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Abstract— In this paper, we develop a general Open Multi-
Agent Systems (OMAS) framework over undirected graphs
where the agents’ interaction is, in general, nonlinear, time-
varying, and heterogeneous, in that the agents interact with
different pairwise interaction rules for each link, possibly
nonlinear, which may change over time. In particular, assuming
the agents interact by exchanging flows, which modify their
states, our framework guarantees that the sum of the states of
agents participating to the network is preserved. To this end,
agents maintain a state variable for each of their neighbors.
Upon disconnection of a neighbor, such a variable is used to
completely eliminate the effect of previous interaction with dis-
connected agents from the overall systems. In order to demon-
strate the effectiveness of the proposed OMAS framework,
we provide a case study focused on average consensus, and,
specifically, we develop a sufficient condition on the structure
of the agents’ interaction guaranteeing asymptotic convergence
under the assumption that the network becomes fixed. The
paper is complemented by simulation results that numerically
demonstrate the effectiveness of the proposed method.

Index Terms— Open Multi-Agent Systems; Distributed Aver-
age Consensus; Nonlinear Systems

I. INTRODUCTION

Open Multi-Agent Systems (OMAS) represent a general-
ization of Multi-Agent Systems (MAS) where agents may
join or leave the network. Sensor networks, in which nodes’
batteries may run out (e.g., see [1], where a protocol aimed
at maximizing the lifetime of a wireless sensor network
is presented), and mobile robot networks, in which agents
could be temporarily collaborating to achieve an objective
during their exploration of an environment (e.g., see [2]
where mobile robots form temporary chains of agents to
find a path), are examples of such systems. Other interesting
examples include precision farming applications, where au-
tonomous intelligent drones, which are capable of actively
monitoring a field in order to identify and map features
of interests (e.g., weed or pests) that could be distributed
heterogeneously within the field, may join and leave the
network over time due to their limited battery autonomy
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or Vehicular Ad Hoc Networks (VANETs), where cars may
participate in the network only for a limited amount of time
(e.g., see [3] for where a clustering and cluster head selection
algorithm is provided for open inter-vehicular networks).

In this paper, we propose an OMAS framework for
undirected networks, where the pairwise interaction among
agents is modeled by a nonlinear function that may change
over time. Our approach, in particular, ensures that the sum
of the states of the agents currently participating in the
network is preserved. In this view, the cornerstone of the
proposed framework is represented by state augmentation, in
that agents maintain an additional “storage" state variable for
each of their neighbors. The such variable is used to cancel
out the effect of the previous interactions with neighboring
agents that left the network. Notice that, to the best of our
knowledge, this is the only work addressing consensus for
open multi-agent systems with nonlinear and time-varying
coupling. The nonlinear, time-varying, and heterogeneous
nature of the interaction rules considered in this brief paper
have the potential to yield better performance, for instance
in terms of error rejection, while allowing agents to join and
leave the network at will. In order to show the effectiveness
of the proposed framework, we provide a case study in
the context of the well-known average consensus problem
and, under the premise that the network becomes fixed,
we develop a sufficient condition that assures asymptotic
convergence.

A. State of the Art

In the literature, several works on MAS have focused on
the possibility that agents may join or leave the network. For
example, in [4], the problem of adaptive coalition formation
is considered; in [5] the authors develop a trust and reputation
model for open multi-agent systems; [6] presents an OMAS
gossiping framework; the works in [7], [8] focus on the
ability of agents in an OMAS setting to form short-term
teams; in [9] the stability of gradient descent for OMAS is
discussed. Notably, consensus and, in particular, average con-
sensus, represents a popular topic in the context of OMAS,
and several distributed consensus algorithms that explicitly
account for agents that may join or leave the network have
been proposed in the literature. In particular, [10] provides
a dynamic average consensus algorithm that is robust to
the dynamic change of communication topologies as well
as the joining and leaving of nodes; however, the algorithm
guarantees convergence up to a nonzero steady-state bounded
error. In [11], [12], a plug-and-play distributed architecture
for model predictive control and distributed Kalman filtering
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is presented, respectively. In [13] the authors develop an
algorithm based on the premise that agents leave and arrive at
predetermined periods, whereas [14] assumes that each time
an agent departs the network, another one enters it instantly.
The technique described above has been extended to the
case of time-varying network size in [15]. The case where
agents need to estimate the time-varying average of a set of
reference signals is addressed in [16], [17]. In [18], stochastic
consensus for OMAS is investigated under the assumption
that arrivals and departures occur randomly as a Bernoulli
process. In [19], the authors propose an OMAS consensus
process in which agents track the median of time-varying
reference signals. Agent interactions over randomly induced
discretized Laplacians are investigated in [20]. In [21] multi-
dimensional switched systems are used to characterize an
OMAS. Under the assumption of frequent arrivals and de-
partures of agents, the work in [22] characterizes the perfor-
mance limitations of average consensus in an OMAS setting,
establishing lower bounds on the predicted mean squared
error. Moreover, in [23] an OMAS strategy to compute the
mode of the agents’ state is proposed. This approach is based
on a novel OMAS average consensus algorithm which, under
the assumption that the overall number of agents is fixed,
guarantees that the effect of agents leaving the network is
ruled out. Finally, it is worth mentioning that, although not
intended for OMAS scenarios, in the literature, some average
preserving protocols approaches have been developed, based
on auxiliary variables, sometimes also referred to as “storage
variables" and “surplus variables" [24], [25]. However, so far,
only linear state update strategies for these auxiliary/storage
variables have been considered.

B. Contribution

In this paper, we develop an OMAS framework where the
pairwise agents’ interaction is in general nonlinear, time-
varying, and heterogeneous. To this end, we present the
agents’ interaction in terms of flows and divergence1. Then,
in order to show the potential of the approach, we consider
the average consensus problem as a valuable case study, and
we show that such a framework preserves the sum of the
values chosen by the agents at the last instant they join the
network. The proposed framework relies on support variables
that accumulate the flows received by neighboring agents.
Interestingly, this accumulation is possible in spite of the
nonlinearity and time-variability of the exchanged flows. In
more detail, similarly to the approach in [23] for the linear
case, in this paper we assume that each agent maintains
an additional state variable for each of its neighbors and
that, upon disconnection of a neighbor, such a variable is
used to rule out the influence of the disconnected neighbor.
Notably, the proposed framework extends [23] in a number
of ways; in particular, we allow for nonlinear, time-varying,

1The divergence is an operator that provides a measure of the rate of
variation of a quantity defined on a node in a network (e.g., see [26]).
When applied to the agents’ states it essentially corresponds to the difference
between the outgoing flow from the node to its neighbors and the incoming
flow to the node from its neighbors.

and heterogeneous interaction schemes while no assumption
is made on the number of agents.

C. Paper Outline

The outline of the paper is as follows: in Section II,
we provide a detailed discussion of the objective of the
paper. Section III, we describe how the proposed framework
may represent a generalization of the current studies on
MAS. In Section IV, we characterize the ability of our
framework to preserve the sum of the states of the agents
currently participating in the network. Section V considers
the average consensus problem as a case study and develops
a sufficient condition to guarantee asymptotic convergence
when the topology becomes fixed. Sections VI provides a
simulation campaign aimed at numerically demonstrating
the effectiveness of the proposed approach. Finally, some
conclusive remarks and future work directions are collected
in Section VII.

II. OMAS: A GENERALIZATION OF MAS

Let us consider a nominal MAS system where agents
interact over a fixed graph G = {V,E} with n nodes
V = {v1, v2, . . . , vn} and e edges E ⊆ V × V , where
(vi, vj) ∈ E captures the existence of a link from node vi
to node vj . Moreover, let us assume G is undirected, i.e.,
(vi, vj) ∈ E whenever (vj , vi) ∈ E and connected , i.e., each
node vi can be reached from each other node vj using the
edges in E. Let aij be such that aij = 1 if (vi, vj) ∈ E and
aij = 0, otherwise. Moreover, let fkij denote the, possibly,
nonlinear and time-varying flow from i to j at the k-th step,
e.g., a value or quantity sent from agent i to agent j at the
step k. In particular, let us define the in-flow and out-flow
for agent i at step k as

ink
i =

∑
j

ajif
k
ji and outk

i =
∑
j

aijf
k
ij ,

respectively. In other words, the above quantities correspond,
respectively, to the sum of the incoming or outgoing flows at
step k. Moreover, the divergence associated to agent i at step
k is defined as the imbalance between the out- and in-flow
at step k, i.e.,

divk
i = outk

i − ink
i .

Finally, let us define the total divergence DIVk at step k,
i.e., the total variation of the system due to the flows, as

DIVk =
∑
i

divk
i =

∑
i

∑
j

aij
(
fkij − fkji

)
.

Notably, since the underlying graph G is undirected, by
construction we have that, for any choice of the terms fkij ,
it holds DIVk = 0.

Based on the above definitions, let us consider agents
interacting over G according to the following discrete-time
dynamics

xk+1
i = xki − divk

i . (1)

Notice that, in spite of the generality of the dynamics and,
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in particular, of the flows, we have that∑
i

xk+1
i =

∑
i

xki − DIVk︸ ︷︷ ︸
0

,

i.e., the sum of the states is preserved, and thus∑
i

xki =
∑
i

x0i , ∀ k ≥ 0.

Moreover, let us assume that the above dynamics converges
to a function χ(·) of the initial states of all agents, that is,

lim
t→∞

xki = χ
(
x01, . . . , x

0
n

)
, ∀i ∈ {1, . . . , n}.

Let us now discuss how the above dynamics behaves in an
OMAS setting. Notably, in this case, the agents exchange the
flows fkij only with neighbors that are currently participating
in the network. In this case, the preservation of the sum of
the states and the convergence to χ(·) is no longer granted
due to the variation in the set of agents occurring over time.

In this view, the aim of this paper is to develop a
framework to extend the peculiarities of the above MAS
dynamics to an OMAS setting, guaranteeing that the sum of
the states of the agents currently participating is preserved
and that, in the event that the topology becomes fixed, the
agents are able to compute χ(·) over the initial states of the
agents currently participating to the network, as it would
occur within a typical MAS setting. In other words, our
objective is to make sure that the effect of agents joining
the network is taken into account, while the effect of agents
leaving the network is completely ruled out.

III. PROPOSED OMAS FRAMEWORK

Let us consider a scenario where a network of agents
interacts in a synchronous discrete-time fashion in an OMAS
setting. In particular, we assume that each agent can join
and/or leave multiple times. In this view, each agent i is
assumed to join or leave at given steps and, in particular, is
characterized by the sets Ai,Di ⊂ N≥0, i.e., the sets

Ai = {τA,1i , τA,2i , . . .} and Di = {τD,1i , τD,2i , . . .}

collecting the steps at which agent i joins and leaves (i.e.,
∀i, h τA,hi < τD,hi ), respectively. Notably, the i-th agent is
active at those steps k such that

τA,hi ≤ k < τD,hi .

Let us assume that when an agent joins the network it
creates undirected links arbitrarily and when it leaves, all
its links are removed. Therefore, in the considered setting,
the agents interact according to a time-varying graph and,
specifically, we use Gk = {V k, Ek} to denote the graph
underlying the agents’ interaction at step k. Notice that Gk

is assumed to be undirected but it can be disconnected.
Briefly, in this paper we assume that, when an agent joins

the network at some step τ , it joins with an arbitrary value; in
the following, we use xτi to denote the value chosen by the
i-th agent when it (re)activates at the step τ . Notice that,
where understood, we simply use xi to denote the value
chosen at the last (re)activation step. Let us now define a

few variables that will be used as index functions to denote
the agents arriving, departing, or remaining in the network,
respectively, i.e.,

αk
i =

{
1 ∃h∈ N≥0 : k = τA,hi

0 otherwise,

ζki =

{
1 ∃h∈ N≥0 : k = τD,hi

0 otherwise,

θki =

{
1 ∃h∈ N≥0 : τA,hi ≤ k < τD,hi

0 otherwise.

In other words, αk
i , ζ

k
i and θki are equal to one if the i-th

agent is joining, leaving or active at time k, respectively, and
are zero otherwise. Moreover, let us use akij to denote the
existence of a link between i and j at step k. Notably, based
on the above variables, ak+1

ij can be expressed as follows

ak+1
ij = (1− ζk+1

i )(1− ζk+1
j )θki θ

k
j .

Clearly, since the agents create undirected links, we have
that akij = akji. At this point, considering the flows fkij , the
in-flow and out-flow for agent i at step k can be rewritten as

ink
i =

∑
j

akjia
k+1
ji fkji, and outk

i =
∑
j

akija
k+1
ij fkij ,

respectively. Moreover, the divergence at agent i at step k is
rewritten as

divk
i = outk

i − ink
i =

∑
j

akija
k+1
ij

(
fkij − fkji

)
.

Finally, the total divergence DIVk at step k, is modified
accordingly, i.e.,

DIVk =
∑
i

divk
i =

∑
i

∑
j

akija
k+1
ij

(
fkij − fkji

)
.

Notably, also in this case, since the underlying graph Gk is
undirected, by construction, for any choice of the terms fkij ,
it holds DIVk = 0.

Based on the above definitions, we now develop a strategy
to extend the nominal MAS dynamics in Eq. (1) to an OMAS
setting, which will be proven to preserve the sum of the
values chosen by each of the agents currently participating
to the network at its last (re)activation step, in spite of
activations and deactivations. In particular, we consider the
following dynamics for the agents

xk+1
i =αk

i xi + (1− αk
i )θ

k
i x

k
i − divk

i

−
∑
j

akij
(
1− ak+1

ij

)
zkij ,

zk+1
ij =akija

k+1
ij

(
zkij + fkij − fkji

)
,

(2)

with x0i = x0i and z0ji = 0. Briefly, the term αk
i xi accounts

for case where the i-th agent activates at step k and selects a
value xi. Moreover, the term (1− αk

i )θ
k
i x

k
i − divk

i models
the nominal dynamics involving the agent and its neighbors,
when the agent is already present in the network at step k.
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Finally, the terms −(1−ak+1
ij )zkij account for the integral of

the flows exchanged by a neighbor j that leaves the network
at step k+1, and is introduced in order to get rid of the
cumulative/past contribution of disconnecting agents at later
times. In more detail, the terms zkji represent additional state
variables that each agent maintains for each of its neighbors.
Notice that, according to Eq. (2), when an agent joins the
network at step k it sets zk+1

ij = 0. Notice further that
deactivated agents may either stop updating their values or
set them to some arbitrarily chosen values.

IV. SUM-OF-STATES PRESERVATION

The MAS dynamics considered in this paper is very
general, since the structure of the terms fkij is intentionally
not further specified. In spite of its generality, we now show
that the extension to an OMAS setting given in Eq. (2) is such
that the sum of the states of agents currently participating in
the network equals the sum of the values they chose at the
last step in which they joined the network.

Theorem 1: Let us consider an OMAS where agents in-
teract according to the dynamics given in Eq. (2). Moreover,
let us assume that each agent, upon joining the network at
a time step τ , selects an arbitrary value xτi that represents
its initial condition (or a re-initialized initial condition) of
the value of the agent joining, and let xi denote the value
chosen at the last time instant at which the agent i joins the
network, i.e., the step τ that is closest to the current time
instant k. At each step, k the sum of the states of the active
agents is equal to the sum of the values xi, i.e.,∑

i

θki x
k
i =

∑
i

θki xi.

Proof: In order to prove our statement we observe that
at k = 0, by construction it holds∑

i

θ0i x
0
i =

∑
i

θ0i xi;

hence, the statement holds true at k = 0. Let us now prove
the statement holds at k+1 for all k ≥ 0. Notice that, by
using the dynamics for zkij in Eq. (2) we have that∑
j

ak+1
ij zk+1

ij =
∑
j

ak+1
ij

(
akija

k+1
ij

(
zkij + fkij − fkji

))
=

∑
j

akija
k+1
ij zkij +

∑
j

akija
k+1
ij

(
fkij − fkji

)
=

∑
j

akija
k+1
ij zkij + divk

i ,

where we used the fact that, by construction, it holds
(akij)

2 = akij . Therefore, for all i such that (1−αk
i )θ

k
i = 1, by

using the dynamics for xki in Eq. (2) and the above equation,

it holds

xk+1
i −

∑
j

ak+1
ij zk+1

ij = xki − divk
i −

∑
j

akij
(
1− ak+1

ij

)
zkij

−
∑
j

akija
k+1
ij zkij + divk

i

= xki −
∑
j

akijz
k
ij .

Thus, considering the largest step k∗i ∈ Ai with k∗i ≤ t
(which always exists by construction), we have that

xk+1
i −

∑
j

ak+1
ij zk+1

ij = x
k∗
i
i −

∑
j

a
k∗
i
ij z

k∗
i
ij = xi,

where the latter equality holds since, by construction, all
terms zk

∗
i
ji = 0 and xk

∗
i
i = xi. Moreover, by construction, for

all i such that αk
i = 1 it holds xk+1

i = xi and zk+1
ij = 0.

Therefore, noting that the agents with θk+1
i = 1 are either

those such that αk
i = 1 or those such that (1 − αk

i )θ
k
i = 1,

we have that∑
i

θk+1
i

xk+1
i −

∑
j

ak+1
ij zk+1

ij


=

∑
i

θk+1
i αk

i

xk+1
i −

∑
j

ak+1
ij zk+1

ij


+

∑
i

θk+1
i (1− αk

i )θ
k
i

xk+1
i −

∑
j

ak+1
ij zk+1

ij


=

∑
i

θk+1
i αk

i xi +
∑
i

θk+1
i (1− αk

i )θ
k
i xi

=
∑
i

θk+1
i xi,

i.e., it holds∑
i

θk+1
i xk+1

i −
∑
i

θk+1
i

∑
j

ak+1
ij zk+1

ij =
∑
i

θk+1
i xi.

The proof follows noting that, by definition, zk+1
ij = 0

whenever θk+1
i = 0, and thus∑

i

θk+1
i

∑
j

ak+1
ij zk+1

ij =
∑
i

∑
j

ak+1
ij zk+1

ij = 0,

where the latter equality holds since, by construction,
zkij = −zkji and the graph Gk is undirected for all k. The
proof is complete.

We established that, by resorting to the proposed framework,
the sum of the states of a generic distributed system based on
the exchange of flows among the agents is preserved in spite
of the openness of the system. We reiterate that the agents’
dynamics is very general and, in particular, the structure of
the flows is intentionally not further specified. Therefore, our
framework represents a viable way to extend the dynamics
originally developed for a MAS context as in Eq. (1) in order
to account for the possibility that agents may join or leave
the network during the evolution.
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V. CASE STUDY: AVERAGE CONSENSUS

Notice that the proposed OMAS strategy applies to a
broad variety of situations, preserving the sum of the agents’
initial state. In this section, we focus on average consensus
as a representative problem instantiation of the proposed
framework and we inspect the case of both linear and
nonlinear flows. In particular, in order to characterize a
class of systems that reaches the average of the initial
conditions when the topology becomes fixed, let us consider
the following assumption.

Assumption 1: There is a finite step k† such that it holds
Gk = Gk†

for all k ≥ k†, i.e., no activation or deactivation
occurs from step k† on.

In the following, we assume Gk†
is composed of m con-

nected components and we use Vh to denote the set of
agents in the h-th component, while we use ψi to denote
the identifier of the connected component featuring the i-th
agent.

In order to develop a sufficient condition that, when the
network stops changing, guarantees the reach of the average
of the initial values of the agents participating in the network,
let us now introduce a further assumption on the structure
of the flows fkij .

Assumption 2: For all steps k ≥ 0 and for each unordered
pair of nodes {vi, vj} such that (vi, vj), (vj , vi) ∈ Ek, the
flows satisfy

fkij − fkji = gk{i,j}(x
k
i − xkj ),

where:
(1) the functions gk{i,j}(x

k
i − xkj ) are odd, i.e.,

gk{i,j}(x
k
i − xkj ) = −gk{i,j}(x

k
j − xki );

(2) gk{i,j}(·) is zero only at zero;

(3) for xki ̸= xkj , gkij(·) satisfies

|gk{i,j}(x
k
i − xkj )| <

1

δk{i,j}
|xki − xkj |, (3)

where | · | is the absolute value and

δk{i,j} = max

{∑
h

akih,
∑
h

akjh

}
.

Notably, we assume that at each time step each link has, in
general, different interaction rules gk{i,j}(·), even though the
interaction is skew-symmetric at the level of each link.

Notice that points (1) and (2) are classical requirements
in the context of MAS (e.g., [27], [28]); in particular,
point (1) comes from the requirement that the interaction
is symmetrical and point (2) is due to the desire that the
agents stop interacting when they reach the same value.
Regarding the last requirement, since the function is zero at
zero, this requirement is satisfied when the functions gk{i,j}(·)
are Lipschitz. Interestingly, the class of flows that satisfy
Assumption 2 is quite large and features, for instance, the
functions reported in Eqs. (6)–(9), which include the classical
linear interaction (Eq. (6)) as well as functions that account

for saturations (either smooth as in Eqs. (7) and (9) or
nonsmooth as in Eq. (8)).

We now establish that under Assumptions 1 and 2, the
state of each agent converges to the average of the initial
conditions of the set of agents belonging to its same con-
nected component. To this end, we first need the following
ancillary lemma.

Lemma 1: Let us consider an OMAS system where
agents interact according to the dynamics given in Eq. (2)
and let Assumptions 1 and 2 hold true. For all steps k ≥ k†

it holds∑
i

(divk
i )

2 ≤
∑

(vi,vj)∈Ek†

δk{i,j}

(
gk{i,j}(x

k
i − xkj )

)2

. (4)

Proof: In order to prove the statement we observe that,
for k ≥ k† the graph Gk is fixed and is equal to Gk†

. Let
Ωk be the card(V k)× card(V k) matrix such that

Ωk
ij = gk{i,j}(x

k
i − xkj ).

Moreover, define ak
i =

[
aki1, . . . , a

k
ink

]T
and let Γk

i denote
the nk ×nk matrix with the i-th row that coincides with the
i-th row of Ωk, while all other entries are equal to zero. We
have that

Ωk1nk =
∑
i

Γk
ia

k
i ;

therefore, using ∥ · ∥2 and ∥ · ∥F to denote the Euclidean and
Frobenius norms, respectively, it holds∑
i

(divk
i )

2 = ∥Ωk1nk∥22 = ∥
∑
i

Γk
ia

k
i ∥22 ≤

∑
i

∥Γk
i ∥22∥ak

i ∥22

=
∑
i

∥Γk
i ∥22

∑
h

(akih)
2 =

∑
i

∥Γk
i ∥22

∑
h

akih

≤
∑
i

δk{i,j}∥Γ
k
i ∥22 ≤

∑
i

δk{i,j}∥Γ
k
i ∥2F

=
∑
i

δk{i,j}
∑
j

(
gk{i,j}(x

k
i − xkj )

)2

=
∑

(vi,vj)∈Ek†

δk{i,j}

(
gk{i,j}(x

k
i − xkj )

)2

,

where the last equality holds since Gk is undirected and
gk{i,j}(·) is odd. This completes our proof.
We are now in a position to prove convergence when the
agents’ topology becomes fixed.

Theorem 2: Let us consider an OMAS where agents
interact according to the dynamics given in Eq. (2) and let
Assumptions 1 and 2 hold true. Then, all agents i for which
θk

†

i = 1 converge to the average of the initial values xj of
the agents in the set Vψi , i.e.,

lim
t→∞

xki = x̂ψi , with x̂ψi =
1

card(Vψi)

∑
j∈Vψi

xj ,

where card(·) denotes the cardinality of a set.
Proof: For the sake of simplicity and without loss of

generality, let us consider the case where there is only one
connected component (otherwise, the reasoning of this proof
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can be applied to each connected component). In this case,
for all i ∈ V k†

, it holds

x̂ψi = x̂ =
1

card(V k†
)

∑
j∈V k†

xj . (5)

In order to prove convergence of the agents’ states to x̂, let
us consider the Lyapunov-like function

W k =
∑
i

θk
†

i (xki − x̃)2,

where x̃ is a generic value to be determined later in the proof.
Notice that the above function is zero only when all xki = x̃
and is positive otherwise. At this point we observe that, by
construction, it holds

W k =
∑
i

θk
†

i (xki )
2 +

∑
i

θk
†

i x̂
2 − 2

∑
i

θk
†

i x̃x
k
i .

Moreover, by construction, divk
i = 0 when θk

†

i = 0;
therefore, we have that∑

i

θk
†

i x̃div
k
i = x̃

∑
i

divk
i = x̃DIVk = 0,

where the latter equality holds since the total divergence
DIVk is zero. As a consequence, since by Assumption 1
the graph is fixed for all k ≥ k†, we have that

W k+1 =
∑
i

θk
†

i (xki − divk
i − x̃)2

=
∑
i

θk
†

i (xki )
2 +

∑
i

θk
†

i (divk
i )

2 − 2
∑
i

θk
†

i x
k
i div

k
i

+
∑
i

θk
†

i x̃
2 − 2

∑
i

θk
†

i x̃x
k
i + 2

∑
i

θk
†

i x̃div
k
i︸ ︷︷ ︸

0

=
∑
i

θk
†

i (xki )
2 +

∑
i

θk
†

i (divk
i )

2 − 2
∑
i

θk
†

i x
k
i div

k
i

+
∑
i

θk
†

i x̃
2 − 2

∑
i

θk
†

i x̃x
k
i .

Let us now define ∆W k =W k+1 −W k. We have that

∆W k =
∑
i

θk
†

i (divk
i )

2 − 2
∑
i

θk
†

i x
k
i div

k
i

=
∑
i

θk
†

i (divk
i )

2 − 2
∑
i

θk
†

i

∑
j

gk{i,j}(x
k
i − xkj )x

k
i

=
∑
i

θk
†

i (divk
i )

2 − 2
∑

(vi,vj)∈Ek†

gk{i,j}(x
k
i − xkj )x

k
i

=
∑
i

θk
†

i (divk
i )

2 −
∑

(vi,vj)∈Ek†

gk{i,j}(x
k
i − xkj )

(
xki − xkj

)
,

where we used the fact that, for all k, Gk is undirected and
g{i,j}(·) is odd. At this point, we observe that by construction
divk

i = 0 when θk
†

i = 0, therefore∑
i

θk
†

i (divk
i )

2 =
∑
i

(divk
i )

2.

Hence, by using Lemma 1, we have that

∆W k ≤
∑

(vi,vj)∈Ek†

∆W k
ij ,

where

∆W k
ij = δkij

(
gk{i,j}(x

k
i − xkj )

)2

− gk{i,j}(x
k
i − xkj )

(
xki − xkj

)
.

Since, by Assumption 2, the terms gk(·) are odd functions
and are zero only at zero, we have that, unless xki = xkj , it
holds

gk{i,j}(x
k
i − xkj )

(
xki − xkj

)
> 0.

Therefore, we have that, for xki ̸= xkj , the terms ∆W k
ij are

negative iff Eq. (3) holds true. Since, by Assumption 2,
this is the case, we conclude that, unless all xki such that
vi ∈ V k†

are equal to x̃, the term ∆W k is negative. We
have established that the state of all agents that participate
in the network at step k† converges to the same value x̃.
To conclude the proof, let us now show that it must hold
x̃ = x̂. To this end, we observe that since in Theorem 1 we
established that the sum of the initial conditions is preserved,
by definition it must hold∑

j∈V k†

xj = lim
t→∞

∑
j∈V k†

xkj = card(V k†
)x̃,

from which

x̃ =
1

card(V k†
)

∑
j∈V k†

xj = x̂.

This completes our proof.

The next remark characterizes a broad class of systems that
satisfy Assumption 2, and thus converge to the average when
the topology becomes fixed.

Remark 3: Assumption 2 holds true when the odd func-
tions gk{i,j}(·) are locally Lipschitz with Lipschitz constant
ℓk{i,j} < 1/δk{i,j}. In fact, since gk{i,j}(·) is zero at zero, we
have that

|gk{i,j}(x
k
i − xkj )| = |gk{i,j}(x

k
i − xkj )− gk{i,j}(0)|

≤ ℓk{i,j}|x
k
i − xkj − 0| = ℓk{i,j}|x

k
i − xkj |.

Examples of flows belonging to this class include, among
other possibilities, the following cases

gk{i,j}
(
xki − xkj

)
= wk

{i,j}(x
k
i − xkj ), (6)

gk{i,j}
(
xki − xkj

)
= wk

{i,j} tanh
(
xki − xkj

)
, (7)

gk{i,j}
(
xki − xkj

)
= wk

{i,j} min
{
1,max

{
xki − xkj ,−1

}}
,
(8)

gk{i,j}
(
xki − xkj

)
= wk

{i,j}
xki − xkj√

1 +
(
xki − xkj

)2 . (9)

In all the above cases, it can be shown that ℓk{i,j} = wk
{i,j}

and thus the assumption holds by choosing weights
0 < wk

{i,j} < 1/δk{i,j}.
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VI. SIMULATIONS

In order to numerically demonstrate the effectiveness of
the proposed approach, we consider a case where G0 is
an Erdös-Renyí graph with n = 30 nodes and link forma-
tion probability p = 0.3 (not reported for space reasons).
Moreover, we assume that at step k = 59 a subset of five
agents becomes disconnected, and is reconnected at step
k = 99, while another set of ten agents is disconnected at
step k = 69 and reconnected at step k = 149. Notably, at
all steps k, the agents that are active always belong to the
same connected component. We assume the agents’ initial
condition x0i is chosen uniformly at random in [0, 100] and,
in particular, we have that the average of the initial conditions
is

∑
i x

0
i = 51.2583. Moreover, we assume that, when an

agent is reconnected at step k‡, it selects again the original
initial condition, i.e., xk

‡

i = x0i . Finally, we assume that for
each step k and for each link (vi, vj) ∈ Ek, the pairwise
interaction rule gk{i,j}(·) is selected at random from those
in Eqs. (6)–(9). In particular, we set wk

{i,j} = 1/(1 + δk{i,j})

when gk{i,j}(·) is selected as in Eqs. (6)–(9).
Figure 1 reports the evolution of the MAS dynamics in

Eq. (1), when the terms gk{i,j}(·) are chosen as above (for
the sake of readability, disconnected agents maintain their
last updated states when disconnected). Conversely, Figure 2
shows the evolution of the agents’ states in the proposed
OMAS setting. It can be noted that, while the MAS dynamics
fails to track the average of their initial states (shown by
gray asterisks), the proposed OMAS framework is successful
in accomplishing the task. Figure 3 reports the temporal
evolution of ∣∣∣∣∣∑

i

akijx
k
i −

∑
i

akijx
k
i

∣∣∣∣∣
both in the MAS and OMAS examples. According to the
figure, in spite of the variability of the network and of the
different choices for gk{i,j}(·), the sum of the states chosen
by agents currently participating to the OMAS at their last
joining instant is preserved up to numerical precision, thus
experimentally validating Theorem 1; conversely, the MAS
dynamics does not preserve the sum of the agents currently
participating to the network.

Finally, Figure 4 shows the temporal evolution of the
Lyapunov function W k, again, considering both the MAS
and OMAS settings. Notably, when at the beginning no agent
joins/leaves, the evolution of W k is the same for both the
MAS and OMAS dynamics. However, the addition/removal
of agents generates new transients: while in the MAS setting
the Lyapunov function fails to converge to zero, in the OMAS
setting we observe that, after each transient, the states of the
active agents approach the average of the states currently
participating to the network.

VII. CONCLUSIONS

This paper presents an OMAS framework for undirected
networks with nonlinear and time-varying agent interactions.
Our method, in particular, ensures that the sum of the present
states of the agents in the network is preserved. Furthermore,
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Fig. 1: Example of MAS dynamics when gk{i,j}(·) is randomly
selected from the functions in Eqs. (6)–(9) and agents join and
leave the network.
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Fig. 2: Example of OMAS dynamics when gk{i,j}(·) is randomly
selected from the functions in Eqs. (6)–(9) and agents join and leave
the network.

we develop a sufficient condition that ensures asymptotic
convergence under the assumption that the network becomes
fixed. Future work will aim to extend the proposed frame-
work to directed graphs and to exploit the nonlinear, time-
varying, and heterogeneous nature of the interaction rules to
improve performance e.g., in terms of convergence speed,
error rejection, resistance to outliers, or distributed stopping.
Moreover, we will investigate the possibility to apply this
approach to distributed optimization problems.
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Fig. 3: In the OMAS setting, the sum of the initial states of the
active agents is preserved, up to numerical precision; the MAS
dynamics fails to do so.
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Fig. 4: Evolution of the Lyapunov function W k, in both a MAS
and OMAS setting.
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