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ABSTRACT:  Consider a simple finite graph 𝐺. The 2-domination 

polynomial for any simple non isolated graph 𝐺 in [7] and is defined by 

𝐷2(𝐺, 𝑥)  =   ∑ 𝑑2
|𝑉(𝐺)|
𝑖=𝛾2(𝐺) (𝐺, 𝑖) 𝑥𝑖, where 𝑑2(𝐺, 𝑖) represents cardinality 

of 2-dominating sets of size i of graph 𝐺, and 𝛾2(G) is the 2-domination 

number of 𝐺. We have calculated the 2-domination number of the tensor 

product of 𝑃2 and 𝑃𝑛. We have derived the 2-distance domination 

polynomials of tensor product of 𝑃2 and 𝑃𝑛.   

1. Introduction 

Consider 𝐺 =  (𝑃, 𝑄) be a simple graph having 𝑛 

vertices.Where P represent the vertices and Q 

represent edges of graph G.  A subset 𝑆 ⊆  𝑃 is a 

2-dominating set of the graph 𝐺, if every vertex 𝑣 ∈
 𝑃 –  𝑆 is adjoining to at least 2 vertices of S. The 

minimum cardinality of the 2-dominating sets in 

𝐺  𝑖𝑠  the 2 − domination number  of  a  graph 𝐺,  

denoted by 𝛾2(𝐺). The smallest integer greater 

than or equal to 𝑛 is represented by the notation ⌈𝑛⌉ 
in this paper. 

 

2.   2-Distance Domination Polynomial 

Here we define the 2-domination polynomial and recall 

some properties from the past works.  

    2.1 Definition 

 Consider graph G without secluded vertices. Let 

𝔇2(𝐺, 𝑖) be a group of 2-dominating sets of 𝐺 with 

cardinality 𝑖 and let 𝑑2(𝐺, 𝑖)  =  |𝔇2(𝐺, 𝑖)|. Then the 2-

domination polynomial 𝐷2(𝐺, 𝑥) of 𝐺 is explaimed as  

𝐷2(𝐺, 𝑥)  =   ∑ 𝑑2
|𝑉(𝐺)|
𝑖=𝛾2(𝐺) (𝐺, 𝑖)𝑥𝑖 ,where 𝛾2(𝐺) is the 

2-domination number of 𝐺. 

 

 

 

    2.2 Tensor Product of Graphs 

Consider 𝐺1  =  (𝑉𝐺1
    , 𝐸𝐺1

) and 𝐺2  =  (𝑉𝐺2
    , 𝐸𝐺2

)  

be two simple graphs. The tensor product of 𝐺1 and 𝐺2, 

represented by 𝐺1 ⊗ 𝐺2  , is a graph with vertex set 

𝑉𝐺1
×  𝑉𝐺2

  and two vertices 𝑢 =  (𝑢1, 𝑣1),     𝑣 =

 (𝑢2 , 𝑣2) are said to be adjoining if 𝑢1 is adjoining to 𝑢2 

in 𝐺1 and 𝑣1 is adjoining to 𝑣2 in 𝐺2 . That is, 

𝐺1  ⨂ 𝐺2  =  (𝑉𝐺1
×  𝑉𝐺2

 , 𝐸𝐺1
⨂𝐸𝐺2

  ) where 

𝐸𝐺1
⨂𝐸𝐺2

 =  { 𝑢𝑣  /   𝑢1 𝑢2  ∈ 𝐸𝐺1
 𝑎𝑛𝑑  𝑣1𝑣2  ∈  𝐸𝐺2

} 
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3.     2-Domination Polynomial of Path 

Lemma 3.1  If a graph G comprises of two parts     

G1, G2. Then 

  𝐷2(𝐺, 𝑥) =  𝐷2(𝐺1, 𝑥) .  𝐷2(𝐺2, 𝑥) 

Lemma 3.2 Consider a path  𝑃𝑛 be the path having 

𝑛 vertices, thendomination-2 number 

of  𝑃𝑛 is ϒ2(𝑃𝑛) = ⌈
𝑛+1

2
⌉. 

Lemma 3.3 “Let 𝔇2(𝑃𝑛, 𝑖) be a family of 2-

dominating sets of 𝑃𝑛 with cardinality 

𝑖 and let 𝑑2(𝑃𝑛, 𝑖)  =  |𝔇2(𝑃𝑛, 𝑖)|. 

Then, 𝑑2(𝑃𝑛, 𝑖) =  𝑑2(𝑃𝑛−1, 𝑖 − 1) +

𝑑2( 𝑃𝑛−2, 𝑖 − 1), 𝑖 ≥ ⌈
𝑛+1

2
⌉.” [6] 

Lemma 3.4 “Let 𝑃𝑛, 𝑛 ≥ 3 be a path having 𝑛 

number of vertices.” 

(i) “𝑑2(𝑃𝑛, 𝑖) = 𝜙 if 𝑖 <

ϒ2(𝑃𝑛) or 𝑖 > 𝑛 “ 

(ii) “𝐷2(𝑃𝑛, 𝑥)𝑠  has no constant 

term and first degree terms.” 

(iii) “𝐷2(𝑃𝑛, 𝑥)  is a strictly 

increasing function on 

[0, ∞).”   [6] 

Theorem 3.4 For every 𝑛 ≥ 5, 𝐷2(𝑃𝑛, 𝑥) =
𝑥[𝐷2(𝑃𝑛−1, 𝑥) + 𝐷2(𝑃𝑛−2, 𝑥)] with the initial 

values 𝐷2(𝑃2, 𝑥) = 𝑥2 and 𝐷2(𝑃3, 𝑥) = 𝑥2 + 𝑥3. 

4. 2 - Distance Domination Polynomial 

of Tensor product of  𝑷𝟐 and 𝑷𝒏 

Lemma 4.1 Let 𝑃𝑛 be the path with 𝑛 vertices, 

then 2-domination number of  𝑃2 ⊗ 𝑃𝑛 is ϒ2(𝑃2 ⊗

𝑃𝑛) = ⌈
𝑛+1

2
⌉ + ⌈

𝑛+1

2
⌉. 

Lemma 4.2 Let 𝑃𝑛, 𝑛 ≥ 3 be a path having 𝑛 

number of vertices. 

𝑑2(𝑃2 ⊗ 𝑃𝑛, 𝑖) = 𝜙 if 𝑖 < ϒ2(𝑃2 ⊗ 𝑃𝑛) or 𝑖 >

2𝑛.  

1. 𝐷2(𝑃2 ⊗ 𝑃𝑛, 𝑥)  has no constants,1st  degree 

terms, 2nd  degree terms and 3rd degree terms. 

2. 𝐷2(𝑃2 ⊗ 𝑃𝑛, 𝑥)  is a surely increasing function 

on [0, ∞) 

4.3   2-Distan Domination Polynomial  

  of    Tensor product of  𝑷𝟐 and 𝑷𝒏 

 

Theorem 4.3                    

For every 𝑛 ≥ 5, 𝐷2(𝑃2 ⊗ 𝑃𝑛, 𝑥) =

𝑥2[𝐷2
2(𝑃𝑛−1, 𝑥) + 2𝐷2(𝑃𝑛−2, 𝑥) +

𝐷2
2(𝑃𝑛−2, 𝑥)] with the initial values 

𝐷2(𝑃2, 𝑥) = 𝑥2 and 𝐷2(𝑃3, 𝑥) = 𝑥2 + 𝑥3. 

Proof:   Let 𝔇2(𝑃2 ⊗ 𝑃𝑛, 𝑖) be  group of 2-dominating 

sets of 𝑃2 ⊗ 𝑃𝑛 having cardinality 𝑖 and consider 
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𝑑2(𝑃2 ⊗ 𝑃𝑛, 𝑖)  =  |𝔇2(𝑃2 ⊗ 𝑃𝑛, 𝑖)|. Then the 

domination-2 polynomial 𝐷2(𝑃2 ⊗ 𝑃𝑛, 𝑥) of 𝑃2 ⊗ 𝑃𝑛 is 

specified as  𝐷2(𝑃2 ⊗ 𝑃𝑛, 𝑥)  =
  ∑ 𝑑2

2𝑛
𝑖=𝛾2(𝑃2⊗𝑃𝑛) (𝑃2 ⊗ 𝑃𝑛, 𝑖)𝑥𝑖 ,where 𝛾2(𝑃2 ⊗ 𝑃𝑛) is 

the domination-2 number of 𝑃2 ⊗ 𝑃𝑛. The domination-

2 polynomial of the graph 𝑃𝑛 is 𝐷2(𝑃𝑛, 𝑥) =
𝑥[𝐷2(𝑃𝑛−1, 𝑥) + 𝐷2(𝑃𝑛−2, 𝑥)] for every 𝑛 ≥ 5, with the 

initial values 𝐷2(𝑃2, 𝑥) = 𝑥2 and 𝐷2(𝑃3, 𝑥) = 𝑥2 + 𝑥3. 

The tensor product of 𝑃2 and 𝑃𝑛 consists two 

components 𝑃2 and 𝑃𝑛. So, the 2-domination 

polynomial of the tensor product of 𝑃2 and 𝑃𝑛 is the 

product of the 2-domination polynomials of 𝐷2(𝑃𝑛, 𝑥) 

and 𝐷2(𝑃𝑛, 𝑥). Therefore, the minimal 2-dominating set 

of 𝑃2 ⊗ 𝑃2 consist of only one 2-dominating set with 

four vertices. Hence  𝐷2(𝑃2 ⊗ 𝑃2, 𝑥) =
𝐷2(𝑃2, 𝑥). 𝐷2(𝑃2, 𝑥) = 𝑥4.  

Similarly,𝐷2(𝑃2 ⊗ 𝑃3, 𝑥) = 𝐷2(𝑃3, 𝑥). 𝐷2(𝑃3, 𝑥) =
(𝑥2 + 𝑥3)(𝑥2 + 𝑥3) = 𝑥4 + 2𝑥5 + 𝑥6 And 

𝐷2(𝑃2 ⊗ 𝑃4, 𝑥) = 𝐷2(𝑃4, 𝑥). 𝐷2(𝑃4, 𝑥) = (2𝑥3 +
𝑥4)(2𝑥3 + 𝑥4) = 4𝑥6 + 4𝑥7 + 𝑥8. 

Hence,  𝐷2(𝑃2 ⊗ 𝑃𝑛, 𝑥) = 𝐷2(𝑃𝑛, 𝑥). 𝐷2(𝑃𝑛, 𝑥) 

= 𝑥[𝐷2(𝑃𝑛−1, 𝑥) + 𝐷2(𝑃𝑛−2, 𝑥)]𝑥[𝐷2(𝑃𝑛−1, 𝑥)
+ 𝐷2(𝑃𝑛−2, 𝑥)] 

 = 𝑥2[𝐷2
2(𝑃𝑛−1, 𝑥) + 2𝐷2(𝑃𝑛−2, 𝑥) + 𝐷2

2(𝑃𝑛−2, 𝑥)] 

  5. Conclusion and Future Enhancements 

In this article, we have derived the domination-2 

polynomials of tensor product of paths 𝑃2 and 𝑃𝑛 from 

its 2-dominating sets of 𝑃𝑛. Presently, we are working 

on the 2-domination polynomials of tensor product of 

paths 𝑃𝑛 and 𝑃𝑚.  
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