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m Abstract: Motivation: The price of medical treatment continues to rise due to (i) an increasing

Copyright: © 2022 by the authors.  population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients

Licensee MDPI, Basel, Switzerland.  that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (Al) is

This article is an open access article  3]yeady well-known for its superiority in various healthcare applications, including the segmentation
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40/).

apps, and many more. Our study is based on two hypotheses: (i) Al offers more economic solutions
compared to conventional methods; (ii) Al treatment offers stronger economics compared to Al
diagnosis. This novel study aims to evaluate Al technology in the context of healthcare costs, namely
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in the areas of diagnosis and treatment, and then compare it to the traditional or non-Al-based
approaches. Methodology: PRISMA was used to select the best 200 studies for Al in healthcare with
a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the
diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that
Al plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of
different assumptions by integrating Al and then comparing it against conventional costs. Lastly, we
dwell on three powerful future concepts of Al, namely, pruning, bias, explainability, and regulatory
approvals of Al systems. Conclusions: The model shows tremendous cost savings using Al tools in
diagnosis and treatment. The economics of Al can be improved by incorporating pruning, reduction
in Al bias, explainability, and regulatory approvals.

Keywords: artificial intelligence; deep learning; machine learning; diagnosis; treatment; cost-
effectiveness; health economics; Al pruning; Al explainability; Al bias; recommendations

1. Introduction

The United States is the leading nation in cutting-edge medical training, research, and
technology, notably in the healthcare industry. However, with the lowest health results and
subpar public services when contrasted to the top ten nations, healthcare expenditure in
the United States stands out as being the highest (when compared to Canada, Germany,
United Kingdom, Australia, Japan, Denmark, France, the Netherlands, Switzerland, and
Sweden). Between 1960 and 2022, healthcare spending in the United States increased from
5.0 to 17.9 percent of GDP (or USD 3.5 trillion), with an average increase of USD 146 to
USD 10,739 per person. Almost a quarter of all healthcare dollars spent in the United States
were wasted [1]. The leading causes of this expenditure include avoidable and correctable
system drawbacks, such as subpar vigilance delivery, overtreatment, and improper health
care delivery. This is more serious than it seems [2—4].

Artificial Intelligence (Al) based systems, in contrast, can dramatically reduce such in-
efficiencies, resulting in a considerably more efficient and cost-effective health ecosystem [5].
The incorporation of technology into healthcare has altered how we think about patient
safety, hospital administration, producing new and better drugs, and, finally, making treat-
ment decisions exclusively on data [6]. Technology has beneficial aspects for healthcare,
particularly in both diagnosis and treatment [7,8]. By enabling real-time patient information
to be accessed with only a few taps on a screen, technology is now paving the way for fast
care management that will, in an emergency, reduce casualties. The Internet of Medical
Technology (IoMT), artificial intelligence (Al), machine learning (ML), and deep learning
(DL) are currently the primary drivers [8,9]. Innovation is becoming the centerpiece [10-13].
Al technological development improves existing systems, especially medical imaging [9,14]
and coronary artery disease diagnosis [15,16], reducing human error, increasing patient
care overall, and making doctors’ responsibilities easier [17].

The healthcare information technology (IT) sector has been driven to provide better
treatments using big data, virtual reality, mobile technology, wearable medical devices,
telehealth, and more, simply out of a desire to perform better [18-20]. The ability to reduce
workflow and refocus most of a doctor’s attention on providing outstanding patient care
has been made possible by systems that use Al and better data management [21]. It is
impossible to overstate the value of technology in healthcare. Technical advancements
has changed the face of the healthcare sector [22], and in particular, Al has changed the
healthcare sector scenario. Medical applications have made extensive use of ML and
DL algorithms [23,24]. Al-based solutions use databases to make decisions and are data-
driven. It discovers non-linear correlations between the cardiovascular outcomes and the
input predictors [25]. ML-based algorithms have the potential to simultaneously employ
complicated, non-linear correlations among several input risk predictors (or qualities),
in contrast to conventional statistical risk prediction methods [25,26]. For example, wall
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tissue characterization of atherosclerotic carotid [27-32], image segmentation [33-37], and
cardiovascular disease (CVD) risk stratification [38] are features that DL algorithms directly
extract from the input data to make predictions [9].

It has also been shown that convolution neural network (CNN) DL algorithms can
extract features, followed by the training and testing of an ML-based classifier to produce
a superior classification [39,40]. Recently, CVD risk and coronary artery calcium scores
have been predicted using retinal images [41,42]. Predictions of diabetic retinopathy (DR)
have been made using ML and DL-based systems [43—46]. Therefore, Al-based systems
make it possible to examine the risk of stroke and CVD diseases and the need for human
intervention [47]. The use of Al-based algorithms in specific carotid ultrasonography
applications has shown promise [48,49]. Therefore, these Al-based models may be used in
patient risk evaluation to jointly treat diabetic retinopathy (DR) and CVD illnesses [50].

The positive economic effect is a critical decision element in determining whether
to invest in an Al solution in the healthcare business [51]. The healthcare provider and
insurance businesses, in addition to the medical and pharmaceutical technology sectors,
are significantly affected [52-69]. However, the broad economic impact of digital health
solutions, in general, has been extensively studied in the presented paper. The saving of
time in diagnosis and treatment procedures results in a direct saving of money. Using this
hypothesis, an Al-based economic model for diagnosis and treatment is presented.

2. Background Literature

Al-enabled devices, such as advanced computed tomography (CT) scans, magnetic
resonance imaging (MRIs), and ultrasounds, can carry out repetitive, simple tasks more
accurately, reducing medical errors, reducing cost, and promoting early diagnosis and
intervention before serious situations arise [1,2]. For instance, an Israeli start-up has created
Al algorithms for diagnosing conditions including osteoporosis, brain hemorrhage, ma-
lignant tissue in breast mammography, and coronary aneurysms that are equally accurate
or more accurate than humans [3]. These are powerful paradigms for preventing manual
and time-consuming procedures, thereby reducing costs. According to a recent Newsweek
article, Al has demonstrated 99% accuracy and is substantially faster than humans in
evaluating and analyzing mammograms. This has made it possible to diagnose breast
cancer more quickly, improving the cost of diagnosis [4,5].

In today’s time, the ability to precisely and successfully utilize the potential of data
has authorized more effective decision making across the majority of businesses [6]. The
same is true for healthcare, where massive data collection is made available for Al-enabled
algorithms that can examine pattern-based outcomes, leading to improved time analysis
for decision making [7,8]. Healthcare professionals are beginning to move toward Al-based
solutions for predicting outcomes which can help in optimal medications based on patient
profiles, thereby lowering long-term costs [9,10]. By ensuring that the appropriate actions
and treatments are tailored to each patient, Al enhances clinical decision-making and
provides customized care [11]. The results will be significantly improved immediately,
lowering expenses related to post-treatment problems, which are a significant cost factor in
most healthcare ecosystems worldwide [12].

Al has the potential to speed up the creation of life-saving medications, thereby saving
billions of dollars that could be invested in maintaining healthy ecosystems [13]. A start-up
supported by the University of Toronto recently created a supercomputer-based algorithm
that resembles and evaluates millions of potential medications that help in forecasting
their effectiveness against the Ebola virus. This directly helps in cutting costs, reducing
time, and, more importantly, saving lives by reconfiguring the existing treatments [14].
Advancements in gene-based biomarkers, where billions of patient information points can
be analyzed in a short amount of time from a blood sample using at-home devices, can
improve Al-based drug research for clinical trials, directly affecting drug costs [15].

People can be empowered by Al to make wiser health choices. All across the world,
numerous people already utilize wearable devices to collect everyday data, including heart
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rate and sleep habits [16]. With the help of this Al data, people at risk of particular diseases
could be risk stratified well before the threat becomes acute, thereby eventually reducing
cost [17]. Already, Al-based smartphone apps provide fine-grained patient profile details,
which could help patients with certain chronic conditions to manage their sickness, leading
to healthier lives [18]. This has a direct bearing on the economics of healthcare.

It is vital to investigate if the economic models truly meet the quality requirements that
have been established to enable the decision-making for the deployment of Al in healthcare.
Based on this economic analysis, our study will provide the knowledge necessary to decide
in favor of or against the application of Al in hospitals, industry, and payer situations. In
other words, it can be said how Al technology transforms in terms of costs, specifically
the Al-based diagnosis and treatment paradigms in healthcare, and compare it against the
current conventional (non-Al-based) approaches. This is exactly the aim of our study:.

3. Search Strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
paradigm were used to select the 200 best Al studies for diagnosis and therapy (Figure 1)
and served as the foundation for the search strategy. The usage of repositories such as
PubMed, Google Scholar, and IEEE are three important databases that were utilized in the
process of locating and screening relevant publications through the usage of keywords
such as: “Al-based cost-effective therapy,” “Al and cost-effective treatment,” “cost-effective
treatment,” “cost-effective health ecosystem,” “cost-effective Al analysis in healthcare,”
“cost-effective solution in healthcare,” “Al-based cost-effective diagnosis,” “cost-effective
treatment diagnosis and artificial intelligence,” “cost-effective treatment diagnosis and
treatment,” “artificial intelligence,” Economics using AlL"” “preventive screen using AlL”
“Al-based decision making in health care,” “machine learning in health care,” and “deep
learning in health care.” Healthcare were used to exclude studies: (i) insufficient data in
research, (ii) unrelated studies, and (iii) articles that were irrelevant to the topic at hand.
This led to the elimination of 78, 52, and 14 studies, which were each designated by the
symbols E1, E2, and E3, respectively. As a result, the final pool of research consisted of 200
different cases. Either the costs of Al-based healthcare resources are ignored in this research,
or they are compared to more traditional cost models. There will be 78 studies that were not
chosen to move on to the next stage of the selection process; these are denoted by the letter
E1 in the PRISMA model. (i) They are not focusing most of their efforts on the economics of
healthcare. For the sake of this investigation, we are only interested in works that examine
the connection between Al and the economics, diagnosis, and treatment of healthcare (ii) If
studies show a link between Al and cardiovascular disease, diabetes, renal disease, or
any other condition, we will not consider it because there has been no cost analysis. This
category, which in the PRISMA model is denoted by the letter E2 and included 52 studies,
had a total of participants. The research with incomplete evidence were the ones that did
not give us sufficient data to include them in our analysis. The results of these analyses
indicate there is no proof to support a link between cost and healthcare resources for AL No
attempts were made to conduct such interactions. The interaction between cost analyses
was not considered.

Studies on the diagnosis and treatment of numerous disorders, including dentistry,
oncology, dermatology, kidney, ophthalmology, COVID-19, and CVD, are shown in Figure 2.
Every study was subjected to a feasibility analysis before being cross-checked with scientific
validation to ensure that it closely matched our objectives. Most of the papers demonstrated
the role of Al in disease diagnosis with an explanation of the cost-effective technique
that were available. The proposed study includes articles from various healthcare fields
such as dentistry (9), oncology (14), dermatology (16), neurology (21), nephrology (23),
ophthalmology focused on diabetic retinopathy (28), and immunology investigations
focusing on the severity of COVID-19, which includes pulmonary. Acute Respiratory
Distress Syndrome (ARDS) was shown in 32 investigations, and the studies explaining
CVD, stroke severity, and risk stratification numbered 41.

Z7i
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Figure 1. PRISMA model for selection of studies.
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Figure 2. Statistical distribution of various diseases.

The research on cost-effective Al-based diagnosis and therapy for multiple fields of
view, which covers dental treatments (such as digital X-ray imaging modalities in cavity
treatment, amongst other dental procedures), and several studies conclude that image-
based focused radiation on lesions, targeted drug delivery, and other uses are cost-effective
strategies to treat cancer [70].

The cost-effective treatment of skin illnesses such as psoriasis [71], skin cancer [72],
wound care, and other similar conditions are the primary focus of a significant portion
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of the ongoing research. Using fog Al, it is possible to test for a wide variety of diseases
at a reduced cost, including Parkinson’s [73-76], COVID-19 [77,78], and CVD [79,80].
The number of studies that demonstrate cost-effectiveness in treatment is significantly
lower compared to the number of studies that demonstrate cost-effectiveness in terms of
diagnosis.

4. An Overview of Artificial Intelligence Applications in Healthcare

The use of Al and related technologies is expanding throughout industries and sectors,
including the medical field [81,82]. Providers, payers, and pharmaceutical companies all
stand to benefit, which may affect a wide range of administrative and clinical processes [83].
Several studies have shown that Al is competitive with or even superior to humans at
essential healthcare tasks such as illness diagnosis [31,84,85]. Algorithms are already more
advanced than doctors in the diagnosis of malignant tumors and advise researchers on how
to assemble cohorts for pricy clinical trials [86-88]. The cost factor for the Al-based system
design is to be mentioned in Appendix A (Table A3). Al contains various combinations of
technologies. The vast majority of these technologies have an immediate application in the
field of medicine, even though the specific procedures and tasks with which they can help
vary considerably [14,89-92]. The following list identifies and provides explanations for
several essential Al technologies for the healthcare industry. Section 4.1 presents the Al for
diagnosis systems and two classic examples of cardiovascular disease risk stratification,
while Section 4.2 presents the Al-based treatment system.

4.1. Artificial Intelligence-Based Diagnosis Systems

Improved risk prediction algorithms are needed to enhance overall accuracy and
handle other concerns. Figure 3 depicts an ML-based system’s architecture. Generalized
architecture is classified into offline and online models.

I Data Acquisition \

OBBM LBBM  CUSIP MedUse

Balance l Null Values
Switch - Handliny
I Augmentation I Cross-Validation

Figure 3. The generalized architecture of the ML-based system.
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The offline model trains an ML algorithm to provide offline parameters. This will
transform uncertain risk test predictors into final CVD risk labels in the online scenario [93].
The features are needed for training and label prediction in both offline and online models.
Such characteristics can be derived from patient demographic trends and developed and
evaluated, such as blood tests, electronic health records (EHRs), and new processes, in
CVD risk analysis. Conventional CVD risk assessment calculators such as the Framingham
Risk Score (FRS), Pooled Cohort Risk Equation (PCRE), and QRISK3 can accommodate a
substantially greater number of possible variables than ML-based methods [94].

ML-based algorithms construct the outcome, which is based on various linear and
non-linear patterns found in the input risk predictors [95-125]. This is a critical feature
of Al-driven algorithms that differentiates them from other traditional CVD risk assess-
ments. Notable ML-based methods include support vector machines, random forests,
decision trees, and extreme gradient boosting [126]. The ability to distinguish between
patients with a low risk of CVD and those with a high risk of CVD is a characteristic of an
ML-based algorithm [127]. In comparison to the conventional CVD risk calculators, the
ML-based algorithms have provided improved risk categorization in terms of multiclass
endpoints [119]. In addition to this, ML-based algorithms can identify symptomatic and
asymptomatic carotid atherosclerotic plaques effectively [30,128]. Figure 4 shows the com-
parison of ML algorithms to statistical calculators. The Al-based algorithms were shown to
have a higher total risk-strategic accuracy of 92.52% than the 13 varieties of conventional
cardiovascular risk calculators (CCVRC). This was more than any of the other 13 categories
combined. Others have demonstrated that ML can be used to improve risk prediction.
They improved risk prediction precision by using carotid ultrasonography plaque char-
acteristics [126,129]. Another ML-based study, conducted by Kakadiaris et al. [80] and
Weng et al. [130], discovered that ML-based algorithms outperform traditional CVD risk
calculators based on statistics.
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Figure 4. Comparing the ML-based CVD risk assessment using AtheroEdge™ 3.0y, with (A) 13 types
of CCVRC and (B) the standard-of-care ASCVD calculator [131].

The use of Al in the diagnosis and treatment of disease has been a focus of the field
at least as far back as the 1970s, when Stanford created MYCIN to detect blood-borne
bacterial illnesses [93]. Model fitting and “learning” from data through model training are
two critical components of ML [94]. One of the most popular forms of Al is ML, which is
employed by 63% of businesses, according to a poll of 1100 US managers conducted by
Deloitte in 2018 [95]. Figure 5 shows, in four sections, the basic Al technique that has led to
many possible outcomes in the healthcare industry.
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Figure 5. Applications of Al in healthcare diagnosis. Al: artificial intelligence, ML: machine learning,
DL: deep learning, TL: transfer learning, CVD: cardiovascular diseases.

(A) Nowadays Al has been observed to play a significant role in computer-aided
diagnosis [86,97], particularly in the identification, risk stratification, and classification of
numerous diseases [8,98-100].

Recently, it has been explained that ML applications have dominated the field of medi-
cal imaging, including diabetes [101,102], cardiovascular disease [79,84,103], liver [98,104],
thyroid [105,106], ovarian [29,107], and prostate cancers [108], as well as risk characteri-
zation using coronary and vascular screening [107,109] using carotid angiography [110].
Numerous medical imaging modalities can depict COVID-19 symptoms and lesions, in mag-
netic resonance imaging (MRI) [37,111], computed tomography (CT) [112], ultrasonography
(US) [113], and CT for lung imaging [37,111]. (B) Using Al and key phrases, healthcare
practitioners can extract patient data from faxes, clinical data, and provider notes. EHRs
are lifesavers in emergencies because they give the patient’s complete medical history and
allow healthcare providers to access patient data from anywhere. They improve physician
and patient communication. Better communication improves care. Despite issues such as
physician burnout, expenses, and lack of interoperability, EHRs can benefit the healthcare
system [96]. (C) One way that Al is being used to solve the problem of medical care is to
search for information in medical papers using natural language processing (NLP). This is
being performed by several businesses and research groups. (D) DL algorithm can segment
the COVID-19 lungs and detect the lesion in CT lung images [37,114-116]. As a result, we
believe that AI will be effective for forecasting diagnosis and risk stratification for various
diseases with good accuracy along with lower cost and shorter diagnosis time.

4.2. Al-Based Cardiovascular Disease Risk Stratification: A Classic Example of Diagnosis

We presented an economic model that took the CVD disease into account. However, by
modifying the input covariate of the model, such as Parkinson’s, diabetes, COVID-19, renal,
etc., we can adjust the paradigm of the model. Economic analysis is necessary to assess
resource consumption and guarantee optimal use because CVD diagnosis and treatment
are costly. The American College of Cardiology (ACC) and the American Heart Association
(AHA) has issued several guidelines throughout the years, the most current of which has
encourage the use of specific algorithms to conduct a CVD risk assessment (Figure 6). Statin
medication is typically prescribed to patients to reduce their overall risk of CVD based on
the projected risk, which is calculated using risk calculators.
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Figure 6. The graphical user interface of Atheropoint™ (3.0) Al-based CVD Risk Stratification system
to predict a person’s 10-year CVD risk. (A) Trained Model Selection Process and (B) Risk Stratification
Predication Process [117]. (Courtesy of AtheroPoint, Roseville, CA, USA permission granted).

These shortcomings necessitate the development of a more robust and accurate model
for predicting the risk of developing CVD. Incorporating image-based phenotypes into CVD
risk prediction models can enhance conventional risk calculators. Suri et al. [15,118-121]
have made an effort in this direction by merging traditional risk indicators with image-
based phenotypes based on automated carotid ultrasonography [122]. This fusion was
used for determining the 10-year CVD risk [118,123,124]. Each slice of the pie represents
one of the conventional risk variables or carotid imaging phenotypes that contributes
independently to the 10-year CVD risk [125-131].

4.3. Deep Learning-Based Diagnosis and Risk Stratification

DL-based algorithms are also capable of making a comprehensive diagnosis. Medical
image analysis can benefit from DL techniques such as classification and feature extrac-
tion [132]. DL algorithms extract their features and conduct classification or prediction [133].
In medical imaging, CNN is widespread, and DL empowers this algorithm. CNN can
employ high-level features to diagnose medical conditions [39,134]. Figure 7 shows how an
input image is convolved using kernels to extract high-level patterns. The pooling process
chooses relevant, dominant features. During CNN training, backpropagation learns all
kernel coefficients. CNN was used to classify carotid ultrasound images into lipid, fibrous,
and calcified plaque [135]. CNNs are also used to measure carotid intima-media thickness
and lumen diameter [136-138]. Rim et al. [41] employed DL to predict CAC from retinal
pictures. The authors showed that retinal CAC values are equivalent to CT-derived ratings.
Cheung et al. [42] assessed CVD risk using retinal vessel caliber. DL-based algorithms are
also used to screen DR patients [45,46,139].

Al-based algorithms can be used for accurate CVD and DR risk assessment with
established risk variables, such as carotid ultrasonography plaque phenotypes.
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Figure 7. CNN-based medical image analysis architecture. (Courtesy of AtheroPoint, Roseville, CA,
USA permission granted).

4.4. Artificial Intelligence-Based Treatment Systems

Al is needed for integrative approaches for handling complicated diseases such as
cancer. Data integration includes concatenating omics data characteristics. Since biomarkers
link with biological pathways, Al researchers have identified cancer subtypes and possible
therapeutic radiogenomics. Al predicts disease prognosis and therapeutic responsiveness.
These therapeutically relevant achievements must be more robust for customization or
personalized medicine.

Radiogenomics has the potential to be leveraged as a useful technique in oncology to
select the most appropriate patients [140]. This possesses the possibility of functioning as
a digital, non-invasive biopsy tool that can detect and measure tumor lesions help create
customized immunotherapy regimens, and enable ongoing treatment response monitor-
ing [140]. There is reason to believe that combining imaging data with radiomics may result
in improvements to disease diagnosis, prognosis, and the ability to forecast the outcomes
of disease. The use of radiogenomics research in various diseases, including glioblastoma,
hepatocellular carcinoma, non-small cell lung cancer, hematological tumors, and others,
may provide an excellent representation of the advances made in this field [140,141].

The advent of radiogenomics has prompted a shift in the focus of research from the
level of radiology and pathology to the level of genetics [142]. Mining radiomics, genetic
data, and clinical records have contributed to the consistent expansion of the field of
radiogenomics during the past ten years [141]. Research in the field of radiogenomics
has significantly benefited from the development of deep learning and big data program-
ming, which in turn has contributed to the creation of newer algorithms, workflows, and
approaches [143]. The development of a completely automated system paired with a
radiological workflow, such as the one represented in Figure 8 [144], is a notable break-
through in the field of radiogenomics. This results in a reduction in the total amount of
time spent performing tasks that are repetitive and laborious, while simultaneously boost-
ing both efficiency and productivity [145,146]. Another advantage is that the treatment
can be monitored in real-time by comparing many photos from the database at the same
time [144,146].
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Figure 8. Role of Al in improving the pipeline of radiology, from clinical protocol selection to
treatment prognosis [12].

The ability of radiogenomics to aid in the creation of individualized treatment plans
relies heavily on the reliability and openness of its predictive tools and computer algo-
rithms [147]. A multivariable prediction model for individual prognosis (TRIPOD) and
other such recommendations have been essential in getting us closer to our aims [142]. It is
crucial, however, to ensure that the implementation of such cutting-edge radiogenomics
methodologies takes into account the weakness of the presently available radiobiology
expertise [147]. New conclusions can be established by combining the imperfect and erro-
neous datasets available in the radiogenomics database with preexisting knowledge of the
results [148].

5. Economics of Artificial Intelligence Models

Al reduces healthcare costs as compared to conventional methods. It has been shown
before the cost saving due to Alin treatment is more effective as compared to diagnosis [149].
Al reduces time in diagnosis and treatment as compared to conventional methods. In a
short time, high accuracy in diagnosis and treatment can be achieved. Al helps improve
diagnostic accuracy by eliminating prejudice and subjectivity [150]. Al-based medical
diagnosis reduces the likelihood of inaccurate examination. Patients may feel more at ease
when seeing a doctor because of Al technology. Al filters through a considerable amount of
data to determine which therapies will produce the best results. Not only can implementing
Al technology in health care reduce costs, but it can also help organizations to maximize
their ROL Figure 9 shows an Al-based/conventional diagnosis and treatment model.

The Al economical model for the diagnosis and treatment has been presented. The
model predicted the cost savings for 10 years. Initially, a cohort of 20 hospitals and
20 patients per hospital for a whole year were selected for the analysis. The detailed
analysis is shown in Appendix A. For designing the model, we have taken an assumption
for growth of 10%. The time required for diagnosis is to be assumed as per standard and
compared with the Al-assisted tools. As less time is necessary for Al-based diagnosis, it
saves costs.
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Figure 9. The Al economical model for the diagnosis and treatment against the conventional model.

5.1. Modeling Cost Analysis for Diagnosis

Assumptions: For the analysis, the 10 years were considered, while for the starting
year, the number of patients were 20 per day per hospital and the number of hospitals
considered was also 20. The progression rises to 65 patients per day and the hospital count
is 38 at 10 years. Figure 10 depicts the number of patients per day in each hospital as well
as the number of hospitals. It indicates that the patient count and hospitals are increasing
linearly. The detailed statistical analysis of the model is shown in Appendix A (Table Al).
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Figure 10. Patients per day per hospital for diagnosis.

Figure 11 shows the time saved (hours) during the diagnosis of the patient. In the
initial year, the time savings is 3.33 h per day; at 10 years, the time saving will be 15.17 h
per day. Over the course of a year, the savings in time increased even with the increase
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in patient quantity. The cost of diagnosis is reduced as a result of the time savings. The
detailed statistical analysis of the model is shown in Appendix A (Table A1).

o Diagnosis time saving in conventional and Al
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Figure 11. Time-saving for Al-based diagnosis model (green). Conventional model (red) vs. Al (blue)
showing year vs. time (in hours).

Figure 12 shows the cost saving of the Al-based diagnosis method as compared to the
conventional diagnosis method. The conventional diagnosis method requires greater time
compared to the Al model. We assumed the model diagnosis price as USD 500 per hour.
This observation results in cost saving in the initial year, but after 5 years the cost is saving
is more. The cost savings in diagnosis are USD 1666.66 per day per hospital in the first year
and USD 17,881 per hospital in the tenth year. The detailed statistical analysis of the model
is shown in Appendix A (Table Al).

20000 Cost saving in diagnosis: Conventional vs. Al

Meets the
hypothesis

Year

-@-Conventional =-@=Al -@=-Costsaving (Conventional-AT)

Figure 12. Cost saving (green) in diagnosis: conventional (red) vs. Al (blue).

5.2. Modeling Cost Analysis for Treatment

The cost associated with the treatment is higher as it requires more time for prognosis.
The curve in Figure 13 shows the number of patients admitted initially to hospitals and the
number of hospitals. The detailed statistical analysis of the model is shown in Appendix A
(Table A2).
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Figure 13. Patients per day per Hospital for treatment (red), number of hospitals (green).

Treatment requires more time as compared to the diagnosis. It indicates that the
patient count and hospital count are increasing linearly. For the analysis purpose, over a
10-year span, we have considered an initial year of 20 patients per day per hospital; for the
initial year, 15 hospitals were considered. The progression rises to 55 patients per day and
the hospital count is 21 at 10 years.

Figure 14 shows the time saving (hours) during the treatment of the patient. Note
that saving in time increases even if there is an increase in the patient sample size. The
time-saving results decrease in cost. The time-saving treatment in the 1st year is 21.67 h per
day per hospital, and it reaches its peak in the 10th year at 122.83 h per day per hospital.
The detailed statistical analysis of the model is shown in Appendix A (Table A2).
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Figure 14. Treatment time-saving (green). Conventional time (red) and Al time (blue).

The Figure 15 curve shows that the cost saving of the conventional treatment method
requires more time, hence, the cost is higher. However, treatment using Al requires less
time even with the increase in the patient quantity. We had assumed the model treatment
price is USD 1000 per hour. This observation results in less cost savings in the initial
year, but after 5 years, the cost saving is increased. The cost savings in treatment are USD
21,666.67 per day per hospital in the first year and USD 289,634.83 per day per hospital
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in the tenth year. The detailed statistical analysis of the model is shown in Appendix A
(Table A2).

450000 Cost saving in treatment: Conventional vs. Al
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Figure 15. Cost saving in treatment (green) shows a non-linear curve. Conventional treatment cost
(red) vs. Al treatment cost (blue).

5.3. Cost Saving in USD Using Al-Based Diagnosis and Treatment Tools

Figure 16 shows the cost saving in USD using Al-based tools. However, diagnosis
using Al requires less time even as the patient quantities increase. This observation results
in less cost savings in the initial year, but after 10 years, the cost savings are higher.

Cost saving in USD using Al-based system
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Figure 16. Cost saving in USD using Al-based system, Al-Diagnosis (blue), Al-Treatment (red).

The cost associated with the treatment is higher as it requires more time for prognosis.
The time-saving treatment in the 1st year is 21.67 h per day per hospital, and it reaches its
peak in the 10th year at 122.83 h per day per hospital. The cost savings in treatment are
USD 21,666.67 per day per hospital in the first year and USD 289,634.83 per day per hospital
in the tenth year. The detailed statistical analysis of the model is shown in Appendix A.

6. Recent Advances in Artificial Intelligence and Its Relationship to Economics

Three major advancements in the field of Al that cannot be neglected are, namely,
(a) pruning of Al (PAI) models, (b) explainability of Al (XAI) models, and (c) Risk of Bias
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(RoB) in AI models. These are vital for improving Al performance and comfort level of
integrating the Al models in Al-based products in diagnosis and treatments.

6.1. Pruned Artificial Intelligence Systems and Its Effect on Economics

ML and DL techniques have been widely used for various disease detection and
classification due to their powerful ability to build training models which can be used for
prediction on unseen or seen data sets [36,126,151-155]. Utilizing GPUs or supercomputers
is one method for resolving the processing challenge [156-158]. Even though they are
costly and challenging to maintain over time, LeCun et al. [159] were the first to introduce
the idea of pruning to the field of deep learning in their 1989 publication, “Optimal Brain
Damage.” Pruning is the process of eliminating extra weights from a model or query region
to eliminate unnecessary or unimportant areas [160]. By selecting the appropriate and
correct hyperparameters during model training, this pruning approach was expanded to
optimize storage [161] and speed up model development [29].

Agarwal et al. [35] implemented eight pruning deep learning models for COVID-
19 computed CT lung segmentation and heat map localization images. Four evolution
algorithm (EA) approaches, namely Differential Evolution (DE), Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and Whale Optimization (WO) were used to optimize
two basic DL networks, fully connected network (FCN)/segmentation network (SegNet),
to solve the storage and speed issue (Figure 17). The eight pruning procedures are thus
four times two (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO, with FCN and
(v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO in DL framework.
These pruning methods need more evaluation in terms of the tradeoff between parameter
size vs. real-time usage vs. performance of Al pruning models. If the performance of
the pruned Al model is superior to conventional Al models, this will further improve the
economics in diagnosis and treatment paradigms.
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Figure 17. Eight systems were created using four pruning approaches (DE, GA, PSO, and WO): FCN-
DE, FCN-GA, FCN-PSO, FCN-WO and SegNet-DE, SegNet-GA, SegNet-PSO, and SegNet-WO [35].
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6.2. Explainable Artificial Intelligence Systems and Its Effect on Economics

DL techniques have drawn a lot of attention, since they frequently outperform humans
in tasks such as recommendation systems, speech and image recognition, and many others.
However, these applications are not reliable or comprehensible. A common misconception
about DL models is that they are opaque, challenging-to-understand black boxes with
complex underlying mechanisms. However, depending on the application, mistakes made
by Al systems could be catastrophic. In the medical industry, the lives of the patients
depend on these decisions, whereas an unmanned vehicle’s vision-based system error
could result in a crash.

Explainable AI (XAlI), is used to solve the aforementioned challenges. Recently, scien-
tific validation was also evaluated with the help of XAI [37,98,162-164]. The role of justice,
privacy, openness, and explainability in the DL paradigm has been further developed by
the European General Data Protection Regulation (GDPR) [165]. Figure 18 shows the seven
customizable processes of DL, which are DL training, quality assurance (QA), installa-
tion/deployment, prediction, cross-validation-based testing (A /B test), monitoring, and
debugging. This is possible because XAl incorporates a feedback loop. The usability of the
Al system improves if XAl is incorporated into the Al system. The demand for such an
XAl system grows automatically, hence more considerable revenue. Further, it provides
more stability to the Al system, giving longer life to the product design.
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Figure 18. Eight aspects of Explainable AI [165].

6.3. Bias in Artificial Intelligence Systems and Its Economics

Al systems were recommended as a potential substitute for existing diagnosis and
treatment approaches [166,167]. Al systems, on the other hand, confront several challenges,
one of which is a tendency to prioritize accuracy over scientific validation and clinical
evaluation [168,169]. Due to a lack of robust ground truth selection such as CVE, coronary
CT score, or angiography stenosis, the disease severity ratio is typically approximated
and not accurate. It places a significant emphasis on the Al system’s resilience while
only a slight emphasis is placed on its authenticity [170]. It introduces bias into the Al
system [13,16,155,168,169,171]. It is also important to note that the database contains
specific regional patient characteristics; as a result, the model may under or overestimate
diagnosis and treatment findings for different ethnicities or comorbidities [164].

Therefore, identifying risk-of-bias in artificial intelligence systems (RoB) [166,167] and
adjusting the diagnosis and treatment are essential steps in the process of enhancing risk
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stratification in emergency department patients. By combining elements such as mobile,
cloud, and e-health infrastructure, the performance of Al-based risk classification and
therapy can be considerably improved.

7. Regulations and Artificial Intelligence-Based Systems
7.1. Motivation for Building Al-Based Products for a Successful Regulatory Market Approval

The challenge in today’s world of biomedical engineering system design is that the
focus is on the accuracy and performance of the system, but not on the reliability, stability,
safety, failure mode, robustness, sensitivity analysis, mitigation during the failure mode,
ability to perform risk analysis and risk mitigation, building the contradictions, and solid
user manuals. This causes the system to become unreliable and eventually die out over a
little course of time. To sustain Al products, one needs time-to-time regulatory approvals
and memo-to-file (MTF). Most of the diagnosis products fall in the Class II category by
the FDA 510 (K) regulations. They do not require clinical trials, while most therapeutic
products (especially invasive) fall in the Class III category and require clinical trials. Thus,
understanding Al-based products and their link to food and drug regulation (FDA) are of
vital importance.

7.2. What Should an Al-Based Product Undergo for a Successful FDA 510 (K) Approval?

During the Al-based system design, the following points are to be kept in mind for
regulatory 510 (K) approval. This is not limited to these, but can be summarized as follows:
(i) customer requirements should be clearly laid out; (ii) engineering specifications should
be planned well; (iii) used cases must be established; (iv) engineering design should be
carefully designed ensuring proper use of 3rd party systems, such as gold standard if the
system is a supervised Al-based system; (v) solid verification and validations systems
designs; (vi) user-manuals should show under what conditions the system works, the
noise conditions, under what bounds the system will malfunction, and what are the
mitigations under failure conditions, what are the alternatives for the clinicians (users);
(vi) failure mode effective analysis (FMEA) must be duly performed along with risk analysis
and risk mitigations; (vii) traceability analysis which links the customer requirements,
engineering specification, engineering design, and mitigations; (viii) thorough design of
contraindication and predicate designs for the 510 (K) approvals [172].

In Al-based design, Al explainability is of vital importance since most Al-based
systems are black boxes; therefore one must show the explanations and justification of the
results, such as where the lesions are by color codes (say heatmaps) or show which Al-based
features are crucial and why, such as usage of LIME or SHAP by showing, graphically, the
positive or negative side of the feature strength [173,174].

The parent firm should submit medical hardware or software for FDA review before
it may be sold legally in the US market [175,176]. The regulatory body has three levels of
clearance for medically focused Al/ML-based algorithms, including 510 (k), premarket
approval, and the de novo pathway, each of which comes with unique requirements that
must be met (Table 1).
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Table 1. Types of Food and drug administration (FDA) approvals for AI/ML-based healthcare
technology are described [177].

SN

FDA Approval Stages

Description

1

510 (k) clearance

Premarket approval

de novo pathway

A 510 (k) authorization is granted to an algorithm if it is at least as secure and effective as another
equivalent, commercially available algorithm. Alongside the claim, the applicant for this
clearance must provide substantial proof of equivalence. It is illegal to commercialize the

algorithm that is awaiting approval until it has been determined to be reasonably comparable to

the other algorithm.

For Class Il medical devices, algorithms receive premarket approval. The safety and efficacy of

the latter are assessed through more comprehensive scientific and regulatory processes since they

can have a significant impact on human health. The FDA must find sufficient scientific evidence
supporting the device’s usefulness and safety before approving an application. The applicant can
move further with product marketing after receiving approval.

The de novo category is used to categorize novel medical devices with sufficient safety and
efficacy and with broad controls, but in which there are no lawfully marketed equivalents. Before
approving and permitting the devices to be marketed, the FDA conducts a risk-based evaluation

of the device.

7.3. A Short Note on the Influence of the Changing Technology and Economics

Technologies are constantly evolving and volatile; in the case of Al-based systems,
the vulnerability is even higher. It is hard to see engineering knowledge stay in one place
due to its demand, and thus the reliability of the human capital is at stake. This affects
the engineering design and its reliability. The company management should incentivize
the engineering resources to stabilize by ensuring a win-win situation for the long-term
objectives of the industries, leading to successful regulatory 510 (K) approval and regular
MTFE. Thus, the factors such as changes in technology, retaining human capital, long-term
goals of the companies, and FDA regulation, all are tandemly connected and cannot be
ignored for a successful business model.

The FDA’s approach to dealing with repetitive revisions primarily relies on manufac-
turers to uphold GMLP, which stipulates that data from training and testing must be kept
separate, algorithms must be evaluated for relevance, and execution and reporting by the
manufacturer must be genuine and straightforward. Thus, as long as it accepts continuous
advancements, this platform will provide patients with timely access to the most recent
technology. However, it is crucial to consider carefully the details that manufacturers
provide regarding an algorithm’s design, the intended use for which it is intended, and
the effects of changes on local performance [178]. When attempting to evaluate algorithm
performance reliability and consistency, there are numerous obstacles [179]. Since each
company must purchase its training and testing images, the lack of uniform test sets hinders
development and makes it more challenging to evaluate the data modality [180]. This can
be a considerable time and expense drain, which might result in an accidental bias in the
test sets favoring particular equipment manufacturers, patient groups, or the methods
used by technicians to gather the scans. Itis also crucial to realize that the maker bears
the responsibility for verification and integrity, which could lead to dishonest use of the
technique for financial gain [181].

8. Discussion
8.1. Principal Findings

This is the first study in the field of Al economics, as well as an investigation into
the cost analysis of Al models for diagnosis and treatment. The review explains how
to save costs and time by adopting Al-based solutions in diagnosis and treatment. In a
progressively sequential task, we analyze the cost parameter and time for diagnosis and
treatment. Further, our study explains the motivation for building Al-based products for
successful regulatory market approval, and further to undergo successful FDA 510 (K)
approval.
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We demonstrated that Al lowers healthcare costs when compared to traditional meth-
ods. The cost savings from Al in treatment are more effective than the cost savings from
Al in diagnosis. When compared to traditional methods, Al saves time in diagnosis and
therapy. High accuracy in diagnosis and treatment can be accomplished in a short period.
Al-assisted diagnosis improves diagnostic accuracy by removing bias and subjectivity.
Al-based medical diagnosis decreases the possibility of incorrect examination. Because of
Al technology, patients may feel more at ease when visiting a doctor.

Al examines enormous volumes of data to determine which treatments will produce
the best outcomes. Implementing Al technology in the healthcare sector can help firms
maximize their returns on investments while also reducing costs. The biggest challenge
facing Al in many healthcare disciplines is not whether the technologies will be advanced
enough to be useful, but rather ensuring their acceptance in routine clinical practice. For Al
systems to be widely adopted, they must be certified by regulatory bodies, connected with
EHR systems, standardized to the point that similar products perform similarly, taught to
physicians, paid for by public or commercial payer groups, and maintained over time.

8.2. Benchmarking

An analysis of the information shows that a few studies using different imaging modal-
ities such as MRI, CT, X-ray, US, and ECG have been linked with Al models for the various
disease diagnosis and treatment of renal, pulmonary, carotid artery disease, coronary artery
disease, DR, and COVID-19. There is very little discussion of Al's economic modeling
seen in the literature. Only a few studies highlight Al models” economic consequences and
operating costs. The benchmarking Table 2 is shown for a few specific studies.

Smetherman et al. [182] explained in detail Al products in radiology, and numerous
novel uses for these technologies in breast imaging. In addition to outlining potential
future payment channels, the article describes the current situation of reimbursement for
breast radiography Al algorithms under the conventional fee-for-service model employed
by Medicare and private insurers. Additionally, the reader is given a full explanation of
the inherent difficulties associated with using the current American payment system for
Al radiology systems. To effectively integrate these cutting-edge technologies into their
practices and increase patient care and workflow efficiency, breast radiologists are looking
for a better grasp of how Al will be compensated.

Challen et al. [183] focused on the development of Al in health through the use of
ML as a promising area of research, but it is challenging to determine how accurate these
systems might be in clinical practice or how reproducible they are in various clinical
contexts due to the rapid pace of change, diversity of different techniques, and multiplicity
of tuning parameters. This is made worse by the lack of agreement over the best way
to disclose a potential bias in ML studies. For this, the authors think that the Standards
for Reporting of Diagnostic Accuracy effort could be a good place to start. Additionally,
researchers must think about how ML models, such as scientific data sets, can be licensed
and distributed to enable the replication of research findings in other contexts.

Yuan et al. [184] proposed that the evolution of medical practice from empirical
medicine to evidence-based medicine, intelligent diagnosis, and Al-directed medicine is
something we are currently witnessing. Although Al in medicine is still in its infancy,
there is no doubt that by utilizing the diversity and complexity of real-world data, Al will
generate prediction algorithms suitable for routine clinical use shortly. The discussion of
future medical evidence may be sparked by the findings presented in the studies, which go
beyond the investigation of the first targets for data analysis and interpretation, which are
potentially expensive, lengthy clinical trials with a constrained patient population that may
eventually supplement or even entirely replace real-world data-driven risk assessments.

Solanki et al. [185] presented go-beyond approaches that provide guidelines based on
principles such as adherence to “fairness” and adopting a framework based on solutions
that Al programmers can use to operationalize ethics in Al for healthcare across all phases
of the Al lifecycle, including data management, model development, deployment, and
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monitoring. The authors strongly emphasize actionable, technical, or quasi-solutions that
Al developers can use.

The study presented by Biswas et al. [102] uses an AtheroEdge™ device from AtheroPoint™
to deliver a unique, reliable, and clinically-viable solution to cIMT measurements. The DL
approach is used by the system to partition lumen-intima LI-far and MA-far to measure
cIMT according to an intelligence-based paradigm. For the distant wall of the carotid
artery’s final border extraction, the system applies an ML-based joint coefficient approach
to fine-tune this. Data preparation employs a multiresolution paradigm to lighten the
computational load. All measurements use an adjusted version of the industry standard
polyline distance method. Compared to earlier research, the system performs better.

Aijaz et al. [71] proposed a study that employed a deep-learning classification strategy
to categorize the five types of psoriasis and healthy skin. Five different types of psoriasis
can develop: plaque, guttate, inverted, pustular, and erythroderma. After the features
of color, texture, and form have been extracted, the convolution neural network (CNN)
and long short-term memory (LSTM) have been employed. An accuracy rate of 84.2%
was shown when CNN and LSTM were employed. Siy et al. [186] introduced a model
consisting of a CNN algorithm with different softmax layers to be deployed to obtain higher
accuracy. The results obtained show how dependable and efficient the suggested deep
learning application is. The consequences of future action investigation into the proposed
and current deep learning application could result in the improvement of conventional
techniques in biomedical imaging [187]. Moreover, studies on the psoriasis area and
severity index in the future will also be possible to score (PASI).

Ali et al. [188] presented study of renal medicine will change as a result of the applica-
tions of regenerative medicine, nanotechnology, genomics, artificial intelligence, 3D organ
bioprinting, and smartphone applications. Undoubtedly, this will benefit patients’ results
and the healthcare system. These improvements are on the way, but they will also bring
new difficulties, such as excessive expenses and numerous ethical dilemmas.

Viswanathan et al. [189] explained diabetes exacerbated the development of atheroscle-
rotic plaque. Risk evaluation includes several factors in addition to the degree of vascular
stenosis. Plaque vulnerability is influenced by its form, kind, composition, location, TPA,
and TPV. The potential for better risk assessment and illness treatment is increased when
imaging modalities are added to conventional risk variables. To assist doctors to choose
the best interventions for their diabetic patients, screening may thus prove to be cru-
cial. Compared to conventional risk calculators, the 10-year integrated risk calculators
and image-based phenotypes produce more accurate risk projections, necessitating more
research in the reduction of overall morbidity and death.

A deep learning-based approach is suggested for PD identification that uses voice
patterns. The dynamic articulation transition features and the bidirectional LSTM model
are creatively combined in the proposed method to record the time-series properties of
continuous speech signals. The experimental results demonstrated that the proposed
approach significantly outperforms conventional machine learning models using static
features in terms of the accuracy of PD detection under the two evaluation methods of
10-fold cross-validation (CV) and splitting the dataset without sample overlap of one
individual [190].

Kamble et al. [191] indicated that when four ML models are used in a dataset that has
undergone mathematical processing, three different types of digitalized spiral drawing
tests have a significant impact on the classification of PD patients versus healthy controls.
Results are based on a 40-patient, tiny, unbalanced dataset. The work presented a data set of
spiral drawing images with features. Four ML algorithms were used, and an accuracy rate
of 98.1% was achieved. Therefore, future PD diagnosis can be carried out with the support
of an extended dataset and an extended computational model to help healthcare research
on other neurodegenerative disorders. Our review had several studies that explored the Al
model’s relationship with the diagnosis and treatment of various diseases. However, no
such article was located that addressed all of the components in our analysis.
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8.3. A View for the Future

A lot of people are concerned that Al may lead to the automation of jobs and a consid-
erable loss of labor, and this concern has garnered a lot of attention. According to research
conducted jointly by Deloitte and the Oxford Martin Institute, Al may be responsible for
the loss of 35% of jobs in the United Kingdom within the next 10 to 20 years [192]. The loss
of employment may be mitigated by several external factors other than technology. These
factors include the price of automation technologies, the size and cost of the labor market,
the advantages of automation beyond basic labor substitution, and legislative and social
acceptance. These factors may keep the actual number of jobs lost to 5% or fewer [193].

To the best of our knowledge, no employment in health care has been eliminated by Al
The limited penetration of Al into the sector thus far, as well as the difficulties of integrating
Al into clinical workflows and EHR systems, has contributed to the lack of job impact [194].
It appears that the healthcare positions most likely to be automated are those involving
digital information, such as radiography and pathology, rather than those involving direct
patient interaction. However, even in positions such as radiologist and pathologist, Al
adoption is likely to be delayed. Even though, as we have shown, technologies such as deep
learning are making strides into the ability to analyze and classify images, there are many
reasons why radiology professions, for example, will not go away anytime soon [195].

For automated image analysis to gain popularity, significant medical regulation and
health insurance changes will be required. Pathology and other digitally related elements
of medicine have similar causes [196]. As a result, we are unlikely to witness significant
changes in healthcare employment as a result of Al during the next 20 years or so. There
is also the chance of new employment being established to work with and improve Al
technologies. However, static or increasing human employment means that Al technologies
are unlikely to significantly cut the costs of medical diagnosis and treatment throughout
that timeframe [197].

It also appears increasingly evident that Al systems will not wholly replace human
clinicians, but will supplement their efforts to care for patients. Human therapists may
eventually shift toward activities and job designs that require distinctly human skills,
such as empathy, persuasion, and big-picture integration. Those healthcare professionals
that refuse to collaborate with artificial intelligence may be the only ones who lose their
employment over time.

8.4. Strength, Weakness, and Extensions

Several benefits have been found from doing this review. Our two practical and
cost-effective economic models for diagnosis and therapy are our primary strengths. We
looked at the benefits and drawbacks of several implementation strategies and the amount
of time they would take to figure out which would be the most cost-effective. When
both the diagnostic and therapeutic models are evaluated, the latter offers greater savings.
Policymakers in the Al industry will find the results valid, and the method can be applied
elsewhere if the results are comparable. A cost-benefit analysis, however, is warranted if
results vary significantly between demographics. Our research adequately clarified why it
is essential to develop Al-based devices to gain regulatory market approval and the steps
required to obtain FDA 510 (K) clearance for Al-based products.

Our work has several constraints, the most important of which is its limited generality.
Variations in the number of people who undergo screening and the cost of employing
human graders and specialists will likely provide varying results across countries. On
the other hand, our decision tree may be readily modified to represent these alternative
possibilities. Second, we may have underestimated the cost savings from the fully auto-
mated model due to fewer false referral instances, due to a lack of relevant literature on
the corresponding prevalence; we only examined diagnosis and treatment and overlooked
other factors. Lastly, this study can be extended for meta-analysis [171].

We anticipate that Al will be an integral part of emerging medical technologies. It is the
central capability propelling the growth of precision medicine, which is widely recognized
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as a welcome improvement in treatment. We expect Al will eventually master the domain
of providing diagnosis and treatment suggestions, notwithstanding the difficulty of early
attempts. It is conceivable that most radiology and pathology images will be examined
by a machine in the future, thanks to the rapid development of artificial intelligence for
imaging processing. The use of speech and text recognition for common healthcare tasks,
including patient communication and note-taking, is expected to increase.
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Table 2. Benchmarking of studies.

C1 C2 C3 C4 C5 Cé6 C7 C8 C9 C10 C11
Dzl Treatment (Inva-
SN Author Country Journal Study Type FoV Objective PS Cli-Val (Inva- . . .
. . ~ sive/Noninvasive)
sive/Noninvas
Improving the quality of care
1 (Szngzei?erman sl ] USA Breast Imaging PR. Cancer ang /or regducin%g hea{thcare costs 1012 No Noninvasive ~ NR
by using Al
5 Challen et al. [183] UK Artificial intelligence, bias and clinical R Clinical safety T(? s'et short and medium ML NR No Noninvasive NR
(2019) safety clinical safety goals
Almazén et al. [52] Evaluate the effectiveness, safety,
3 (2019) ’ Italy Clinical Pharmacy PR. Renal and economic cost of nivolumab in 221 No Noninvasive ~ NR
real-world clinical practice
4 Yuan et al. [184] (2020) China Medical Sciences PR. Renal g?:tlrlﬁzr%fs in kidney diagnosis and NR No Noninvasive NR
5) Solanki et al. [185] (2022)  Australia Operational ethics in Al framework R NA NR NR No Noninvasive NR
The carotid intima-media thickness
6 Biswas etal. [102] (2018)  India PL.'based strategy for accurate Carotid Heart (cIMT) is an important biomarker No Noninvasive ~ NR
ntima-Media Measurement for monitoring cardiovascular
disease and stroke
7 Siy et al. [186] (2018) Taiwan  IEEE Conference R Skin DL-based psoriasis detection 5700 No Noninvasive ~ NR
Effective classification of different
8 Aijaz et al. [71] (2022) Pakistan  Journal of Healthcare Engineering R Skin psoriasis types using deep learning 473 No Noninvasive ~ NR
applications
9 Ali et al. [188] (2022) Iraq Kidney Diseases Transplantation P. Renal Renal medicine NR No NR NR
10 Viswanathan et al. [189] India Pr'even'tive health check in patients Diabetes Cost—e'ffective c'arotid ultr.asound NR NR Noninvasive NR
(2020) with diabetes screening for diabetes patients
Health Information Science and Deep learning-based automated
11 Sarki et al. [198] (2020) USA Syst PR. Diabetes Retinopathy identification of multiple classes of 1748 NR Noninvasive ~ NR
ystems diabetic eye disorders
Using dynamic speech features, a
12 Quan et al. [199] (2021) Japan IEEE Access PR. Parkinson’s deep learning-based approach for 45 NR Noninvasive NR
Parkinson’s disease detection
13 LT ARGEEL ITE) India Measurement and Sensor PR. Parkinson’s Parkinson’s disease classification 25 NR Noninvasive NR

(2021)

using digital spiral drawings
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Table 2. Cont.

C12 C13 C14
SN Author Al Type Cost Analysis Parameter Outcome of study
0 Input  Model 0 . Cost Savings
AlType  ACC  SE SPE AUC McC F Cost Analysis Modal- Anal.  Screeni Maintain (08
arameter q q cost Cost
ity ysis Sample
Smetherman et al Al could assess individual situations, make
1 [182] (2021) : NR NR NR NR NR NR NR NR Image  Yes Yes NR 318 appropriate decisions, and aid in the
management of renal disease.
ML DSS deployment will most likely concentrate
Challen et al. [183] on diagnostic decision support. ML Diagnostic
2 (2019) NR NR NR NR NR NR NR NR NR NR NR NR NR decision assistance should be assessed with the
same rigors as a novel laboratory screening test.
3 Almazan et al. [82] NR NR NR NR NR NR NR NR Point Yes Yes NR 61 Al for improved clinical benefit from nivolumab
(2019) Data therapy.
Artificial intelligence can consider individual
Yuan et al. [184] Point situations, make appropriate decisions, and
4 (2020) NR NR NR NR NR NR NR NR Data Yes Yes NR 62 make significant agsanlzements in the
management of renal disease.
. - Guidelines, frameworks, and advancement of
5 Solankietal. [185] — \p NR NR NR NR NR NR NR NR Yes Yes Yes Yes technologies for ethical Al that reflect h
gies for ethica at reflect human
(2022) al AL tha
values, such as self-direction, in healthcare.
High-level features are extracted from the CCA
Biswas et al. [102] US photos using CNN'’s 13 layers. To produce
6 018) ’ DL 86.78 0.76NR 0.86 NR NR NR Image NR NR NR NR clear and crisp segmented images, these features
were upsampled using FCN upsampling layers,
and the skipping operation was carried out.
7 Siy et al. [186] DL 915 NR NR NR NR NR NR Image NR NR NR NR A DNN—bas:ed psoriasis detection presented
(2018) having 91.5% accuracy.
Aijaz et al. [71] This study employed a CNN-based deep
8 (2622) . DL 84.2 0.810.71 NR NR NR NR Image NR NR NR NR learning classification strategy to categorize the
five types of psoriasis.
Ali et al. [188] Machine learning and artificial intelligence have
9 2022) ’ NR NR NR NR NR NR NR NR NR NR NR NR NR ushered in a new era in medicine and
nephrology.
Diabetes exacerbated the deposition of
10 Viswanathan et al. NR NR NR NR NR NR NR NR Image NR NR NR 14 atherosclerotic plaque. Risk assessment includes

[189] (2020)

other factors in addition to the degree of vessel
stenosis.
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Table 2. Cont.

C12 C13 C14
SN Author Al Type Cost Analysis Parameter Outcome of study
] Input  Model q A Cost Savings
AlType  ACC  SE SPE AUC McC F Cost Analysis Modal- Anal.  Screeni Maintain (08
arameter - : cost Cost
ity ysis Sample
The development of moderate and multi-class
Sarki et al. [198] DL algorithms for the automatic detection of
1 (2020) bL 8488 0.87NR NR NR NR NR Image  NR NR NR NR DED,%iccording to the British Diabetic
Association (BDA) criteria.
The dynamic articulation transition features and
Quan et al. [199] Fhe bif:lirecti(')nal LSTM model are combined
12 @021) DL 80.90 0.870.92 0.83 0.53 NR NR Speech NR NR NR NR ingeniously in the proposed method to record
the time-series properties of continuous speech
data.
Kamble et al. [191] Digitalized spiral drawing tests significantly
13 : ML 91.6 NR NR NR NR 0.8 NR Image NR NR NR NR affect how PD patients and healthy controls are

(2021)

classified.




Healthcare 2022, 10, 2493

27 of 38

9. Conclusions

Current research examines the impact of Al in health care moderately, and reveals
qualitative flaws in methodology. This study provides a clear explanation of the diagnostic
and therapeutic paradigm needed for future cost-effectiveness analyses. The presented
study delineated the motivation for building Al-based products for successful regulatory
market approval and the necessary element for Al-based products to undergo successful
FDA 510 (K) approval. They should contain the original expenditure, ongoing costs, and a
comparison to alternative technology. This way, a complete and segmented cost-benefit
analysis may be offered, which will serve as a solid basis for making decisions about Al
installations.

From a strategic point of view, cost-effectiveness studies were assessed using a quality
criteria catalog. Because decisions are not solely based on medical improvement rates, the
business management decision making basis has been identified as critical for favorable
implementation decisions and subsequent wide-scale applications. The integration of
the business management perspective encompasses not only the conventional cost con-
siderations, such as one-time and continuing costs, but also the options for delivering
cutting-edge healthcare solutions in various ways.
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Appendix A
Table Al. Cost Effective analysis for the diagnosis.
Categories Count
1 2 3 4 5 6 7 8 9 10
Patient Size per hospital per year 3650 7300 9125 10,950 12,775 14,600 16,425 18,250 20,075 21,900 23,725
No. of Hospital 20 20 2 24 26 28 30 32 34 36 38
Per day Patient Per hospital 20 20 25 30 35 40 45 50 55 60 65
Total patient 73,000 2,920,000 5,018,750 7,884,000 1,162,5250 1,635,2000 22,173,750 29,200,000 37,540,250 47,304,000 58,600,750
Conventional Method
Physician charges per hour 500 500 550 605 665.5 732.05 805.255 885.7805 974.3586 1071.794 1178.974
Conventional ?:%‘f; time (minutes) 60 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900
Conventional method time (hours) 1 20 25 30 35 40 45 50 55 60 65
per day
Physician charges per day in USD 10,000 13,750 18,150 23,292.5 29,282 36,236.48 44,289.03 53,589.72 64,307.66 76,633.3
Physician Cﬁggﬁiifer year per 3,650,000 5,018,750 6,624,750 8,501,763 10,687,930 13,226,313 16,165,494 19,560,248 23,472,297 27,971,154
Al-based Method
Physician charges per hour in USD 500 500 550 605 665.5 732.05 805.255 885.7805 974.3586 1071.794 1178.974
Albased SYStemdz;“e (minutes) per 60 1000 1225 1440 1645 1840 2070 2300 2530 2760 2990
Al-based SYStemdt;;m in (hours) per 1 16.66667 20.41667 24 27.41667 30.66667 345 38.33333 42.16667 46 49.83333
Physician charges per day in USD 8333.333 11,229.17 14,520 18,245.79 22,449.53 27,781.3 33,954.92 41,085.45 49,302.54 58,752.2
Physician charges per year per 3,041,667 4,098,646 52,99,800 6,659,714 8,194,080 10,140,174 12,393,545 14,996,190 17,995,428 21,444,552
hospital in USD
Difference (Conventional-AlI)
Saving in time (minutes) per day 200 275 360 455 560 630 700 770 840 910
Saving in time (hours) per day 3.333333 4583333 6 7.583333 9333333 105 11.66667 12.83333 14 15.16667
Saving in Physician charges per day in USD 1666.667 2520.833 3630 5046.708 6832.467 8455.178 10,334.11 12,504.27 15,005.12 17,881.1
Saving in Physician Chalrjgsegper year per hospital in 608,333.3 920,104.2 1,324,950 1,842,049 2,493,850 3,086,140 3,771,949 4,564,058 5,476,869 6,526,603
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Table A2. Cost Effective analysis for the treatment.

Categories Count Years
1 5 3 4 5 6 7 8 9 10
Patient Size per hospital per year 3650 3650 5475 7300 9125 10,950 12,775 14,600 16,425 18,250 20,075
No. of Hospital 20 15 17 16 18 17 19 18 20 19 21
Per day Patient Per hospital 20 10 15 20 25 30 35 40 45 50 55
Total patient 73,000 547,500 1396125 2336000 4106250 5584500 8495375 10,512,000 14,782,500 17,337,500 23,186,625
Conventional Method
Physician charges per hour 1000 1000 1100 1210 1331 1464.1 1610.51 1771561 19487171 214358881  2357.947691
Conventional method time 180 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900
(minutes) per day
Conventional method time 3 30 15 60 75 90 105 120 135 150 165
(hours) per day
Physician charges per day in USD 30,000 49,500 72,600 99,825 131,769  169,10355 212,587.32  263,076.80  321,538.32  389,061.36
Physician C}I:S;lfietsaf’ eryearper 10,950,000 18,067,500 26,499,000 36,436,125 48,095,685  61,722,795.75 77,594,371.8 96,023,035.1 117,361,487.3 142,007,399.7
Al-based Method
Physician Chgggs per hour in 1000 1000 1100 1210 1331 1464.1 161051 1771.56 194871 214358 2357.94
Al-based system time (minutes) 90 500 735 960 1175 1380 1610 1840 2070 2300 2530
per day
Al-based Sy;f;“d;l;“e in (hours) 13 8.33 12.25 16 19.58 23 26.83 30.66666667 345 38.33 42.16
Physician charges per day in USD 8333.33 13,475 19,360 2606541 33,6743 4321535  54327.87067 67,230.73  82,170.90438  99,426.79
Physician charges per year per 3,041,666.66 4918375  7,066400  9,513,877.08 1,229,1119.5 1,577,3603.36 19,829,672.79 24,539,220.08 29,992,380.1 36,290,779.92
hospital in USD
Difference (Conventional—-AI)
Saving in time (minutes) per day 1300 1965 2640 3325 4020 4690 5360 6030 6700 7370
Saving in time (hours) per day 21.66 32.75 44 55.41 67 78.16 89.33 100.5 111.66 122.83
Saving in Physician charges per day in USD | 21,666.66 36,025 53,240 7375958 98,0947  125888.19 15825944 195846.068 239,367.41  289,634.57
Saving in Physician charges per year per 7908,333.33 131,49,125 19,432,600 26,922,247.92 35,804,565.5 45949,192.39 57,764,699.01 71,483,815.02 87,369,107.25 105,716,619.8

hospital in USD
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Table A3. Al content considered for cost analysis.

SN Category Content

Patient size per hospital

X1 Data collection .
Enrollment cost per patient

Data verification

Data validation

Scientific algorithms

Graphical user interface (design)
Cloud/storage

X2 Engineering R&D cost

Software technology updation

Hardware technology updation
Prototype testing
Maintenance and support
ML scientist
DL scientist

Verification and validation scientist
Clinical scientist
X3 Human resource cost Database engineer

Graphical user interface engineer
System administrator

Cloud engineer

Marketing professional
Secretary
FDA 5K approval
X4 Commercialization cost Regulatory costs of various countries

Release cost

Marketing
X5 Marketing cost Technical marketing
Installation

Office space

Furniture

X6 Infrastructure cost Hardware

Software
Electricity
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