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Abstract: In this paper, we investigate an optimization methods might be applied for solving curve fitting by making 
use of a quadratic model. To discover the ideal parameters for the quadratic model, synthetic experimental data is 
generated, and then two unique optimization approaches, namely differential evolution and the Nelder-Mead 
algorithm, are applied to the problem in order to find the optimal values for those parameters. The mean squared 
error as well as the correlation coefficient are both metrics that are incorporated into the objective function.The study 
explores two key scenarios: one where the algorithms operate with their original parameters and another where 
parameter tuning is applied. The results show that NM consistently outperforms DE in terms of both optimization 
time and the quality of the fitted curve to the data. Parameter tuning, as implemented in this study, did not lead to 
significant improvements in either algorithm's performance. The findings underline the importance of algorithm 
selection based on specific problem characteristics and objectives When the results of these algorithms are compared, 
trade-offs between the rate of convergence and the quality of the fit are revealed. This work sheds light on the necessity 
of selecting proper optimization algorithms for specific circumstances and provides insights into the balance that must 
be struck between accurate curve fitting and efficient use of computational resources in the process of curve fitting. 
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Introduction  

In the field of curve fitting and optimization, 

extensive research efforts have been devoted to 

enhancing techniques for attaining precise and 

efficient estimates of model parameters. These 

endeavors have resulted in the emergence of several 

novel methodologies. Past investigations have 

underscored the pivotal role of optimization 

approaches in elevating the precision of curve 

fitting processes. Prominent techniques employed 

for optimizing parameters across a range of 

mathematical models encompass the Levenberg-

Marquardt algorithm and the Gauss-Newton 

method [1-4]. 

When it comes to dealing with complex and non-

convex optimization landscapes, the efficacy of 

these methods may decrease, despite the fact that 

they perform quite well in some cases. Genetic 

algorithms, particle swarm optimization, and 

differential evolution are just a few examples of the 

nature-inspired optimization techniques that have 

become popular as a result of recent technological 

breakthroughs. These methods make use of 

concepts that are derived from evolutionary 

processes in order to navigate complex parameter 

spaces and determine the best possible model 

configurations in an efficient manner. The choice of 

a suitable optimization technique is, despite this 

fact, an extremely important decision that is 

dependent on a number of criteria, including the 
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dimensionality of the problem, the noise 

characteristics, and the computational resources 

available [5-7].  

However, there has been a relatively small amount 

of focus placed on the evaluation of optimization 

strategies within the framework of curve fitting for 

quadratic models. The differential evolution and the 

Nelder-Mead technique are both well-known 

optimization algorithms [8-9], and the purpose of 

this paper is to undertake a comparative analysis of 

these two algorithms in order to fill this gap. By 

analyzing how well they perform on simulated 

experimental data, we want to gain a better 

understanding of their convergence characteristics 

and the trade-offs that must be made between the 

precision of the solutions and the amount of 

computing power required. By doing so, we add to 

the ever-changing environment of optimization 

strategies for curve fitting and provide essential 

information for academics who are looking to make 

informed decisions when fitting quadratic models 

to empirical data. 

Problem Statement 

Given a set of synthetic experimental data points 

(𝑥𝑖 , 𝑦𝑖) , where 𝑥𝑖  represents the independent 

variable and 𝑦𝑖  represents the corresponding 

observed dependent variable, the aim is to 

determine the optimal parameters 𝒑 = (𝑢, 𝑣)   of a 

quadratic model 𝑦 = 𝑓(𝑥; 𝒑) = 𝑢𝑥2 + 𝑣1𝑥 + 𝑣2   that 

minimizes the combined objective function: 

𝑱(𝒑) = ∑ (𝒇(𝒙𝒊; 𝒑) − 𝒚𝒊)
𝟐 − 𝝆𝒄𝒐𝒓𝒓(𝒇(𝒙𝒊

𝑵
𝒊=𝟏 ; 𝒑), 𝒚𝒊)       (1) 

where 𝑵 is the total number of data points, 𝝆 is a 

constant that strikes a balance between the 

relevance of correlation and other factors, and 

𝒄𝒐𝒓𝒓(. )  is the Pearson correlation coefficient 

between the model predictions and the actual data. 

The objective of this study is to evaluate and 

contrast the effectiveness of two alternative 

optimization techniques, namely differential 

evolution and the Nelder-Mead method, in terms of 

locating the optimal parameter values 𝒑  that 

minimize 𝑱(𝒑) . In the context of quadratic curve 

fitting, the purpose of this study is to analyze how 

various algorithms deal with the trade-offs that 

exist between the rate of convergence and the 

quality of the fit. 

Method  

Data Generation and Parameter Initialization 

Synthetic data is generated to provide the 

foundation for our study and to mimic a true 

experimental environment. By taking into account 

an evenly spaced range of independent variable 

values, indicated as 𝒙𝒊, a total of 𝑵 data points are 

produced. The quadratic model is used to create the 

corresponding observed dependent variable values, 

indicated as 𝒚𝒊: 

                            𝒚𝒊 = 𝟐𝒙𝒊
𝟐 − 𝟑𝒙𝒊 + 𝟏 + 𝝐𝒊                           (2) 

where a random variable named 𝝐𝒊  is chosen at 

random from a normal distribution with a mean of 

0 and a standard deviation of 1. This introduces 

noise into the data in a controlled manner, 

representing the intrinsic fluctuation frequently 

found in actual experimental measurements. An 

initial set of parameters is needed to start the 

optimization process for each optimization 

technique. We choose random values for the 

quadratic model parameters 𝒖, 𝒗𝒊 , and 𝒗𝟐  that fall 

within the defined parameter bounds. These 

initializations guarantee that the optimization 

algorithms have a variety of starting points from 

which to explore the parameter space. 

Optimization Algorithms Configuration 

The Nelder-Mead technique and differential 

evolution are both set up to carry out optimization 

based on the specified objective function. 

Population-based optimization with a population 

size of 𝑴 individuals is a component of differential 

evolution [10, 11]. The rates of mutation, crossover, 
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and selection are set in accordance with accepted 

standards. A simplex is initialized around the initial 

parameters for the Nelder-Mead technique, and the 

algorithm iteratively updates the simplex to 

converge to the optimal solution [12]. 

Performance Metrics and Experimental Repetitions 

We use a number of measures to quantitatively 

assess how well the optimization methods perform. 

The mean squared error (MSE) formula is used to 

calculate the difference between model predictions 

and actual data. In addition, the correlation between 

the model predictions and the observed data is 

evaluated using the Pearson correlation coefficient. 

These measures together shed light on the accuracy 

of the optimization techniques and the quality of the 

fitted curves. The complete experimental procedure 

is repeated for numerous trials to guarantee the 

robustness and reliability of the results. In each trial, 

a fresh set of synthetic data with random noise is 

created, the parameters are initialized, and the 

optimization algorithms are executed. The 

outcomes are then averaged over many trials to 

offer a thorough analysis of the algorithm’s 

functionality and behavior. 

Theoretical Convergence Properties 

Differential Evolution 

Gaining experience in analyzing the processes of 

mutation and selection in differential evolution 

enables a better understanding of the capabilities 

for global exploration [13]. Let 𝒙𝒊  represent one 

member of the population. Differential evolution 

uses mutation and interception to provide a new 

candidate solution  𝒗𝒊  after each iteration: 

            𝐕𝐢 = 𝐗𝐫𝟏 + 𝐅. (𝐗𝐫𝟐 − 𝐗𝐫𝟑)                       (3) 

where 𝑭 is the mutation factor, 𝑿𝒓𝟏, 𝑿𝒓𝟐, and 𝑿𝒓𝟑 are 

individuals picked at random. By increasing 

population diversity, this operation promotes 

exploration. The selection step compares the fitness 

of 𝒗𝒊 and 𝒙𝒊 . If 𝒇(𝒗𝒊) < 𝒇(𝒙𝒊) , then 𝒗𝒊  replaces 𝒙𝒊 in 

the population. By approving solutions that are not 

only enhancements but also demographic 

diversifiers, this phase allows a global search.  

The stochastic nature of differential evolution, in 

line with its exploration-focused theoretical 

qualities, enables it to escape local optima and carry 

on exploring the parameter space, even though 

convergence to the global optimum is not assured. 

Nelder-Mead Method 

Understanding the local convergence of the Nelder-

Mead approach requires an analysis of its simplex-

based updates [14]. Let the vertices of the simplex be 

𝐗𝟏, 𝐗𝟐,.., 𝐗𝐧+𝟏 where 𝒏 is the number of dimensions 

in the problem. The algorithm modifies the simplex 

after each iteration to lower the value of the 

objective function. 

The simplex around is altered around its centroid 

by the reflection, expansion, contraction, and shrink 

operations. These updates give rise to the local 

convergence qualities of the approach. If the 

starting simplex is near a local minimum, the worst 

vertex is moved toward the minimum by reflection, 

and the simplex is then refined by contraction and 

shrink steps so that it is centered on the minimum. 

However, because of the algorithm's sensitivity to 

the initial simplex arrangement, convergence to a 

global minimum is not certain. The Nelder-Mead 

method can converge to stationary positions that 

are not always global optima, according to 

theoretical research. 

Comparative Analysis 

Both differential evolution and the Nelder-Mead 

technique have theoretical qualities that match up 

with the features of the corresponding algorithms. 

The Nelder-Mead method's local focus is helpful 
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when the goal function is well-behaved and the 

initial simplex is located suitably, but differential 

evolution's exploration capabilities make it suited 

for scenarios with complicated and multi-modal 

landscapes. In the context of quadratic curve fitting, 

our empirical inquiry will offer empirical proof to 

support and expand these theoretical features. 

Results And Discussion 

The results of the optimization experiment using 

the Nelder-Mead (NM) and Differential Evolution 

(DE) algorithms are summarized in two cases (case 

1 with original parameter and case 2 with tuned 

parameter), we begin from case one in Table 1. 

 
Table 1. Comparing results of optimization algorithms 

(Differential Evolution and Nelder-Mead in case with original 

parameter ). 
 

Algorithm Optimized 

Parameters 

Objective 

Function 

Value 

Iterati

ons 

Time taken 

for 

optimization 

DE 

𝑢 = 1.0, 

𝑏 = 6.3526, 

𝑐 = −10.0 

1447.89 997 
0.567 

seconds 

NM 

𝑢 = 1.5304, 

𝑏 = 0.9222, 

𝑐 = −0.1420 

464.14 39 
0.023 

seconds 

 

The following DE parameters are specified: 

1- objective function: The objective function to be 
minimized, which is defined in the script as a 
combination of the sum of squared errors and the 
correlation coefficient. 

2- bounds: The bounds for the optimization 
variables. In this case, it's defined as bounds = [(0, 
1), (-10, 10), (-10, 10)], which sets the bounds for  

𝑢, 𝑏, and 𝑐 parameters. 

3- args: Additional arguments required by the 
objective function, which are provided as 
(x_data, y_data) to pass the experimental data. 

4- maxiter: The maximum number of iterations 
(evaluations of the objective function) allowed 
during the optimization. In this case, it's set to 20. 

On the other hand, the Nelder-Mead (NM) method 

is initiated with an initial guess for the parameters   

(x0 = np.random.rand(3)), and a maximum number 

of iterations (maxiter=20).  These parameters control 

various aspects of the optimization process and can 

be fine-tuned to tailor the behavior of each 

algorithm to specific optimization tasks.To fit a 

quadratic model to simulated experimental data, 

both techniques were used. The DE method 

eventually reached a solution where ’u’ was fixed at 

1.0 and ’b’ and ’c’ were calculated to be roughly 

6.3526 and -10.0, respectively. The ideal parameters 

obtained by the NM method were roughly 1.5304 

for ’u’, 0.9222 for ’b’, and -0.1420 for ’c’. Indicating a 

better fit to the data, the objective function value, 

which measures goodness of fit, was much lower 

for NM than DE. Additionally, NM was more 

effective in this situation since it required less 

iterations to reach convergence. 

The variation in the optimization results of DE and 

NM can be explained by their inherent differences 

in search strategies. DE may be able to avoid local 

optima by using a population-based approach that 

combines mutation, crossover, and selection to 

explore the solution space. On the other hand, NM's 

direct search strategy is sensitive to the initial guess 

and may lead to convergence to a local optimum. 

As for Case 2 (Tuned Parameters), parameter tuning 

was applied to both DE and NM, potentially 

enhancing their performance. Surprisingly, the 

parameter tuning did not result in significant 

changes in the optimization results. DE in Case 2 

produced the same parameter set as in Case 1, and 

NM achieved only a slight improvement in the 

objective function value, reducing it to 359.01. This 

highlights that parameter tuning, as applied in this 

context, did not substantially affect the optimization 

outcomes for either algorithm. The following Table 

summarizes the results we obtained from the 

second case: 
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Table 2. Comparing results of optimization algorithms 

(Differential Evolution and Nelder-Mead in case with Tuned 

parameter ). 

Algorithm Optimized 

Parameters 

Objective 

Function 

Value 

Iterati

ons 

Time taken 

for 

optimization 

DE 𝑢 = 1.0,  

𝑏 = 6.3526, 

 𝑐 = −10.0 

1447.89 1009 0.578 

seconds 

NM 𝑢 = 1.5304,  

𝑏 = 0.9222, 

 𝑐 = −0.1420 

359.01 39 0.0259 

seconds  

 

Based on criteria like mean squared error, 

correlation coefficient, and objective value in terms 

of the generated plots. The radar chart  in Figure 1 

provides  avisually compares the algorithmic 

performance for the two optimization cases: Case 1 

(Original Parameters) and Case 2 (Tuned 

Parameters). It assesses three criteria: Mean Squared 

Error (MSE), Correlation Coefficient, and Objective 

Value. Each algorithm is represented by a different 

color, allowing for clear differentiation. In this chart, 

Nelder-Mead (NM) consistently outperforms 

Differential Evolution (DE), both with original and 

tuned parameters. The chart provides a succinct 

overview of the relative effectiveness of the 

algorithms in a multi-criteria context. 

 
Figure 1. Algorithmic comparison radar chart. 

The plot in Figure 2 displays the quality of the fitted 

curves produced by the optimization algorithms. It 

compares the experimental data (scattered points) 

with the fitted curves generated by DE and NM for 

both Case 1 and Case 2. In this plot, NM's fitted 

curves closely align with the experimental data, 

demonstrating superior performance. DE's fitted 

curves are generally acceptable but exhibit a slightly 

larger deviation from the data. The parameter 

tuning applied in Case 2 did not result in substantial 

improvements, emphasizing NM's consistent 

effectiveness in achieving better fits. Finally, Figure 

3 and Figure 4 illustrates the convergence behavior 

of the optimization algorithms in terms of the 

objective function value. The Figure 3 presents the 

convergence plot for Differential Evolution (DE), 

and the Figure 4 displays the convergence plot for 

Nelder-Mead (NM). Each plots shows how the 

objective function value changes over the course of 

the optimization process (iterations). These plots 

offer insights into the optimization progress and the 

number of iterations required for each algorithm in 

both Case 1 and Case 2. As for the specifications of 

the computer used for the optimization, the CPU, 

RAM, and the number of processor cores are (Intel 

Core i7-8700K 10TH GEN, 16 GB DDR4, 6, 

respectively). 
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      Figure 2. Visualization of data fitting and convergence. 

 

     Figure 3. Convergence plot (Nelder-Mead). 
 

 

 

         Figure 4. Convergence plot (Differential Evolution). 

Conclusions  

In this paper, we investigated the use of curve 

fitting optimization approaches through the prism 

of a quadratic model. We demonstrated the 

efficiency of differential evolution and the Nelder-

Mead method for approximating real-world data. 

Our investigation showed that the Nelder-Mead 

algorithm's iterative refinement can produce a 

better fit quality with fewer iterations while 

differential evolution can offer a thorough 

exploration of the solution space.  Regardless of 

parameter tuning, NM consistently outperforms 

DE, emphasizing its robustness in a range of 

optimization scenarios. These findings highlight the 

significance of adapting optimization algorithms to 

the specific issue at hand while taking into account 

the model's complexity and the available 

computational resources. Our results further 

highlight the importance of assessing a variety of 

indicators in order to fully evaluate model fit and 

optimization performance. This study encourages 

researchers to carefully choose optimization 
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strategies, guided by the unique requirements of 

their datasets and aims, and adds to the body of 

knowledge on optimization approaches used in 

curve fitting applications.  
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