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A B S T R A C T

Proposals have been presented in literature to estimate line parameters and monitor their changes. Syn-
chrophasor measurements from phasor measurement units (PMUs) have appeared as a possible breakthrough
for accurate estimation. However, few methods consider a realistic measurement chain including PMUs and
instrument transformers and their systematic and random error contributions. This paper proposes an improved
method to simultaneously estimate line parameters and systematic measurement errors on multiple network
lines. The algorithm is designed to deal with realistic PMU measurement errors and, in particular, with phase-
angle errors caused by common time-base errors on multiple PMU channels. The impact of PMU measurement
errors is investigated to achieve a comprehensive view of the performance under realistic conditions. The
results obtained on an IEEE test network prove the advantages of the proposed method with respect to other
recent methods and its robustness in the presence of mismatches in the error model.
. Introduction

When dealing with power system management, several applications
re involved. Among others, it is possible to mention state estimation
e.g., [1,2]) and fault location methods (see for instance [3,4]). In
hese applications, network models play a fundamental role and line
arameters are the basis to build such models and thus to perform any
urther processing or evaluation. Nevertheless, actual parameter values
an significantly differ from data available to Transmission System
perator (TSO) [5] because of manufacturing tolerance, environmen-

al conditions or aging (see, for example, [6]). This can introduce
ignificant mismatches that can result in Energy Management System
ssues.

Phasor Measurement Units (PMUs) appear a promising tool to over-
ome some of the difficulties associated with conventional monitoring
ystems, thanks to their ability to provide accurate measurements
eferred to an absolute time reference (the coordinated universal time,
TC) [7], and, in particular, to measure phase angles in a synchronized
ay. Specifically, PMUs compute with a high reporting rate the so-

alled synchrophasor measurements and are able to monitor voltage
nd currents simultaneously. Then, PMU measurements from different
ocations can be aligned and coordinated based on the same timescale.
n the last decades, TSOs worldwide have been installing PMUs to build
he so-called Wide Area Monitoring Systems (WAMSs), i.e., the new
eneration of distributed monitoring infrastructures for power systems.
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WAMSs are the appropriate context to collect and use synchropha-
sor measurements for every monitoring and management task. PMUs,
thanks to the aforementioned peculiarities, can contribute significantly
in the critical and challenging task of evaluating accurately the values
of line parameters. In this perspective, a realistic PMU measurement
error model is essential to properly take account of the inaccuracy
of each component of the measurement chain, which also includes
Instrument Transformers (ITs). In the literature, different approaches
to PMU-based parameters estimation have been introduced recently.

In [8], only PMU error is considered for a positive sequence line
parameters estimation, as well as in [9], where a line parameters
estimation in the presence of series and shunt compensators is per-
formed. Also in [10], the identification of susceptances and reactances
is addressed assuming only the presence of PMU errors in the measure-
ment chain. In [11], the identification of line and power transformer
sequence parameters is carried out. The measurement data are obtained
corrupting the phasors with PMU errors considering different values of
uncertainty. In [12], line parameters estimation in an augmented state
estimation framework is proposed, assuming the presence of random
errors due to PMUs.

In other researches, both PMU and IT errors are considered. In
[13,14], multiple time instants are considered to perform the esti-
mation, but IT errors are modeled as zero-mean random noise, thus
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Fig. 1. 𝜋-model of a transmission line.
neglecting systematic errors. Also [15] presents a line parameters es-
timation method considering zero-mean Gaussian noise in the magni-
tude and phase angle for both ITs and PMUs. In [16], a linear least
square method for single line parameters estimation based on real
measurements is presented; also in this case the presence of systematic
measurement errors in the estimation model is not considered.

In literature, few papers focus on the problem of systematic errors
introduced by ITs. Among these, in [17] the estimation performances
of three different least square methods have been compared using
field measurements and highlighting the problems due to systematic
IT errors. In [18], a robust line parameters estimation method is pre-
sented using on-site measurements; also in this paper it is emphasized
that, in real grid scenarios, ITs accuracy must be considered. In [19],
calibrated transducers are used to propagate the accuracy while es-
timating line parameters in a network. In [20], systematic errors of
current amplitudes and voltage phase angles are assumed negligible to
simultaneously estimate line parameters and current phase-angle and
voltage-amplitude systematic errors. In [21], presenting the detection
of uncalibrated ITs in a preliminary way, a simultaneous estimation of
single line parameters and IT errors is addressed, assuming calibrated
ITs at the sending node. When IT systematic errors are not fully
compensated, which is a typical situation, line parameter estimation
is strongly affected. In [22], a direct computation method based on
the application of PMU current and voltage measurements is used to
calculate the uncertainty bounds of transmission line parameters. A
direct method, applied to real PMU measurements, is also used in [23]
to evaluate the variability of line parameters (without a previous
calibration of ITs and without compensating the systematic errors).
Such evaluation shows a discrepancy with respect to the theoretical
bounds found under the hypothesis of uncorrelated measurements.
The presence of correlation in real measurements is highlighted via
statistical analysis.

To reduce the impact of the systematic errors, in [24], an algorithm
to estimate simultaneously line parameters and systematic errors in-
troduced by ITs is presented. An enhanced version of this algorithm
is proposed in [25], where the method is designed to properly deal
with multiple lines at the same time and with different operating
conditions of the network. In particular, the method relies on the
definition of a measurement model that considers both systematic and
random measurement errors and on prior knowledge on line parame-
ters, IT and PMU uncertainty. The method, as commonly assumed in
the literature, considers that the errors from different PMUs and PMU
channels are independent random variables. In [26], systematic errors
in PMU measurements have been investigated to assess their impact on
the estimation performance.

In this paper, based on the research in [26], the analysis considers
other potential issues arising in presence of a mismatch between the
assumed PMU error model and actual instrument behavior. In partic-
ular, the role of possible common errors (typically due to time-base
errors of the instrument) in the phase-angle measurements of different
2

channels of the same PMU is deeply investigated. This paper proposes
an improved algorithm that is designed to evaluate and include in
real-time correlation information about phase-angle errors within the
estimation framework, thus helping the estimation of both line param-
eters and measurement chain systematic errors on multiple branches
of the network. The new algorithm is validated through simulation
on the IEEE 14 bus test system. Obtained results prove its enhanced
performance with respect to other methods and its robustness against
model mismatches that can occur in real applications on the field.

The paper is organized as follows: Section 2 presents the estimation
framework and the proposed improvement is introduced in Section 3;
Section 4 explains the test cases and illustrates the analysis of the esti-
mation performance; Section 5 reports the final remarks and concludes
the paper.

2. Estimation framework

In this section, the algorithm proposed in [25] to address the
simultaneous estimation of line parameters and systematic errors in
the synchrophasor measurement chain in presence of multiple network
branches and several load scenarios is briefly illustrated with a clear
focus on its assumptions and on the measurement model.

2.1. Measurement problem

First, an equivalent single-phase model of each transmission line is
assumed (see [21]), represented by the 𝜋-model in Fig. 1. The mea-
surement configuration, corresponding to the widespread installation
of WAMS, is also shown in Fig. 1. Four synchrophasor measurements
are considered for the generic branch (𝑖, 𝑗): 𝑣𝑖, 𝑣𝑗 , 𝑖𝑖𝑗 and 𝑖𝑗𝑖 are the
synchrophasors of the start-node voltage of the line (node 𝑖), of the
end-node voltage (node 𝑗), of the branch current measured from node
𝑖 and of that from node 𝑗, respectively. All measurements are assumed
to be provided by two PMUs installed at both ends of the line (one for
each node) and measuring node voltage and all branch currents of the
adjacent edges. Thanks to PMU timestamps, all measurements corre-
sponding to the same time instant 𝑡 = 𝑛𝑇RR (𝑇RR is the PMU reporting
interval) are considered all together as a time-tagged measurement set.

Fig. 1 shows that the line parameters to estimate are the line
resistance 𝑅𝑖𝑗 , the line reactance 𝑋𝑖𝑗 and the shunt susceptance 𝐵sh,𝑖𝑗
(which is equally split into the two sides of the model).

The line parameter estimation algorithm is based on a set of equa-
tions involving the unknown line parameters and the measurement
errors. The equations can be written for each timestamp 𝑡 since they
give constraints on the unknowns and on the measurement snapshot
at 𝑡. For each timestamp, four synchrophasor measurements are thus
available for each line and it is possible to impose Kirchhoff’s Laws
constraints. In particular, this leads to writing two complex-valued
equations: the first one expresses the voltage drop across the line (a
network branch) while the second corresponds to the current balance at
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the branch ends. In detail, the following two equations are considered
for the generic branch (𝑖, 𝑗)2:

𝑣𝑅𝑖 − 𝑣𝑅𝑗 = (𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗 )
(

𝑖𝑅𝑖𝑗 − 𝑗
𝐵sh,𝑖𝑗

2
𝑣𝑅𝑖

)

(1)

𝑖𝑅𝑖𝑗 + 𝑖
𝑅
𝑗𝑖 = 𝑗

𝐵sh,𝑖𝑗

2
(𝑣𝑅𝑖 + 𝑣𝑅𝑗 ) (2)

here superscript 𝑅 indicates the reference value of the corresponding
easured quantity. Eqs. (1) and (2) define thus constraints for the line
arameters based on actual values of voltage and current phasors at a
iven time.

Since voltages and currents are monitored through a measurement
rocess, the available data correspond to measurements and thus ref-
rence values defining (1) and (2) can be rewritten as functions of the
easured synchrophasors, including systematic and random errors in

he measurement chain, as follows:
𝑅
ℎ =

𝑣ℎ
(1 + 𝜉sysℎ + 𝜉rndℎ )

𝑒𝑗(−𝛼
sys
ℎ −𝛼rndℎ )

≈ 𝑉ℎ𝑒
𝑗𝜑ℎ

(

1 − 𝜉sysℎ − 𝜉rndℎ − 𝑗𝛼sysℎ − 𝑗𝛼rndℎ
)

(3)

𝑖𝑅𝑖𝑗 =
𝑖𝑖𝑗

(1 + 𝜂sys𝑖𝑗 + 𝜂rnd𝑖𝑗 )
𝑒𝑗(−𝜓

sys
𝑖𝑗 −𝜓 rnd

𝑖𝑗 )

≈ 𝐼𝑖𝑗𝑒
𝑗𝜃𝑖𝑗

(

1 − 𝜂sys𝑖𝑗 − 𝜂rnd𝑖𝑗 − 𝑗𝜓 sys
𝑖𝑗 − 𝑗𝜓 rnd

𝑖𝑗

)

(4)

where ℎ ∈ {𝑖, 𝑗}, 𝑉ℎ and 𝐼𝑖𝑗 are the measured voltage and current
agnitudes, respectively, while 𝜉ℎ and 𝜂𝑖𝑗 indicate the corresponding

relative measurement errors. 𝜑ℎ and 𝜃𝑖𝑗 are the voltage and current
absolute phase angles, respectively, which are measured by the PMUs,
and 𝛼ℎ and 𝜓𝑖𝑗 are the corresponding errors. All errors are split into
a systematic contribution, indicated by superscript sys, and a random
one, labeled by superscript rnd. The measurement errors in the chain
are small (their absolute value is always ≪ 1) and thus the approxi-
mated expressions in (3) and (4) are obtained considering a first order
approximation, thus neglecting terms, even multivariate, with a degree
>1. An equation analogous to (4) can be written also for the current in
the opposite direction from node 𝑗.

Replacing (3) and (4) into (1) and (2), two complex equations
can be written. In addition to the line parameters, the equations also
involve all the measurement errors. Indeed, considering multiple pairs
of equations corresponding to different timestamps (e.g., 𝑡1 … , 𝑡𝑁𝑡 )
and possibly to different operating conditions of the network, a set
of equations can be defined. In all equations line parameters and
systematic errors can be assumed as the unknowns to be found whereas
the random errors can be considered as disturbances in the constraint
definitions. Following this approach, it is possible to define the esti-
mation problem, which aims at finding the state composed of all the
unknowns starting from the measured values.

2.2. Background on the estimation framework

In [25], systematic errors are attributed to ITs, i.e., to voltage
transformers (VTs) and current transformers (CTs), whereas PMUs are
considered as affected mainly by random errors. To simplify the esti-
mation task, line parameters in (1) and (2) are represented through the
following equations:

𝑅𝑖𝑗 = 𝑅0
𝑖𝑗
(

1 + 𝛾𝑖𝑗
)

𝑋𝑖𝑗 = 𝑋0
𝑖𝑗
(

1 + 𝛽𝑖𝑗
)

(5)

𝐵sh,𝑖𝑗 = 𝐵0
sh,𝑖𝑗

(

1 + 𝛿𝑖𝑗
)

where superscript 0 indicates the known values that are already avail-
able to the TSO, and 𝛾𝑖𝑗 , 𝛽𝑖𝑗 and 𝛿𝑖𝑗 are the unknown relative deviations

2 From hereon the timestamp will be reported in the equations only when
eeded for clarity.
3

from them, which represent the lack of knowledge. By estimating 𝛾𝑖𝑗 ,
𝛽𝑖𝑗 and 𝛿𝑖𝑗 , it is possible to estimate the line parameters too.

Replacing then (3) and (4) into (1) and (2), translating the complex
equations into their real and imaginary parts, and considering first
order approximation (|𝛾𝑖𝑗 |, |𝛽𝑖𝑗 | and |𝛿𝑖𝑗 | are also ≪ 1), a linear system
f equations for the generic branch (𝑖, 𝑗) can be written as

𝑖𝑗 = 𝐇𝑖𝑗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉sys𝑖

𝛼sys𝑖
𝜉sys𝑗

𝛼sys𝑗
𝜂sys𝑖𝑗
𝜓 sys
𝑖𝑗

𝜂sys𝑗𝑖
𝜓 sys
𝑗𝑖

𝛾𝑖𝑗
𝛽𝑖𝑗
𝛿𝑖𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ 𝐄𝑖𝑗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉rnd𝑖

𝛼rnd𝑖

𝜉rnd𝑗

𝛼rnd𝑗

𝜂rnd𝑖𝑗

𝜓 rnd
𝑖𝑗

𝜂rnd𝑗𝑖

𝜓 rnd
𝑗𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐇𝑖𝑗𝐱𝑖𝑗 + 𝐄𝑖𝑗𝐞𝑖𝑗 = 𝐇𝑖𝑗𝐱𝑖𝑗 + ϵ𝑖𝑗 (6)

here 𝐛𝑖𝑗 is the real-valued vector of constant terms that can be
onsidered as the equivalent measurements of the formulation of the
stimation problem. As mentioned above, 𝐛𝑖𝑗 includes multiple sets of
quivalent measurements corresponding to (1) and (2) for each consid-
red timestamp. Vector 𝐱𝑖𝑗 is the vector of unknowns that includes all
he deviations in line parameters and the systematic errors to estimate.
𝑖𝑗 is the measurement matrix defining the equivalent measurements
s a function of 𝐱𝑖𝑗 . Vector ϵ𝑖𝑗 represents the contribution of random
rrors affecting the equivalent measurements in 𝐛𝑖𝑗 . ϵ𝑖𝑗 is the result
f a transformation through matrix 𝐄𝑖𝑗 of all the random errors in
ynchrophasor measurement chains, which are given by random vector
𝑖𝑗 .

Assuming 𝑁𝑡 timestamps available and four real-valued equations
or each timestamp, there are 4𝑁𝑡 equations in (6). This corresponds to
he definition of the problem when a single branch is considered. How-
ver, multiple branches (e.g., 𝑁br branches) can be treated together
n the same estimation process. In this case, for a given timestamp,
he voltage and current measurements of all the considered branches
orresponding to the same instant are used, thus extending (6) into an
ugmented problem with 4𝑁𝑡𝑁br equations, described as:

=

⎡

⎢

⎢

⎢

⎣

𝐛𝑖1𝑗1
⋮

𝐛𝑖𝑁br 𝑗𝑁br

⎤

⎥

⎥

⎥

⎦

= 𝐇𝐱 + 𝐄𝐞 = 𝐇𝐱 + ϵ (7)

here 𝐛𝑖𝑘𝑗𝑘 includes the equivalent measurements of the 𝑘th considered
ranch (𝑖𝑘, 𝑗𝑘) with 𝑘 = 1,… , 𝑁br . 𝐇 and 𝐄 are the measurement
nd transformation matrices obtained considering all the branches and
he corresponding equations like those in (6). Vector 𝐞 is composed
f the random errors for all the measured synchrophasors. In this
ase, the new vector of unknowns 𝐱 (𝑁-size vector) includes all the
arameter deviations of all the involved lines (3𝑁br unknowns if all
he branches have the same model as in Fig. 1) and all the systematic
rrors of the measured voltage and current synchrophasors. Since joint
ranches share the same node voltage measurements, the number of
ystematic errors in 𝐱 is typically <8𝑁br , thus improving the equations
o unknowns ratio.

In [25], it is proposed to integrate the problem in (7) with prior
nowledge on the unknowns, thus defining an overall model as follows:

tot =
[

𝐛
𝟎𝑁×1

]

=
[

𝐇
𝐈𝑁

]

𝐱 +
[

ϵ
𝐞prior

]

= 𝐇tot𝐱 + ϵtot (8)

here 𝟎𝑁×1 is the 𝑁-size zero vector and 𝐈𝑁 is the 𝑁-size identity
atrix, meaning that prior assumption for every unknown in 𝐱 is given

y a zero value (best assumption on deviations and systematic errors
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(

without further information). Vector 𝐞prior includes the corresponding
prior errors. Prior errors represent lack of knowledge and can thus be
treated as random variables as discussed in Section 3.

Starting from the model defined by (8), it is possible to estimate 𝐱,
i.e., to achieve an estimation of line parameters and systematic errors
simultaneously for all the lines and measurement channels without
requiring a preliminary calibration. A weighted least squares (WLS)
solution of (8) is used, solving the following linear system:

(𝐇T
tot𝐖tot𝐇tot )�̂� = 𝐇T

tot𝐖tot𝐛tot (9)

where ̂ indicates the estimate, T is the transpose operator and 𝐖tot is
the weighing matrix.

3. Measurement errors and proposed approach

In the solution of (9), 𝐖tot is chosen as the inverse of the covariance
matrix Σϵtot of random vector ϵtot .

Assuming prior information on the unknowns and random errors of
PMU measurements as uncorrelated, it is possible to write:

Σϵtot =

[

Σϵ 𝟎
𝟎 Σ𝐞prior

]

(10)

where symbol Σϵ and Σ𝐞prior are the covariance matrix of ϵ and 𝐞prior ,
respectively, while 𝟎 stands for a generic zero matrix of suitable size.

To define Σ𝐞prior , two different considerations can be made:

• Prior variances 𝜎2𝛾𝑖𝑘𝑗𝑘
, 𝜎2𝛽𝑖𝑘𝑗𝑘

and 𝜎2𝛿𝑖𝑘𝑗𝑘
, for all the considered

branches (𝑖𝑘, 𝑗𝑘), can be chosen based on general considerations
on the uncertainty of line parameters (e.g., relying on the TSO ex-
perience). Line parameter deviations are assumed uncorrelated (if
further information is available, it can be integrated seamlessly).
A mismatch between actual uncertainty and assumed values can
occur and in [27] such issue was thus investigated.

• Systematic errors in the measurement chain are considered un-
correlated. Also in this case, if any prior knowledge is available it
can be integrated. As mentioned above, in [25] systematic errors
were attributed to ITs and thus the variance of each error was
derived from the IT class specification.

From the law of propagation of uncertainty it follows

Σϵ = 𝐄Σ𝐞𝐄T (11)

and Σ𝐞 (the covariance matrix of random measurement errors) needs
to be defined considering all the random errors 𝜉rnd𝑖𝑘

, 𝛼rnd𝑖𝑘
, 𝜉rnd𝑗𝑘

, 𝛼rnd𝑗𝑘
,

𝜂rnd𝑖𝑘𝑗𝑘
, 𝜓 rnd

𝑖𝑘𝑗𝑘
, 𝜂rnd𝑗𝑘𝑖𝑘

and 𝜓 rnd
𝑗𝑘𝑖𝑘

.3 In [25], these errors were assumed uncor-
related and associated with PMU uncertainty. Thus Σ𝐞 was assumed
diagonal and included all the square standard uncertainties derived
from PMU specifications. The standard uncertainties were computed
assuming uniform distributions and choosing maximum magnitude and
phase-angle errors from instrument datasheets.

The presented assumptions allow computing Σ𝐞 and Σ𝐞prior and thus
solving (9), but they might lead to possible issues in the algorithm
configuration. Indeed, the measurement error of PMUs in realistic con-
ditions can be actually composed of both systematic and random errors
and this would result in a transfer of uncertainty from Σ𝐞 representing
random error only to Σ𝐞prior . The amount of each error contribution is
difficult to predict. In [26], the realistic presence of residual systematic
errors in PMUs was investigated and the impact of a possible mismatch
on the corresponding prior quantities was assessed. Robustness of
method against such mismatch was found considering different PMU
uncertainty scenarios. In this paper, a more complete error model for
PMU errors is considered. Indeed, although the considerations in [26]

3 The symbols here can be interpreted analogously to those in (3) (4), and
6).
4

are reasonably valid for magnitude measurements, phase-angle errors
should be treated more carefully.

Consider the generic phase-angle error 𝜆PMU of a PMU installed at
node 𝑖. It can represent indifferently a voltage phase-angle error or the
phase-angle error of one of the current synchrophasors measured by
the same PMU. The following expression can be used to illustrate its
components:

𝜆PMU = 𝜆𝑠 + 𝜆𝑐 + 𝜆𝑟 (12)

where 𝜆𝑠 is the systematic error contribution brought by the PMU and
represents the average of the phase-angle error, 𝜆𝑐 is the random phase
error that is common to all the channels of the same PMU and 𝜆𝑟
is the portion of the random error contribution that is independent
from other errors (specific of the considered PMU channel). This error
split represents a realistic behavior of PMUs. In fact, phase-angle error,
particularly for high-quality instruments, is strongly related to the time-
base error (see also the discussion in [28]), which is in turn often
reported in PMU datasheet. Such error is common to all the channels
in a PMU and can thus result in a significant component of 𝜆PMU that
cannot be neglected. In Section 4, the impact of such contribution on
the estimation process will be deeply investigated.

It is thus interesting to analyze theoretically the effect of the decom-
position in (12) on the definition of Σ𝐞, which is the first step in 𝐖tot
computation. The variance of the error 𝜆PMU (i.e., 𝜎2

𝜆PMU ) is given by
the sum of the variances of the two random contributions since 𝜆𝑠 is
constant while 𝜆𝑐 and 𝜆𝑟 can be assumed uncorrelated. Considering two
phase-angle measurements, 𝜆PMU

1 and 𝜆PMU
2 , of two generic channels in

the same PMU, the following covariance needs to be considered (E [⋅]
indicates the expectation operator):

E
[(

𝜆PMU
1 − E

[

𝜆PMU
1

])(

𝜆PMU
2 − E

[

𝜆PMU
2

])]

= E
[(

𝜆𝑐 + 𝜆𝑟1
) (

𝜆𝑐 + 𝜆𝑟2
)]

= E
[

𝜆2𝑐
]

= 𝜎2𝑐 (13)

where 𝜆𝑟1 and 𝜆𝑟2 indicate the independent random contribution of
the first and second considered channels, respectively. The last but
one equality is obtained based on the null correlation between 𝜆𝑐 and
the independent errors and between 𝜆𝑟1 and 𝜆𝑟2. From (13) 𝜎2𝑐 is thus
defined as the variance of 𝜆𝑐 . Eq. (13) shows how, differently from the
assumption in [25], correlation arises in the errors of the channels when
a realistic common contribution is present.

To address this interesting condition, in this paper, it is proposed to
introduce, for each PMU 𝑖 (installed at node 𝑖), a Pearson correlation
coefficient between the channels by including it in the definition of Σ𝐞.
The correlation coefficient 𝜌12 of the two aforementioned channels 1
and 2 depends on the ratio of 𝜎2𝑐 to 𝜎𝜆PMU

1
𝜎𝜆PMU

2
(where 𝜎𝜆PMU

1
and 𝜎𝜆PMU

2
are the standard deviations of the errors in the two channels). However,
such index is not known in advance and needs to be estimated. When
considering the 𝑁𝑡 timestamps, and the associated measurement sets,
it is important to highlight that they can correspond to repeated mea-
surements of the same load condition of the network (the high RR of a
PMU can guarantee to have multiple snapshots) but also to different
cases, i.e., to different configurations of loads and generators. Thus,
𝑁𝑡 =𝑀𝐶, where 𝑀 is the number of repeated measurements for each
case and 𝐶 is the number of monitored load conditions. Based on the
different nature of these measurements, a specific approach is proposed
to estimate the correlation coefficient 𝜌12. The generic timestamp 𝑡𝑛 can
be indicated also as 𝑡𝜒,𝑚 = [(𝜒 −1)𝑀 +𝑚−1]𝑇RR with 𝑚 = 1,… ,𝑀 and
𝜒 = 1,… , 𝐶. The estimation is performed as explained in what follows.4

The reference phase angle is different for each case 𝜒 and each
channel. In order to compute correlation between the errors of different
channels, a pre-processing of phase-angle measurements is needed.

4 The described procedure applies when 𝑀 > 1.
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Fig. 2. IEEE 14 bus system with node and branch indices.
Considering channel 1, all the measured phase angles of case 𝜒 , indi-
cated with 𝜈1,𝑡𝜒,𝑚 , are made unbiased by subtracting their average value

𝜈1,𝑡𝜒,∙ ≜

∑𝑀
𝑚=1 𝜈1,𝑡𝜒,𝑚
𝑀

(14)

This corresponds to applying the following formula:

�̃�𝑐+𝑟1,𝑡𝜒,𝑚 = 𝜈1,𝑡𝜒,𝑚 − 𝜈1,𝑡𝜒,∙ (15)

where �̃�𝑐+𝑟1,𝑡𝜒,𝑚 is an estimate of 𝜆𝑐,𝑡𝜒,𝑚 + 𝜆𝑟1,𝑡𝜒,𝑚 , i.e., of the overall
random contribution at timestamp 𝑡𝜒,𝑚 for channel 1. Similar defini-
tions and computations are used for channel 2. Finally, it is possible to
estimate 𝜌12 as:

�̂�12 =

∑𝐶
𝜒=1

∑𝑀
𝑚=1 �̃�𝜒+𝑟1,𝑡𝜒,𝑚 ⋅ �̃�𝜒+𝑟2,𝑡𝜒,𝑚

√

∑𝐶
𝜒=1

∑𝑀
𝑚=1 �̃�

2
𝜒+𝑟1,𝑡𝜒,𝑚

⋅
∑𝐶
𝜒=1

∑𝑀
𝑚=1 �̃�

2
𝜒+𝑟2,𝑡𝜒,𝑚

(16)

When the accuracy of phase-angle measurements is the same for all
the channels in a PMU, it is possible to consider a unique correlation
coefficient �̂�PMU𝑖 for the PMU 𝑖 computed as:

�̂�PMU𝑖 = 2

∑𝑁𝑐ℎ,𝑖
𝑐ℎ1=1

∑𝑁𝑐ℎ,𝑖
𝑐ℎ2=𝑐ℎ1+1

�̂�𝑐ℎ1𝑐ℎ2
𝑁𝑐ℎ,𝑖(𝑁𝑐ℎ,𝑖 − 1)

(17)

where 𝑁𝑐ℎ,𝑖 is the number of channels of PMU 𝑖 and �̂�𝑐ℎ1𝑐ℎ2 is the
estimated correlation coefficient between its generic channels 𝑐ℎ1 and
𝑐ℎ2. Once all the correlation coefficients have been estimated, Σ𝐞 can
be built accordingly and then the estimation procedure follows the
same steps as in Section 2.2.

It is important to underline that the main source of correlation in the
above discussion can be considered the synchronization process inside
the PMU. Nonetheless, the proposed method can easily be extended
to consider also phase-angle errors shared between PMUs (this might
happen, e.g., in case of PMUs of the same type fed by the same time
source).
5

4. Tests and results

4.1. Test assumptions

The proposed method assessment has been performed through sim-
ulations in MATLAB environment considering the IEEE 14 bus system
(Fig. 2, [29]). Two networks have been used: the network limited to the
first 6 branches (involving the first 5 buses) and the whole network,
then considering 20 branches (involving 14 buses). The algorithm is
configured to work on all the branches simultaneously, considering
two scenarios with 𝑁𝑡 ∈ {100, 1000} measurement timestamps for each
estimation. In particular, 𝑀 = 10 repeated measurements of the same
load condition are used for each test. This corresponds to defining two
measurement scenarios with a different number of cases 𝐶, i.e., 𝐶 ∈
{10, 100}.

To assess the performance in each scenario, 𝑁MC = 5000 Monte
Carlo (MC) trials are used. In each trial, starting from a reference
load condition, a powerflow is computed considering the actual line
parameters to obtain the reference value of each measured quantity.

For each MC trial, the following conditions are considered:

1. The line parameters 𝑅𝑖𝑗 , 𝑋𝑖𝑗 and 𝐵sh,𝑖𝑗 are extracted from a
uniform distribution with a maximum deviation of ±15% from
𝑅0
𝑖𝑗 , 𝑋

0
𝑖𝑗 and 𝐵0

sh,𝑖𝑗 , respectively (i.e., from the nominal values of
the network).

2. All ITs are of Class 0.5 and thus maximum voltage and cur-
rent magnitude errors are 0.5%; maximum phase-angle displace-
ments are 0.6 crad for VTs and 0.9 crad for CTs, respectively.
Actual IT errors in each trial are extracted from uniform distri-
butions.

3. The PMUs are compliant with the synchrophasor standard
IEC/IEEE 60255-118-1:2018 [30]. Maximum errors for mag-
nitudes (𝛥mag) and phase angles (𝛥ang) for both voltages and
currents are assumed to vary from 𝛥mag = 0.1% and 𝛥ang =
0.1 crad (indicated as PMU accuracy A, in the following) to
𝛥 = 0.707% and 𝛥 = 0.707 crad (PMU accuracy B),
mag ang
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depending on the test.5 For each test, 𝛥mag = 𝛥ang and thus, for
the sake of brevity, their value is referred to as ‘PMU accuracy’
in the presentation below.

4. The aforementioned maximum errors are considered as limits of
confidence intervals with a probability >0.97. In fact, differently
from [26], here PMU phase-angle errors are described as in
(12) whereas magnitude errors are split only into systematic
and random contributions. In both cases, however, instead of
splitting the maximum values, for a fairer comparison of the dif-
ferent error model combinations, an approach based on variance
splitting is used here.
Focusing on phase-angle errors, in the different tests, the total
error variance (considering also the MC trials and thus the
variability of systematic error), derived from the datasheets as
described in Section 3, is divided as:

𝜎2
𝜆PMU =

𝜎2𝑠 + 𝜎
2
𝑐 + 𝜎

2
𝑟

100
=
𝑝𝑠𝜎2𝜆PMU + 𝑝𝑐𝜎2𝜆PMU + 𝑝𝑟𝜎2𝜆PMU

100
(18)

where 𝜎2𝑠 is the variance of the systematic error contribution
across different trials and 𝜎2𝑟 is the variance of 𝜆𝑟. 𝑝𝑠, 𝑝𝑐 , and
𝑝𝑟 are the percentages of variance split. The three percentages
can range from 0% to 100% depending on the tests. Regardless
the different nature of the errors, they are all extracted from
uniform distributions in the tests. This means that 𝜆PMU has a
different distribution depending on the configured error mix,
but, as mentioned above, a coverage factor is used to guarantee
the given confidence level to the error. In the tests, magnitude
errors are treated following a similar approach but without
common errors.

5. The active and reactive power of loads and generators vary
within ±10% (uniform distribution) of nominal value for all 𝐶
cases in a trial.

In each MC trial, the systematic errors of the measurements are then
he sum of two contributions, from IT and PMU. The tests have been
onducted to assess the performance of the method in [25], reported
s ‘‘Method A’’, and of the proposed method, which can be generally
pplied but is well-suited for more realistic PMU behaviors (labeled
ith ‘‘Proposed’’ in the following figures and tables). Furthermore, for

he sake of comparison, the method presented in [21, Sec. IV] is also
pplied, since it considers IT systematic errors at least on one of the
ranch nodes and benefits from considering measurements related to
ore operational cases. Such method is referred to as ‘‘Method B’’

n the following test descriptions. For completeness, the estimation is
ompared also with a simplified version of the proposed method that
onsiders, for all the channels of the same PMU, and for all PMUs, an
priori fixed Pearson correlation coefficient of 𝜌PMU = 0.75 (referred

to as ‘‘Method C’’ in the following tests). In order to assess the effect
of the presence of systematic errors in PMU measurements (quantified
through 𝑝𝑠) and of a phase-angle random error common to every chan-
nel of the same PMU (quantified through 𝑝𝑐), the tests have been mainly
conducted isolating each type of contribution. Finally, an example
of the estimation performance obtained when both contributions are
considered is also provided.

4.2. Tests in the presence of systematic PMU errors

The first series of tests has been carried out considering the presence
of systematic errors in PMU measurements, using different values of 𝑝𝑠
(with 𝑝𝑐 = 0%), and performing the estimation on the first six branches
of the grid. Fig. 3 reports the average percent root mean square errors
(RMSEs) of voltage magnitude systematic error estimation, i.e., the

5 PMU accuracy B corresponds to about 1% maximum total vector error
TVE) for synchrophasor measurement, i.e., the standard limit for steady-state
onditions.
6

Fig. 3. Average RMSE of voltage synchrophasor magnitude estimation as a function of
PMU systematic error percentage. PMU accuracy A, 𝐶 = 100.

average RMSE of 𝜉sysℎ (ℎ = 1,… , 5) estimates across the considered
nodes. This quantity represents also the root mean square residual
compensation error averaged on the nodes and thus gives an idea of
the capability to estimate and compensate the systematic component
of the measurement chain error. The tests have been carried out using
Method A, the proposed method and Method B and Fig. 3 shows the
comparison of the estimation results obtained with PMU accuracy A
and using 𝐶 = 100 operative cases. The proposed method and Method B
are indicated with orange asterisks and green squares, respectively. The
proposed method, thanks to the flexibility brought by the introduction
of the estimated correlation factor �̂�𝑐ℎ1𝑐ℎ2 , achieves the same results
of Method A even though 𝑝𝑐 = 0%. This highlights its capability to
generalize and, for this reason, Method A results are not reported in
the figures.

In Fig. 3, the RMSE values are also compared with prior standard de-
viations, i.e., with the total standard uncertainty of 𝜉sys (the subscripts
indicating the nodes are often dropped from hereon when referring
to a generic systematic error), which is computed across all MC trials
based on the extracted systematic errors and then averaged for the
nodes. First of all, it has to be observed that prior values only slightly
increase with 𝑝𝑠 because, with 𝛥mag = 0.1%, the additional contribution
brought by the PMU to the systematic error is much lower than IT
contribution 𝜎𝜉sys,VTℎ

= 0.5∕
√

3%. For the proposed method, the average
RMSE slightly decreases because PMU random errors decrease with
higher 𝑝𝑠, thus confirming that, notwithstanding the mismatch in prior
definition, the proposed method (and Method A) is still able to estimate
the overall systematic error (which is reduced with respect to prior
of about 48% in absence of systematic PMU error and of about 52%
when 𝑝𝑠 = 75%). Similar considerations hold true also for voltage phase
angles, and for current magnitudes and phase angles. Method B results,
instead, even if they improve for higher 𝑝𝑠, are always slightly above
prior values.

Fig. 4 shows the same type of results of Fig. 3 but obtained with
PMU accuracy B. The estimation results of Method B are not reported
because they are far beyond the prior values. In this case, the con-
tribution of PMU systematic errors is much larger, as proven by the
increasing prior values. Nevertheless, the algorithm is still able to re-
duce significantly the overall systematic error and the RMSE reduction
with respect to prior is even larger with higher values of 𝑝𝑠, thanks
o the reduced random contribution. In particular, the RMSE reduction
s of about 40% for 𝑝𝑠 = 0%, then it increases with 𝑝𝑠 reaching the

maximum improvement of about 45% for 𝑝 = 75%.
𝑠
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Fig. 4. Average RMSE of voltage synchrophasor magnitude estimation as a function of
PMU systematic error percentage. PMU accuracy B, 𝐶 = 100.

Fig. 5. Proposed method. Average RMSE of line resistance deviation as a function of
PMU systematic error percentage and of PMU accuracy, 𝐶 = 100.

Previous results have shown that systematic errors in the measure-
ment chain can be reduced significantly regardless of their origin and of
a possible lack of prior knowledge. However, it is important to under-
stand the effect of the occurring mismatch between prior information
on systematic errors and actual measurement chain behavior also on
the main target of the estimation, i.e., line parameters.

Figs. 5 and 6 show an example of the results on line parameters
estimation obtained with the proposed method (as mentioned before
almost the same results have been found for Method A, thus not
reported in the figures) and Method B, respectively. Average percent
RMSE values are reported for the estimates of 𝛾𝑖𝑘 ,𝑗𝑘 (𝑘 = 1,… , 6) when
PMU accuracy and 𝑝𝑠 vary. As a term of comparison, prior values
are always the same and equal to 15∕

√

3 = 8.66% (with negligible
ariations due to random extractions during MC trials). As expected,
ll the methods have better estimates in the presence of better PMU
ccuracy; nevertheless, it is important to highlight the differences in
he response of the two methods to the variations in PMU accuracy
nd 𝑝𝑠.

Fig. 5 shows the proposed method results: even if estimation errors
ecome larger with a decreasing PMU accuracy, they are well below
7

Fig. 6. Method B. Average RMSE of line resistance deviation as a function of PMU
systematic error percentage and of PMU accuracy, 𝐶 = 100.

the prior in each considered measurement scenario. It is also possible
to notice that, given the best PMU accuracy, increasing systematic
errors correspond to better estimations of 𝛾. In agreement with the
consideration drawn from Fig. 3, the proposed method is able to com-
pensate the slight increase in systematic errors due to PMU and takes
advantage of the reduction of random error. When the PMU accuracy
B is used, instead, the contribution of PMU systematic error is more
significant and better estimates are obtained for lower 𝑝𝑠. When PMU
accuracy degrades, the contribution of the systematic error introduced
by the instrument becomes more relevant and comparable with IT
contribution. For this reason, for example, resistance estimation starts
to degrade with higher 𝑝𝑠 even if the random contribution is reduced
(see PMU accuracy B, Fig. 5). However, the maximum RMSE increase is
less than 5% with 𝑝𝑠 = 75% and worst PMU accuracy, thus confirming
the robustness of the method also with respect to measurement model
tuning degradation (higher mismatch between prior assumptions on
systematic errors and actual errors).

The behavior of Method B, reported in Fig. 6, is substantially
different and determined by its great sensitivity to random errors.
The estimates get considerably worse quickly and even with a PMU
accuracy of 0.2 they become basically unreliable. The estimation errors
increase as the PMU accuracy degrades and the random contribution in
PMU error increases.

4.3. Tests in the presence of phase-angle common error in PMU channels

Other tests have been carried out to investigate the impact of a
phase-angle random error common to all the channels of the same PMU.
The investigation has been conducted on the whole network in Fig. 2,
considering PMU accuracy A and B and having different percentages 𝑝𝑐
of common phase-angle error. In the tests, 𝑝𝑐 goes from 0% up to 95%
and 𝑝𝑠 is kept equal to 0% to highlight the impact of the common phase-
angle error. In this context, Figs. 7 and 8 show the line resistance RMSE
results, averaged considering the whole network, for PMU accuracy A
and B, respectively. Figs. 7 and 8 compare the estimation results of
three methods with different assumptions on the correlation among
the phase-angle errors of the PMU channels: the proposed method
(orange asterisks) implements the methodology presented in Section 3,
Method A (green diamonds) assumes uncorrelated phase-angle errors
(as in [25]), whereas Method C (blue squares) uses a fixed correlation
coefficient of 0.75.

The two figures display the same trends, showing that the impact

of 𝑝𝑐 is similar when PMUs with different accuracy are considered.
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Fig. 7. Average RMSE of line resistance deviation as a function of the PMU common
phase-angle error percentage. Entire network, PMU accuracy A, 𝐶 = 10.

Fig. 8. Average RMSE of line resistance deviation as a function of the PMU common
phase-angle error percentage. Entire network, PMU accuracy B, 𝐶 = 10.

In particular, Method A RMSEs decrease in the presence of a phase-
angle common error, reaching their minimum value approximately for
𝑝𝑐 = 50%, to get then slightly worse with higher 𝑝𝑐 values, but still
elow the results obtained with 𝑝𝑐 = 0%. At first glance this fact appears
ounter-intuitive and deserves to be explained in detail.

The presence of phase-angle error correlation among the PMU
hannels is indeed in contrast with Method A assumption; nevertheless,
ts performance improves because correlation somehow limits the error
ariability and thus makes the Kirchhoff’s constraints that are at the
asis of the estimation more effective. Method C manifests the limits
f a fixed assumption on error correlation particularly when 𝑝𝑐 =

0%: RMSEs are about 12% worse for PMU accuracy A and about
14% worse for PMU accuracy B with respect to Method A and the
proposed method. Then, it is worth highlighting that the error results
show a decreasing trend as 𝑝𝑐 increases also beyond 𝑝𝑐 = 75% which
corresponds to the assumption of Method C (thanks to the reduction of
the error variability given by the correlation). The proposed method,
leveraging the dynamic measurement error correlation model described
in Section 3, achieves always the best estimation performance. In
8

particular, it has the same performance as Method A when 𝑝𝑐 = 0 %, m
Fig. 9. RMSE of line parameters deviation considering 90% of PMU common phase-
angle error for each channel of the same PMU. Entire network, PMU accuracy A,
𝐶 = 10.

the same as Method C when 𝑝𝑐 = 75%, and overcomes both in the
other conditions. For example, the proposed method performs better
than Method A of about 25% when PMU accuracy B and 𝑝𝑐 = 95%
re considered. The estimation results of reactance and transversal
usceptance present similar trends and thus lead to similar conclusions.

To investigate the impact of common phase-angle error in PMU
hannels also on the line parameter estimation, more results are pre-
ented in what follows. Fig. 9 shows 𝛾, 𝛽 and 𝛿 estimation results
when available depending on the branch model) obtained by proposed
ethod (at the top) and by Method A (at the bottom) considering PMU

ccuracy A and 𝑝𝑐 = 90%.
It can be observed that the proposed method has lower RMSEs than

ethod A for all the considered parameters, confirming the behavior
ound for systematic error estimation in previous results. In particular,
he RMSEs of the proposed method have an average improvement
ith respect to Method A of about 21%, 18% and 43% for 𝛾, 𝛽 and
, respectively. Similar results can be observed considering the 99th
ercentile of the errors (in absolute value): the average improvement
f the proposed method with respect to Method A is of about 23% for
, 19% for 𝛽 and 41% for 𝛿.6 Another interesting outcome is that the
roposed method and Method A have basically the same estimation
erformance for 𝛽14. This behavior can be explained observing the
opology of the IEEE 14 bus test system shown in Fig. 2. Indeed, branch
4, i.e., the branch between nodes 7 and 8, is a terminal branch. Such
ranch is monitored by a PMU at node 8 that is isolated and therefore
onitors only one branch.

In order to have a comprehensive view of the estimation perfor-
ance, other tests have been carried out considering two different

alues of PMU accuracy (A and B), two different numbers of operating
onditions (𝐶 = 10 and 𝐶 = 100), and three different 𝑝𝑐 values (0, 50,
nd 90%). Table 1 shows the most significant estimation results for the
eries parameters of branches 4 and 5, the systematic phase-angle errors
f their end-node voltages (nodes 4 and 5) and the systematic phase-
ngle errors of their reverse currents (relating to the measurements
f 𝐼42 and 𝐼52). Results obtained by the proposed method, Method A,
nd Method B are compared. It is possible to observe that (coherently
ith Figs. 7 and 8), when 𝑝𝑐 = 0%, for each PMU accuracy and

or every considered value of C, the proposed method, updating the
PMU𝑖 estimation as described in Section 3, achieves the same results as
ethod A, which assumes no correlation among PMU measurements.

6 In the same test, the corresponding improvements computed based on
aximum errors are 22%, 15%, and 38%.
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Table 1
Estimation results in the presence of different accuracies, errors, and cases.

Method PMU
accuracy

C 𝑝𝑐
[%]

RMSE

𝛾4 𝛽4 𝛾5 𝛽5 𝛼4 𝜓42 𝛼5 𝜓52
[%] [%] [%] [%] [crad] [crad] [crad] [crad]

Proposed

A

10
0 1.81 0.61 2.09 0.73 0.09 0.38 0.09 0.38
50 1.68 0.57 1.87 0.68 0.09 0.37 0.09 0.37
90 1.49 0.54 1.59 0.63 0.09 0.36 0.09 0.36

100
0 1.34 0.37 1.41 0.40 0.09 0.37 0.09 0.36
50 1.29 0.35 1.32 0.37 0.09 0.36 0.09 0.35
90 1.21 0.34 1.20 0.37 0.08 0.36 0.08 0.35

B 100
0 3.13 2.00 3.74 2.47 0.12 0.41 0.13 0.42
50 2.88 1.75 3.41 2.17 0.11 0.40 0.12 0.41
90 2.51 1.47 2.81 1.82 0.10 0.39 0.11 0.38

Method A

A

10
0 1.81 0.61 2.09 0.73 0.09 0.38 0.09 0.38
50 1.74 0.58 1.96 0.69 0.09 0.37 0.09 0.37
90 1.75 0.60 1.94 0.71 0.09 0.37 0.09 0.38

100
0 1.34 0.37 1.41 0.40 0.09 0.37 0.09 0.36
50 1.32 0.35 1.37 0.37 0.09 0.36 0.09 0.35
90 1.32 0.35 1.37 0.37 0.09 0.36 0.09 0.35

B 100
0 3.13 2.00 3.74 2.47 0.12 0.41 0.13 0.42
50 3.00 1.72 3.67 2.13 0.12 0.41 0.12 0.41
90 2.98 1.67 3.66 2.04 0.12 0.41 0.13 0.41

Method B A

10
0 7.83 2.69 11.66 4.31 0.46 0.58 0.49 0.60
50 7.60 2.32 11.18 3.78 0.43 0.56 0.46 0.58
90 7.68 2.50 11.49 4.12 0.45 0.57 0.48 0.60

100
0 3.02 1.16 4.30 2.16 0.36 0.52 0.38 0.53
50 2.93 1.01 4.06 1.84 0.36 0.52 0.37 0.52
90 2.98 1.09 4.21 2.01 0.36 0.52 0.38 0.53
Table 2
Estimation results considering 𝑝𝑠 = 25% and 𝑝𝑐 = 70%, in the presence of different accuracies and cases.

Method PMU
accuracy

C RMSE

𝛾4 𝛽4 𝛾5 𝛽5 𝛼4 𝜓42 𝛼5 𝜓52
[%] [%] [%] [%] [crad] [crad] [crad] [crad]

Proposed A 10 1.35 0.44 1.41 0.51 0.09 0.36 0.09 0.36
100 1.17 0.31 1.17 0.34 0.09 0.36 0.09 0.35

B 100 2.42 1.21 2.69 1.49 0.11 0.41 0.11 0.40

Method A A 10 1.61 0.49 1.74 0.58 0.09 0.37 0.09 0.37
100 1.29 0.32 1.34 0.33 0.09 0.37 0.09 0.36

B 100 3.06 1.52 3.77 1.88 0.13 0.43 0.13 0.43

Method B A 10 5.76 1.87 8.53 2.89 0.41 0.56 0.43 0.56
100 2.56 0.80 3.21 1.30 0.35 0.52 0.36 0.52
b
t
o

s
s
c
B

l
u
o
m
t
p
5

Focusing on the impact of different values of 𝑝𝑐 , the increase of
𝑐 brings, in general, better results for all the considered methods,
ut, despite the general trends are the same, the behavior is different
mong the methods. Whereas Method A and Method B improvements
re limited, reaching a minimum for 𝑝𝑐 = 50%, the proposed method
mprovement increases significantly with 𝑝𝑐 . As an example, focusing
n 𝛾5 estimation with PMU accuracy A, 𝐶 = 10 and 𝑝𝑐 = 90%, the
stimation improvements with respect to 𝑝𝑐 = 0% for the proposed
ethod, Method A, and Method B are about 24%, 7% and 2%, respec-

ively. It has to be noted that exploiting a large number of operative
ases (𝐶 = 100) improves estimation performance while reducing the
mpact of larger 𝑝𝑐 . As for the systematic errors, the RMSEs obtained
y the proposed method and Method A are significantly lower than
rior uncertainty, e.g., for 𝛼4 and 𝛼5 the reduction is up to 72%,
hereas the RMSEs of Method B are close or beyond the prior values.
inally, focusing on the impact of PMU accuracy on the estimation
erformance, it is worth noticing that Table 1 does not report the results
or Method B when PMU accuracy B is considered since its estimation
rrors grow far beyond the prior when PMU accuracy degrades. Results
n Table 1 show that the estimation performances of the proposed
ethod and of Method A worsen with a decreasing of PMU accuracy
9

ut are always well below prior values. In particular, it can be noted
hat the proposed method, under each condition, has results better than
r equal to Method A.

To complete the analysis, further tests have been performed con-
idering the simultaneous presence in PMU measurements of both
ystematic and common errors. Table 2 shows some results of the tests
onducted considering 𝑝𝑠 = 25% and 𝑝𝑐 = 70%, PMU accuracies A and
, and both 𝐶 = 10 and 𝐶 = 100 operative cases.

It is possible to mention that the performance of Method B in
ine parameters estimation improves significantly when more cases are
sed, but its RMSE values are always the worst ones while the RMSEs
f systematic errors are beyond prior uncertainties. As for the proposed
ethod, the results confirm all the considerations previously drawn:

hanks to a better model of measurement error, it achieves the best
erformance in all the conditions. As an example, focusing on branch
estimation results, i.e., longitudinal line parameters 𝛾5 and 𝛽5 and

systematic voltage and current phase-angle errors 𝛼5 and 𝜓52, with
𝐶 = 100 and PMU accuracy B, the improvements of the proposed
method with respect to Method A are of about 28% and 21% for line

parameters and of about 15% and 8% for 𝛼5 and 𝜓52, respectively.
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5. Conclusions

In this paper, an improved method based on PMU measurements
has been proposed for the simultaneous estimation of transmission
line parameters and systematic measurement errors. It is based on a
flexible estimation framework and the PMU measurement error model
is refined to keep realistic effects into account. The PMU errors are now
appropriately considered as composed of random and systematic con-
tributions but also phase-angle errors common to all the channels are
counted. In particular, the proposed algorithm evaluates and includes
at run-time the found correlation information within the estimation
framework. All the performed tests have proven that, in the presence
of phase-angle measurement error sources as those originated by the
device time-base errors, the estimation of both line parameters and
measurement chain systematic errors is significantly improved with
respect to other methods in the literature.

With the proposed approach the impact of model mismatch proves
to be low in the considered realistic conditions thus pointing to the
algorithm robustness. Future research studies will tackle the gener-
alization of the current method to other measurement configurations,
including, for instance, synchronized smart meters that could help
cover a possible lack of PMUs on some nodes.
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