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 In this study, some linear PDEs and nonlinear PDEs are investigated 
using the homotopy perturbation method (HPM). The primary 
objective of this research is to employ the HPM as a tool for 
investigating a range of PDEs and extracting their analytical 
solutions. To clarify the practicality and efficacy of this method, we 
present illustrative examples of linear PDEs encompassing the 
classical heat, wave, and Laplace equations. Subsequently, a 
comparative analysis is performed, contrasting the outcomes derived 
from the HPM with established accurate solutions. Through this 
comparative approach, we aim to provide a comprehensive 
understanding of the HPM's applicability, robustness, and precision 
in solving a spectrum of PDEs. Our study contributes to the broader 
exploration of innovative mathematical techniques for tackling 
complex PDEs, while also shedding light on the potential advantages 
and limitations of the homotopy perturbation method in practical 
applications. 

http://ejournal.radenintan.ac.id/index.php/desimal/index 

 

 

INTRODUCTION 

The Partial Differential Equation 
(PDE) is a commonly used mathematical 
tool to describe natural phenomena. PDEs 
can be classified into different types, 
including elliptic, parabolic, and 
hyperbolic. Elliptic PDEs describe 
stationary events, while parabolic PDEs 
are used to model time-dependent 
processes such as heat conduction and 
particle diffusion. The Homotopy 
Perturbation Method (HPM) is a popular 
method used to solve PDEs and was 

developed by a Chinese researcher named 
He (1999). The HPM has been used by 
many scholars to solve these types of 
PDEs. The mathematical study of the 
biological population model by HPM has 
been studied in Roul (2010). The 
mathematical study of diabetes and its 
complications by HPM is studied in Enagi, 
Bawa, & Sani (2017). Nonlinear 
Schrodinger equations have been studied 
by HPM in Biazar & Ghazvini (2007). The 
HPM has been applied to the mathematical 
study of the SIR Mumps Modelin (Ayoade, 
Peter, Abioye, Aminu, & Uwaheren, 2020). 
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In Ganji (2006), nonlinear Burger 
equations and nonlinear equations arising 
in heat transforms are studied. 
Hoseinzadeh, Heyns, Chamkha, & 
Shirkhani (2019) compare analytical and 
numerical methods to analyze the thermal 
analysis of a porous fin enclosure. 
Nonlinear Oscillators are studied in Anjum 
& He (2020), the non-linear K-dV equation 
is studied in Rahman, Murshed, & Akhter 
(2022), and many other types of nonlinear 
problems have been studied by this 
method. 

The purpose of this paper is to 
evaluate the performance of the 
Homotopy Perturbation Method (HPM) 
for solving different types of partial 
differential equations (PDEs), including 
elliptic, parabolic, and hyperbolic PDEs. 
Specifically, the Laplace equation, heat 
equation, and wave equation are 
considered, and the results obtained using 
the HPM are compared with their 
corresponding exact solutions (Burden & 
Faires, 1978).  

METHOD  

To complete this study, the following 
research approach was used: 

(i) The literature has been 

reviewed to establish the 

justification and history of this 

research.  
(ii) The Homotopy Perturbation 

Method (HPM), which is found 

in Rahman et al. (2022), has 

been investigated. 

(iii) Creating a numerical strategy 

for a certain parabolic PDE. 

(iv) Creating a numerical strategy 

for a certain elliptic PDE. 

(v) Creating a numerical strategy 

for a certain hyperbolic PDE. 

(vi) Compare all the estimated 

outcomes with Burden & Faires 

(1978). 

(vii) Finally, the results have been 

analyzed.  

RESULTS AND DISCUSSION 

The numerical schemes of HPM for 
elliptic, parabolic, and hyperbolic PDEs 
are described below: 
 
Example 1: Consider the following linear 
elliptic PDEs (Laplace equation):   
(1)  𝑢𝑥𝑥 + 𝑢𝑡𝑡 = 4, 0 < 𝑥 < 1;  0 < 𝑡 < 2,    
subject to the initial conditions  𝑢(𝑥, 0) =
𝑥2; 𝑢𝑡(𝑥, 0) = −2𝑥. 
 
For solving equation (1) by the homotopy 
perturbation method, first we construct a 
homotopy 𝑤: 𝛺 × [0,1]  →  ℝ2  that 
satisfies the homotopy equation 
𝐻(𝑤, 𝑝) = ℒ(𝑤) − ℒ(𝑢0) + 𝑝[ℒ(𝑢0) +
𝒩(𝑤) − 𝑓(𝑡)] = 0, where 𝑡 ϵ Ω, 𝑝 𝜖 [0, 1], 

ℒ =
𝜕2

𝜕𝑡2, 𝒩(𝑤) =
𝜕2𝑤

𝜕𝑥2 ,   𝑓(𝑡) = 4. 

Then we have: 
(2) 𝑤𝑡𝑡  − (𝑢0)𝑡𝑡 +  𝑝(𝑢0)𝑡𝑡 +  𝑝[𝑤𝑥𝑥 −
4] = 0                               
 
Substituting the initial condition in 
equation (2), we have,  
 𝑤𝑡𝑡 − (𝑥2)𝑡𝑡 + 𝑝(𝑥2)𝑡𝑡 + 𝑝[𝑤𝑥𝑥 − 4] = 0 
i.e., (3)   𝑤𝑡𝑡 − 0 + 𝑝. 0 + 𝑝[𝑤𝑥𝑥 − 4] = 0,  
i.e., 𝑤𝑡𝑡 + 𝑝[𝑤𝑥𝑥 − 4] = 0  
Substituting 𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +
 𝑝3𝑤3 + ∙ ∙ ∙  in equation (3), we have 
(4)     (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 + ∙ ∙ ∙
)𝑡𝑡 + 𝑝[(𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 + ∙ ∙
 ∙)𝑥𝑥 − 4] = 0.                               
Considering 𝑢(𝑥, 0) = 𝑤(𝑥, 0) = 𝑥2, we 
get  (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3 + ∙ ∙ ∙
)(𝑥, 0) = 𝑥2   
i.e.,(𝑤0(𝑥, 0) = 𝑥2, 𝑤1(𝑥, 0) = 𝑤2(𝑥, 0) =
𝑤3(𝑥, 0) = ∙ ∙ ∙ = 𝑤𝑛(𝑥, 0) = ∙ ∙ ∙ = 0,       
and 𝑢𝑡(𝑥, 0) = 𝑤𝑡(𝑥, 0) = −2𝑥,       
𝑖. 𝑒. , (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +  𝑝3𝑤3 + ∙ ∙ ∙
)𝑡(𝑥, 0) = −2𝑥 
i.e.,. (𝑤0)𝑡(𝑥, 0) = −2𝑥,  (𝑤1)𝑡(𝑥, 0) =
(𝑤2)𝑡(𝑥, 0) = (𝑤3)𝑡(𝑥, 0) = ∙ ∙ ∙ =
(𝑤𝑛)𝑡(𝑥, 0) = ∙ ∙ ∙ = 0. 
Now equation (4) can be written as:   
𝑝0(𝑤0)𝑡𝑡 + 𝑝1[(𝑤1)𝑡𝑡 + (𝑤0)𝑥𝑥 − 4] +
𝑝2[(𝑤2)𝑡𝑡 + (𝑤1)𝑥𝑥] + 𝑝3[(𝑤3)𝑡𝑡 +
(𝑤2)𝑥𝑥] + ∙ ∙ ∙ +𝑝𝑛[(𝑤𝑛)𝑡𝑡 + (𝑤𝑛−1)𝑥𝑥] +∙ ∙
 ∙ = 0. 
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Which can be written as: 
𝑝0:   (𝑤0)𝑡𝑡, (𝑤0(𝑥, 0) = 𝑥2, (𝑤0)𝑡(𝑥, 0) =
        −2𝑥 
𝑝1:    (𝑤1)𝑡𝑡 + (𝑤0)𝑥𝑥 − 4 = 0, 𝑤1(𝑥, 0) =
0,         (𝑤1)𝑡(𝑥, 0) = 0 
𝑝2: (𝑤2)𝑡𝑡 + (𝑤1)𝑥𝑥 = 0, 𝑤2(𝑥, 0) = 0, 
           (𝑤2)𝑡(𝑥, 0) = 0 
𝑝3: (𝑤3)𝑡𝑡 + (𝑤2)𝑥𝑥 = 0, 𝑤3(𝑥, 0) = 0, 
           (𝑤3)𝑡(𝑥, 0) = 0 
  ⁝ 
𝑝𝑛:   (𝑤𝑛)𝑡𝑡 + (𝑤𝑛−1)𝑥𝑥 = 0, 𝑤𝑛(𝑥, 0) = 0, 
           (𝑤𝑛)𝑡(𝑥, 0) = 0 
  ⁝ 
Solving the above equations, we have   
𝑤0 = −2𝑥𝑡 + 𝑥2, 𝑤1 = 𝑡2, 𝑤2 = 0, 𝑤3 = 0  
Continuing this process, we have  𝑤4 =
𝑤5 = ∙ ∙ ∙ = 𝑤𝑛 = ∙ ∙ ∙ = 0   
Therefore, the solution series is given by 
𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚

𝑝→1
𝑤 (𝑥, 𝑡) = 𝑤0 + 𝑤1 + 𝑤2 +

 𝑤3 + ∙ ∙ ∙  
i.e., 𝑢(𝑥, 𝑡) = −2𝑥𝑡 + 𝑥2 + 𝑡2 + 0 + 0 +
0 +∙ ∙ ∙   
i.e., 𝑢(𝑥, 𝑡) = (𝑥 − 𝑡)2. 
 
Example 2: Consider the following 
parabolic PDEs (heat equation): 

(5)          𝑢𝑡 =
4

𝜋2 𝑢𝑥𝑥 ,    0 < 𝑥 < 4; 0 < 𝑡 ;    

Subject to the initial conditions, 𝑢(𝑥, 0) =

𝑠𝑖𝑛(
𝜋𝑥

4
)(1 + 2𝑐𝑜𝑠(

𝜋𝑥

4
)), 0 ≤ 𝑥 ≤ 4. 

For solving equation (5) by the homotopy 
perturbation method, first we construct a 
homotopy 𝑤: 𝛺 × [0,1]  →  ℝ2  that 
satisfies the homotopy equation 
𝐻(𝑤, 𝑝) = ℒ(𝑤) − ℒ(𝑢0) + 𝑝[ℒ(𝑢0) +
𝒩(𝑤) − 𝑓(𝑟)] = 0,where 𝑟 ϵ Ω, 

𝑝 𝜖 [0, 1], ℒ =
𝜕

𝜕𝑡
, 𝒩(𝑤) =

𝜕2𝑤

𝜕𝑥2 , 𝑓(𝑡) = 0. 

Then we have, 

(6)    𝑤𝑡 − (𝑢0)𝑡 + 𝑝(𝑢0)𝑡 −
4

π2 𝑝𝑤𝑥𝑥 = 0.       

              
Substituting 𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +
𝑝3𝑤3  + ∙ ∙ ∙ in equation (6), we have 
(7)    (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙ )𝑡 −

(𝑢0)𝑡 + 𝑝(𝑢0)𝑡 −
4

π2 𝑝(𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +

𝑝3𝑤3  + ∙ ∙ ∙ )𝑥𝑥 = 0, 
For simplifying we consider 𝑢(𝑥, 0) =

𝑤(𝑥, 0) =  𝑠𝑖𝑛(
𝜋𝑥

4
)(1 + 2𝑐𝑜𝑠(

𝜋𝑥

4
)) 

i.e.,(𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙

)(𝑥, 0) =  𝑠𝑖𝑛(
𝜋𝑥

4
)(1 + 2𝑐𝑜𝑠(

𝜋𝑥

4
)) 

i.e., (𝑤0)(𝑥, 0) = 𝑠𝑖𝑛(
𝜋𝑥

4
)(1 + 2𝑐𝑜𝑠(

𝜋𝑥

4
)),

(𝑤1)(𝑥, 0) = (𝑤2)(𝑥, 0) = (𝑤3)(𝑥, 0) = ∙ ∙ ∙
 = 0. 
Now equation (7) can be written as 

𝑝0[(𝑤0)𝑡−(𝑢0)𝑡] + 𝑝1 [(𝑤1)𝑡 + (𝑢0)𝑡 −
4

π2
(𝑤0)𝑥𝑥] + 𝑝2 [(𝑤2)𝑡 −

4

π2
(𝑤1)𝑥𝑥] +

𝑝3 [(𝑤3)𝑡 −
4

π2
(𝑤2)𝑥𝑥] + ∙ ∙ ∙ +𝑝𝑛 [(𝑤𝑛)𝑡 −

 
4

π2
(𝑤𝑛−1)𝑥𝑥] + ∙ ∙ ∙ = 0. 

Which can be written as: 
𝑝0: (𝑤0)𝑡−(𝑢0)𝑡 = 0, (𝑤0)(𝑥, 0) =

sin (
𝜋𝑥

4
) 

       (1 + 2𝑐𝑜𝑠(
𝜋𝑥

4
)),   

𝑝1: (𝑤1)𝑡 + (𝑢0)𝑡 −
4

π2
(𝑤0)𝑥𝑥 = 0, 

        (𝑤1)(𝑥, 0) = 0 

𝑝2: (𝑤2)𝑡 −
4

π2
(𝑤1)𝑥𝑥 = 0, (𝑤2)(𝑥, 0) = 0 

𝑝3: (𝑤3)𝑡 −
4

π2
(𝑤2)𝑥𝑥 = 0, (𝑤3)(𝑥, 0) = 0 

  ⁝ 

𝑝𝑛: (𝑤𝑛)𝑡 −
4

π2
(𝑤𝑛−1)𝑥𝑥 = 0, (𝑤𝑛)(𝑥, 0) =

        0 
  ⁝ 
Solving the above equations, we get  

 𝑤0 = 𝑢0  =  𝑠𝑖𝑛(
𝜋𝑥

4
) + 𝑠𝑖𝑛(

𝜋𝑥

2
),   

 𝑤1 =  −
𝑡

4
𝑠𝑖𝑛(

𝜋𝑥

4
) −  𝑡𝑠𝑖𝑛(

𝜋𝑥

2
),   

𝑤2 =
1

42

t2

2!
 𝑠𝑖𝑛(

𝜋𝑥

4
) +

𝑡2

2!
𝑠𝑖𝑛(

𝜋𝑥

2
),  

𝑤3 = − 
1

43

t3

3!
 𝑠𝑖𝑛(

𝜋𝑥

4
) −

𝑡3

3!
𝑠𝑖𝑛(

𝜋𝑥

2
), 

Continuing in this process, we have 𝑤𝑛 =

(−1)𝑛  
1

4𝑛

t𝑛

n!
𝑠𝑖𝑛(

𝜋𝑥

4
) + (−1)𝑛 𝑡𝑛

𝑛!
𝑠𝑖𝑛(

𝜋𝑥

2
) 

Therefore, the solution of the series is 
given by 𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚

𝑝→1
𝑤 (𝑥, 𝑡)  = 𝑤0 +

𝑤1 + 𝑤2 + ∙ ∙ ∙ 

i.e., 𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛 (
𝜋𝑥

4
) + 𝑠𝑖𝑛 (

𝜋𝑥

2
) − 

𝑡

4
 

sin (
𝜋𝑥

4
) − 𝑡𝑠𝑖𝑛 (

𝜋𝑥

2
) +

1

42

t2

2!
𝑠𝑖𝑛 (

𝜋𝑥

4
) 

+
𝑡2

2!
𝑠𝑖𝑛 (

𝜋𝑥

2
) − 

1

43

t3

3!
𝑠𝑖𝑛 (

𝜋𝑥

4
) −

𝑡3

3!
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𝑠𝑖𝑛 (
𝜋𝑥

2
) + ∙ ∙ ∙  +(−1)𝑛  

1

4𝑛

t𝑛

n!
𝑠𝑖𝑛(

𝜋𝑥

4
)

+ (−1)𝑛
𝑡𝑛

𝑛!
𝑠𝑖𝑛(

𝜋𝑥

2
) + ∙ ∙ ∙  

i.e., 𝑢(𝑥, 𝑡) =  sin (
𝜋𝑥

4
)[1 −

t

4
 +

1

42 .
t2

2!
−

1

43 .
t3

3!
+ ∙ ∙ ∙ + (−1)𝑛 

1

4𝑛 .
t𝑛

n!
+ ∙ ∙ ∙  ]  +

sin (
𝜋𝑥

2
) 

[1 −  t +
t2

2!
−

t3

3!
+ ∙ ∙ ∙    + (−1)𝑛.

t𝑛

𝑛!
+ ∙ ∙ ∙ ]  

i.e.,  𝑢(𝑥, 𝑡) =  𝑠𝑖𝑛 (
𝜋𝑥

4
) 𝑒−

𝑡

4 +  𝑠𝑖𝑛 (
𝜋𝑥

2
) 𝑒−𝑡. 

 
Example 3: Consider the following 
hyperbolic PDEs (wave equation): 
(8)    𝑢𝑡𝑡 − 4𝑢𝑥𝑥 = 0, 0 < 𝑥 < 1;  0 < 𝑡, 
     
  
Subject to the initial conditions 𝑢(𝑥, 0) =
𝑠𝑖𝑛(𝜋𝑥);  0 ≤  𝑥 ≤ 1, 𝑢𝑡(𝑥, 0) = 0;. 
 
For solving equation (8) by the homotopy 
perturbation method, first we construct a 
homotopy 𝑤: 𝛺 × [0,1]  →  ℝ2  that 
satisfies the homotopy equation 
𝐻(𝑤, 𝑝) = ℒ(𝑤) − ℒ(𝑢0) + 𝑝[ℒ(𝑢0) +
𝒩(𝑤) − 𝑓(𝑡)] = 0, where 𝑡 ϵ Ω, 𝑝 ∈

 [0, 1], ℒ =
𝜕2

𝜕𝑡2 , 𝒩(𝑤) =
𝜕2𝑤

𝜕𝑥2 , 𝑓(𝑡) = 0. 

Then we have, 
(9)     𝑤𝑡𝑡 − (𝑢0)𝑡𝑡 + 𝑝(𝑢0)𝑡𝑡 − 4𝑝𝑤𝑥𝑥 = 0.  
Substituting 𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +
𝑝3𝑤3  + ∙ ∙ ∙ in equation (9), we have  
(10) (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙
 )𝑡𝑡 − (𝑢0)𝑡𝑡 + 𝑝(𝑢0)𝑡𝑡 − 4𝑝(𝑤0 + 𝑝𝑤1 +
𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙ )𝑥𝑥 = 0,              
For simplifying we consider 𝑢(𝑥, 0) =
𝑤(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥) 
i.e., (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙
 )(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥) 
i.e., 𝑤0(𝑥, 0) = 𝑠𝑖𝑛(𝜋𝑥),  
𝑤1(𝑥, 0) = 𝑤2(𝑥, 0) = 𝑤3(𝑥, 0) = ∙ ∙ ∙ =
𝑤𝑛(𝑥, 0) = ∙ ∙ ∙ = 0. 
Also, 𝑢𝑡(𝑥, 0) = 𝑤𝑡(𝑥, 0) = 0 
i.e., (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙
 )𝑡(𝑥, 0) = 0 
 i.e., (𝑤0)𝑡(𝑥, 0) = (𝑤1)𝑡(𝑥, 0) =
(𝑤2)𝑡(𝑥, 0) = ∙ ∙ ∙  = (𝑤𝑛)𝑡(𝑥, 0) = ∙ ∙ ∙ = 0 
Now equation (10) can be written as 
𝑝0[(𝑤0)𝑡𝑡−(𝑢0)𝑡𝑡] + 𝑝1[(𝑤1)𝑡𝑡 + (𝑢0)𝑡𝑡 −

4(𝑤0)𝑥𝑥] + 𝑝2[(𝑤2)𝑡𝑡 − 4(𝑤1)𝑥𝑥] +
𝑝3[(𝑤3)𝑡𝑡 − 4(𝑤2)𝑥𝑥] + ∙ ∙ ∙ +𝑝𝑛[(𝑤𝑛)𝑡𝑡 −
4(𝑤𝑛−1)𝑥𝑥] + ∙ ∙ ∙ = 0. 
Which can be written as: 
𝑝0: (𝑤0)𝑡𝑡−(𝑢0)𝑡𝑡 = 0, (𝑤0)(𝑥, 0) =
        𝑠𝑖𝑛(𝜋𝑥),   (𝑤0)𝑡(𝑥, 0) = 0 
𝑝1: (𝑤1)𝑡𝑡 + (𝑢0)𝑡𝑡 − 4(𝑤0)𝑥𝑥 = 0, 
       (𝑤1)(𝑥, 0) = 0, (𝑤1)𝑡(𝑥, 0) = 0 
𝑝2: (𝑤2)𝑡𝑡 − 4(𝑤1)𝑥𝑥 = 0, (𝑤2)(𝑥, 0) = 0, 
        (𝑤2)𝑡(𝑥, 0) = 0 
𝑝3: (𝑤3)𝑡𝑡 − 4(𝑤2)𝑥𝑥 = 0, (𝑤3)(𝑥, 0) = 0, 
       (𝑤3)𝑡(𝑥, 0) = 0 
  ⁝ 
𝑝𝑛: (𝑤𝑛)𝑡 − 4(𝑤𝑛−1)𝑥𝑥 = 0, (𝑤𝑛)(𝑥, 0) =
       0,  (𝑤0)𝑡(𝑥, 0) = 0 
  ⁝ 
Solving the above equations, we get 

𝑤0 = 𝑢0  = sin(𝜋𝑥),  𝑤1 = −(2𝜋)2 𝑡2

2!
 

sin(𝜋𝑥),𝑤2 = (2𝜋)4 𝑡4

4!
sin(𝜋𝑥), 𝑤3 =

− (2𝜋)6 𝑡6

6!
𝑠𝑖𝑛(𝜋𝑥), 𝑤4 =  (2𝜋)8 𝑡8

8!
𝑠𝑖𝑛(𝜋𝑥),

  
Continuing in this process, we can find 

𝑤𝑛 = (−1)𝑛 (2𝜋)2𝑛 𝑡2𝑛

(2𝑛)!
𝑠𝑖𝑛(𝜋𝑥), 

Therefore, the solution series is given by 
   𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚

𝑝→1
𝑤 (𝑥, 𝑡) = 𝑤0 + 𝑤1 + 𝑤2 +

 𝑤3 + ∙ ∙ ∙ +𝑤𝑛 +∙ ∙ ∙ 

i.e., 𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥) − (2𝜋)2 𝑡2

2!
𝑠𝑖𝑛(𝜋𝑥) 

+(2𝜋)4
𝑡4

4!
𝑠𝑖𝑛(𝜋𝑥) − (2𝜋)6

𝑡6

6!
𝑠𝑖𝑛(𝜋𝑥) 

+(2𝜋)8
𝑡8

8!
. 𝑠𝑖𝑛(𝜋𝑥) +∙ ∙ ∙ + (−1)𝑛 

 (2𝜋)2𝑛
𝑡2𝑛

(2𝑛)!
𝑠𝑖𝑛(𝜋𝑥) +∙ ∙ ∙ 

i.e., 𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥)[1 −
(2𝜋𝑡)2

2!
+

(2𝜋𝑡)4

4!
−

(2𝜋𝑡)6

6!
+

(2𝜋𝑡)8

8!
+ ∙ ∙ ∙ + (−1)𝑛 (2𝜋𝑡)2𝑛

(2𝑛)!
+ ∙ ∙ ∙  

i.e., 𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥) 𝑐𝑜𝑠(2𝜋𝑡). 

  
Example 4: Consider the following 
nonlinear PDEs  
(11)     𝑢𝑡 + 𝑢𝑢𝑥 = 0, 0 ≤ 𝑥 ≤ 1;  0 < 𝑡,  
Subject to the initial conditions 

𝑢(𝑥, 0) = 2 − 𝑥 
For solving equation (11) by the 
homotopy perturbation method, first we 
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construct a homotopy 𝑤: 𝛺 × [0,1]  →  ℝ2 

that satisfies the homotopy equation 
𝐻(𝑤, 𝑝) = ℒ(𝑤) − ℒ(𝑢0) + 𝑝[ℒ(𝑢0) +
𝒩(𝑤) − 𝑓(𝑡)] = 0, where 𝑡 ϵ Ω, 𝑝 ∈

 [0, 1], ℒ =
𝜕

𝜕𝑡
,  𝑓(𝑡) = 0. 

Then we have, 
(12)    𝑤𝑡 − (𝑢0)𝑡 + 𝑝(𝑢0)𝑡 + 𝑝 𝑤𝑤𝑥 = 0.                                                   
Substituting 𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3 
𝑤3  + ∙ ∙ ∙  in equation (12), we have  
(13)     (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙
 )𝑡 − (𝑢0)𝑡 + 𝑝(𝑢0)𝑡 + 𝑝 (𝑤0 + 𝑝𝑤1 +
𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙ ). (𝑤0 + 𝑝𝑤1 +
𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙ )𝑥 = 0.         
For simplifying we consider 𝑢(𝑥, 0) =
𝑤(𝑥, 0) = 2 − 𝑥 
i.e., (𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 + 𝑝3𝑤3  + ∙ ∙ ∙
 )(𝑥, 0) =  2 − 𝑥 
i.e., 𝑤0(𝑥, 0) = 2 − 𝑥,    
𝑤1(𝑥, 0) = 𝑤2(𝑥, 0) = 𝑤3(𝑥, 0) = ∙ ∙ ∙ =
𝑤𝑛(𝑥, 0) = ∙ ∙ ∙ = 0. 
Now equation (13) can be written as 
  
𝑝0[(𝑤0)𝑡−(𝑢0)𝑡] + 𝑝1[(𝑤1)𝑡 + (𝑢0)𝑡 +
𝑤0(𝑤0)𝑥] + 𝑝2[(𝑤2)𝑡 + 𝑤0(𝑤1)𝑥 +
𝑤1(𝑤0)𝑥] + 𝑝3[(𝑤3)𝑡 + 𝑤0(𝑤2)𝑥 +
𝑤1(𝑤1)𝑥 + 𝑤2(𝑤0)𝑥] + ∙ ∙ ∙ +𝑝𝑛[(wn)t +
∑ wi(wn−1−i)x]n−1

i=0 + ∙ ∙ ∙ = 0. 
  
Which can be written as: 
𝑝0: (𝑤0)𝑡−(𝑢0)𝑡 = 0, (𝑤0)(𝑥, 0) = 2 − 𝑥           
𝑝1: (𝑤1)𝑡 + (𝑢0)𝑡 + 𝑤0(𝑤0)𝑥 = 0, 
       (𝑤1)(𝑥, 0) = 0 
𝑝2: (𝑤2)𝑡 + 𝑤0(𝑤1)𝑥 + 𝑤1(𝑤0)𝑥 = 0, 
       (𝑤2)(𝑥, 0) = 0 
𝑝3: (𝑤3)𝑡 + 𝑤0(𝑤2)𝑥 + 𝑤1(𝑤1)𝑥 +
        𝑤2(𝑤0)𝑥 = 0, (𝑤3)(𝑥, 0) = 0 
  ⁝ 
𝑝𝑛: (wn)t + ∑ wi(wn−1−i)x

n−1
i=0 = 0, 

        (𝑤𝑛)(𝑥, 0) = 0   
  ⁝ 
Solving the above equations, we get 
𝑤0 = 𝑢0  =  2 − 𝑥;  𝑤1 = (2 − 𝑥)𝑡, 𝑤2 =
(2 − 𝑥)𝑡2; 𝑤3 = (2 − 𝑥)𝑡3,   
Continuing in this process, we can find 
 𝑤𝑛 = (2 − 𝑥)𝑡𝑛, 
Therefore, the solution series is given by   
𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚

𝑝→1
𝑤 (𝑥, 𝑡) 

= 𝑤0 + 𝑤1 + 𝑤2 +  𝑤3 + ∙ ∙ ∙ +𝑤𝑛 +∙ ∙ ∙ 

i.e., 𝑢(𝑥, 𝑡) = (2 − 𝑥) + (2 − 𝑥)𝑡 + (2 −
𝑥)𝑡2 + (2 − 𝑥)𝑡3 + ∙ ∙ ∙ + (2 − 𝑥)𝑡𝑛 + ∙ ∙ ∙   
i.e., 𝑢(𝑥, 𝑡) = (2 − 𝑥)[1 + 𝑡 + 𝑡2 + 𝑡3 + ∙ ∙ ∙
+𝑡𝑛 + ∙ ∙ ∙ ] 
i.e., 𝑢(𝑥, 𝑡) = (2 − 𝑥) ∑ 𝑡𝑛∞

𝑛=0  
From Example 1, 2, 3, and 4, it has 

been shown that HPM gives an accurate 
solution for all the cases. 

CONCLUSIONS AND SUGGESTIONS 

In this paper, HPM has been applied 
to solve some PDEs, such as the Laplace 
equation, heat equation, and wave 
equation, and the obtained results have 
been compared with the exact solutions of 
these equations. From the results, we see 
that the solution obtained by HPM is the 
same as the exact solution of all three 
equations.  

We hope the study will be helpful for 
further studies on the HPM for managing 
nonlinear differential equations in fields 
like structural engineering and biology, 
making it easier to develop analytical 
solutions for issues like nonlinear 
vibrations and population dynamics. An 
efficient approach for analyzing complex 
nonlinear phenomena and systems is 
HPM's iterative method. 
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