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Abstract: Welfare assessment currently is less well-characterized for aquatic animals and the clas-
sical methodologies used for terrestrial animals are not adequate to improve our knowledge about
fish well-being. Among different approaches, the status of organism responses can be carried out
using different physiological and biochemical tools. Here, we present the state of the art regarding
fish welfare, methodologies, and experimental results with a particular focus on two important
Mediterranean aquaculture species, Sparus aurata and Dicentrarchus labrax. We introduce an approach
using physiological stress-indicators, growth performance and swimming activity to investigate the
effects of the implantation of electronic tags to facilitate the application of telemetry for aquaculture
purposes. The application of telemetry to research on aquatic organisms has expanded recently, and
its utilization needs to be better understood. The mentioned approaches have been discussed for
application in different aquaculture methodologies. Moreover, social stress and territoriality are
relevant factors in the evaluation of gregarious species that may have consequences on the conditions
of animals farmed in captivity. These aspects, that may impair the ability of fish to respond to various
stimuli or negatively influence the flesh quality, here are analysed through behavioural observation,
flanked by the physiological and immunological approach.

Keywords: welfare; physiology; growth; telemetry; organic aquaculture; social hierarchy; territoriality;
Sparus aurata; Dicentrarchus labrax

Key Contribution: The new insights presented affirm the validity of using the physiology to assess
the welfare of farmed fish, thus contributing to the improvement and development of fisheries and
aquaculture sector, and pointing to the need to analyse certain, sometimes underrated, aspects that
can influence fish production and contributing to the achievement of the blue economy goals.

1. Introduction
1.1. Welfare

The concept of “animal welfare” refers to the physical and felt well-being of animals,
and its study has mostly developed during the last half-century. Human-animal interac-
tions, in particular domestication and breeding, date back to ancient times. Humankind,
indeed, has reared and domesticated animals, mainly birds and mammals, for millennia
for different purposes, such us food, clothing, agricultural work, pets; but research centred
on animals as sentient organisms capable of suffering, only began during the 20th century,
probably due to our better understanding of animal motivation, cognition and behavioural
complexity [1]. Nowadays, the need to improve the efficiency of this interaction is leading
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different kinds of stakeholders to reconsider the value of animal welfare. Research on ani-
mal welfare, which initially centred on livestock and laboratory animals, has been extended
to fish, other vertebrates and even invertebrate groups (e.g., cephalopods, crustaceans
and others) [2–5]. Unfortunately, the concept of animal welfare is not clearly defined, and
different ideas have been proposed. It is generally associated with three different aspects
of their lives: the organism’s correct physiological functioning, natural environment and
feeling/emotional state [6,7]. In the breeding sector, animal welfare is associated with the
“Five principles of freedom” described by the Farm Animal Welfare Council [8,9], with the
aim of guaranteeing the basic necessities of animals without negative experiences:

1. The animal is free from hunger, thirst and malnutrition, because it has ready access to
drinking water and a suitable diet.

2. The animal is free from physical and thermal discomfort, because it has access to
shelter from the elements and a comfortable resting area.

3. The animal is free from pain, injury and disease, thanks to suitable prevention and/or
rapid diagnosis and treatment.

4. The animal is able to express most of its normal behavioural patterns, because it has
sufficient space, proper facilities and the company of other animals of its kind.

5. The animal does not experience fear or distress, because the conditions needed to
prevent mental suffering have been ensured.

Therefore, animals must be free from hunger, thirst, discomfort, pain, disease, fear and
anguish, and they must be free to express their natural behaviour. As indicated in Figure 1,
welfare status can be imagined as the top of a pyramid resting on a base composed of the
needs of fish that can broadly be categorised into different categories, and the fulfilment of
these categories contributes to animals welfare.
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Among different stakeholders, governments have also recently started paying atten-
tion to the management of terrestrial farming ecosystems, as well as aquatic ecosystems and
the welfare of farmed animals. In Europe, indeed, fish have only recently been included in
the groups of animals considered sentient, along with mammals, birds and reptiles [11,12].
With the idea of including all aquatic taxa with human-interactions arose difficulties due to
the lack of sufficient scientific evidence; thus, it became necessary to define what animal
sentience means [13,14].

Different approaches have been considered for defining “animal sentience” in order to
include different aquatic taxa under animal welfare regulations but, in some cases, like that
of invertebrates, there have been some difficulties related to their application [13]. Some
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researchers have pointed to the investigation of the neuroanatomical structure of these
animals in order to individuate the sensory neurons, called nociceptors, with the role of
perceiving stimuli and responding to painful stimuli [7,15,16]. However, the ideas of pain,
suffering and consciousness need to be better investigated and defined for humans, still
more for animals. A further approach is the ethological one, a well-established area of study
of animal behaviour, in particular for terrestrial farmed animals due to our long historical
knowledge about it. Indeed, a number of abnormal behaviours indicative of animal welfare
have been enumerated. With aquatic organisms, however, this approach is not always easy
to apply; indeed, few species can be easily observed and their behaviour described [13].
Due to the vast number of aquatic taxa, both vertebrates and invertebrates, and the different
inter and intra specific responses, studying the behaviour of each species becomes a very
hard, laborious and time-consuming task. Despite the attempts of different authors to
study this topic from different point of views [6–8,13,15,17–19], these studies are mainly
based on neuroanatomical analogies between human and animals, mental capabilities,
behavioural alteration, perception of pain and/or suffering. To obtain consistent data that
allow us to properly evaluate the welfare of aquatic animals, while avoiding inconsistent
outcomes, it is necessary to focus on objectively measurable welfare indicators such as
behaviour, physiology, growth, fecundity, health and stress [20]. As a consequence, more
species-specific research is required in order to correctly apply these indicators [21].

Nowadays, homeostasis is a well-known concept; it consists of a series of biochemical
mechanisms devoted to maintaining the internal functional equilibrium of living organisms.
These physiological responses, even though they correlate to the previously-mentioned
processes (i.e., pain, sentience, suffering), are independent of them. It is possible to establish
a baseline related to the welfare of a species, and each variation may indicate an imbalance
that could be considered an adverse condition. Of course, even for this approach, it is not
possible to obtain a universal pattern for all aquatic species, and it is fundamental to have
a deep knowledge of the physiology, biology and ecology of each species. Among all the
different above-mentioned approaches, the evaluation of physiological processes should
be considered a relevant field that deserves to be investigated and utilized in the welfare
assessment of fish, in particular in the aquaculture industry.

Beyond the definition considered, the welfare of fish intended for human use is
critically important for several reasons [22] and is a centre of interest for different sectors
in which animals play a central role. Indeed, welfare has to be guaranteed for all animals
involved in zoos and aquariums, where they are at the centre of the exhibition and the
interest of the keepers is to maintain them in good conditions as their natural behaviour as
an attraction for visitors [23]. Good conditions and welfare are of fundamental importance
for experimental animals involved in scientific research, guaranteeing results that are not
impaired by problematic factors [1,7,12,21].

In relation to fish farming, appropriate welfare conditions are of fundamental impor-
tance for aquaculture sectors. Aquatic animals that are not chronically stressed present
better growth rates, are less prone to disease and the final product maintains high quality
features [24]. Besides, avoiding unnecessary animal suffering during the capture, rearing,
and slaughter of fish is important according to current ethical standards regarding the use
of animals. Moreover, it is also critical for the economic implications for farmers, as fish
growth is highly dependent on their welfare status; it is also important for the optimization
of feed expenses, low disease-related care costs, and avoiding economic losses. Indeed,
regarding the latter point, it is critical for aquaculture in terms of the slaughter of animals
since the quality of the meat is affected when an animal is stressed before its death (e.g., low
oxygen concentration, increased of pH) [25–28]. All the previous listed aspects are greatly
affected by stress, and it is understandable that there is a shared interest amongst fish
farmers, researchers, aqua-culturists and ornamental fish keepers that fish held in captivity
live well, and it is in the interest of commercial fishers that fish captured maintain high
flesh quality and, thereby, obtain a high market price. Recently, one more interest has been
added which is related to a growing insistence by consumers that farmed organisms be well
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treated. All these reasons explain the increasing interest in fish welfare research, and strict
regulations about fish utilization issued by national and international organizations, based
on both ethical standards and available information on fish physiology and behaviour,
constitute important legal reasons to maintain fish welfare at adequate standards [29]. Un-
fortunately, despite these regulations, there are some slaughtering methods in aquaculture
plants that use physiological responses against inducing exogenous stress, such as CO2
narcosis or electricity, to increase the marketability of seafood products, causing a great
source of avoidable stress, for stunning method in farmed fish to improve the colour of
fillets [30].

The different arguments treated below, and schematized in Table 1, are articulated
around the main topics related to fish welfare. Firstly, we present studies on the application
of new telemetry tools and on the evaluation of alternative diets to improve the aquaculture
sector, solving the newer challenges related to fish welfare. Subsequently, we examine
the effects of social stress and territoriality on the welfare of farmed animals. Indeed,
Section 2.1 introduces the use of stress and physiological markers in order to validate
telemetry and the surgical implantation of electronic tags for aquaculture purposes. Indeed,
its application to aquatic organisms has developed rapidly, and physiological sensors have
been increasingly used as tools for fish welfare monitoring. However, for the technology
to be used as a reliable welfare indicator, it is important that the tagging procedure not
disrupt fish physiology, behaviour and performance. In this section, medium-term data
on physiological stress profiles and growth performance after surgical tag implantation
are shown for gilthead sea bream (Sparus aurata) and European seabass (Dicentrarchus
labrax) [31]. Sections 2.2 and 2.3 focus on nutrition and the quality of the food supplied
to fish in captivity, one of the critical aspects to analyse for farmed animals. Both the
conventional and organic aquaculture sectors have grown rapidly over the past few years,
and more recently, animal welfare has attracted increased attention on the part of both
consumers and governments. The diets administered in the studies differed in terms of raw
protein, fish oil and lipid contents. Seabass welfare conditions were assessed in relation to
these three diets using many different indicators in a multiparametric approach in order
to obtain a comprehensive picture of the physiological state of the seabass [32,33]. In
Section 2.4, the focus shifts to a different kind of stress in gregarious species. Social stress,
indeed, may have consequences on animals kept in crowded conditions, especially in
captivity. It may impair the ability of fish to respond to various stimuli, such as pathogens
or environmental variations. In this section, the effects of social stress on gilthead bream
were investigated through biochemical and immunological-cellular parameters, 24 h after
the establishment of a social hierarchy in a group of three fish, and the results obtained were
correlated to social rank. Social hierarchy was determined and characterized by behavioural
observation (aggressive acts and feeding order), and a social rank was assigned to each
specimen (dominant or subordinate) [34]. Subsequently, social stress was investigated in
depth along with the mechanisms involved in the establishment of hierarchy by using
two experimental models which underlined the importance of territoriality, territorial
exploration and sensitization in the formation of a hierarchy. To study the effects of social
stress and territoriality, behavioural observation was used, integrated with the evaluation
of cellular and physiological biochemical characteristics [35].

1.2. Current Knowledge Gaps Related to Fish Welfare

Despite fish welfare becoming a hot topic, currently there are a number of gaps in our
knowledge about fish, both in wild and artificial conditions. As noted previously, several
sets of recommendations or guidelines have been released, published by researchers [36,37]
or other institutions such as the RSPCA (Royal Society for the Prevention of Cruelty to
Animals) in the UK [7,38]. Certainly, the protection of fish by national regulations is not
uniform, but it is essentially increasing and those guidelines may constitute the basis of
new regulations for monitoring fish welfare in captivity.
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Table 1. List of the paper and scheme of the mains results presented.

Paper Species Tools Methods Results

[31] S. aurata
D. labrax

Acoustic accelerometer
tags

Telemetry; growth; physiological
approach

No significant differences among
the tagged and untagged fish

groups.

[32] D. labrax
Acoustic accelerometer tag;
Blažka swimming chamber;

diets

Telemetry; morphometry;
physiological, immunological

approach

Organic diet does not affect the
welfare of the European sea bass.

Previously calibrated acoustic
transmitters are a promising

[33] D. labrax
Different diets; radio
transmitters; Blažka

chamber

Telemetry; morphometric,
physiological, immunological

approach

EMG, recovery ratio, growth
Cortisol, glucose, and lysozyme

proved to be sensitive to
assessing welfare

[34] S. aurata Aquariums-arena;
recording camera

Behavioural observation;
physiological, immunological

approach

Links between behaviour, stress
physiological profile and

immunity, in relation to social
hierarchy

[35] S. aurata Aquariums-arena;
recording camera

Behavioural observation;
physiological, immunological

approach

Exploration time is fundamental
for hierarchy; demonstrated
social rank and physiological

immunological profile relation

Current research is seeking to answer questions about the best welfare conditions for
keeping fish in captivity—simple questions without easy solutions, for example: questions
about the best conditions for maintaining fish; which indicators to consider in order to
guarantee good welfare; how these indicators should be evaluated and quantified; the
validity of these variables considering inter or intra specific variability; how to compare
different groups of fish from different sites/farms and/or environmental conditions. In-
deed, the principal difficulty is to identify reliable indicators that allow the evaluation of
the conditions of fish, in particular after long periods of exposure to inadequate conditions.
Acute stress and related welfare problems are relatively easy to detect, but the challenge is
to show the effects of chronic disturbances [39–41].

1.3. Stress Physiology

Schreck and Tort defined stress as “the physiological cascade of events that occurs
when the organism is attempting to resist death or re-establish homeostatic norms in the face
of insult” [42]. Homeostasis is the capability of organisms to maintain all the fundamental
parameters which ensure survival and the proper functioning of vital processes (pH,
osmolarity, energy metabolites, pO2) at equilibrium. Its maintenance is of fundamental
importance in restoring conditions after disturbance by a stressful event and deviation
from the baseline. The system, regulated by biochemical reactions, involves enzymes,
hormones, transporters and proteins and requires the synchronized action of allostatic
changes enabling the return to optimal physiological levels [43,44].

Endocrine cascades control stress physiology in teleosts [45]. Physiological responses
to stress may ideally be divided in three groups with sequential activation related to the
intensity and duration of stress: primary, secondary and tertiary [46]. The main neuroen-
docrine pathways involved in fish stress responses and their effects are schematically
represented in Figure 2. Here, blue and green lines indicate the brain-sympathetic nervous
system-chromaffin cell axis (BSC, in blue) and the hypothalamus-pituitary-interrenal cell
axis (HPI, in green) and the different types of responses induced after activation.
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Figure 2. Main neuroendocrine pathways involved in fish stress responses and their effects. The
two neuroendocrine routes are indicated by blue lines (the brain-sympathetic nervous system-
chromaffin cell axis, BSC) and green lines (the hypothalamus-pituitary-interrenal cell axis, HPI).
5HT, serotonin; A, adrenaline; ACTH, adrenocorticotropic hormone; AVT, arginine vasotocin; CRH,
corticotropin-releasing hormone; H, hypothalamus; NA, noradrenaline; P, pituitary; T, telencephalon.
This figure is based on information from several sources, including [47].

The primary response to stress is initiated and coordinated by a two neuroendocrine
axes, the hypothalamus-pituitary-interrenal (HPI) system and the sympatho-chromaffin
tissues [17,48], and it includes the release into the bloodstream of neuroendocrine hormones
such us catecholamines [49,50] and corticosteroids in vertebrates [15,51,52]. The presence of
these hormones in the circulatory system induces the activation of secondary stress responses,
including increased heart and respiration frequency rates and mobilizing energy metabolites
to cover the demand for energy and oxygen imposed by the stressor [15,25,53–55]. If the stress
is lasting, it can lead to the activation of tertiary responses, causing the collapse of energy
stores and affecting the immune system, behaviour and fitness and, in extreme cases, causing
the death of the animal [15,55,56]. As a consequence, as described in Figure 3, teleost experi-
ence metabolic disorders, lower growth rates, immune-deficiencies, impaired development,
reproductive disruptions and altered behavioural and social skills that clearly compromise
their welfare and, in the worst case, lead to death [15,57].

1.4. Physiological Indicators

In the three different steps of the physiological response to stress, between the molec-
ular and whole animal levels, it is possible individuate some indicators that can be used
as tools for welfare evaluation. Is important to underline that the evaluation of a single
indicator alone does not provide evaluable information and that it is better to integrate
information obtained from the evaluation of various indicators. As reported in Table 2,
several studies report a number of good physiological indicators. After HPI axis activation,
a series of molecules identified as primary indicators (catecholamine and stress hormones)
are mobilized, followed by secondary indicators (e.g., changes in glucose, ion balance, acid–
base balance, immunological functions or other indicators of energetic metabolism) [42].
These indicators are useful tools for assessing fish welfare. The importance of choosing
the appropriate indicators in relation to the stress suffered by the organisms is vital. Cate-
cholamines, for example, provide the fastest primary response, but are difficult to measure
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because they respond quickly and may be influenced by capture and handling [50,58];
they can be used as good indicators in laboratory conditions but are inadequate for field
investigations. Differently from catecholamines, cortisol, the so-called stress hormone, is
the common stress indicator used. It responds more slowly than catecholamines and can
be quantified under both laboratory and field conditions [46,48,58,59]. Cortisol can be used
to obtain basal and post-stress levels and is also involved in different molecular responses.
It has a role in the stimulation of the expression of several classes of proteins, such as
metallothionein, ubiquitin and HSPs, by interacting with heat shock factors (HSFs) [60,61].
The stress hormone also binds with glucocorticoid receptors and interacts by activating
transcription factors [62,63].
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The secondary indicators include glucose elevation, lactate elevation, changes in
osmolality, specific ions and leukocyte activity. Glucose elevation is caused by increased
catabolism and glucose release in circulation due to stress [46]; lactate elevation is related to
anaerobic metabolism caused by low levels of oxygen in body tissues (hypoxia) or exercise
stressors [64]; osmolality may be altered by the release of catecholamines and their effects
on higher heart rate and gill permeability [65]; leukocytes, immune system cells, may
reflect acute and/or chronic stress exposure with altered functioning [66]. The tertiary
step, also called whole-organism, includes a plethora of indicators correlated to welfare
status and fish conditions: growth, dimensions, weight, organo-somatic index, disease
resistance, metabolism alteration, indicators of swimming activity, cardiac function, oxygen
consumption, recovery ratio, behaviour and mortality [55,67–71]. Differently from primary
and secondary stress indicators, which mainly relate to animal physiology, the tertiary
stress response is mainly related to ethology and ecology, even though they are strictly
correlated to certain physiological aspects, such as indicators related to cardiac activity and
metabolism. Recently, the existence of a further kind of response, called quaternary stress
response, has been proposed and which suggests that stress effects are trans-generational
and transmitted to progeny through genetic and epigenetic mechanisms [72–74].
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Table 2. Main physiological parameters of aquatic animal homeostasis. Adapted from (Jerez-Cepa
and Ruiz-Jarabo, 2021).

System Parameters References

Acid-base balance H+, OH−, HCO3
−, PO4

2−, SO4
2− [75–77]

Hydric-ionic balance H2O, osmolality, Na+, Cl−, K+, Ca2+, Mg2+, others [78–81]

O2 (CO2) transport Haemoglobin/haemocyanin, haematocrit [82–84]

Energy management Glucose, lactate, amino acids, triglycerides, free
fatty acids, etc. [77,85,86]

Immune system (innate)

Physical barriers, cell-cell mediated defence
(phagocytosis), humoral defence (antimicrobial

enzymes, non-specific proteins, complement
system), inflammation

[31,33–35,87–95]

Immune system (adaptative) Cell-mediated defence (B and T lymphocytes) [92]

Free radical balance Oxidative stress system [96–100]

Others Hormones, temperature, etc. [97,100]

1.5. Stress Assessment via Molecular Approach

At this point of this review is clearly established the role that stress play on the wellness
of fish. Stressogenic stimuli, homeostatic perturbations, are detectable at the molecular level
through the gene analysis of genes whose expression responds to an environmental stressor
and are considered as “inducible” or on the contrary “constitutively expressed” gene. The
main goal is to individuate and select an informative panel of such inducible genes that
are quantifiable after induction following certain stimuli. Recording multiple, informative
stress-biomarker genes gains more importance for the aquaculture industry with regard
to fish welfare and consumer opinion. The physiological responses to stressors, including
hormonal profiles and associated tissue responsiveness, main topic of this review, have
been extensively studied in teleosts, but the molecular mechanisms associated with this
adaptive response are not well understood. Studies of genes involved in stress responses
and profiling is conducted in cortisol-responsive organs that are referred to as “frequent
targets for stress responses” [101]. Among different organs, one candidate for this purpose
is the liver. As liver is a key organ for metabolic adjustments to stressors and also is a major
target for cortisol action, the genomic studies about stress and glucocorticoid regulation
addressed this organ. Different studies have identified several genes that are up- or down-
regulated after an acute stressor exposure in fish [101,102]. Gills are also retained as organs
sensitive to and have been considered in several investigations of stress in teleost [103–107].
It is important to studies genes that are well-known responders to stress in general. As our
interest is in molecular responses linked to cortisol triggered pathway in fish, we should
focus on gene expression changes after acute or chronic stressor exposure. It is well known
that acute stressor exposure causes transient elevation in plasma cortisol levels, which is
re-established during recovery from stress in fish [108]. In teleosts, are involved in cortisol
signalling pathways different glucocorticoid receptors (GRs) and one mineralocorticoid
receptor (MR) [109,110]. On ligand binding, cortisol-GR complex translocates to the nucleus
and binds to specific DNA region activating or repressing the glucocorticoid responsive
genes [109]. Despite several studies have utilized mammalian models, only few studies
have been carried out in fish using physiologically relevant models [63,110,111]. A further
well-established metabolic response to stress is elevation in plasma glucose concentration.
One of the features of liver metabolism is de novo glucose synthesis to provide glucose for
extra-hepatic tissues during stress [48]. The rapid output of glucose in response to stress is
involve adrenergic signaling and activation of the glycogenolytic pathway, the maintenance
of plasma glucose levels, involves upregulation of the gluconeogenic pathway [48,112].
Hence, several genes encoding proteins are involved in glycolysis and gluconeogenesis
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during stressor stimuli or stressor condition. The fundamental regulatory enzymes involved
in gluconeogenesis pathways are phosphoenolpyruvate carboxy-kinase and glucose-6-
phosphatase. Indeed, transcripts for both these enzymes were shown to be elevated, in
conjunction with enhanced glucose production, during recovery from an acute stressor
exposure in Oncorhynchus mykiss, linking gene expression to functional changes in liver
gluconeogenic capacity [113,114]. These results confirm the upregulation of enzymes
activated during gluconeogenesis as a key aspect of the stress during recovery process.
While lactic acid, glycerol and amino-acids (aa) are substrates for gluconeogenesis in the
liver, aa from peripheral proteins stores are the principal substrate for stress-induced
gluconeogenesis in teleost [48]. Hence, glutamine synthetase, arginase and cathepsin D
transcripts were upregulated in liver after stressor exposure, supporting upregulation
of the proteolytic pathways [113]. Globally analysed, these results suggest molecular
regulation of enzymes fundamental for energy substrate mobilization and utilization
during stress adaptation in fish. Muscles, among the already mentioned, are target tissue
good to investigate the stress molecularly. In a study on transport stress on Argyrosomus
regius the authors Bortoletti and colleagues [115] among the different organs, considered
liver and muscle the sites of choice for evaluating its gene expression as they are directly
and strongly involved in protein catabolism and gluconeogenesis. The aim of the study
was to investigate the muscle cortisol levels, the expression of glucocorticoid receptor
in muscle and liver coupled with the cellular distribution of heat shock protein 70, 4-
hydroxy-2-nonenal, nitrotyrosine and 8-hydroxy-2′-deoxyguanosine in several tissues
by immunohistochemical methodologies in the teleost fish meagre (Argyrosomus regius)
exposed to transportation stress. The cortisol level trend observed in this study is highly
coherent and supported by the molecular results. In fact, has been evidenced that the
highest expression of glucocorticoid receptor gene was detected in muscle of animals just
after loading on the truck. These results confirm the correlation between cortisol and
the intracellular glucocorticoid receptor levels that leads to an increase in the GR mRNA
levels [112,116].

The recent diffusion of cDNA microarray technology revolutionized the field of func-
tional genomics by revealing global gene expression changes and consequently also in
response to stressor exposures including fish [117–120]. Recently, several species-specific
cDNA microarrays have been developed for teleosts and increasingly being used to re-
veal global gene expression patterns in response to stressor exposure and/or hormonal
treatment [121]. Transcriptome profiling demonstrated to be a reliable methodological
approach in functional genomics and gene profiling with reference to cells, tissues, organis-
mal systems, or physiological conditions [122,123]. In the last years, in the framework of
next-generation sequencing (NGS) technology has been developed methods for quantifying
transcriptomes [124,125] and studies aimed to understand the response to stress at the
transcriptome level are helpful to comprehend the molecular basis of adaptations.

1.6. Stress Assessment via Histological Approach

Stress and its effect on organisms may be further investigated by the histological approach
analysing the status of organs and tissues [98,126–128]. The histology approach, indeed, has
been mainly utilised in studies on wild fish [128–134] but rarely has been applied in studies on
farmed fish [135,136]. The histological examens can be carried out on different target, tissues or
organs according to the different goal of the studies. The sample, pieces of gills, liver, kidney,
intestine skin etc. are fixed in fixative solution, embedded in paraffin and further processed
for histological analysis by a microtome obtaining section of 5µm thickness and subsequently
stained. Histological changes can be assessed and classified according to different categories. For
example, Saraiva et al. (2015) [137] used the semi-quantitative system proposed by Bernet et al.
(1999) [138]. Briefly, according to this method, histological changes are categorized into different
reaction patterns such us circulatory, regressive, progressive, inflammatory and neoplastic and
each pattern may contain different alterations per organ. These alterations are assessed individ-
ually using a score value ranging from 0 (unaltered) to 6 (severe/diffuse occurrence) and to each
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alteration can be assigned an importance factor ranging from 1 to 3 (from minimal pathological
importance to marked pathological importance). The gills are the most delicate structures of the
teleost and are very sensitive to environmental conditions and pathogens, including parasites.
Many studies report histological alteration caused by different factors both biotic and abiotic
on the gills. Example of biotic factors are the parasites, e.g., Diplectanum aequans, members of
the class Monogenea, is likely the most common detected parasite on gilt-head seabream that
causes frequently hyperaemia, haemorrhages, oedema, hyperplasia, leucocyte infiltration and
gill necrosis [139–142]. The parasite copepod Lernanthropus kroyeri causes oedema, hyperplasia
and necrosis [142,143]. Among the abiotic factor that cause the same alteration on the gills can
be addressed toxic pollutant present in the waters such as cadmium and herbicide [144]. About
kidney, Kurtovic et al. (2008) [145] reports to a higher number of melano-macrophage centres
and atrophy of glomerulus, typical of the organ examined from farmed seabass. Also extensive
administration of antibiotic therapy is considered cause of renal tubular degeneration and
circulatory disturbances like haemorrhages [146,147]. Necrosis of renal haematopoietic tissue
occurs in several biotic and toxic situations [146]. Nephrocalcinosis is frequently associated
with fish farming, and commonly addressed to insufficient levels of calcium and magnesium
administered through alimentation, exposure to high levels of CO2, excessive use of antibi-
otic [146]. In the liver, cytoplasmatic hepatocytes alteration is a very early and unspecific signal
of disturbance [148]. Many studies report that fish exposed to different kind of toxicant manifest
hypertrophy, vacuolar degeneration and increase of lipid droplets in hepatocytes [148–151].
Similar effects has been observed in farmed fish feed with inadequate commercial feed which
causes lipid droplet accumulation, hepatocyte membrane disruption and vacuolization causing
further circulatory disturbances [135,152,153]. One other important tissue for histological studies
is the intestinal epithelium. It is an important site for the absorption of nutrients, it is involved
in immunity, in osmotic balance and in recycling of enzymes and macronutrients [154–156].
The indiscriminate use of vegetables matters in the food for farmed fish can impact the gut
integrity favouring the deleterious effect of gut pathogens [154,157–160]. Integrity and health
of intestine is a key factor for the growth and welfare of farmed fish [126,146,154]. Among
the different parasites, in European seabass, Shaerospora dicentrarchi and the myxosporean En-
teromyxum leei cause serious disorders in intestine [161–163]. Refaey and colleagues investigated
the relationship between the physiological changes and the growth at different stocking density
of channel catfish (Ictalurus punctatus) studying the structure of the intestine [164]. They have
found that the overall structure of intestine was affected by the high stocking density of farms
that caused shortening of villi length and reducing numbers and sizes of goblet cells, affecting
the absorption surface of the intestine of fish respect to those reared in medium or low stocking
density [165]. Conforto et al. [166] investigated histologically the effect of bacterial infection on
different tissues: gills, liver and skins. In this study have been observed different, vasodilation
with blood congestion, epithelial uplift, lamellar disorganization, and aneurysm of the pri-
mary filament, in the gills of European eel, Anguilla anguilla, challenged with Vibrio anguillarum.
Therefore, has been shown that the bacteria infection damaged epithelial cells [167]. In eels
challenged with Tenacibaculum soleae, cellular hypertrophy and hyperplasia, and partial fusion
of secondary lamellae were observed. Eels showed also similar cytopathic effects of Senegalese
sole challenged with Tenacibaculum maritimum [168]. The liver of eel challenged with T. soleae
showed cells with irregular nuclei, sometimes hypertrophic coherent with the lesions reported
in hybrid catfish (Clarias macrocephalus× Clarias gariepinus) challenged with Edwardsiella ictalurid
and in the liver of Koi carp (Cyprinus carpio) infected with Myxobolus sp. parasite [169,170]. In
the same study eels infected with V. anguillarum, was observed a general loss of hepatic tissue
structure and an increase in hepatic sinusoidal spaces and the presence of pyknotic nuclei in
hepatocytes. Regarding the skin both pathogenic bacteria, V. anguillarum and T. soleae induced
only an overspread presence of goblet cells [166].

The advantage of the use of histopathology as biomarker lies in the possibility to be
coupled with other approaches like the molecular and the physiological approach that is
the main topic of this review. However, it is fundamental to consider that healthy fish
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are not characterised by absence of pathology identifiable by histology, but that they may
present mild structural alteration or moderate inflammatory reactions [171].

1.7. Social Stress and Adaptative Stress Coping Styles

Corticosteroid hormones play a central role in behavioural and neuroendocrine control
in vertebrate species [47,172]. Cortisol, the major stress hormone in fish, plays a pivotal role
in stress response through its action on both aerobic and anaerobic metabolism, osmoregu-
lation, carbohydrate metabolism, immunity and appetite [48,173]. On the contrary, chronic
stress, which is associated with elevated plasma cortisol levels, can result in a compromised
physiological state. High levels of cortisol are considered a causal factor in many of the
deleterious effects of stress in farmed fish, such as reduced immune competence, reduced
growth, flesh quality or impaired reproduction [174,175]. For this reason, the mechanisms
involved in stress coping strategies in fish have been receiving significantly more atten-
tion. Most of the responses in organisms are species specific; therefore, it is necessary to
investigate responses in different reared species.

As mentioned below, repeated contact between conspecific fish does not cause ha-
bituation [176], and prolonged stress exposure could ultimately trigger the tertiary stress
response, with different and severe consequences on animals and aquaculture services. In
artificial environment fish are often restricted at high densities to limited and crowded
spaces and forced to continuous contact, with the consequent increased social interaction,
including the aggressive ones, risk of disease outbreak, competition for the resources and
accumulation of organic waste dissolved in the water. The social environment, indeed, can
be a considerable source of stress, and social relationships can impact both mental and
physical health [177] affecting numerous physiological functions, including hematologic
features [46], metabolism [71,178,179] immunity [180], behavioural responses [181] and
ultimately performances, such as growth and reproduction [67,182]. Animals are often
organized into territories and interact socially to establish and maintain hierarchical dom-
inance ranking [177]. The intraspecific social interactions in many animals are primarily
structured around dominance relationships or hierarchies in which an animal’s position
within the hierarchy determines access to resources, such as food, water, space and, ulti-
mately, individual fitness and/or reproductive success [183]. Social interactions between
conspecifics are, for some fish species, dynamic processes, where subordinates frequently
try to become dominants and dominants try to maintain their status by using direct attack
or displaying cues to others [184]. These relationships can affect physiological status and
animal responsiveness [57]. In nature, the development of dominant–subordinate relation-
ships and the onset of hierarchy as an adaptative strategy may act to reduce aggression,
but in farmed fish, due to the continuous stimuli, it may cause chronic stress, compro-
mising fish welfare. High stocking density which causes chronic crowding stress in fish
and potentially affecting fish health reducing growth and affects the immune system in
several species. High stocking density is an aquaculture-related situation and the effect
on the growth performance, physiological and immunological response of fish may vary
depending on many factors such as fish species, body size, age, rearing condition, and
so on. And the adverse impacts of high stocking density have been reported on some
fish species like blunt snout bream (Megalobrama amblycephala), Amur sturgeon (Acipenser
schrenckii), turbot (Scophthalmus maximus), juveniles of thick-lipped grey mullet (Chelon
labrosus), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio) or gilthead seabream
(Sparus aurata) [185–193]. Aggressivity, among the others effect caused by supernumerary
specimens held at high density (e.g., space limitation for swimming in no adequate rearing
tanks, or, poor water quality, malnutrition or scarce feeding) has been linked to several
issues in aquaculture, such as decreased feed intake, growth dispersion, chronic stress,
immune-compromission and consequently disease vulnerability, up to physical aggression
and cannibalism behaviours (e.g., carnivorous fish manifest cannibalism at a high rate as
an aggressive behavior if they are not fed properly or sort in aquaculture sectors) [194].
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Therefore, understanding the aggressive behaviour of farmed fish, as well their social
interactions, is of great importance for aquaculture practice in order to improve both
animal welfare and productivity [195] in a historical moment in which increasing consumer
awareness of sustainability, safety and quality issues is driving demand for traceability
systems and certification schemes for a growing range of fish and fish products.

During the last few decades, great interest has been directed toward the causes and
consequences of consistent individual behavioural and physiological variations, leading
researchers to postulate the existence of stress-coping styles (SCSs): “a coherent set of
individual physiological and behavioural differences in stress responses consistent across
time and context” [196]. They have been described in various animal species, including fish,
as a continuum between two extreme phenotypes, called proactive and reactive (proactive
BOLD and reactive SHY) [197–200]. From a behavioural point of view, proactive fish are
generally bolder, more active and aggressive than reactive ones [197–199,201,202]. These
divergent behavioural responses are generally correlated with the physiological mech-
anisms of stress response [197–199,201,202], resulting in distinct adaptive responses to
cope with stressors. In a recent study, Carbonara et al. (2020) described physiological
performance using several indicators (e.g., haematocrit, cortisol, adrenalin, noradrenalin,
glucose, lactate, lysozyme), including growth performance and swimming activities of
gilthead sea bream at different stocking densities, depending on SCSs. Overall, personality
screening using the risk-taking test made it possible to highlight the physiological differ-
ences between sea bream from divergent SCSs. These physiological divergences between
SCSs, mainly highlighted using the Principal Component Analysis (PCA) approach, seem
to be progressively lost in response to stocking densities. They are nevertheless important
in highlighting differences in the physiological parameters (noradrenaline, lactate, glucose,
and red blood cells count) of fish in response to these different stocking densities by using
the PCA approach. Moreover, the swimming activity of sea bream was different regarding
SCS and stocking densities. Given that higher swimming activity is linked to a higher cost
of life, the results suggest that SHY individuals are more able to cope with higher densities,
while BOLD individuals are more able to cope with low densities. This observation agrees
with the idea that BOLD behaviour (and the other characteristics linked to a proactive
coping style) is more adaptive to a stable environment, while SHY behaviour is adaptive
to a fluctuating environment (possibly, low vs. high density). The personality analysis
may be helpful in the aquaculture context by selecting the most adapted fish to the rearing
conditions (i.e., bold in low density and shy in high density), even though no differences
were observed in terms of growth performance as it relates to SCS. SCSs also play a role
in the stress/welfare state at the individual level. The two divergent phenotypes show a
different sensibility to stressors [198,199,201–203], with significantly different physiological
responses [204].

1.8. Aquaculture: The State of the Art

The main challenge that the world’s fisheries and aquaculture (F&A) industry is facing
is growing demand due to constant population growth in a context where environmental
pressure and social imbalances are becoming more and more serious. United Nations
Sustainable Development Goal (SDG) 14, called “Life below water” [205], established
goals for the contribution of F&A to food security and nutrition in order to gain different
benefits and ensure economic, social and environmental sustainability [206]. Globally,
catches in the fisheries sector have remained constant during the last few decades, while an
increase in fish production, thanks to the rapid growth of aquaculture, has been registered:
indeed, while aquaculture provided only 7% of fish for human consumption in 1974, due
to increasing demand for fish products and a decrease in natural resources, this share has
increased to 50% of total fish production in recent years [207,208]. Total European fish
production by aquaculture was estimated to be 2,875,732 tons in 2021. The main species
produced are salmon, trout, sea bream, seabass and carp, which represented 95% of total
European production in 2020. The following graphic in Figure 4 provides an overview of
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European producer countries and the production, in tons, in the years between 2015 and
2021, evidencing a constant increase [209].
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Consequently, as described above, good fish welfare is strictly correlated with good
rearing conditions, and it is understandable that the welfare of farmed fish is important for
the market, as well as being a matter of increasing public concern [210,211]. In captivity, the
environment available for rearing fish is very different from the environment in which their
wild counterparts live [212]. Good food quality is readily available, as fish are protected
from natural predators and disease and do not have to compete for mates. However,
the physical environment is much simpler, as fish are disturbed by rearing activities and
often restricted at high densities to limited and crowded spaces, with the consequent
risk of spreading disease and increased social interaction, including with aggressive fish.
However, assessing fish welfare is a complex task that requires an integrative overview,
from physiology to behaviour and biological performance [6,24,42,213].

Figure 5 indicates the marine Mediterranean production in 2020 per country and species,
detailing the Mediterranean farmer countries and the percentage of the species mainly raised.
The two most important fish for European aquaculture which are mainly raised in the Mediter-
ranean region are the European seabass and the gilthead sea bream [214], which are also the
two species involved as a model in the following studies.
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2. Fish Welfare Assessment
2.1. Telemetry as a New Tool in the Field of Fish Welfare Assessment

One of the first difficulties to tackle is acquiring information and data on the animals.
To date, human knowledge of animal farming and captivity conditions has been obtained
mainly from direct observation and interaction with terrestrial animals and, as can be
imagined, many difficulties arise when obtaining direct information from populations
of animals living underwater to evaluate their health status [215]. To overcome these
difficulties, technologists have developed identification systems to facilitate the collection
of the required data, finding acoustic telemetry to be well-suited to the task. Acoustic
telemetry is a widely used method for terrestrial animals which has recently begun to be
applied to underwater environments. It is a method for remote sensing in which individual
fish are equipped with electronic transmitters containing sensors that measure variables
and transmit the information to data receiver units by acoustic signals; Figure 6 presents a
simple representation of the basic approach, in which an acoustic tag records and transmits
information to an acoustic receiver.

Aquatic organism telemetry has significantly advanced over the past few decades
in terms of tag size, battery life, software and hardware [216]. The characterization and
monitoring of behaviour in a variety of organisms, including fish, can be done with the use
of these tags [217]. Moreover, environmental sensors that can capture a variety of informa-
tion, including temperature, depth, and salinity, as well as physiological characteristics like
heart and breathing rates or muscle activity, can be added to electronic tags [178,218–220].
Although these physiological sensors have primarily been applied in the wild for the sake
of ecology and conservation, they have increasingly been used in aquaculture as welfare in-
dicators of common stressors (such as slaughtering procedures, water quality and stocking
density) [178,204,221–224].

Telemetry studies assume that all tagged fish are physiologically typical of the popu-
lation. The tag, and the surgical implantation, must therefore not have a negative impact
on growth performance, physiology or survival. For tagged fish to maintain their physio-
logical state, normal movement patterns and growth performance, as well as to prevent
bias in the data collected, the implantation method, place and tag size are crucial con-
siderations [225–228]. The “2% rule” states that the maximum tag weight should not be
greater than 2% of the fish’s dry body weight [225,226]. The “2% rule” may not always
be sufficient to prevent detrimental consequences on a fish’s health and welfare, such as
stress, inflammation of internal organs, obstruction of internal organs or negative impacts
on buoyancy and swimming performance [225,229]. Stress is specifically defined as “a
situation created by a factor (a stressor) that stimulates an endocrine response (e.g., cortisol
release) that could be favourable as well as detrimental” [45]. Hence, the surgical insertion
of an electronic tag, as can be observed in Figure 7, may cause stress in fish as described
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above even if it is carried out with the appropriate procedures. Further research on specific
species is required, as the majority of our understanding of the relationship between the
surgical implantation of electronic tags and stress is based on salmonids [229–231].
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In our recent studies [31,32], we have confirmed (i) that the implanting process of
accelerometer tags does not affect the basic growth and stress physiological indicators
of tagged fish and (ii) that tagged fish can be sampled after medium-long periods post-
surgery for sea bream and seabass, respectively, as they displayed growth and physiological
parameters comparable to those of untagged fish. In conclusion, the surgical implantation
of accelerometer tags does not cause medium-term changes in the physiological stress
profile and growth of either sea bream or seabass reared in a controlled environment.
Future studies are needed to investigate exactly how long these species take to recover from
the stress induced by tag implantation and thus be considered “normal” fish, displaying
normal behaviour (e.g., feeding) and basal levels of stress indicators. Figure 8 shows
the timeline of the period between the implantation of the accelerometer tag and the
sampling point after 46 and 95 days, and the indicator used in [31] to assess the impact of
the implantation.
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2.2. Application of Telemetry for Fish Welfare Assessment in Aquaculture Farms

Due to an increasing demand for fish products and a decrease in natural resources,
the aquaculture sector has grown rapidly over recent decades and now represents more
than 50% of total fish production [207]. Fish production from organic aquaculture has also
increased rapidly [232,233]. Organic aquaculture may contribute to addressing environ-
mental issues related to the aquaculture sector—for example, by replacing fish protein
content with proteins and oils from land-based agriculture, thus preventing overfishing
for the production of fish feed [233,234]. However, the replacement of fish protein in feed
formulations must be measured, as total substitution can disrupt physiological processes
and growth performance [235,236], causing fish health and welfare issues, mainly in the
farming of carnivorous fish species (e.g., seabass and rainbow trout, Oncorhynchus mykiss).
Besides the development of aquaculture, fish welfare has also attracted increased attention
from both consumers and governments and has become a critical point to consider in the
growth of this sector [237–239], especially organic aquaculture [240].

However, assessing fish welfare is complex and requires an integrative overview,
from physiology to behaviour and biological performance [6,213]. Overall, fish welfare
can be closely linked to stress [24,42,241]. Thus, plasma cortisol, the end product of the
HPI axis, and secondary stress response indicators, such as blood glucose and lactate
levels, may be used as welfare indicators [46]. However, stress does not always mean
compromised welfare, as it can also be a response to predation, competition or environ-
mental changes [45,46,242]. Thus, a short-term stress response (e.g., elevation of cortisol
levels) can be viewed as adaptive, allowing fish to cope with stressors and preserve both
individuals and populations. Chronic or repeated stress, on the other hand, can lead to
dysfunctions and compromise welfare. Therefore, stress indicators alone may be insuffi-
cient for properly evaluating fish welfare [173,242–244]. Consequently, many innovative
approaches using spontaneous swimming activity and/or behaviour as a reliable proxy
of fish welfare have been developed [18]. This can be achieved using traditional video
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recordings [34,35,245–248] or by acoustic transmitters that record several variables, such as
positioning, speed and acceleration. Having previously been widely used for monitoring
natural fish populations for conservation purposes [249], these transmitters are now being
increasingly used in aquaculture contexts for fish welfare monitoring [33,204,222,250,251].
Indeed, their use appears promising for monitoring welfare, as they allow the evaluation
of the behaviour of free-swimming fish over long periods [252] without affecting welfare
and biological performance [31,253].

The signals recorded by the transmitter can be calibrated beforehand, along with
other physiological variables, such as muscle activity and swimming performance, thereby
increasing the power of the physiological data obtained [254–258]. Swimming performance
and aerobic/anaerobic metabolism are of primary importance in assessing the physiological
state of fish and their ability to cope with stressors [224,242,256,257,259]. The critical
swimming speed (Ucrit) achieved by a fish during a swimming test provides information
on swimming performance as well as its maximum metabolic rate (MMR) [260]. The MMR
indicates the capacity for energy usage by aerobic pathways under different environmental
conditions [260,261]. Previous evidence on European seabass has shown that the MMR
is generally achieved before the Ucrit [256,262], suggesting that near this threshold, the
supplementary energy requirement necessary to sustain the increased swimming activity
of fish is mainly fuelled by anaerobic metabolism. As observed by Claireaux et al. (2006),
before the Ucrit was reached, the maximum swimming speed (Umax) of seabass is reached,
and fish use anaerobic metabolism to display a burst swimming mode, and the oxygen
consumption rate (MO2) usually levelled off or decreased slightly. This state may be
detrimental to fish health and welfare if repeated or sustained for a long time, as observed
by Carbonara et al. (2015) regarding high stocking density.

Moreover, environmental conditions, including food availability, have an impact
on fish activities and performance [33,263]. Therefore, calibrating the acceleration data
recorded by acoustic transmitters with swimming performance during a Ucrit test may offer
more precise information on the swimming activity, aerobic/anaerobic metabolism and life-
energy cost of free-swimming fish [222,256]. In fish, the activity of red muscles, supported
by aerobic metabolism, increases with speed until it reaches a maximum and is maintained
at that level even if the swimming speed increases further [264]. On the other hand,
white muscle recruitment, supported by anaerobic metabolism, follows an exponential
pattern [256,265]. Muscle recruitment appears to be species-specific, as indicated by the
different placement and amount of slow-twitch aerobic (for sustained swimming) and
fast-twitch anaerobic muscle fibres (recruited during fast starts) in different species [266].
In the European seabass, it has been observed that red muscle activity increases with
speed to a maximum and is maintained at that level until the end of the Ucrit [256],
following a classical activation pattern. On the other hand, white muscle activation follows
an exponential pattern, with the increase starting at approximately 65% of the Ucrit to
compensate for the reduction of red muscle activity recruitment [256]. Thus, information
about swimming performance may offer valuable insights into the metabolic costs of
swimming related to both aerobic and anaerobic metabolism. This can be valuable in
free swimming fish under different aquaculture rearing conditions, including their diet
regime. Helping to tackle the main obstacle of the lack the exact behavior of fish, in different
conditions, due to their high diversity and diversity of response.

It has been demonstrated that certain physiological indicators of health and welfare
on European seabass, in particular swimming activity and growth performance, can be
used for evaluating the welfare after two different feed regimes (conventional and organic).
Swimming activity was measured using acoustic transmitters previously calibrated with
swimming performances during a Ucrit trial, allowing better qualification of swimming
activity during the experimental period according to diet. In particular, due to a recent
increase in fish production from organic aquaculture and the importance of fish welfare in
this context, it is important to address this question for the European seabass, one of the
most important farmed fish species of European marine aquaculture. The different diets did
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not seem to affect seabass health and welfare since physiological indicators and biological
performance were similar in the two diet groups throughout the experimental period. In
summary, two main conclusions can be drawn from this study’s findings. First, the use of
acoustic transmitters previously calibrated with physiological indicators, such as the Ucrit,
appears to be promising for real-time welfare monitoring in aquaculture. The precision of
such calibrations of swimming activity may be enhanced by including other parameters,
such as oxygen consumption and muscle activity, or other indicators such as Umax to
better link the swimming performances to aerobic and anaerobic metabolism. Real-time
monitoring of fish behaviour and physiological state offers new possibilities for welfare
monitoring in the aquaculture sector [221,250,251,267], especially with recent advances
in data transmission through acoustic instead of radio channels, which provides greater
applicability on production scales [252]. Second, based on all the indicators considered, a
well-balanced organic diet does not seem to negatively affect the health and welfare of the
European seabass, which suggests that organic aquaculture may address challenges of the
sector without compromising fish welfare [32,33].

2.3. Multi-Parametric Approach Applied to Organic Aquaculture for the Evaluation of the Effects
of an Enriched-Organic Diet Composition

As mentioned above, organic aquaculture is an alternative mode of production that
combines environmentally friendly practices, the maintenance of biodiversity, preserva-
tion of natural resources, high animal welfare standards and production methods in line
with defined standards of quality, using natural substances and processes [268]. Organic
feed is composed of a greater percentage of proteins and oils from land-based agriculture,
combined with natural antioxidants [233,234]. The partial substitution of fishmeal and fish
oil with plant proteins and oils was found to be a promising alternative to the fish pro-
tein (and oil) already adopted for commercial diets [234,269,270], while total substitution
was found to disrupt physiological processes and growth [235,236]. Currently, soybean
meal is the predominant choice in terms of a vegetable protein source, considering its
relatively high protein content and suitable amino acid profile [271]. Nevertheless, some
limitations still exist regarding the soybean meal percentage that can be tolerated in fish
feed formulations, especially for carnivorous fishes. For European seabass, a key species
of European marine aquaculture [272,273], it has been shown that a partial substitution
of fishmeal with raw plant material can be used, showing interesting results concerning
physiological and growth performance, along with improved flesh quality [274,275]. To
do so, a holistic approach [33] was adopted, including the measurement of primary (corti-
sol), secondary (i.e., lactate, glucose, hematologic parameters, lysozyme), and ultimately
tertiary (i.e., swimming performances, muscular activity and growth parameters) stress
response indicators. In parallel, we assessed 7-ethoxyresorufin-O-deethylase (EROD) and
glutathione-S-transferase (GST) enzymatic activity as an index of the functionality of the
hepatic microsomal mixed-function oxygenase (MFO) system [276,277] in order to assess
possible effects of pollutant contamination through diet. In this study, multi-parametric
analysis approaches were performed to obtain a better understanding of the effectiveness
of a holistic approach in quantifying welfare in organic aquaculture. In conclusion, both
in terms of growth performance and physiological welfare status, this study supports the
transition towards organic aquaculture for European seabass, choosing the diet adapted
to the need of the species. This transition towards organic agriculture can also benefit
humans by providing higher quality products and thus enhancing health [278]. The multi-
parametric approach has enabled us to outline a comprehensive picture of the physiological
state of seabass fed with three different diets. Even though not all of the sixteen parameters
gave globally consistent responses, the use of all the parameters gave a strong decision
criterion. The parameters that gave a whole organism response, such as EMG, recovery
ratio and growth parameters, proved to be sensitive to assessing welfare conditions [88,178].
Other physiological indicators, such as cortisol concentration, glucose or lysozyme, are
important for welfare assessment, even though these parameters are highly variable (e.g.,
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for cortisol) [173]. Finally, the PCA and MCDA methods appear to be powerful tools for
assessing welfare in aquaculture using a multi-parametric approach, as recommended by
Huntingford et al. [6].

2.4. Social and Spatial Stress Effects on Sea Bream Welfare

In the aquaculture framework, the environment available to reared fish is very different
from the environment in which their wild counterparts live [212]. Good food quality is
readily available, as fish are protected from natural predators and disease and do not
have to compete for mates. However, the living environment is much simpler, and fish
may be disturbed by rearing activities and being restricted at high densities to limited
and crowded spaces, with the consequent risk of disease spreading and increased social
interaction, including with aggressive fish. Because good fish welfare is correlated with
good overall production, the welfare of farmed fish is important for the market, as well as
a matter of increasing public concern [210]. The increasing importance of fish welfare in
aquaculture comes from ethical considerations as well as from the perspective of improving
standards from an economic point of view and the quality of fish production technologies
and aquaculture products. One further aspect to consider when evaluating aquaculture
for creating optimal conditions is the behavioural profile of the reared species and the
interaction between animals in artificial environments [279]. In gregarious species, the
social organization is retained a considerable source of stress [177] especially in the species
where the individuals are organized into territories, with an established hierarchical ranked
organization. In such cases, social stress can be considered the result of the physical contact
between animals (high density and agonistic interaction) and psychological components,
such as hierarchical instability and submission. This stress can affect several aspects of
vertebrate physiology, including allostatic response in terms of the body expenses during
stressful situations (chronic stress) [280]. Studies on fish have obtained similar results
to those produced in other vertebrates [281,282]. Indeed, studies have been carried out
on primates and small laboratory mammals under acute stress conditions, e.g., animals
subjected to strong stimuli for a short period, and the behavioural and physiological
responses were monitored during and shortly after the removal of the stressor [283].

Social interactions are structured around relationships of dominance and hierarchies in
which the individual at the top occupy the most profitable positions [284] governing for the
access to resources such as water, food, space and, individual fitness and/or reproductive
success [183]. Dominant-subordinate relationships can have consequences on the physi-
ological status and responsiveness of an animal [285]. Responses to social stress depend
on the characteristics of the species, such as sex and age [286]. During social interactions,
individuals receive multiple forms of sensory information and use these signals to establish
and maintain dominance hierarchies [184,287]. Social interactions between conspecifics are,
at least for some fish species, dynamic processes where subordinates frequently try to revert
the role and dominants try to maintain their status. These interactions usually take place by
using direct attack or displaying signs to the others [288]. The “winner effect” of dominant
individuals underlies a significant probability of winning ulterior encounters [289]. On the
contrary, the defeats experienced by socially subordinate fish could determine the activation
of secondary and tertiary stress responses [87,290]. In addition, alterations in subordinate
fish might affect appetite inhibition, reducing food intake, and consequently, limit the
energy available for biological processes, like growth [67], aggression reduction [291,292]
and decreased reproductive behaviour, impairing fitness [42]. Moreover, contact between
conspecific fish does not promote habituation [176,284,293,294]. Variations in aggressive
behaviour and stress physiology [238], and the formation of a social hierarchies associ-
ated with widespread physiological differences between individuals, are used as welfare
indicators [295]. Dominance and social rank are inextricably linked to the regulation of
testosterone and cortisol hormones [296]. Plasma cortisol levels appeared to be a heritable
trait and could exert permissive, suppressive or stimulatory effects in vertebrates [297–299].
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In our research [34,35,87], social stress and its effects on reared animals has been
investigated using Spaus aurata as a model of study. In this species, the overall dominant
fish carry out more aggressive acts and bite at food more often than the subordinates
(Figure 9), resulting in a higher relative specific growth rate. Direct competition for food
is supposed to be the the major social mechanism which regulate individuals growth in
limited groups composed by small number of juveniles of this species, when food is scarce
and defendable [300]. Recently, Ref. [301] showed that the effects of social stress could be
limited aged by aquaculture management. Therefore, comprehending the connection that
exists between aggression—feeding behaviours—social hierarchy—stress physiology of sea
bream is of great importance for the aquaculture industry, in order to finding and optimize
the best farming practices for the species [302]. In Cammarata et al. (2012), social stress was
investigated using paired fish and indicating the established hierarchy between two speci-
mens of gilt-head bream, showing a change of the principal biochemical (cortisol, glucose
and osmolarity) and cellular (phagocytic activity) parameters in subordinate individuals
in a short period of time after pairing. In Dara et al. (2022), the introduction of one extra
specimen into the experimental design, with respect to the previous work, increased the
complexity of the interactions among the individuals, but it confirmed the establishment
of a hierarchy obtained through aggression and feeding priority, confirming the stress
pattern previously observed: in small groups of fish, stress is related to social position,
as schematically represented in Figure 9, and the fish at the bottom of the hierarchy are
affected by high stress levels, whereas the specimens at the top experience low stress levels.
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In Dara et al. (2023), the role of environmental sensibilization on the determination of
hierarchy was explored using two experimental models in which the fish are either inserted
in a time-sequential manner (sequential model) for territorial evaluation or simultaneously
(simultaneous model) in an aquarium divided by a divisor panel. In the former, the fish
were placed sequentially in the same aquarium, whereas in the second model, called the
“confusion model”, two fish were placed contemporarily in the same aquarium which was
divided into two spaces by a curved plexiglass panel.

The sequential model demonstrated the importance of the time expended in territorial
exploration for the establishment of a dominance hierarchy. The status of the animals
was evaluated after 15 days. This endpoint was shown to be a critical time-point for
the physiological status in paired specimens [87]. At this stage, have been observed
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increased levels of cortisol in the plasma of subordinate specimens (Aand β) with respect
to the dominant. Also, have been observed a similar level of phagocytic activities among
dominant and subordinate fish, with a slight increase in the β specimens. These results
are consistent with Cammarata et al. (2012) which showed the same modulation response
of peritoneal exudate cells (PECs) in subordinate individuals in the paired experimental
model. The sequential model also allowed us to highlight the importance of the acquisition
of territoriality in the establishment of a dominance hierarchy. In addition, it was shown
that the fish that was placed in the tank first became the dominant, demonstrating that the
time expended for space exploration is crucial in the formation of the social hierarchy as an
example of sensitization, a non-associative learning in which the progressive amplification
of a response follows repeated administrations of a stimulus [303]. The more time spent
exploring corresponds to a greater sense of territoriality, which results in the dominance
hierarchy as an example of environmental influences, spatial memory and the manipulation
of the environment [304].

Through the second model, named the “confusion model”, the role of exploration
was highlighted, underlining the importance of time expended in the exploration of the
territory and confirming the theory formulated through the results obtained by sequential
model experiments. Indeed, in this case, the two fish were placed in the same aquarium
separated physically by a panel, and the fish had the possibility and the time to explore
the territory, acquiring the dominance of their space. Once the panel was removed, the
two fish competed to defend “their” territory and always tried to feed first. In practice,
both fish acted as dominant, confirming the theory of the importance of exploration time in
order to assess dominance in the group. The situation was different in the control condition
tank, where the two fish were placed at the same time in the same space, and according to
Cammarata et al. (2012) and Dara et al. (2022), after a short period the onset of a hierarchy
was observed that was maintained during the experimentation.

Through these two experimental expedients coupled with an integrative approach, the
process of hierarchy establishment was examined through behavioural observation (using
“aggressiveness” and “feeding priority” as parameters) and the evaluation of biomarkers
of stress and immune-cell response. The results showed that social stress mainly affects
the immunity cells (mediated by PEC response) in subordinate individuals, as revealed
by phagocytosis and respiratory burst activity modulation [34,87]. Prolonged stress, con-
sidered deleterious, plays an adaptive role, which temporarily allows fish to cope with
environmental changes, safeguarding single specimens and populations [242].

Furthermore, since it has been demonstrated that hierarchy is a cause of chronic stress,
these results support the need to find solutions to mitigate its effects on the conditions
of the fish, preserving aquaculture’s final product from its consequent negative effects.
Solutions could be to improve the rearing conditions of fish, implementing rearing methods,
as well as the structural complexity of rearing tanks, which are under-implemented in fish
farming [305]. For instance, self-feeding reinforces the social hierarchy, which might lead
to higher competitiveness for resources among fishes, increasing the social hierarchy and,
therefore, stress, when compared to hand feeding. Thus, hand feeding could reduce the
deleterious effects of social hierarchy, but this is not really feasible in intensive farming
conditions. Increasing the complexity of the physical environment can also lead to benefits
for the species, such as a reduction in aggressivity and related stress [306]. Indeed, an
articulated space, introducing the possibility of avoiding direct interaction, defending
territory, escaping during social conflict, investigating and interacting with enrichment,
could reduce stress. Studies have reported the relevant importance of environment on
gilt-head sea bream behaviour and aggressivity; for example, the presence of a blue or
red-brown substrate on the tank bottom resulted in the suppression of aggressive behaviour,
compared to green substrate and no-substrate tanks [307]. This hypothesis is supported
by Arechavala-Lopez et al. (2020), who demonstrated the influence of environmental en-
richment on the enhancement of cognition, exploratory behaviour and brain physiological
functions of sea bream [307].
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3. Conclusions and Perspectives

The results of the studies presented here, schematized in Table 1, are aimed at un-
derstanding how animal welfare touches and impacts on different aspects of zoology and
animal husbandry as an interdisciplinary topic. One of the first difficulties to tackle is the
acquisition of information and data about the animals. To date, our knowledge of animal
farming and captivity has been obtained mainly from the direct observation of animals
which share the same terrestrial environment as human. Difficulties arise when studying
underwater animals [215], and to overcome these difficulties technologists have developed
identification systems that facilitate the collection of necessary data through acoustic teleme-
try. This approach was first utilized for terrestrial animals before being recently applied
to underwater environments thanks to the miniaturization of the device used. Currently,
acoustic telemetry is the only method which allows the continuous collection of data on
fish raised in cages. While other methods, such as cameras or sonar, collect behavioural
information, acoustic telemetry has the advantage of collecting physiological data because
the transmitters are placed in or on the specimen [308]. Despite these advantages, the
implantation of transmitters requires handling and surgical insertion, creating the risk of
influencing the conditions of the fish and thus altering the collected information. However,
the results presented in these studies investigating the effects of the surgical implantation
of tags and manipulation of farmed sea bream and seabass exemplars, demonstrate that,
using appropriate procedures in a controlled environment, they do not affect the animals,
confirming the validity of using accelerometer tags. Indeed, acoustic telemetry may have
many different applications for monitoring fish, and this has encouraged the expansion of
the use of this technology in a wide number of studies, for example, to monitor different
experimental groups reared with different conditions and or under different diets. Organic
aquaculture is a method for farming fish based on organic principles and has become
popular recently thanks to consumer concerns about the harmful impact of aquaculture
on both themselves and the environment. The effects of different conventional or organic
methodologies of rearing conditions were studied by Carbonara [32,33], who evaluated
fish conditions, growth performance and physiology after an experimental period with dif-
ferent diets. The results related to the application of radiotelemetry discussed in this review
support the utilization of this technology in aquaculture contexts for welfare evaluation in
relation to different conditions, when coupled with other welfare indicators. From findings
presented by Alfonso and Carbonara [31–33], it is possible to reach two main conclusions.
First, the use of acoustic transmitters opportunely calibrated for physiological indicators,
is a promising monitoring tool in aquaculture for real-time fish welfare evaluation. The
precision of this technology may be augmented by integrating certain parameters, such
as oxygen consumption, muscle activity and metabolic and immunological indicators,
with swimming activity. Second, based on information obtained from all the indicators
investigated, it seems that a well-balanced organic diet does not have a negative impact on
the health and welfare of the European seabass, suggesting that organic aquaculture may
be able to deal with the challenges of maintaining high standards for fish welfare.

Other relevant aspects for the aquaculture covered in this review is related to the effects
of cohabitation and sociality on the welfare of individuals of gregarious species. Dara and
colleagues [34] studied the implications of hierarchical organization and the mechanisms
that lead to its establishment through an analysis of physiological stress markers coupled
with behavioural observation. Indeed, it has been demonstrated that hierarchy is a cause
of chronic stress, affecting animal welfare by impacting their homeostasis and causing
serious deleterious mid-long term effects on different biological functions (e.g., feeding,
mating, fitness, immune response) [34] presented results clarifying the links between
behaviour, physiological stress profile and immunity, in relation to social hierarchy. This
connection, previously investigated in paired fish, has been here investigated in gilt-head
bream triads. Subordinate sea bream appeared to be more stressed; indeed, they displayed
greater stress levels (indicated by higher plasma cortisol, glucose and lactate levels), as well
lower immunity (lower percentage of phagocytosis) than dominant fish [87]. Subsequently,
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Dara et al. (2023) presented results of a study aimed at investigating the processes involved
in the social organization of gilt-head sea bream and the role of territoriality in its formation.
They used the two experimental approaches: in the first, so-called “sequential model”, and
the second, so-called “simultaneous model”.

To study the effects of social stress and territorial acquisition in the two models, be-
havioural observation was used, integrated with the evaluation of physiological and cellular
parameters such as phagocytosis, cortisol, glucose and osmolarity. After the establishment
of the social hierarchy in the sequential model, cortisol and other biochemical stress marker
levels were higher in subordinate individuals than in dominant ones. Further, a different
modulation of phagocytic activity of the peritoneal cavity cells was evidenced, demon-
strating the effects of social stress on immune response. Differently from the first model,
no differences were found between the two dominant fish involved in the simultaneous
model, where both “confused” fish acted as dominant, defending the territory perceived as
their “own” in the same manner and monopolizing food access. In this study, underlying
the importance of the time dedicated to the exploration of territory and territoriality, has
been provided insight on the hierarchy-formation process, linking it to the physiological
stress profile (cortisol, glucose and osmolarity) and immunity effectors (PECs). Results
here obtained confirm data obtained in previous papers, showing that social stress exerts
effects on subordinate sea bream.

In conclusion, from the new insights presented in this review, the validity of using the
methodologies presented to assess the welfare of farmed fish is evident, thus contributing
to the improvement and development of the F&A sector and pointing to the need to analyse
certain, sometimes underrated, aspects that can influence fish production. Examples of
these benefits are: individuating critical aspects for rearing the selected species, contributing
to finding the best rearing conditions; looking at the influence of welfare on fish health
in terms of preventing disease, pathogen outbreaks, zoonosis and reducing the use of
drugs and antibiotics, contributing to guaranteeing a good final product, respecting the
trade-off between farmer, fish welfare, customers and all the other stakeholders. From this
point of view, the physiology and telemetry approaches may contribute to increasing the
sustainability of F&A, contributing to the achievement of the blue economy pillars and of
the recently adopted the United Nations SDG14 “Life below water” objective: Conserve and
sustainably use the oceans, seas and marine resources for sustainable development” [205].
Making these sectors more sustainable guarantees the marine ecosystem services that have,
among the others, ecological and economic value. These ecosystem services, indeed, offer
a renewable opportunity to meet basic human needs, support a healthy and sustainable
economy, and provide jobs for a growing global population. Indeed, all these results
confirms that the physiological approach is an effective investigation toolbox, rich in
tools with different applications, and that its efficacy is empowered when coupled with
integrative methods that allow us to obtain a global overview on the status of fish and their
welfare in different conditions.

One of the future perspectives for application of the approaches presented along
this review is the investigation on fish of different sex, age, sexual maturity, in order to
individuate different physiological pattern along the fish life history individuating different
and appropriate farming condition and improve the current farming methodologies. In the
studies aimed to investigate the social stress, for example, the testosterone level which has
an important role in the regulation of cellular immune response [75], has not been assessed.
This because sea bream is a proterandrous hermaphrodite species and at this stage, fish
were males not sexual mature. Further studies could also addressed to investigate changes
in testosterone levels during the life stage, studying the establishment of social hierarchy in
sea bream, and the equilibrium in fish relationship during and after sexual inversion, when
males become mature and after when they turn female.

The Annual report 2022 of Federation of European aquaculture producer [209] for the
year 2020 reports that the main farmed species along the European countries are Trout
(farmed on land) with the 77.6% of the total freshwater production, European seabass
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sea and gilt-head sea bream (with pagrus) respectively with 49.8% and 44.7% of the total
marine Mediterranean production and Atlantic salmon with 92.38% of the total production
of the Marine cold water. We retain that one of the reasons for the monopolizing production
of only this few species often is caused by gap in the knowledge of other species farm
procedures. We can assume that the utilization of the approaches here presented may be
a good starting point for to fill the gap of knowledge understanding the farming needs
for other species expanding the market availability of farmed fish and hence reducing the
fishing load on the marine wild fish stock from the fisheries industries.

In the papers discussed along this review have been considered interaction between
specimen in monospecific groups. We retain that all the approaches presented in this
review can be applied in order to understand the interaction among different specimens
belonging at different species in polyculture farms. Indeed, polyculture is even more seen
as alternative to monoculture and one of the solutions that could improve aquaculture
sustainability. This practice encompasses all farming practices in which different species
are reared together in a same space contemporarily [309,310]. Differently from monocul-
ture, polyculture can improve farming methodologies efficiency by enhancing the use of
resources and/or by recycling nutrients [311–314] contributing to decrease environmental
impacts of current F&A industries [314]. If on one the one hand polycultures seems the
solution at different problems, on the other hand, these are complex farming systems,
in which different species have to share resources potentially resulting in interspecific
competition and animal welfare issues [310]. Potential polyculture benefits came from
the idea to put together species that can live in the same production system minimising
detrimental interactions or competition for resources or, even better, species complemen-
tarity (i.e., co-farmed species can use different portions of available resources or display
commensal/mutualistic interactions) occurring among co-farmed taxa. For to realize this it
is fundamental know the complementarity of the different species and their welfare when
farmed together.
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