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Abstract 
A method for protein secondary structure prediction based on the use of 
artificial neural networks (ANN) is presented.  Amino acids, and their 
secondary structures obtained from National Center for Biotechnology 
Information (NCBI) and the online tool given in Chou-Fasman website of 
seven proteins are concatenated to create a sequence of 15536 residues. A 
neural network with only an input and an output layer is used, and back-
propagation technique is adopted to tune the synaptic weights. Data is 
divided into two sets for training, and testing. The average success rate of 
the method on a testing set of proteins was 90.64% in training and 
89.13% in testing on three types of secondary structure α-helix, β-sheet, 
and coil, with correct identification coefficients of 𝐶𝛼  =  0.92, 𝐶𝛽  =
 0.81, and 𝐶𝑐𝑜𝑖𝑙  =  0.82, and 𝑇𝑡𝑢𝑟𝑛 = 0.81 . These quality indices are 
all compatible with those of previous methods. From computational 
experiments on real and artificial structures that no method based solely 
on local information in the protein sequence is likely to produce 
significantly better results for proteins. 
 

 

1. INTRODUCTION  

Our knowledge about protein structure comes mostly from 
the X-ray diffraction patterns of crystallized proteins, 
NMR spectroscopy and electron microscopy. X-ray 
crystallography is essentially very accurate, but many steps 
are uncertain since not all proteins can easily be 
crystallized. Obtaining high-quality protein sample is 
difficult and generally proteins are sensitive to temperature 
and pH. All these techniques are very time consuming and 
costly.  
 
Recent developments in genetic engineering have vastly 
increased the number of known protein sequences. In 
addition, it is now possible to selectively alter protein 
sequences by site-directed mutagenesis. But to take full 
advantage of these techniques would be helpful if one 
could predict the structure of a protein from its primary  

 
 
 
sequence of amino acids. The general problem of 
predicting the tertiary structure of folded proteins is 
unsolved.  
 
Information about the secondary structure of a protein can 
be helpful in determining its structural properties. The best 
way to predict the structure of a new protein is to find a 
homologous protein whose structure has been determined. 
Structure of new protein can be found with many available 
online tools that use protein database. Even if only limited 
regions of conserved sequences can be found, then 
template matching methods are applicable (Taylor, 1986). 
If no homologous protein with a known structure is found, 
existing methods for predicting secondary structures can 
be used but are not always reliable. Three of the most 
commonly used methods are those of Robson (Robson & 
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Pain, 1971; Garnier et al., 1978), of Chou & Fasman 
(1978), and Lim (1974). These methods primarily exploit, 
in different ways, the correlations between amino acids 
and the local secondary structure. By local, we mean an 
influence on the secondary structure of an amino acid by 
others that are no more than about ten residues away. 
These methods were based on the protein structures 
available in the 1970s. The average success rate of these 
methods on more recently determined structures is 50 to 
53% on three types of secondary structure (α-helix, β-
sheet, and coil: Nishikawa, 1983; Kabsch & Sander, 
1983a).  
 
In this paper, we have employed a method for discovering 
regular patterns in data that is based on neural network 
models. The brain has highly developed pattern matching 
abilities and neural network models are designed to mimic 
them.  
 
The goal of the method introduced here is to use the 
available information in the database of known protein 
structures to help predict the secondary structure of 
proteins for which no homologous structures are available 
in any database. The known structures implicitly contain 
information about the bio-physical properties of amino 
acids and their interactions. This approach is not meant to 
be an alternative to other methods that have been 
developed to study protein folding that take biophysical 
properties explicitly into account, such as the methods of 
free energy minimization (Scheraga, 1985) and integration 
of the dynamical equations of motion (Karplus, 1985; 
Levitt, 1983). Rather, secondary structures obtained using 
ANN provides additional constraints to reduce the search 
space for these other methods. For example, a good 
prediction for the secondary structure could be used as the 
initial conditions for energy minimization, or as the first 
step in other predictive techniques (Webster et al., 1987).  
 
2. METHODS  
(a) Database  
Primary structures of seven proteins are obtained from the 
NCBI. Predicted secondary structures of these proteins are 
obtained from the online tool given in Chou-Fasman 
website1. Amino acid residues and their secondary 
structure assignments are concatenated to create a data 
sequence of 15536 amino acids.  Table 1 contains a listing 
of the seven proteins that were used in this study.  

 Protein Residue 
1.  Serum Albumin  1500 
2.  Spondin1, extracellular matrix protein   807 
3.  Collagen type IV 1779 
4.  Cystic fibrosis transmembrane c. regulator 1483 
5.  Pod1,isoform G 1266 
6.  Polyprotein [Hepatitis C virus genotype 3] 3021 
7.  Dystrophin  3678 
  Total    5536 

Table 1 The seven proteins that were used in this study 
                                                 
1 http://cib.cf.ocha.ac.jp/bitool/MIX/ 

Data is divided into three equal sets for training, validation 
and testing. Results are highly sensitive to protein 
homologies in the testing and training sets. Special care 
was taken to balance the overall frequencies of α-helix, β-
sheet in the training and testing sets, as shown in Tables 2.  
 

Figure 1 α-helices, β-sheets, and coils on the same picture. 

(PDB code for the proteins: 4C49) 

 Number of residues 
Estimator C-F GOR ANN 
α-helix 4919 5529 4221 
β-sheet  3923 2697 1149 
Coil  4992 2895 8164 
Turn  2413  

Table 2 Balance the overall frequencies of α-helices, β-sheets 
in the training and testing sets 

 (b) Symbols for Amino Acids  
Proteins are chains in the three dimensional space built  

#  Amino acid  Chemical  alphabet 
1 Alanine  Ala  A  
2 Arginine  Arg  R 
3 Asparagine  Asn  N 
4 Aspartic acid  Asp  D 
5 Cysteine  Cys C 
6 Glutamine  Gln  Q 
7 Glutamic acid  Glu  E 
8 Glycine  Gly  G 
9 Histidine  His  H 
10 Isoleucine  Ile I 
11 Leucine  Leu  L 
12 Lysine  Lys  K 
13 Methionine  Met  M 
14 Phenylalanine  Phe  F 
15 Proline  Pro  P 
16 Serine  Ser  S 
17 Threonine  Thr  T 
18 Tryptophan  Trp  W 
19 Tyrosine  Tyr Y 
20 Valine  Val V 

Table 3 Names and symbols of 20 amino acids 
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from smaller chemical molecules called amino acids. 
There are 20 different amino acids. Each of them is 
denoted by a different letter in the Latin alphabet as shown 
in Table 3. 

Based on the protein chain it is easy to create its relevant 
sequence of amino acids replacing an amino acid in chain 
by its code in Latin alphabet. As a result a word on the 
amino acids’ alphabet is received. This word can be called 
a protein primary structure on the condition that letters in 
this word are in the same order as amino acids in the 
protein chain are. 

A secondary structure of a protein is a subsequence of 
amino acids coming from the relevant protein. These 
subchains form in the three dimensional space regular 
structures which are the same in shape for different 
proteins. In the analysis, a similar representation for the 
secondary structures as for the primary ones has been used. 
A secondary structure is represented by a word on the 
relevant alphabet of secondary structures. Each kind of a 
secondary structure has its own unique letter α-helix, H; β-
sheet E, and coil C. An alphabet of secondary structures 
consisting of three different secondary structures has been 
considered in the analysis. 

 

(c) Coding the Data  
In this paper, data corresponding to an amino acid consists 
of six right, and six left neighboring amino acids of this 
amino acid in the primary structure of the protein as in 
Table 3. In the second row, secondary structure 
conformations of these neighboring amino acids are given.  

 

 
A E E K E A V L G L W G K 
H H H H H E E E E C C C E 
1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 1 1 0 

Table 4 Six right, and six left neighboring amino acids of the 
amino acid V 

Secondary structure letters H, E, and C are coded as in the 
table below; 
 

H E C 
1 0 0 
0 1 0 
0 0 1 

Table 5 Codes for secondary structure letters H, E, and C. 

The data corresponding to an amino acid is coded by a 
20×13 matrix as follows 
 
 
 

 A E E K E A V L G L W G K 
A  1 0 0 0 0 1 0 0 0 0 0 0 0 
R 0 0 0 0 0 0 0 0 0 0 0 0 0 
N 0 0 0 0 0 0 0 0 0 0 0 0 1 
D 0 0 0 0 0 0 0 0 0 0 1 0 0 
C 0 0 0 0 0 0 0 0 0 0 0 0 0 
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 
E 0 1 1 0 1 0 0 0 0 0 0 0 0 
G 0 0 0 0 0 0 0 0 1 0 0 1 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 
L 0 0 0 0 0 0 0 1 0 1 0 0 0 
K 0 0 0 1 0 0 0 0 0 0 0 0 1 
M 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 
T 0 0 0 0 0 0 0 0 0 0 0 0 0 
W 0 0 0 0 0 0 0 0 0 0 1 0 0 
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 1 0 0 0 0 0 0 

Table 6 The data corresponding to the central amino acid V 

 
(d) ANN Architecture  
Nervous systems existing in biological organism have 
been the subject of studies for mathematicians who tried to 
develop some models describing such systems and all their 
complexities for years. Artificial Neural Networks 
emerged as generalizations of these concepts with 
mathematical model of artificial neuron due to McCuloch 
and Pitts described in 1943 (McCuloch and Pitts 1943) 
definition of unsupervised learning rule by Hebb in 1949 
(Heb 1949), and the first ever implementation of 
Rosenblatt’s perceptron in 1958 (Rosenblatt 1958). The 
efficiency and applicability of artificial neural networks    
to computational tasks have been questioned many times, 
especially at the very beginning of their history the book 
"Perceptrons" by Minsky and Papert (Minsky and Papert 
1969), published in 1969, caused dissipation of initial 
interest and enthusiasm in applications of neural networks.  
      It was not until 1970s and 80s, when the back 
propagation algorithm for supervised learning was 
documented that artificial neural networks    regained their 
status and proved beyond doubt to be sufficiently good 
approach to many problems. Artificial Neural Network can 
be looked upon as a parallel computing system comprised 
of some number of rather simple processing units 
(neurons) and their interconnections. They follow inherent 
organizational principles such as the ability to learn and 
adapt, generalization, distributed knowledge represent-
ation, and fault tolerance. Neural network specification 
comprises definitions of the set of neurons (not only their 
number but also their organization), activation states for all 
neurons expressed by their activation functions and offsets 
specifying when they fire, connections between neurons 
which by their weights determine the effect the output 
signal of a neuron has on other neurons it is connected 
with, and a method for gathering information by the 
network that is its learning (or training) rule.  
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From architecture point of view neural networks can be 
divided into two categories: feed-forward and recurrent 
networks. In feed-forward networks the flow of data is 
strictly from input to output cells that can be grouped into 
layers but no feedback interconnections can exist. On the 
other hand, recurrent networks contain feedback loops and 
their dynamical properties are very important.  

The most popularly used type of neural networks 
employed in pattern classification tasks is the feed forward 
network which is constructed from layers and possesses 
unidirectional weighted connections between neurons. The 
common examples of this category are Multilayer 
Perceptron or Radial Basis Function networks, and 
committee machines.  

Multilayer perceptron type is more closely defined by 
establishing the number of neurons from which it is built, 
and this process can be divided into three parts, the two of 
which, finding the number of input and output units, are 
quite simple, whereas the third, specification of the 
number of hidden neurons can become crucial to accuracy 
of obtained classification results.  

The number of input and output neurons can be actually 
seen as external specification of the network and these 
parameters are rather found in a task specification. For 
classification purposes as many distinct features are 
defined for objects which are analyzed that many input 
nodes are required. The only way to better adapt the 
network to the problem is in consideration of chosen data 
types for each of selected features. For example instead of 
using the absolute value of some feature for each sample it 
can be more advantageous to calculate its change as this 
relative value should be smaller than the whole range of 
possible values and thus variations could be more easily 
picked up by artificial neural network. The number of 
network outputs typically reflects the number of 
classification classes.  

The third factor in specification of the multilayer 
perceptron is the number of hidden neurons and layers and 
it is essential to classification ability and accuracy. With 
no hidden layer the network is able to properly solve only 
linearly separable problems with the output neuron 
dividing the input space by a hyperplane. Since not many 
problems to be solved are within this category, usually 
some hidden layer is necessary.  

With a single hidden layer the network can classify objects 
in the input space that are sometimes and not quite 
formally referred to as simplexes, single convex objects 
that can be created by partitioning out from the space by 
some number of hyperplanes, whereas with two hidden 
layers the network can classify any objects since they can 
always be represented as a sum or difference of some such 
simplexes classified by the second hidden layer.  

Apart from the number of layers there is another issue of 
the number of neurons in these layers. When the number 
of neurons is unnecessarily high the network easily learns 

but poorly generalizes on new data. This situation reminds 
auto-associative property: too many neurons keep too 
much information about training set rather "remembering" 
than "learning" its characteristics. This is not enough to 
ensure good generalization that is needed.  

On the other hand, when there are too few hidden neurons 
the network may never learn the relationships amongst the 
input data. Since there is no precise indicator how many 
neurons should be used in the construction of a network, it 
is a common practice to build a network with some initial 
number of units and when it learns poorly this number is 
either increased or decreased as required. Obtained 
solutions are usually task-dependant.  

Activation Functions  
Activation or transfer function of a neuron is a rule that 
defines how it reacts to data received through its inputs 
that all have certain weights.  

Among the most frequently used activation functions are 
linear or semi-linear function, a hard limiting threshold 
function or a smoothly limiting threshold such as a 
sigmoid or a hyperbolic tangent. Due to their inherent 
properties, whether they are linear, continuous or 
differentiable, different activation functions perform with 
different efficiency in task-specific solutions.  

For classification tasks with more than two classes logistic 
activation function and its derivative is better: 

∅(𝒛) =
𝟏

(𝟏 + 𝒆−𝒛)
; 

                  ∅′(𝑧) =  ∅(1 − ∅).                 (1) 

 
Figure 2 Logistic activation function and its derivative 

 

Learning Rules  
In order to produce the desired set of output states 
whenever a set of inputs is presented to a neural network it 
has to be configured by setting the strengths of the 
interconnections and this step corresponds to the network 
learning procedure. Learning rules are roughly divided into 
three categories of supervised, unsupervised and reinforce-
ement learning methods.  
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The term supervised indicates an external teacher who 
provides information about the desired answer for each 
input sample. Thus in case of supervised learning the 
training data is specified in forms of pairs of input values 
and expected outputs. By comparing the expected 
outcomes with the ones actually obtained from the network 
the error function is calculated and its minimization leads 
to modification of connection weights in such a way as to 
obtain the output values closest to expected for each 
training sample and to the whole training set.  

In unsupervised learning no answer is specified as 
expected of the neural network and it is left somewhat to 
itself to discover such self-organization which yields the 
same values at an output neuron for new samples as there 
are for the nearest sample of the training set.  

Reinforcement learning relies on constant interaction 
between the network and its environment. The network has 
no indication what is expected of it but it can induce it by 
discovering which actions bring the highest reward even if 
this reward is not immediate but delayed. Basing on these 
rewards it performs such re-organization that is most 
advantageous in the long run (McCulloch, and Pill's 1943).  

The modification of weights associated with network 
interconnections can be performed either after each of the 
training samples or after finished iteration of the whole 
training set.  

The important factor in this algorithm is the learning rate η 
whose value when too high can cause oscillations around 
the local minima of the error function and when too low 
results in slow convergence. This locality is considered the 
drawback of the back propagation method but its 
universality is the advantage.  

Perceptrons 

As the base topology of artificial neural network (Tang et. 
Al. 2007) with the feed-forward simple perceptron with 
logistic activation function trained by back propagation 
algorithm is used.  

     In this research a perceptron with one input layer with 
20×13 ports and one output layer with three output neurons 
is used. Feed forward technique is employed, and artificial 
neural network is trained by back propagation. The three 
output neurons communicate and the winner neuron 
defines the conformation of the amino acid in the center of 
13 neighboring amino acids. 

Feeding Forward 
Given 𝑊𝑖𝑗

𝑘, 𝑖 = 1, … ,20;   𝑗 = 1, … ,13, ; 𝑘 = 1,2,3 and 
𝑊𝑘

0, 𝑘 = 1,2,3, Out(1), Out(2), and Out(3) are computed 
according to the formulas in (2). After the application of 
the activation function ∅, the position of the largest, gives 
the type of the conformation of the central amino acid. 

 
Figure 3 Preceptor with one input layer with 20X13 ports, 
and one output layer with three output neurons 

 
Out(1) = �𝑊𝑖𝑗

1 𝑥𝑖𝑗 + 𝑊1
0 

Out(3) = �𝑊𝑖𝑗
2 𝑥𝑖𝑗 + 𝑊3

0 

Out(3) = �𝑊𝑖𝑗
2 𝑥𝑖𝑗 + 𝑊3

0 

    (2) 

                  Out = Max �∅�Out(1), Out(2), Out(3)��    (3) 

            Conformation = Position(Out)                   (4) 

 

 

Back Propagation 
When all of n data points are exposed to the perceptron 
and output vector out is obtained as a 3×n matrix of which 
a part is of the form; 

 

H C H H H E E C E C E C E 
1 0 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 0 1 0 1 0 1 
0 1 0 0 0 0 0 1 0 1 0 1 0 

 

Assume that for the training data the known conformation 
is  

H H H H H E E E E C C C E 
1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 1 1 0 

 

Subtracting these three rows from the previous three rows, 
in absolute value, we get a part of the error matrix:  

0 1 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 1 0 0 1 0 0 
0 1 0 0 0 0 0 1 0 0 1 0 0 

 

The sum of the elements of this matrix after division to the 
twice the number of residues in this part of the protein can 
be taken as a measure for the error caused by the synaptic 
weights 𝑊𝑖𝑗

𝑘, 𝑖 = 1, … ,20;   𝑗 = 1, … ,13, ; 𝑘 = 1,2,3 and 
𝑊𝑘

0, 𝑘 = 1,2,3. 

𝑒𝑟𝑟𝑜𝑟 = 6/26 ≈ 0.230769 

which is the ratio of the misclassifications. Then this error 
is back propagated to adjust the synaptic weights. 

 

𝐷𝑜[{𝑣1[[𝑗𝑗]]
= 𝑇𝑎𝑏𝑙𝑒[𝑆𝑢𝑚[𝑡𝑟𝑎𝑖𝑛[[𝑗𝑗, 𝑘]]. 𝑤1[[𝑖, 𝑘]], {𝑘, 1, 𝑛𝑎}]
+ 𝑤0[[𝑖]], {𝑖, 1, 𝑠𝑡𝑟}], 

𝑦1�[𝑗𝑗]� = 𝑝ℎ𝑖 �𝑣1�[𝑗𝑗]�� ,𝑀𝑡 = 𝑀𝑎𝑥 �𝑦1�[𝑗𝑗]��, 
𝑠𝑠 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛�𝑦1�[𝑗𝑗]�,𝑀𝑡��[1,1]�, 
𝑦2 = 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑃𝑎𝑟𝑡[𝑖𝑑0, 𝑠𝑠 → 1], 
𝑒[[𝑗𝑗]] = 𝑡𝑖𝑑[[𝑗𝑗]] − 𝑦2}, {𝑗𝑗, 1, 𝑛1}], 
𝑡𝑒 = 𝑇𝑜𝑡𝑎𝑙 �𝐴𝑏𝑠�𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝑒]��, 
𝑒𝑟𝑟𝑜𝑟 = 1 − 𝑅𝑜𝑢𝑛𝑑[𝐶𝑜𝑢𝑛𝑡[𝑡𝑒, 0] 𝑛1⁄ ,.00001] 
𝑑𝑒𝑙1 = 𝑒𝑑𝑝ℎ𝑖[𝑦1], 
𝑤1𝑛𝑒𝑤 = 𝑤1 + 𝑒𝑡𝑎 ∗ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝑑𝑒𝑙1]. 𝑡𝑟𝑎𝑖𝑛, 
𝑤0𝑛𝑒𝑤 = 𝑤0 + 𝑒𝑡𝑎 ∗ 𝑇𝑜𝑡𝑎𝑙[𝑑𝑒𝑙1]𝑤0 

Iteration goes on till error becomes smaller than a given 
threshold. 

 

4.  RESULTS AND DISCUSSION 

To demonstrate the robustness of the system and to justify 
forward propagation of untrained data samples, three 
experiments are conducted using secondary structure 
estimations of the tools given in Chou-Fasman website. 
The first experiment is made using Chou-Fasman 
estimates (C-F), the second by the use of Garnier-
Osguthorpe-Robson (GOR) estimates, and finally the third 
by Neural Network estimate (ANN). Results from these 
experiments can be seen in Table 6.  

 Training Testing 
CF 0.87260 0.85233 
GOR 0.89800 0.89767 
ANN 0.94860 0.92400 
Average 90.64% 89.13% 

Table 7 Performance measurements of three experiments 
using Chou-Fasman, GOR, and Neural Network correct 
estimates for the secondary structure. 

 

If we analyze these results on the conformation type bases 
we observe highest correct estimate in α-helix, H; β-sheet 
E, and coil C. 

Table 8 Correct estimates in α-helix, H; β-sheet E, and coil 
C. 

 

5. CONCLUSIONS 

Seven proteins are concatenated to create a sequence of 
15536 residues. Then secondary structure of this sequence 
is obtained from Chou-Fasman web site. 10000 of these 
residues are used to train a simple perceptron with an 
input, and an output layer. Then the secondary structure of 
untouched 5536 residues with a success shown in Table 7 
Mean rate of correct classification is around 90%, and 
quite satisfactory. We hope that the same success can be 
repeated using X-ray estimates of the second structures in 
training. It will be the topic of the next article. 

 

REFERENCES 

Chou, P. Y. $ Fasman, G. D. (1978). Advan. Enzymol.                    
47, 45-148.  

Garnier, J., Osguthorpe, D. J. and Robson, B. (1978).        
J. Mol. Biol. 120, 97-120.  

Hebb, B. O. (1949) The Organization of Behavior. New  
York: John Wiley & Sons.  Introduction and  Chapter 4 
reprinted in Anderson & Rosenfeld, 1988, pp. 45-56. 

Kabsch, W. T, and  Sander, C.  How good are         
predictions of protein secondary structure? (1983a).         
FEBS Letters, 155, 179-182. 

Lim, V. I. (1974). J. Mol. Biol. 88, 873-894.  

McCulloch, W. S. and Pill's, W. (1943). "A Logical 
Calculus of the Ideas Immanent in Nervous       Activity." 
Bulletin of Mathematical Biophysics, 5:115-133. 
Reprinted in Anderson& Rosenfeld  [1988], pp. 18-28. 

Minsky, M. L.  and Papert, S. A.  (1988)  Perceptrons, 
Expanded Edition. Cambridge, MA: MIT Press. Original 
edition, 1969. 

Robson, B. and Pain, R. H. (1971). J. Mol. Biol. 58,       
237-259.  

Robson, B. and Suzuki, E. (1976). J. Mol. Biol. 107,    
327-356.  

Rosenblatt, E, (1958) The Perceptron: A probabilistic  
model for information storage and organization in the 
brain, Psychological Review, vol. 65, pp. 386-408. 

Taylor, W. R. (1986). J. Mol. Biol. 188, 233-258.  

 Correct Estimates % 
Estimator C-F GOR ANN Average 
α-helix 90.73 93.20 92.48 92.14 
β-sheet 88.40 83.79 75.77 81.92 
Coil 66.67 85.07 94.01 82.65 
Turn  81.03  81.03 
Average 81.93 85.77 87.42  



68  B. Akcesme, and F. B. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2 September 2014 (62-68) 
  

 
 

Vasquez M. , and Scheraga H.A. , 1985 Use of buildup 
and energy-minimization procedure to compute low-
energy structures of the backbone of enkaphalin, 
Biopolymers 24:1437-1447. 

Levitt, M., 1978. Conformational preferences of amino 
acids in globular proteins. Biochemistry 17, 4278–4285. 

Webster, D., Gundersen, G. G.,Bulinski, J. C. and Borisy, 
G. G. . (1987a).Differential turnover of tyrosinated and 
detyrosinated microtubules. Proc. Natl. Acad. Sci. USA 
84, 9040-9044. 

H. Tang, K. C. Tan, and Z. Yi, Neural Networks: 
Computational Models and Applications, Springer-Verlag 
Berlin Heidelberg 2007. 

Karplus, M., J.A. McCammon. Dynamics of Proteins: 
Elements and Function. In "Protein and Nucleic Acid 
Structure and Dynamics," J. King, Ed., Benjamin 
Cummings, Inc., pp. 169-206 (1985). (1985). 

 


