continuous on R. Finally, this means that GS

K as a
mixture of absolutely continuous distribution functions
is absolutely continuous by Fubini’s theorem.

Remark 2. The arguments used in the proof of
Theorem 1 do not hold for general convex bodies.
For general convex bodies the function fθ is concave
by Brunn’s theorem. Therefore, the set of points at
which it attains its maximum may be an interval rather
than a single point. When this is the case, GS

K(·|θ) is
still convex on its support, but it is discontinuous in
the point mK(θ)

1/(n−1), which is the right boundary
point of its support. As a result, for any convex body
K ∈ K n, GS

K is convex on the interval (0,dK) with:
dK = minθ∈Sn−1 mK(θ)

1/(n−1).

STRICTLY CONVEX BODIES

Let us now consider a particular class of convex
bodies known as strictly convex bodies. The class
of strictly convex bodies is large in a precise sense.
For one, the class of convex bodies which are not
smooth or strictly convex forms a set of first Baire
category, see (Zamfirescu, 1987) for details. We have
not yet mentioned smooth convex bodies, loosely
speaking it means that their boundary is smooth.
An important result we obtain in this section is that
given that K ∈ K n is strictly convex, then GK is
absolutely continuous. Therefore, we show that for
a large class of convex bodies GK is absolutely
continuous. The main tools to obtain this result are the
famous Brunn-Minkowski inequality and a variant of
Brunn’s theorem. In the field of convex geometry the
importance of the Brunn-Minkowski inequality cannot
be overstated, we refer to the review paper (Gardner,
2002) for variants of the theorem and its applications.

Theorem 3 (Brunn-Minkowski). Given convex bodies
K,L ∈ K n and 0 < λ < 1 the following inequality
holds:

Vn(λK +(1−λ )L)
1
n ≥ λ Vn(K)

1
n +(1−λ )Vn(L)

1
n ,

with equality if and only if K and L are equal up to
translation and dilatation.

The equality condition in Theorem 3 means that
there exist δ > 0 and x ∈ Rn such that K = δL + x.
In order to prove that GK is absolutely continuous for
strictly convex K ∈K n we show that the conditions in
Theorem 2 are satisfied. First, we need the following
Lemma:

Lemma 2. Let K,L ∈ K n with K ⊂ intL, then
Vn(K)< Vn(L).

Its proof is given in the Appendix at the end of this
paper. We show that the strict convexity of a convex
body carries over to strict concavity of the function fθ

(as in Theorem 1).

Theorem 4. Let K ∈ K n be a strictly convex body,
n ≥ 2. Fix θ ∈ Sn−1. The function fθ : R→ [0,∞) given
by:

fθ (s) = Vn−1(K ∩Tθ ,s)
1

n−1

is continuous on R and strictly concave on its support.

Proof. The proof is a slight variation of a proof
of Brunn’s theorem using the Brunn-Minkowski
inequality as found in (Koldobsky, 2005) (pp 18–19).
Fix θ ∈ Sn−1. Choose r, t in the support of fθ , such that
r < t. Let λ ∈ (0,1), set s = λ r+(1−λ )t and consider
the hyperplane sections Kr := K ∩Tθ ,r, Ks := K ∩Tθ ,s
and Kt := K ∩Tθ ,t . We show that:

λKr +(1−λ )Kt ⊂ (intK)∩Tθ ,s. (12)

Let z ∈ λKr +(1− λ )Kt , then z = λx+(1− λ )y for
some x ∈ Kr and some y ∈ Kt . Because also x,y ∈
K we have z ∈ intK due to the strict convexity of
K. Also, note that ⟨z,θ⟩ = λ ⟨x,θ⟩+ (1− λ )⟨y,θ⟩ =
λ r +(1− λ )t = s. Hence, z ∈ Tθ ,s, which proves Eq.
(12). It can readily be verified that: (intK) ∩ Tθ ,s =
relint(Ks). Combining this with Eq. (12) we find:
λKr + (1 − λ )Kt ⊂ relint(Ks). Let Π(L) denote the
orthogonal projection of L on the hyperplane Tθ ,0.
Note that λKr +(1−λ )Kt and Ks are subsets of Tθ ,s,
projecting them on Tθ ,0 preserves the inclusion:

Π(λKr +(1−λ )Kt)⊂ relintΠ(Ks).

Identifying Tθ ,0 with Rn−1 we may regard Π(λKr +

(1−λ )Kt) and Π(Ks) as convex bodies in Rn−1. Under
this identification Π(λKr+(1−λ )Kt)⊂ intΠ(Ks) and
applying Lemma 2 yields:

Vn−1 (Π(λKr +(1−λ )Kt))< Vn−1 (Π(Ks)) .

Keep in mind that projecting a set on Tθ ,0 does not
affect its (n − 1)-dimensional volume. Note that we
may change the order of these projections and the
Minkowski sum:

λΠ(Kr)+(1−λ )Π(Kt) = Π(λKr +(1−λ )Kt),
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where the sum of sets is considered in the plane Tθ ,0.
Hence,

Vn−1 (Π(Ks))> Vn−1(Π(λKr +(1−λ )Kt))

= Vn−1(λΠ(Kr)+(1−λ )Π(Kt)).
(13)

Once again, Π(Kr) and Π(Kt) may be identified as
convex bodies in Rn−1 and we may apply Brunn-
Minkowski’s (B.M.) inequality to obtain the desired
result:

fθ (s) =

= Vn−1(Ks)
1

n−1

= Vn−1(Π(Ks))
1

n−1

(13)
> Vn−1(λΠ(Kr)+(1−λ )Π(Kt))

1
n−1

B.M.
≥ λ Vn−1(Π(Kr))

1
n−1 +(1−λ )Vn−1(Π(Kt))

1
n−1

= λ Vn−1(Kr)
1

n−1 +(1−λ )Vn−1(Kt)
1

n−1

= λ fθ (r)+(1−λ ) fθ (t).

Continuity of fθ (·) can be shown as follows. Let a =
a(θ) and b = b(θ) be as in Eq. (6). By definition of
a we know that Tθ ,a intersects K only through the
boundary of K. This intersection only contains a single
point, if another point were in the intersection this
would imply that the boundary of K contains a line
segment which contradicts the strict convexity of K. As
a result: fθ (a) = 0 and similarly: fθ (b) = 0. Because
a and b are the only possible points of discontinuity,
fθ (·) is continuous.

Because a bounded concave function has a
maximum, strict concavity then implies that the
maximum is unique. We obtain as a direct consequence
of Theorem 1 and Theorem 2:

Corollary 1. Let K ∈ K n be strictly convex, and let
GK be its section volume CDF. Then, GK is absolutely
continuous.

Let us now consider approximation of convex
bodies which are not necessarily strictly convex. We
show that for any K ∈ K n the CDF GK can be
approximated arbitrarily closely by the CDF GL for
some strictly convex L ∈ K n. This is due to the
fact that any convex body may be approximated by
a smooth and strictly convex body. A quantitatively
useful statement is the following, see Theorem 1.5 in
(Klee, 1959):

Lemma 3. Let K ∈ K n be a convex body with 0 ∈
intK. Let 0 < λ < 1. There exists a smooth and strictly
convex body L ∈ K n such that:

λK ⊂ L ⊂ K.

Theorem 5. Given a convex body K ∈K n, there exists
a sequence of strictly convex bodies Km ∈ K n, m ∈N,
such that the sequence of the corresponding section
volume CDFs (GKm)m∈N converges pointwise to GK as
m → ∞.

Proof. Let K ∈ K n and let GK be its section volume
CDF. By property 1 of Lemma 1 we may assume
without loss of generality that 0 ∈ intK. Set λm :=
1 − 1/(m + 1) for m ∈ N. Then 0 < λm < 1 and λm
increases to 1 as m → ∞. Using Lemma 3, for λm let
Km be a smooth and strictly convex body such that:
λmK ⊂ Km ⊂ K. Let z ∈ R, by property 4 of Lemma 1
we find:

GK(z)
b̄(K)

b̄(Km)
−
(

1− b̄(K)

b̄(Km)

)
≤ GKm(z)≤

≤ GλmK(z)
b̄(λmK)

b̄(Km)
+

(
1− b̄(λmK)

b̄(Km)

)
.

(14)

By property 3 of Lemma 1 we have GλmK(z) =

GK
(
z/λ n−1

m
)
. Note that z/λ n−1

m decreases towards z as
m → ∞. Because GK is a CDF it is right-continuous,
therefore:

lim
m→∞

GλmK(z) = lim
m→∞

GK

(
z

λ
n−1
m

)
= GK(z). (15)

Note that: λmb̄(K) = b̄(λmK) ≤ b̄(Km) ≤ b̄(K). As a
result:

lim
m→∞

b̄(Km) = b̄(K). (16)

Combining Eq. (14) with Eq. (15) and (16), we obtain
limm→∞ GKm(z) = GK(z).

POLYTOPES
In this section we study polytopes, which are

especially of interest for practical applications. Being
examples of non-strictly convex bodies, they are not
covered by Corollary 1. The main result we obtain in
this section is that the section volume CDF of a full-
dimensional convex polytope is absolutely continuous.
In order to obtain this result for polytopes, we need
to deal with the regions where the function fθ , as in
Brunn’s theorem, is constant. The following lemma
shows that this can only happen if the polytope has
parallel edges.

Lemma 4. Let P ⊂ Rn be a full-dimensional convex
polytope, n ≥ 2. Fix θ ∈ Sn−1

+ and define the function
fθ : R→ [0,∞) by:

fθ (s) = Vn−1(P∩Tθ ,s)
1

n−1 .

Suppose fθ attains its maximum on the entire interval
[s−,s+], with s− < s+. Then, any plane Tθ ,s with s ∈
[s−,s+] intersects the same edges of P and these edges
are parallel.
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Proof. Let a= a(θ) and b= b(θ) as in Eq. (6). For s∈
(a,b) the intersection P∩Tθ ,s is an (n−1)-dimensional
polytope, and its vertices are the intersections of Tθ ,s
with the edges of P. By Brunn’s theorem we know that
fθ is concave on its support. The set of points at which
a concave function attains its maximum is convex,
hence it is a nondegenerate interval or a single point.
By assumption it is the interval [s−,s+]. By Brunn-
Minkowski’s inequality, and in particular its equality
condition, we know that all sections {P ∩ Tθ ,s : s ∈
[s−,s+]} are equal up to dilatation and translation. But,
because all such sections have equal volume, these
sections then have to be equal up to translations. Write
Ps− = P ∩ Tθ ,s− and Ps+ = P ∩ Tθ ,s+ . Because Ps+ is
equal to Ps− up to translation there exists a x ∈Rn such
that Ps+ = Ps− + x. Let s ∈ [s−,s+], we claim that:

P∩Tθ ,s = Ps− +
s− s−

s+− s−
x =: Q(s). (17)

Let z ∈ Q(s), then there exists a y ∈ Ps− such that:

z = y+
s− s−

s+− s−
x

=
s+− s

s+− s−
y+

(
1− s+− s

s+− s−

)
(x+ y).

Since y∈Ps− and (x+y)∈Ps−+x=Ps+ , it follows that
z is the convex combination of two points in P, hence
z ∈ P. Moreover, we have ⟨y,θ⟩= s− and ⟨x+ y,θ⟩=
s+. A direct computation yields: ⟨z,θ⟩= s. This means
that Q(s) ⊂ P∩ Tθ ,s. Because Q(s) is a translation of
Ps− and since P∩Tθ ,s is equal to Ps− up to a translation
we necessarily have that Eq. (17) holds. Therefore,
for any vertex v of Ps− , v+ ((s− s−)/(s+ − s−))x is
a vertex of P ∩ Tθ ,s. It is evident that all vertices of
the polytopes {P ∩ Tθ ,s : s ∈ [s−,s+]} lie on parallel
line segments which are subsets of the edges of P, this
finishes the proof.

In the next theorem we combine some of the
techniques used earlier in this paper and Lemma 4
to show that the section volume CDF of any full-
dimensional convex polytope is absolutely continuous.

Theorem 6. Let P ⊂ Rn be a full-dimensional convex
polytope, n ≥ 2. Let GP be its section volume CDF.
Then, GP is absolutely continuous.

Proof. Given θ ∈ Sn−1
+ define the function fθ : R →

[0,∞) by:

fθ (s) = Vn−1(P∩Tθ ,s)
1

n−1 .

Let B ⊂ R be a Borel set of Lebesgue measure zero.
Let fP be as in Definition 2 and let (Θ,S) ∼ fP. As in

the proof of Theorem 2, we condition on Θ = θ and
write:

P
(

Vn−1(P∩TΘ,S)
1

n−1 ∈ B
)
=

= P( fΘ(S) ∈ B)

=
∫

Sn−1
+

P
(

fθ (S) ∈ B
∣∣∣Θ = θ

)
fP,Θ(θ)dθ ,

with fP,Θ(θ) being the marginal density of Θ as in Eq.
(4). In order to show that GP is absolutely continuous
it is sufficient to show that P( fΘ(S) ∈ B) = 0. Let
a = a(θ) and b = b(θ) be as in Eq. (6) such that
S|Θ = θ ∼ U (a,b). Note that fθ is continuous on
R for almost all θ ∈ Sn−1

+ . For almost all θ ∈ Sn−1
+

the section planes Tθ ,s enter the polytope through a
vertex as s runs from a(θ) to b(θ). For any such θ ,
fθ (a) = 0 and fθ (b) = 0, because a vertex has no
(n− 1)-dimensional volume. As a and b are the only
possible points of discontinuity, fθ is continuous on R
for almost all θ ∈ Sn−1

+ .

By Brunn’s theorem we know that fθ is concave
on its support. The set of points at which a concave
function attains its maximum is convex, hence it is
a nondegenerate interval or a single point. Denote
this set by: [s−(θ),s+(θ)], in the case it consists of
a single point, s−(θ) = s+(θ). Write: p1 = P(S ∈
(a,s−)|Θ = θ), p2 = P(S ∈ [s−,s+]|Θ = θ) and p3 =
P(S ∈ (s+,b)|Θ = θ). We may write:

P( fθ (S) ∈ B|Θ = θ)

= P( fθ (S) ∈ B|Θ = θ ,S ∈ (a,s−))p1+

+P( fθ (S) ∈ B|Θ = θ ,S ∈ [s−,s+])p2+

+P( fθ (S) ∈ B|Θ = θ ,S ∈ (s+,b))p3.

Arguing as in the proof of Theorem 2 we obtain that
for almost all θ ∈ Sn−1

+ the distribution functions z 7→
P( fθ (S) ≤ z|Θ = θ ,S ∈ (a,s−)) and z 7→ P( fθ (S) ≤
z|Θ = θ ,S ∈ (s+,b)) are continuous and convex on
their support and therefore absolutely continuous with
respect to Lebesgue measure. Hence, for any such
θ we have P( fθ (S) ∈ B|Θ = θ ,S ∈ (a,s−)) = 0 and
P( fθ (S) ∈ B|Θ = θ ,S ∈ (s+,b)) = 0. Clearly, for any
θ ∈ Sn−1

+ : p2(θ) = (s+(θ)− s−(θ))/(b(θ)− a(θ)).
Further note that P( fθ (S) ∈ B|Θ = θ ,S ∈ [s−,s+]) =
1{mP(θ)

1/(n−1) ∈ B}, with mP(·) is as in Eq. (2) and
θ ∈ Sn−1

+ . Combining these results we may therefore
write:

P( fΘ(S) ∈ B) =

=
∫

Sn−1
+

1{mP(θ)
1

n−1 ∈ B}s+(θ)− s−(θ)
b(θ)−a(θ)

fP,Θ(θ)dθ .

(18)

In Eq. (18) we effectively only integrate over θ such
that s+(θ)> s−(θ). By Lemma 4 this strict inequality
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only holds if for all s ∈ [s−(θ),s+(θ)] the same edges
of P are intersected by Tθ ,s and these edges are all
parallel. Define:

D =
{

θ ∈ Sn−1
+ : s+(θ)> s−(θ)

}
.

Hence, for any θ ∈ D and any s ∈ [s−(θ),s+(θ)], we
have mP(θ) = Vn−1(P∩Tθ ,s) and the plane Tθ ,s only
intersects edges of P which are parallel. If σn−1(D) =
0, for example because P does not have any parallel
edges, then P( fΘ(S) ∈ B) = 0, hence GP is absolutely
continuous.

Let us now consider the case σn−1(D)> 0. We may
write D as a disjoint union D =∪k

i=1Di for some k ∈N.
Here Di is defined such that for all θ ∈ Di all planes
corresponding to mP(θ) intersect the same parallel
edges. Let i ∈ {1, . . . ,k} and let e1, . . . ,em ⊂ P be
the parallel edges of P corresponding to Di. Consider
the plane Tφi,0, with φi ∈ Sn−1

+ such that this plane is
orthogonal to the edges e1, . . . ,em. For any L ⊂ Rn

let Πi(L) denote the orthogonal projection of L on
the hyperplane Tφi,0. Let θ ∈ Di, s ∈ [s−(θ),s+(θ)]
such that mP(θ) = Vn−1(P∩ Tθ ,s) and the plane Tθ ,s
intersects e1, . . . ,em. Note that for any θ ∈ Di and
s ∈ [s−(θ),s+(θ)], vi := Vn−1(Πi(P∩Tθ ,s)) attains the
same value. After all, for any such plane, Πi(P∩Tθ ,s)
is a polytope in Tφi,0 and its vertices are given by the
orthogonal projections of e1, . . . ,em on Tφi,0. Moreover,
it is well known that the volume of P∩ Tθ ,s and the
volume of its projection on Tφi,0 are related via:

vi = Vn−1(Πi(P∩Tθ ,s)) = |⟨θ ,φi⟩|Vn−1(P∩Tθ ,s).

Hence,

mP(θ) = Vn−1(P∩Tθ ,s) =
vi

|⟨θ ,φi⟩|
, θ ∈ Di. (19)

If we were to draw Ω ∼ U (Sn−1), then the Lebesgue
density of the random variable ⟨Ω,φi⟩ is given by:

t ∈ [−1,1] 7→ Γ(n
2)√

πΓ(n−1
2 )

(1− t2)
n−3

2 .

This density does not depend on φi due to symmetry.
Because the probability measure corresponding to the
uniform distribution on the sphere is the normalized
spherical measure, we obtain σn−1({θ ∈ Sn−1 :
⟨θ ,φi⟩ ∈ B}) = 0. Via the change of variables
formula it is easily verified that the random variable
(vi/|⟨Ω,φ⟩|)1/(n−1) also has a Lebesgue density.
Therefore:

σn−1

({
θ ∈ Sn−1 : (vi/|⟨θ ,φi⟩|)

1
n−1 ∈ B

})
= 0. (20)

Finally, from its definition it is evident that the density
fP,Θ is bounded, see Eq. (4). Let M > 0 be an upper

bound of this density. Using this fact and Eq. (19) and
(20), the claim follows:

P( fΘ(S) ∈ B) =

=
∫

Sn−1
+

1
{

mP(θ)
1

n−1 ∈ B
}s+(θ)− s−(θ)

b(θ)−a(θ)
fP,Θ(θ)dθ

≤
∫

D
1
{

mP(θ)
1

n−1 ∈ B
}

fP,Θ(θ)dθ

≤ M
k

∑
i=1

∫
Di

1
{

mP(θ)
1

n−1 ∈ B
}

dθ

= M
k

∑
i=1

∫
Di

1
{
(vi/|⟨θ ,φi⟩|)

1
n−1 ∈ B

}
dθ

≤ M
k

∑
i=1

σn−1

({
θ ∈ Sn−1 : (vi/|⟨θ ,φi⟩|)

1
n−1 ∈ B

})
= 0.

DENSITY APPROXIMATION

In this section we consider convex bodies K ∈K n

such that GK is absolutely continuous. For most convex
bodies K ∈ K n there is no known explicit expression
for GK or its density gK . In this section we focus
on approximating the density gK . This is achieved
by obtaining a large sample from GK along with a
kernel density estimator (KDE). We use the following
rejection sampling scheme, proposed in (Miles, 1978),
to sample from the distribution GK :

1. Enclose K inside a sphere: choose R > 0 such that
K ⊂ B̄(0,R).

2. Choose an isotropic random direction Θ ∼
U (Sn−1).

3. Sample S ∼ U (0,R).

4. The plane TΘ,S hits B̄(0,R), if the plane also hits K
we accept, and Z = Vn−1(K ∩TΘ,S) is a draw from
GK . If the plane does not hit K, we reject and go
back to step 2.

In R2, step 2 may be achieved by sampling Φ ∼
U (0,2π) followed by setting Θ = (cosΦ,sinΦ). In
R3 step 2 can be performed as follows. Sample Φ ∼
U (0,2π) and X ∼ U (−1,1). Then, we may set Ω =
arccos(X) and Θ = (sinΩcosΦ,sinΩsinΦ,cosΩ). In
order to keep the rejection rate in the sampling scheme
low, R should be as small as possible and K should be
positioned at the origin, meaning that 0 ∈ intK.

Of course, for K ∈ K n with n = 2 we find: GK ≡
GS

K . Note that GS
K is initially convex on some initial

interval (see Remark 2). As a result, its density gS
K is
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non-decreasing on this interval. This means that gS
K

may even be constant initially. In addition, note that
if n = 2 and K is a polygon then in (Gates, 1987) it has
been shown that gS

K is always constant on some initial
interval. Because of the relation between gS

K and gK , if
gS

K is constant on an initial interval, then gK behaves
like z(2−n)/(n−1) on this interval. Hence, when n = 3
this means that gK behaves like 1/

√
z for z close to

zero. Clearly, this complicates the approximation of
gK near zero. Therefore, we choose to approximate
the density gS

K instead, and use Eq. (9) to obtain an
approximation of gK .

We will now introduce the Monte Carlo simulation
scheme for approximating gS

K . We choose a large N ∈
N and sample Z1, . . . ,ZN

iid∼ GK using the sampling
scheme given above. Setting Xi = Z1/(n−1)

i , we obtain

that X1, . . . ,XN
iid∼ GS

K . The following KDE is for
example studied in (Schuster, 1985), which we propose
as an approximation for gS

K :

ĝS
N(z) =

1
hN

N

∑
i=1

(
k
(

z−Xi

h

)
+ k

(
z+Xi

h

))
, z ≥ 0,

(21)
with h > 0 the bandwidth parameter and k a symmetric
kernel. The KDE in Eq. (21) is also known as the
reflection method. A reason for using the reflection
method over the classical (Parzen-Rosenblatt) KDE is
that it ensures that no probability mass is assigned for
z < 0. Recall that the classical KDE for the sample
X1, . . . ,XN is given by:

f (z) =
1

hN

n

∑
i=1

k
(

z−Xi

h

)
, z ∈ R. (22)

Note that when computing the KDE in Eq. (22) for the
following ’sample’ of size 2N:

X1,X2, . . . ,XN ,−X1,−X2, . . . ,−XN ,

we find: f (z) = ĝS
N(z)/2. This fact may be used to

choose the bandwidth h, since most of the literature is
devoted to bandwidth selection for the classical KDE.
In the data examples in the next section we choose for k
the Gaussian kernel and select the bandwidth with the
popular Sheather-Jones method (Sheather and Jones,
1991). Whenever we want to approximate gK instead
of gS

K , we simply follow the procedure given above to
compute ĝS

N . Then, using Eq. (9) we set:

ĝN(z) = ĝS
N

(
z

1
n−1

) z
2−n
n−1

n−1
, (23)

which is an approximation of gK . A drawback of
the KDE in Eq. (21) is that this density has (right)-
derivative zero in z = 0. As mentioned before, when

n = 2 and K is a convex polygon this is not an issue
since the density gS

K is then initially constant. In the
data examples in the next section the approximations
of GS

P of some convex polytopes P in R3 appear
initially (close to) linear. This suggests that the choice
of boundary correction is reasonable. Should one
consider a polytope P such that GS

P is far from being
initially linear then other boundary correction methods
may be more appropriate.

SIMULATIONS
In this section we perform a few simulations

to show that the Monte Carlo simulation scheme
works well. For these simulations we focus on
polytopes. Throughout this section, let P ⊂ Rn

be a full-dimensional convex polytope. We have
implemented the sampling scheme for drawing
samples from GP specifically for n = 2 and n =
3. The code used for the simulations may be
found at https://github.com/thomasvdj/
pysizeunfolder. The polytope can be entered into
this program either by presenting a set of points, such
that the polytope is given by the convex hull of these
points, or by presenting a half-space representation of
the polytope.

In the literature, similar simulations have been
performed, e.g. for the cube and the dodecahedron.
Therefore we also consider these shapes, such that we
have a point of comparison. Besides approximating
gP and gS

P we also approximate GS
P. The distribution

function GS
P can be approximated arbitrarily closely by

an empirical distribution function, given a large sample
from GS

P.

For all simulations, we set N = 107. For the
first example, we choose the unit square in R2. The
density of its chord length distribution may be found
in (Coleman, 1969), it is given by:

gP(z) =

{1
2 if 0 ≤ z ≤ 1

1
z2
√

z2−1
− 1

2 if 1 < z ≤
√

2 .

The approximation obtained via the proposed Monte
Carlo scheme is shown in Fig. 2. Fig. 2 also contains
a visualization of 100 IUR sections through the unit
square. As can be seen in Fig. 2, the approximation ĝN
is very close to the true probability density gP.

We should stress that the proposed method is
especially useful in the spatial setting n = 3. Naturally,
whenever the analytical expression for gP is available
this is preferable. To the best of our knowledge, there
are no known expressions for gP of any polytope
P in R3. In the planar case (n = 2) the density
gP is known for various polygons, for example for
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Fig. 2: (a) 100 IUR sections through P the unit square in R2. (b) Comparison of the density gP to its approximation
ĝN .
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Fig. 3: Approximations of gS
P and gP for P the unit cube ((a) and (b)), and for P the dodecahedron with volume 1

((c) and (d)).
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rectangles (Coleman, 1969), and regular polygons
(Harutyunyan and Ohanyan, 2009). In Fig. 3 the
approximations of gP and gS

P are shown for the cube
and the dodecahedron, both shapes scaled to have
volume 1.

Similar simulations were performed in (Paul,
1981) for the cube and dodecahedron, qualitatively the
curves visualized there are close to the approximations
of gP shown in Fig. 3. For the cube, one can easily see
that for any direction θ ∈ Sn−1

+ , there exists a section
of area 1. By Remark 2, this means that gS

P is non-
decreasing on (0,1), which can also be seen in Fig. 3.
Approximations of GS

P for the cube and dodecahedron
are shown in Fig. 4. For these visualizations the same
samples are used as in Fig. 3. As mentioned before,
these approximations of GS

P appear initially (close to)
linear, justifying the choice of boundary correction in
the density approximation procedure.
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Fig. 4: (a) Approximation of GS
P for P the unit cube.

(b) Approximation of GS
P for P the dodecahedron with

volume 1.

CONCLUDING REMARKS

In this paper we establish absolute continuity
of the (transformed) section volume CDF for
various classes of convex bodies. Absolute continuity
of these distribution functions is essential for
stereological estimation of particle size distributions
using likelihood-based inference. Whether these
distribution functions are absolutely continuous for
all convex bodies remains an open problem. From a
theoretical perspective we cover a large class of convex
bodies with the strictly convex bodies. With polytopes
we cover a class of convex bodies which is especially
important in practical applications. Moreover, for
polytopes we provide a Monte Carlo simulation
scheme for approximating the density corresponding
to its (transformed) section volume CDF.

APPENDIX: ADDITIONAL PROOFS

Proof of Lemma 1. Let x ∈ Rn, θ ∈ Sn−1
+ and s ∈ R. It

can be easily verified that the following holds:

(K + x)∩Tθ ,s =
(
K ∩Tθ ,s−⟨x,θ⟩

)
+ x. (24)

Meaning that the intersection of a translated K with
a plane is the same as the intersection of K with
a translated plane and then translating the result. It
follows that:

GK+x(z) =

=
∫

Sn−1
+

∫
R

1{Vn−1((K + x)∩Tθ ,s)≤ z}
µ([K + x])

·

·1{(K + x)∩Tθ ,s ̸= /0}dsdθ

(24)
=

∫
Sn−1
+

∫
R

1{Vn−1((K ∩Tθ ,s−⟨x,θ⟩)+ x)≤ z}
µ([K + x])

·

·1{K ∩Tθ ,s−⟨x,θ⟩ ̸= /0}dsdθ

=
∫

Sn−1
+

∫
R

1{Vn−1(K ∩Tθ ,s−⟨x,θ⟩)≤ z}
µ([K + x])

·

·1{K ∩Tθ ,s−⟨x,θ⟩ ̸= /0}dsdθ

(25)

=
∫

Sn−1
+

∫
R

1{Vn−1(K ∩Tθ ,t)≤ z}
µ([K + x])

·

·1{K ∩Tθ ,t ̸= /0}dtdθ .

In Eq. (25) we use the translation invariance of the
Lebesgue measure. The final step is obtained by
substituting t = s−⟨x,θ⟩. Via the same substitution it
can be shown that µ([K+x]) = µ([K]). As a result we
obtain: GK+x(z) = GK(z). Moving on to the rotation
invariance, let M ∈ SO(n), then the following can be
shown:

MK ∩Tθ ,s = M(K ∩TMT θ ,s). (26)
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Using this, we find:

GMK(z) =
1
2

∫
Sn−1

∫
R

1{Vn−1(MK ∩Tθ ,s)≤ z}
µ([MK])

·

·1{MK ∩Tθ ,s ̸= /0}dsdθ

(27)

(26)
=

1
2

∫
Sn−1

∫
R

1{Vn−1(M(K ∩TMT θ ,s))≤ z}
µ([MK])

·

·1{M(K ∩TMT θ ,s) ̸= /0}dsdθ

=
1
2

∫
Sn−1

∫
R

1{Vn−1(K ∩TMT θ ,s)≤ z}
µ([MK])

·

·1{K ∩TMT θ ,s ̸= /0}dsdθ

(28)

=
∫

Sn−1
+

∫
R

1{Vn−1(K ∩Tu,s)≤ z}
µ([MK])

·

·1{K ∩Tu,s ̸= /0}dsdu.
(29)

In Eq. (27) we use the fact that the inner integral does
not change if we replace θ with −θ , therefore we may
integrate over Sn−1 instead and divide the result by
two. In Eq. (28) we use the rotation invariance of the
Lebesgue measure. In Eq. (29) the substitution: u =
MT θ is applied. Because M is an orthogonal matrix
of determinant one, the Jacobian corresponding to the
transformation has determinant one. Since MT Sn−1 =
Sn−1, the transformation does not affect the integration
region. Via the same substitutions it can be shown that
µ([MK]) = µ([K]) such that indeed GMK(z) = GK(z).
Next, we consider scaling of convex bodies. Let λ > 0,
we remark that the following holds:

λK ∩Tθ ,s = λ

(
K ∩Tθ , s

λ

)
. (30)

Using this and the fact that Vn−1(λK)= λ n−1 Vn−1(K)
for K ∈ K n−1, it is once again a matter of applying a
substitution to obtain:

GλK(z) = λ

∫
Sn−1
+

∫
R

1{Vn−1(K ∩Tθ ,t)≤ z
λ n−1 }

µ([λK])
·

·1{K ∩Tθ ,t ̸= /0}dtdθ .

And similarly, via substitution we find: µ([λK]) =
λ µ([K]) such that indeed: GλK(z) = GK(z/λ n−1). We
now consider the final statement of the lemma. Let T
be an IUR plane hitting L. By proposition 1 in (Davy
and Miles, 1977), the probability that T hits K is given
by b̄(K)/b̄(L). Moreover, given that T hits K it is an
IUR plane hitting K. It follows that:

GL(z) =
= P(Vn−1(L∩T )≤ z)

= P(Vn−1(L∩T )≤ z|K ∩T ̸= /0)
b̄(K)

b̄(L)
+

+P(Vn−1(L∩T )≤ z|K ∩T = /0)
(

1− b̄(K)

b̄(L)

)
≤ P(Vn−1(K ∩T )≤ z|K ∩T ̸= /0)

b̄(K)

b̄(L)
+

+

(
1− b̄(K)

b̄(L)

)
= GK(z)

b̄(K)

b̄(L)
+

(
1− b̄(K)

b̄(L)

)
.

Proof of Lemma 2. Let x ∈ ∂K. Since x ∈ intL there
exists an R > 0 such that B(x,R) ⊂ intL. Because
x ∈ ∂K we know that B(x,R)∩ (Rn \K) ̸= /0. Choose
y ∈ B(x,R)∩ (Rn \K). Note that y ∈ intL and intL is
open. Choose r1 > 0 such that B(y,r1)⊂ intL. Because
K is closed, Rn \K is open. Choose r2 > 0 such that
B(y,r2) ⊂ Rn \K. Let r = min{r1,r2}, then B(y,r) ⊂
(intL) \K and this ball has a strictly positive volume.
Hence, we find:

Vn(L) = Vn(L\K)+Vn(K)

≥ Vn(B(y,r))+Vn(K)

> Vn(K).
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