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ABSTRACT
Some didactic issues associated with the computation of

degrees-of-freedom (d.o.f.) are herein discussed. In particu-
lar, the paper reports different definitions and methodologies of
computation of this important parameter. It is also proposed an
analytical approach to the d.o.f. computation of planar figures
subjected to unilateral constraints. Mechanisms with variable
kinematic structure are included in the present analysis. Some
ambiguities in the d.o.f. definition are pointed out.

1 Introduction
The concept of degree of freedom (d.o.f.) is of practical

use, but it must be acknowledged that has its own limitation.In
fact, for its computation important simplifying hypotheses for
the modeling of the mechanical system under analysis must be
introduced. These hypotheses may cause a significant difference
between the model and actual mechanism behavior. For instance,
there is large class of mechanisms (denoted asoverconstrained
mechanisms) whose mobility is due to precise proportions of
their parts, input links, geometric configuration. Moreover, under
certain (singular) configurations, due to a sudden d.o.f. variation,
numerical results of computer programs may be unreliable when
precautions are not taken. Finally, joint tolerances, elasticity of-
ten play a determinant role in the mechanisms mobility.

Kinematics is the science of constrained motion. Thus, it
is of practical interest to determine how many independent in-

∗Address all correspondence to this author.

puts must be prescribed in a mechanism in order to obtain a con-
strained motion of all the links.

This type of analysis can be preliminarily carried out by
means of simple formulas requiring only the knowledge of the
number of linksl , the numberj and nature of kinematic pairs.
In particular these formulas are usually obtained subtracting the
number of constraints imposed by the kinematic pairs from the
degrees-of-freedom of the free moving links. However, theymay
fail to provide the correct answer.

Thus, the training of a mechanical engineer should make
him/her aware:

- of the hypotheses introduced when investigating the mobil-
ity of a mechanism or when computing its d.o.f.;

- of the theoretical limits of some topological formulas;
- of the causes and numerical effects due to the d.o.f. varia-

tion;
- of some guidelines useful to identify idle or redundant d.o.f.;
- on how to recognize and identify the critical configuration

of a mechanism;
- on how to compute the d.o.f. of an overconstrained mecha-

nism;

In some simple cases the engineer should be trained to compute
the link proportions that ensure the mechanism mobility of over-
constrained linkages.

Despite the importance of the topic, standard textbooks of
theory of machines (e.g. [1, 3]) usually dedicate very little space
on methodologies for completing the listed tasks.
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On the contrary, the scientific literature records important
monographies (e.g. [4, 5]) entirely dedicated to the topic (e.g.
[4, 5]). However, the higly specialized nature of these contribu-
tions does not always help to an elementary and didactic effective
introduction to the subject.

The main purpose of this paper is to report the choices and
experiences of the authors when teaching this topic at a sec-
ond year mechanical engineering course and call the attention
on some contradictory definitions of d.o.f. The authors hopethat
the paper contents may give hints on more effective didacticap-
proaches to the d.o.f. computation.

Somewhat novel analytical approaches of mobility analysis,
for planar figures subjected to unilateral constraints and variable
kinematic structure mechanisms, are also discussed.

Considered the tutorial purpose of this paper, are omitted
those treatments requiring a knowledge outside the common the-
oretical background of an undegraduate engineering student.

The paper is divided in the following parts:

- Review of some definitions of d.o.f.
- Review of frequently used topological formulas and of their

extensions.
- State the mathematical bases for the matrix d.o.f. analysis.
- Proposal of an analytical method for computing the d.o.f. of

mechanisms with variable kinematic structure.
- Comparison of the effectiveness of different definitions

when the d.o.f. of a mechanism is assessed.
- Mobility analysis of planar figures with unilateral con-

straints.
- Case-studies.
- Conclusions

The following nomenclature is herein adopted:

- F :degrees-of-freedom of the mechanism (d.o.f.);
- fi : degrees-of-freedom of theith kinematic pair;
- l : number of links (frame included);
- Lind :number of independent circuits;
- j : number of kinematic pairs;
- j i : number of kinematic pairs withi degrees-of-freedom;
- mi : ith independent, scalar, displacement variable of mecha-

nisms (associated with the relative displacements at a joint);
- M total number of independent, scalar, displacement vari-

ables;
- pi : number of kinematic pairs which introducei degrees-of-

constraint;
- λ: (mobility number) degree-of-freedom of space within

which the mechanism operatese.g.(=3 for planar and spher-
ical space), (=6 spatial space);

- λi : number of independent, scalar, loop-closure equations
associated with theith independent loop.

Table 1. Classification of kinematic pairs according to their d.o.f.

(Adapted from [22])

2 Kinematic structure and kinematic pairs classifica-
tion
Through thekinematic structureanalysis are gathered all the

essential informations about which link is connected to there-
maining links and to the nature of kinematic joints. This is a
the first step in mechanical systems analysis. For this task the
correspondence between graphs and mechanisms seems very ap-
propriate.

The kinematic pairs can be classified according to their
degrees-of-freedom (see Table 1).

3 Some definitions of the term degree-of-freedom
The mobility analysis requires a correct and complete def-

inition of what is meant with the termdegrees-of-freedomof a
mechanical system.

The following list of definitions has been compiled from
textbooks:
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Definition 1 :
“If (δq1,δq2, . . . ,δqn) are arbitrary infinitesimal increments of
the coordinates in a dynamical system these will define a pos-
sible displacement if the system is holonomic, while for non-
holonomic systems a certain number, saym of equations must
be satisfied between them in order that they may correspond toa
possible displacement. The number(n−m) is called thenumber
of degrees of freedomof the system.” ( [2], p.34)
Definition 2 :
“The number of degrees of freedom of a system is the number of

independent variables that must be specified to define completely
the condition of the system. In the case of kinematic chains,it is
the numberF of independent pair variables needed to completely
define the relative positions of all links.” ( [6], p.133)
Definition 3 :
“By degrees of freedom we mean the number of independent

inputs required to determine the position of all links of themech-
anism with respect to ground.” ( [3], p. 16)
Definition 4 :
“Grübler was the first to study the relationship between themo-

bility of a plane four-bar linkage and the degrees of freedomof
the individual members and joints. The degrees of freedom ina
plane kinematic chain can be found by adding the number of de-
grees of freedom for the links in the mechanism taken separately
and then subtracting the degrees of freedom lost as the linksare
assembled.” ( [9], p.103)
Definition 5 :
“In general, there will beN explicit equations of constraint as-

sociated with a given system; they may be expressed in the form

Fi (ψ1,ψ2, . . . ,ψM,t) = 0 (i = 1,2, . . . ,N) (1)

Lagrangian coordinates may be chosen in a wide variety of ways.
However, for holonomic systems the minimum number of such
variables needed to define the position of every particle in the
system is,by definition, thedegree of freedom F. · · · When we
use more Lagrangian variables than the minimum required fora
complete set, we say we are using redundant coordinates. For
each redundant coordinate introduced, there exists one explicit
equation of constraint.· · · If M Lagrangian variables are cho-
sen for a system with a maximum ofC independent equations
of constraints among them, it is possible, in principle, to com-
puteC of the coordinates from a knowledge of the other(M−C)
coordinates. Accordingly, the system has

F = M−C (2)

degrees of freedom. If there is any doubt about the number of in-
dependent1 explicit constraint equations associated with a given

1A more formal determination of the number of independent equations of
constraint is given by the rank of the Jacobian matrix formedfrom Eqs. (1).

Figure 1. Some critical configurations of the slider-crank mechanism

choice ofM, one can always calculateF from equation (1) (for
the associated discrete particle model).” ( [7], p.265-266)
Definition 6 :
...the number of parameters needed to specify the configuration

of a mechanism, in terms of the number of links and joints and
the freedom of movement allowed at each joint. This number is
thedegree of freedomor mobility of the mechanism. Changing
the values of these parameters changes the configuration of the
mechanism. Thus, if we view the set of all configurations avail-
able to the mechanism as a manifold in a higher dimensional
space, then the mobility of the mechanism is the dimension of
this manifold. ( [10], p.67)

We can divide the mobility criteria of a mechanism into two
categories:

- topological;
- analytical.

Mobility criteria based on mechanism topology allow to compute
the mobility depending solely on the number of links, jointsand
joints type.

The analytical criteria require a more sophisticated ap-
proach, often based on calculus and geometry.

4 A review of some topological formulas for comput-
ing the degrees of freedom
Due to space limitations, only the formulas that are believed

to be most useful for didactic purposes are herein mentioned.

Grübler formula (1883)
The Grübler formula is likely one of the oldest relation for
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computing the degrees of freedom of a linkage, although
Grübler himself recognized in his writings that both Cheby-
shev (1869) and Sylvester (1874) were aware of equivalent
relations.

F = 3(l −1)−2 j1− j2 . (3)

The formula is valid for planar mechanisms only.
Somov-Malyshev formula (1923)

F = 6(l −1)−5p5−4p4−3p3−2p2− p1 . (4)

In this form, the formula is valid for spatial mechanisms.
Interesting variations of (4) to accommodate redundant con-
straints mechanisms are discussed by Ruzinov [18].
Kutzbach formula (1933)

F = λ(l − j −1)+
j

∑
i=1

fi . (5)

The formula can be applied both to planar and spatial mech-
anisms by choosing properly the value ofλ.
Sometime in a mechanism there are degrees-of-freedom
which do not have any effect on the mathematical relation-
ship between input and output links. These are calledidle
or passivedegrees of freedom. For example, a binary link
connected to adjacent spherical joints (S-S) can rotate freely
about the axis through the centers of the spheres. However,
such movement has not influence on the motion of the re-
maining links.
Let C represent cylindrical pair,E, plane pair,R, revolute
pair andS spherical pair. The Table 2 summarizes some
cases of binary links whose motion can be associated with
passive d.o.f.
Kutzbach’s formula can be modified as follows [19]

F = λ(l − j −1)− fp+
j

∑
i=1

fi , (6)

where fp are the passive d.o.f. in the mechanism. Passive
d.o.f. may appear also in spatial mechanisms such as the
RSSR mechanism.
Buchsbaum-Freudenstein (1970)
This formula is valid for gear drive mechanisms [12] only.
Substituting in (5) [8]

Lind = j − l +1 , (7)

jG = Lind , (8)

Table 2. Binary links and passive d.o.f.

Adjacent Passive d.o.f.

kinematic pairs

SS Rotation about the axes

through the centers of spheres.

SC Rotation about the axis of the cylindric

pair through the center ofS.

SE Rotation about the axis⊥ to E

through the center ofS.

EE Translation along an axis parallel to the

axis common to bothE planes.

There are 3 passive d.o.f. when the planes

are parallel (1 rotation and 2 translations.)

one obtains

F = jR− jG , (9)

wherejR and jG are the number of geared and revolute pairs,
respectively.
Freudenstein-Alizade (1975)
The value ofF is computed as a difference between the num-
ber of independent scalar displacement variables and inde-
pendent scalar closure equations:

F =
M

∑
i=1

mi −
L

∑
i=1

λi (10)

In order to simplify the application of (10) three particular
cases can be considered:

1. Displacement variables are in 1:1 correspondence with
kinematic pairs d.o.f.
The following equality hold:

M

∑
i=1

mi =
j

∑
i=1

fi . (11)

2. The number of independent scalar loops is the same
for each mechanism circuit.
The following equality hold:

λi = λ (i = 1,2, . . . ,Lind) (12)
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3. Previous conditions hold simultaneously.
The equation (10) can be rewritten as follows

F =
j

∑
i=1

fi −λLind . (13)

Considered (7), from (13), one obtains (5).

5 Matrix method of d.o.f. analysis
Let us consider a finite numbern of generalized coordi-

natesqk (k = 1, · · · ,n), which define the positions of all the links
of a mechanism, and letp the number of independent equa-
tions that can be established between the infinitesimal variations
(δq1,δq2, · · · ,δqn).

Then, according to Whittaker [2], the mobility of a mechan-
ical system is obtained from

F = n− p . (14)

This expression requires the computation ofp.
If the set of equations















ψ1 (q1, q2, · · · ,qn) = 0
ψ2 (q1, q2, · · · ,qn) = 0

· · ·
ψm(q1, q2, · · · ,qn) = 0

(15)

can be established between the coordinatesqk, then the following
theorem hold [14]2:

Theorem. Given m compatible functionsψ j ( j = 1, 2, · · · ,m) of
any number n of variables qk (k = 1, 2, · · · ,n), if the rank of
the Jacobian matrix is r, then there are m− r relations (and not
more) between theψ j which do not involve the qk.

As a corollary, if the functions are independent (i.e. r = m)
there exists not any relation between them.

The theorem just stated supply us a criterion for testing the
existence of functions of the type

F (ψ1, ψ2, · · · ,ψm) = 0 . (16)

involving theψ’s only and not theq’s.

2The tight connection between the d.o.f. definition of E.T. Whittaker and the
following theorems is also by witnessed by the fact that the Whittaker himself
recommended the complete translation of the Italian text ofT. Levi-Civita Lezioni
di calcolo differenziale assoluto[14].

Once the absence of relations of the type (16) has been as-
certained, one can proceed to the computation ofp.

For this purpose let us partition3 the vector{q} in

1. dependentcoordinates

{y} =
{

y1 y2 · · · ym
}T

,

2. independentcoordinates

{x} =
{

x1 x2 · · · xF
}T

,

The theorem of existence of implicit functions states that [15,16]

Theorem. Let ψ1, ψ2, · · · ,ψm denote real single-valued com-
patible functions of a finite number of variables(q1, q2, · · · ,qn).

If the following conditions hold simultaneously

1.
{

q(0)
}

=
{

x(0)
1 x(0)

2 · · · x(0)
F y(0)

1 y(0)
2 · · · y(0)

m

}T
is a solu-

tion of the system of equations



























ψ1

(

q(0)
1 , q(0)

2 , · · · ,q(0)
n

)

= 0 ,

ψ2

(

q(0)
1 , q(0)

2 , · · · ,q(0)
n

)

= 0 ,

· · ·
ψm

(

q(0)
1 , q(0)

2 , · · · ,q(0)
n

)

= 0 ;

(17)

2. theψ1, ψ2, · · · ,ψm and all their first partial derivatives are

continuous over a neighborhood
{

q(0)
}

;

3. the determinant of the Jacobian

J

(

ψ1, · · · ,ψm

y1, · · · ,ym

)

=











∂ψ1
∂y1

∂ψ1
∂y2

· · · ∂ψ1
∂ym

∂ψ2
∂y1

∂ψ2
∂y2

· · · ∂ fm
∂ym

· · · · · · · · · · · ·
∂ψm
∂y1

∂ψm
∂y2

· · · ∂ψm
∂ym











(18)

is different than zero;

then the (15), within a neighborhood of
{

q(0)
}

define

(y1, y2, · · · ,ym) as single-valued functions of(x1, x2, · · · ,xF).

If the conditions mentioned by the previously stated theorem
are all satisfied, then

p = m , (19a)

3At the beginning the value ofF is conjectured. The subsequent analysis is
aimed to verify the conjecture.
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Transition interval

xxa

ε
2

ε
2

Figure 2. Approximation to Heaviside step function when x = xa

else,

p = r , (19b)

when (18) has rankr. Although its reliability is higher than for-
mulas based on topology, at the textbook level, this approach has
been rarely reported [7,17].

The matrix approach can evidence how geometry, link posi-
tions, and input link affect the degree of freedom of a mechanism.

Since the criterion discussed in this section requires the eval-
uation of constraint equations derivatives, the conclusions on the
d.o.f. value are limited to a given configuration and limitedto
infinitesimal displacements.

The configurations of a mechanism without a full rank of the
Jacobian are namedcritical. If rank deficiency is maintained for
a finite range of movement, then the critical form is saidperma-
nent, otherwiseinstantaneous.

6 Degrees of freedom analysis of variable kinematic
structure and intermittent motion mechanisms

In this section it is hinted the use of logical functions for
d.o.f. computation of mechanisms with variable kinematic struc-
ture or intermittent motion. We assume that the matrix method is
adopted.

Logical functions are an useful mathematical tool for model-
ing the kinematics and the dynamics of intermittent and variable
kinematic structure mechanisms. For our purposes, the occur-
rence of discontinuities of kinematic structure can be treated by
introducingad hoclogic conditions that regulate the type and the
number of kinematic constraints that must be taken into account.
Let L(x) be a continuous function

�
�
�

�
�
�

����

�

�
�
�

�
�
�

�

���

x

	


�

	�




�

82 4 1060 x
a) b)

Figure 3. Plots of L(x) and L′(x) when xa = 3, n = 3, ε = 10−2

L(x) =
1
2

|x|2n+1 +x2n+1

|x|2n+1 + 1
2

[

|x− ε|2n+1− (x− ε)2n+1
] =











0 x≤ 0
1
2 y = ε

2

1 x≥ ε
(20)

whereε > 0 is the amplitude of thetransition interval(see Fig-
ure 2) from one state to another andn is chosen so as to assure
continuity of any derivative, of orderd, which will be true if

2n+1> d . (21)

Equation (20) approximates the ideal Heaviside step function
H(x)

H(x) =

{

0 sex < 0

1 sex > 0 .
(22)

The first and second derivatives of (20) give an approximation of
theδ Dirac’s and doublet functions, respectively. The step func-
tion at abscissax = xa is obtained substituting in (20)(x−xa) at
x. Several investigations confirmed the reliability and accuracy
of dynamic analysis results through the use of logical functions.

7 Case studies
The double slider-crank
By means of the theorem on the existence of implicit functions,
one can find the dimensions of the linkage which ensure a perma-
nent critical form of the mechanism. Alternatively, one canfind
both dimensions and configuration for an instantaneous critical
form.

The loop constraint equations for this mechanism are

{Ψ} =















r1cosθ1 + r21cosθ2−s3

r1sinθ1 + r21sinθ2

r1cosθ1− r22cosθ2

r1sinθ1− r22sinθ2−s4















(23)
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Figure 4. Double slider-crank in a)permanent and b) instantaneous crit-

ical form

The determinant of the Jacobian matrix is

|J| =
∣

∣

∣

∣

Ψ1,Ψ2,Ψ3,Ψ4

θ1,θ2,s3,s4

∣

∣

∣

∣

= r22sinθ2 cosθ1 + r21sinθ1 cosθ2

(24)
This will be always zero whenr22 = r21 andθ1 + θ2 = 2π. It
must be observed that (24) is fulfilled when the normals to the
trajectory paths of pointsM, B andC simultaneously converge in
only one pointP (center of instantaneous rotation). The coupler
will have an instantaneous mobility. Applying Euler-Savary
equation, one conclude that the mobility can be up to second
order infinitesimal displacements whenAM = P0M2/M′M.

Mobility of a figure subjected to unilateral constraints
An interesting problem is the assessment of the degree of con-
straint of a planar figure. The problem received a graphical solu-
tion by Reuleaux [13,17]. The matrix method for computing the
d.o.f. is herein applied. Without loss of generality, let usassume
that the planar figure:

- is an ellipse with

xM = acosτ yM = b sinτ , (25)

as parametric equation;
- has initially three points of tangency with straight lines.

Our purpose is to investigate the slopesm1, m2 and m3 of the
three straight lines which fully constrain the ellipse.

The coordinatesxMi ,yMi of tangency points are located solv-
ing the equations

tanτi = − b
ami

(26)
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w.r.t. τi (i = 1,2,3) and making use of (25).
A moving Cartesian system is attached to the ellipse. The

origin (X0,Y0) is in the center of ellipse and the moving axes are
directed as shown in Figure 7 and initially aligned with fixedaxes
(i.e. θ = 0).

The absolute coordinates of the tangency points are

XMi = X0 +xMi cosθ−yMi sinθ
YMi = Y0 +yMi sinθ+yMi cosθ (i = 1,2,3) (27)

When the points on the figure are initially in contact with the
straight lines, any infinitesimal displacement of the figuremust
satisfy the following kinematic conditions:

{

δXMi

δYMi

}T {

nxi

nyi

}

≥ 0 , (i = 1,2,3) (28)

where{n} =
{

nxi nyi

}

is the versor of the normal to theith

straight line oriented toward the inside of the figure. The equal-
ity sign holds when theith contact point is required to maintain
contact with the straight line.

In matrix notation, eq. (28) can be rewritten as follows





nx1 ny1 (ny1acosτ1−nx1bsinτ1)
nx2 ny2 (ny2acosτ2−nx2bsinτ2)
nx3 ny3 (ny3acosτ3−nx3bsinτ3)











δX0

δY0

δθ







≥ {0} (29)

When the above linear inequalities system does not have any fea-
sible solution, then the figure is fully constrained.

A noteworthy case is when equalities apply and the coeffi-
cient matrix of (29) does not have a full rank. From the appli-
cation of theorem of existence of implicit functions we deduce
that the figure may have an infinitesimal displacement. This case
is depicted in Figure 7 a) where the slopes of the straight lines
arem1 = 1, m2 = −1 andm3 = 0. The normals to the velocities
of M1, M2 and M3 simultaneously converge in only one point
(center of instantaneous rotation).
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Figure 5. The Yale pin tumbler lock mechanism [21].

In the case depicted in Figure 7 b), (29) has the following
solution

δX0 ≤ 0 , (30a)

δY0 ≤ 0 , (30b)
√

2
2

δX0−
√

2
2

δY0 ≤ .7692191581δθ (30c)
√

2
2

δX0 +

√
2

2
δY0 ≤−.7692191581δθ (30d)

A geometric interpretation of the result obtained is shown in
Figure 7. The feasible area of a center of instantaneous rotation
of the figure is within the grey area and only c.c.w. rotations
are admitted (i.e.δθ > 0). In particular, the last two equations of
eqs. (30) are the equations of the dotted straight lines throughM1

andM2. This result is consistent with the graphical constructions
described by Reuleaux.

The Yale type lock mechanism
The cylinder lock, shown in Figure 5, has five pins which are cut
through. When the proper key is inserted in the lock these cuts
all line up allowing the cylinder to be rotated and the lock tobe
opened.

A simplified planar model of this mechanism is shown in
Figure 7 The kinematics of this mechanism can be described by

�

	



�

means of the following constraint equations

{Ψ} =















[1−L1(s− r0)](θ−π)
[1−L1(s− r0)](s− p(t))
L1 (s− r0)(θ−α(t))
L1 (s− r0)(s−s0)















(31)

where logic functions are used. The first two constraints arevalid
when the cylinder is not allowed to rotate.

8 Discussion
The d.o.f. definitions and computation criteria reviewed in

this paper can be divided in two broad categories:

1. those based only on kinematic structure analysis;
2. those based on analytical criteria.

Due to their simplicity, the first type is always discussed and in-
cluded under various algebraic forms in textbooks. The second
type is less frequently reported.

Although the approaches for computing the d.o.f. are based
on different simplifying hypotheses, it should be acknowledged
that there are significant differences in thedefinitionsof d.o.f.
herein reviewed. These affect the d.o.f. estimate.

For example, in the slider-crank shown in Figure 1, only one
variable is required to specify the relative positions of all links or
to determine theirpositionsw.r.t. the ground link. Thus, accord-
ing to Definitions 2, 3 and 4, this linkage hasF = 1 d.o.f.

However, since the slider-crank is in critical configurations
(see Figure 1), from Definitions 1 or 5, one would conclude that
the mechanism has instantaneouslyF = 2 two d.o.f. In fact, for
a given infinitesimal displacement of the input link, theinfini-
tesimal displacementsof the remaining links are not uniquely
defined.

This ambiguity follows directly from the different defini-
tions of d.o.f. and not from simplifying hypotheses.
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