2-Domination Polynomial of Tensor Product of Paths

${ }^{1}$ Sanal Kumar, ${ }^{2}$ Wasim Raja
${ }^{1}$ Sanal.Kumar@ibrict.edu.om, University of Technology and Applied Sciences(UTAS) Ibri, Oman
${ }^{2}$ Wasim.Raja@ibrict.edu.om, University of Technology and Applied Sciences(UTAS) Ibri, Oman

Article Info

Article history:

Article received on 06 January 2023
Received in revised form 10 March 2023

Keywords:
2-Dominating set, 2-Domination polynomials, Simple graph, Tensor product

Abstract

Consider a simple finite graph G. The 2-domination polynomial for any simple non isolated graph G in [7] and is defined by $D_{2}(G, x)=\sum_{i=\gamma_{2}(G)}^{|V(G)|} d_{2}(G, i) x^{i}$, where $d_{2}(G, i)$ represents cardinality of 2-dominating sets of size i of graph G, and $\gamma_{2}(\mathrm{G})$ is the 2-domination number of G. We have calculated the 2-domination number of the tensor product of P_{2} and P_{n}. We have derived the 2-distance domination polynomials of tensor product of P_{2} and P_{n}.

1. Introduction

Consider $G=(P, Q)$ be a simple graph having n vertices.Where P represent the vertices and Q represent edges of graph G. A subset $S \subseteq P$ is a 2-dominating set of the graph G, if every vertex $v \in$ $P-S$ is adjoining to at least 2 vertices of S. The minimum cardinality of the 2 -dominating sets in G is the 2 - domination number of a graph G, denoted by $\gamma_{2}(G)$. The smallest integer greater than or equal to n is represented by the notation $\lceil n\rceil$ in this paper.

2. 2-Distance Domination Polynomial

Here we define the 2-domination polynomial and recall some properties from the past works.

2.1 Definition

Consider graph G without secluded vertices. Let $\mathfrak{D}_{2}(G, i)$ be a group of 2 -dominating sets of G with cardinality i and let $d_{2}(G, i)=\left|\mathfrak{D}_{2}(G, i)\right|$. Then the 2domination polynomial $D_{2}(G, x)$ of G is explaimed as $D_{2}(G, x)=\sum_{i=\gamma_{2}(G)}^{|V(G)|} d_{2}(G, i) x^{i}$, where $\gamma_{2}(G)$ is the 2-domination number of G.

2.2 Tensor Product of Graphs

Consider $G_{1}=\left(V_{G_{1}}, E_{G_{1}}\right)$ and $G_{2}=\left(V_{G_{2}}, E_{G_{2}}\right)$ be two simple graphs. The tensor product of G_{1} and G_{2}, represented by $G_{1} \otimes G_{2}$, is a graph with vertex set $V_{G_{1}} \times V_{G_{2}}$ and two vertices $u=\left(u_{1}, v_{1}\right), \quad v=$ $\left(u_{2}, v_{2}\right)$ are said to be adjoining if u_{1} is adjoining to u_{2} in G_{1} and v_{1} is adjoining to v_{2} in G_{2}. That is, $G_{1} \otimes G_{2}=\left(V_{G_{1}} \times V_{G_{2}}, E_{G_{1}} \otimes E_{G_{2}}\right) \quad$ where $E_{G_{1}} \otimes E_{G_{2}}=\left\{u v / u_{1} u_{2} \in E_{G_{1}}\right.$ and $\left.v_{1} v_{2} \in E_{G_{2}}\right\}$
Gl:

G_{2} :

$G_{1} \otimes G_{2}:$

3. 2-Domination Polynomial of Path

Lemma 3.1 If a graph G comprises of two parts $\mathrm{G}_{1}, \mathrm{G}_{2}$. Then

$$
D_{2}(G, x)=D_{2}\left(G_{1}, x\right) \cdot D_{2}\left(G_{2}, x\right)
$$

Lemma 3.2 Consider a path P_{n} be the path having n vertices, thendomination- 2 number of P_{n} is $\Upsilon_{2}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.

Lemma 3.3 "Let $\mathfrak{D}_{2}\left(P_{n}, i\right)$ be a family of 2dominating sets of P_{n} with cardinality i and let $d_{2}\left(P_{n}, i\right)=\left|\mathfrak{D}_{2}\left(P_{n}, i\right)\right|$.

Then, $d_{2}\left(P_{n}, i\right)=d_{2}\left(P_{n-1}, i-1\right)+$ $d_{2}\left(P_{n-2}, i-1\right), i \geq\left\lceil\frac{n+1}{2}\right\rceil . "[6]$

Lemma 3.4 "Let $P_{n}, n \geq 3$ be a path having n number of vertices."
(i)

$$
\begin{aligned}
& " d_{2}\left(P_{n}, i\right)=\phi \text { if } i< \\
& \Upsilon_{2}\left(P_{n}\right) \text { or } i>n "
\end{aligned}
$$

(ii) " $D_{2}\left(P_{n}, x\right) s$ has no constant term and first degree terms."
(iii) " $D_{2}\left(P_{n}, x\right)$ is a strictly increasing function on

$$
[0, \infty) . " \quad[6]
$$

Theorem 3.4 For every $n \geq 5, \quad D_{2}\left(P_{n}, x\right)=$ $x\left[D_{2}\left(P_{n-1}, x\right)+D_{2}\left(P_{n-2}, x\right)\right]$ with the initial values $D_{2}\left(P_{2}, x\right)=x^{2}$ and $D_{2}\left(P_{3}, x\right)=x^{2}+x^{3}$.

4. 2 - Distance Domination Polynomial of Tensor product of $\boldsymbol{P}_{\mathbf{2}}$ and $\boldsymbol{P}_{\boldsymbol{n}}$

Lemma 4.1 Let P_{n} be the path with n vertices, then 2-domination number of $P_{2} \otimes P_{n}$ is $\Upsilon_{2}\left(P_{2} \otimes\right.$ $\left.P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil+\left\lceil\frac{n+1}{2}\right\rceil$.

Lemma 4.2 Let $P_{n}, n \geq 3$ be a path having n number of vertices.
$d_{2}\left(P_{2} \otimes P_{n}, i\right)=\phi$ if $i<\Upsilon_{2}\left(P_{2} \otimes P_{n}\right)$ or $i>$ $2 n$.

1. $D_{2}\left(P_{2} \otimes P_{n}, x\right)$ has no constants, $1^{\text {st }}$ degree terms, $2^{\text {nd }}$ degree terms and $3^{\text {rd }}$ degree terms.
2. $D_{2}\left(P_{2} \otimes P_{n}, x\right)$ is a surely increasing function on $[0, \infty)$

4.3 2-Distan Domination Polynomial of Tensor product of $\boldsymbol{P}_{\mathbf{2}}$ and $\boldsymbol{P}_{\boldsymbol{n}}$

Theorem 4.3

For every $\quad n \geq 5, \quad D_{2}\left(P_{2} \otimes P_{n}, x\right)=$ $x^{2}\left[D_{2}^{2}\left(P_{n-1}, x\right)+2 D_{2}\left(P_{n-2}, x\right)+\right.$ $\left.D_{2}^{2}\left(P_{n-2}, x\right)\right]$ with the initial values $D_{2}\left(P_{2}, x\right)=x^{2}$ and $D_{2}\left(P_{3}, x\right)=x^{2}+x^{3}$.

Proof: Let $\mathfrak{D}_{2}\left(P_{2} \otimes P_{n}, i\right)$ be group of 2-dominating sets of $P_{2} \otimes P_{n}$ having cardinality i and consider
$d_{2}\left(P_{2} \otimes P_{n}, i\right)=\left|\mathfrak{D}_{2}\left(P_{2} \otimes P_{n}, i\right)\right| . \quad$ Then the domination-2 polynomial $D_{2}\left(P_{2} \otimes P_{n}, x\right)$ of $P_{2} \otimes P_{n}$ is specified as $\quad D_{2}\left(P_{2} \otimes P_{n}, x\right)=$ $\sum_{i=\gamma_{2}\left(P_{2} \otimes P_{n}\right)}^{2 n} d_{2}\left(P_{2} \otimes P_{n}, i\right) x^{i}$,where $\gamma_{2}\left(P_{2} \otimes P_{n}\right)$ is the domination-2 number of $P_{2} \otimes P_{n}$. The domination2 polynomial of the graph P_{n} is $D_{2}\left(P_{n}, x\right)=$ $x\left[D_{2}\left(P_{n-1}, x\right)+D_{2}\left(P_{n-2}, x\right)\right]$ for every $n \geq 5$, with the initial values $D_{2}\left(P_{2}, x\right)=x^{2}$ and $D_{2}\left(P_{3}, x\right)=x^{2}+x^{3}$. The tensor product of P_{2} and P_{n} consists two components P_{2} and P_{n}. So, the 2-domination polynomial of the tensor product of P_{2} and P_{n} is the product of the 2-domination polynomials of $D_{2}\left(P_{n}, x\right)$ and $D_{2}\left(P_{n}, x\right)$. Therefore, the minimal 2-dominating set of $P_{2} \otimes P_{2}$ consist of only one 2-dominating set with four vertices. Hence $\quad D_{2}\left(P_{2} \otimes P_{2}, x\right)=$ $D_{2}\left(P_{2}, x\right) . D_{2}\left(P_{2}, x\right)=x^{4}$.

Similarly, $D_{2}\left(P_{2} \otimes P_{3}, x\right)=D_{2}\left(P_{3}, x\right) . D_{2}\left(P_{3}, x\right)=$
$\left(x^{2}+x^{3}\right)\left(x^{2}+x^{3}\right)=x^{4}+2 x^{5}+x^{6} \quad$ And
$D_{2}\left(P_{2} \otimes P_{4}, x\right)=D_{2}\left(P_{4}, x\right) . D_{2}\left(P_{4}, x\right)=\left(2 x^{3}+\right.$
$\left.x^{4}\right)\left(2 x^{3}+x^{4}\right)=4 x^{6}+4 x^{7}+x^{8}$.
Hence, $D_{2}\left(P_{2} \otimes P_{n}, x\right)=D_{2}\left(P_{n}, x\right) \cdot D_{2}\left(P_{n}, x\right)$

$$
\begin{gathered}
=x\left[D_{2}\left(P_{n-1}, x\right)+D_{2}\left(P_{n-2}, x\right)\right] x\left[D_{2}\left(P_{n-1}, x\right)\right. \\
\left.+D_{2}\left(P_{n-2}, x\right)\right] \\
=x^{2}\left[D_{2}^{2}\left(P_{n-1}, x\right)+2 D_{2}\left(P_{n-2}, x\right)+D_{2}^{2}\left(P_{n-2}, x\right)\right]
\end{gathered}
$$

5. Conclusion and Future Enhancements

In this article, we have derived the domination-2 polynomials of tensor product of paths P_{2} and P_{n} from its 2-dominating sets of P_{n}. Presently, we are working on the 2-domination polynomials of tensor product of paths P_{n} and P_{m}.

6. Acknowledgements

The authors express gratitude to their families and colleagues for their full support and encouragements. Also, they express deep gratefulness to the judeges for their valuable obervations and suggestions.

REFERENCES

[1] "Adriana Hansberg, Lutz Volkmann, "On graphs with equal domination and 2- domination numbers", Discrete Mathematics, Vol.308,
(2008), 2277 - 2281."
[2] "A. Vijayan and S. Sanal Kumar, "On Total Domination sets and Polynomials of paths", International Journal of Mathematics Research, Vol.4, no. 4 (2012), PP 339-348."
[3] "A.Vijayan, K. Lal Gipson, "Dominating sets and Domination Polynomials of square of path", International Journal of Discrete Mathematics(2013),Vol. 3, 60-69."
[4] "Bondy J.A. and U.S.R Murty: Graph Theory with Applications. Elsevier, North Holland (1976)."
[5] "S. Alikhani and Y.H. Peng, "Dominating sets and Domination Polynomials of paths", International journal of Mathematics and Mathematical Science, vol. 2009, pp 1-10."
[6] "Mateusz Miotk, Jerzy Topp and Pawel Zylinski, "Disjoint dominating and 2-dominating sets in graphs", University of Gdansk, 80-952 Gdansk, Poland. Article in Discrete Optimization, March 2019."
[7] "P. C. Priyanka Nair \& V. M. Arul Flower Mary, T. Anitha Baby, "2-Dominating Sets and 2Domination Polynomial of Paths", Journal of Shanghai Jiaotong University, Volume 16, Issue 10, October-2020."

