

Southeast Europe Journal of Soft Computing

Available online: www.scjournal.com.ba

VOL. 3 NO. 2 September 2014 - ISSN 2233 – 1859

Predicting the Secondary Structure of Proteins Using Artificial
Neural Networks

Betul Akcesme and Faruk B. Akcesme
International University of Sarajevo, Faculty of Engineering and Natural Sciences, Hrasnicka Cesta 15, Ilidža
71210 Sarajevo, Bosnia and Herzegovina
betul.cicek@yahoo.com; fakcesme@ius.edu.ba

Article Info
Article history:
Article received Sep. 2014
Article recivied in revised form Nov.
2014

Keywords:
Secondary structure; Conformation of
proteins; Statistical methods

Abstract
A method for protein secondary structure prediction based on the use of
artificial neural networks (ANN) is presented. Amino acids, and their
secondary structures obtained from National Center for Biotechnology
Information (NCBI) and the online tool given in Chou-Fasman website of
seven proteins are concatenated to create a sequence of 15536 residues. A
neural network with only an input and an output layer is used, and back-
propagation technique is adopted to tune the synaptic weights. Data is
divided into two sets for training, and testing. The average success rate of
the method on a testing set of proteins was 90.64% in training and
89.13% in testing on three types of secondary structure α-helix, β-sheet,
and coil, with correct identification coefficients of 𝐶𝛼 = 0.92, 𝐶𝛽 =
 0.81, and 𝐶𝑐𝑜𝑖𝑙 = 0.82, and 𝑇𝑡𝑢𝑟𝑛 = 0.81 . These quality indices are
all compatible with those of previous methods. From computational
experiments on real and artificial structures that no method based solely
on local information in the protein sequence is likely to produce
significantly better results for proteins.

1. INTRODUCTION

Our knowledge about protein structure comes mostly from
the X-ray diffraction patterns of crystallized proteins,
NMR spectroscopy and electron microscopy. X-ray
crystallography is essentially very accurate, but many steps
are uncertain since not all proteins can easily be
crystallized. Obtaining high-quality protein sample is
difficult and generally proteins are sensitive to temperature
and pH. All these techniques are very time consuming and
costly.

Recent developments in genetic engineering have vastly
increased the number of known protein sequences. In
addition, it is now possible to selectively alter protein
sequences by site-directed mutagenesis. But to take full
advantage of these techniques would be helpful if one
could predict the structure of a protein from its primary

sequence of amino acids. The general problem of
predicting the tertiary structure of folded proteins is
unsolved.

Information about the secondary structure of a protein can
be helpful in determining its structural properties. The best
way to predict the structure of a new protein is to find a
homologous protein whose structure has been determined.
Structure of new protein can be found with many available
online tools that use protein database. Even if only limited
regions of conserved sequences can be found, then
template matching methods are applicable (Taylor, 1986).
If no homologous protein with a known structure is found,
existing methods for predicting secondary structures can
be used but are not always reliable. Three of the most
commonly used methods are those of Robson (Robson &

http://www.scjournal.com.ba/

63 B. Akcesme, and F. B. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2 September 2014 (62-68)

Pain, 1971; Garnier et al., 1978), of Chou & Fasman
(1978), and Lim (1974). These methods primarily exploit,
in different ways, the correlations between amino acids
and the local secondary structure. By local, we mean an
influence on the secondary structure of an amino acid by
others that are no more than about ten residues away.
These methods were based on the protein structures
available in the 1970s. The average success rate of these
methods on more recently determined structures is 50 to
53% on three types of secondary structure (α-helix, β-
sheet, and coil: Nishikawa, 1983; Kabsch & Sander,
1983a).

In this paper, we have employed a method for discovering
regular patterns in data that is based on neural network
models. The brain has highly developed pattern matching
abilities and neural network models are designed to mimic
them.

The goal of the method introduced here is to use the
available information in the database of known protein
structures to help predict the secondary structure of
proteins for which no homologous structures are available
in any database. The known structures implicitly contain
information about the bio-physical properties of amino
acids and their interactions. This approach is not meant to
be an alternative to other methods that have been
developed to study protein folding that take biophysical
properties explicitly into account, such as the methods of
free energy minimization (Scheraga, 1985) and integration
of the dynamical equations of motion (Karplus, 1985;
Levitt, 1983). Rather, secondary structures obtained using
ANN provides additional constraints to reduce the search
space for these other methods. For example, a good
prediction for the secondary structure could be used as the
initial conditions for energy minimization, or as the first
step in other predictive techniques (Webster et al., 1987).

2. METHODS
(a) Database
Primary structures of seven proteins are obtained from the
NCBI. Predicted secondary structures of these proteins are
obtained from the online tool given in Chou-Fasman
website1. Amino acid residues and their secondary
structure assignments are concatenated to create a data
sequence of 15536 amino acids. Table 1 contains a listing
of the seven proteins that were used in this study.

 Protein Residue
1. Serum Albumin 1500
2. Spondin1, extracellular matrix protein 807
3. Collagen type IV 1779
4. Cystic fibrosis transmembrane c. regulator 1483
5. Pod1,isoform G 1266
6. Polyprotein [Hepatitis C virus genotype 3] 3021
7. Dystrophin 3678
 Total 5536

Table 1 The seven proteins that were used in this study

1 http://cib.cf.ocha.ac.jp/bitool/MIX/

Data is divided into three equal sets for training, validation
and testing. Results are highly sensitive to protein
homologies in the testing and training sets. Special care
was taken to balance the overall frequencies of α-helix, β-
sheet in the training and testing sets, as shown in Tables 2.

Figure 1 α-helices, β-sheets, and coils on the same picture.

(PDB code for the proteins: 4C49)

 Number of residues
Estimator C-F GOR ANN
α-helix 4919 5529 4221
β-sheet 3923 2697 1149
Coil 4992 2895 8164
Turn 2413

Table 2 Balance the overall frequencies of α-helices, β-sheets
in the training and testing sets

 (b) Symbols for Amino Acids
Proteins are chains in the three dimensional space built

Amino acid Chemical alphabet
1 Alanine Ala A
2 Arginine Arg R
3 Asparagine Asn N
4 Aspartic acid Asp D
5 Cysteine Cys C
6 Glutamine Gln Q
7 Glutamic acid Glu E
8 Glycine Gly G
9 Histidine His H
10 Isoleucine Ile I
11 Leucine Leu L
12 Lysine Lys K
13 Methionine Met M
14 Phenylalanine Phe F
15 Proline Pro P
16 Serine Ser S
17 Threonine Thr T
18 Tryptophan Trp W
19 Tyrosine Tyr Y
20 Valine Val V

Table 3 Names and symbols of 20 amino acids

64 B. Akcesme, and F. B. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2 September 2014 (62-68)

from smaller chemical molecules called amino acids.
There are 20 different amino acids. Each of them is
denoted by a different letter in the Latin alphabet as shown
in Table 3.

Based on the protein chain it is easy to create its relevant
sequence of amino acids replacing an amino acid in chain
by its code in Latin alphabet. As a result a word on the
amino acids’ alphabet is received. This word can be called
a protein primary structure on the condition that letters in
this word are in the same order as amino acids in the
protein chain are.

A secondary structure of a protein is a subsequence of
amino acids coming from the relevant protein. These
subchains form in the three dimensional space regular
structures which are the same in shape for different
proteins. In the analysis, a similar representation for the
secondary structures as for the primary ones has been used.
A secondary structure is represented by a word on the
relevant alphabet of secondary structures. Each kind of a
secondary structure has its own unique letter α-helix, H; β-
sheet E, and coil C. An alphabet of secondary structures
consisting of three different secondary structures has been
considered in the analysis.

(c) Coding the Data
In this paper, data corresponding to an amino acid consists
of six right, and six left neighboring amino acids of this
amino acid in the primary structure of the protein as in
Table 3. In the second row, secondary structure
conformations of these neighboring amino acids are given.

A E E K E A V L G L W G K
H H H H H E E E E C C C E
1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 0

Table 4 Six right, and six left neighboring amino acids of the
amino acid V

Secondary structure letters H, E, and C are coded as in the
table below;

H E C
1 0 0
0 1 0
0 0 1

Table 5 Codes for secondary structure letters H, E, and C.

The data corresponding to an amino acid is coded by a
20×13 matrix as follows

 A E E K E A V L G L W G K
A 1 0 0 0 0 1 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 1
D 0 0 0 0 0 0 0 0 0 0 1 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 1 1 0 1 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 1 0 0 1 0
H 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 1 0 1 0 0 0
K 0 0 0 1 0 0 0 0 0 0 0 0 1
M 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 1 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0
V 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 6 The data corresponding to the central amino acid V

(d) ANN Architecture
Nervous systems existing in biological organism have
been the subject of studies for mathematicians who tried to
develop some models describing such systems and all their
complexities for years. Artificial Neural Networks
emerged as generalizations of these concepts with
mathematical model of artificial neuron due to McCuloch
and Pitts described in 1943 (McCuloch and Pitts 1943)
definition of unsupervised learning rule by Hebb in 1949
(Heb 1949), and the first ever implementation of
Rosenblatt’s perceptron in 1958 (Rosenblatt 1958). The
efficiency and applicability of artificial neural networks
to computational tasks have been questioned many times,
especially at the very beginning of their history the book
"Perceptrons" by Minsky and Papert (Minsky and Papert
1969), published in 1969, caused dissipation of initial
interest and enthusiasm in applications of neural networks.
 It was not until 1970s and 80s, when the back
propagation algorithm for supervised learning was
documented that artificial neural networks regained their
status and proved beyond doubt to be sufficiently good
approach to many problems. Artificial Neural Network can
be looked upon as a parallel computing system comprised
of some number of rather simple processing units
(neurons) and their interconnections. They follow inherent
organizational principles such as the ability to learn and
adapt, generalization, distributed knowledge represent-
ation, and fault tolerance. Neural network specification
comprises definitions of the set of neurons (not only their
number but also their organization), activation states for all
neurons expressed by their activation functions and offsets
specifying when they fire, connections between neurons
which by their weights determine the effect the output
signal of a neuron has on other neurons it is connected
with, and a method for gathering information by the
network that is its learning (or training) rule.

65 B. Akcesme, and F. B. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2 September 2014 (62-68)

From architecture point of view neural networks can be
divided into two categories: feed-forward and recurrent
networks. In feed-forward networks the flow of data is
strictly from input to output cells that can be grouped into
layers but no feedback interconnections can exist. On the
other hand, recurrent networks contain feedback loops and
their dynamical properties are very important.

The most popularly used type of neural networks
employed in pattern classification tasks is the feed forward
network which is constructed from layers and possesses
unidirectional weighted connections between neurons. The
common examples of this category are Multilayer
Perceptron or Radial Basis Function networks, and
committee machines.

Multilayer perceptron type is more closely defined by
establishing the number of neurons from which it is built,
and this process can be divided into three parts, the two of
which, finding the number of input and output units, are
quite simple, whereas the third, specification of the
number of hidden neurons can become crucial to accuracy
of obtained classification results.

The number of input and output neurons can be actually
seen as external specification of the network and these
parameters are rather found in a task specification. For
classification purposes as many distinct features are
defined for objects which are analyzed that many input
nodes are required. The only way to better adapt the
network to the problem is in consideration of chosen data
types for each of selected features. For example instead of
using the absolute value of some feature for each sample it
can be more advantageous to calculate its change as this
relative value should be smaller than the whole range of
possible values and thus variations could be more easily
picked up by artificial neural network. The number of
network outputs typically reflects the number of
classification classes.

The third factor in specification of the multilayer
perceptron is the number of hidden neurons and layers and
it is essential to classification ability and accuracy. With
no hidden layer the network is able to properly solve only
linearly separable problems with the output neuron
dividing the input space by a hyperplane. Since not many
problems to be solved are within this category, usually
some hidden layer is necessary.

With a single hidden layer the network can classify objects
in the input space that are sometimes and not quite
formally referred to as simplexes, single convex objects
that can be created by partitioning out from the space by
some number of hyperplanes, whereas with two hidden
layers the network can classify any objects since they can
always be represented as a sum or difference of some such
simplexes classified by the second hidden layer.

Apart from the number of layers there is another issue of
the number of neurons in these layers. When the number
of neurons is unnecessarily high the network easily learns

but poorly generalizes on new data. This situation reminds
auto-associative property: too many neurons keep too
much information about training set rather "remembering"
than "learning" its characteristics. This is not enough to
ensure good generalization that is needed.

On the other hand, when there are too few hidden neurons
the network may never learn the relationships amongst the
input data. Since there is no precise indicator how many
neurons should be used in the construction of a network, it
is a common practice to build a network with some initial
number of units and when it learns poorly this number is
either increased or decreased as required. Obtained
solutions are usually task-dependant.

Activation Functions
Activation or transfer function of a neuron is a rule that
defines how it reacts to data received through its inputs
that all have certain weights.

Among the most frequently used activation functions are
linear or semi-linear function, a hard limiting threshold
function or a smoothly limiting threshold such as a
sigmoid or a hyperbolic tangent. Due to their inherent
properties, whether they are linear, continuous or
differentiable, different activation functions perform with
different efficiency in task-specific solutions.

For classification tasks with more than two classes logistic
activation function and its derivative is better:

∅(𝒛) =
𝟏

(𝟏 + 𝒆−𝒛)
;

 ∅′(𝑧) = ∅(1 − ∅). (1)

Figure 2 Logistic activation function and its derivative

Learning Rules
In order to produce the desired set of output states
whenever a set of inputs is presented to a neural network it
has to be configured by setting the strengths of the
interconnections and this step corresponds to the network
learning procedure. Learning rules are roughly divided into
three categories of supervised, unsupervised and reinforce-
ement learning methods.

2 1 1 2

1.0

0.5

0.5

1.0

66 B. Akcesme, and F. B. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2 September 2014 (62-68)

The term supervised indicates an external teacher who
provides information about the desired answer for each
input sample. Thus in case of supervised learning the
training data is specified in forms of pairs of input values
and expected outputs. By comparing the expected
outcomes with the ones actually obtained from the network
the error function is calculated and its minimization leads
to modification of connection weights in such a way as to
obtain the output values closest to expected for each
training sample and to the whole training set.

In unsupervised learning no answer is specified as
expected of the neural network and it is left somewhat to
itself to discover such self-organization which yields the
same values at an output neuron for new samples as there
are for the nearest sample of the training set.

Reinforcement learning relies on constant interaction
between the network and its environment. The network has
no indication what is expected of it but it can induce it by
discovering which actions bring the highest reward even if
this reward is not immediate but delayed. Basing on these
rewards it performs such re-organization that is most
advantageous in the long run (McCulloch, and Pill's 1943).

The modification of weights associated with network
interconnections can be performed either after each of the
training samples or after finished iteration of the whole
training set.

The important factor in this algorithm is the learning rate η
whose value when too high can cause oscillations around
the local minima of the error function and when too low
results in slow convergence. This locality is considered the
drawback of the back propagation method but its
universality is the advantage.

Perceptrons

As the base topology of artificial neural network (Tang et.
Al. 2007) with the feed-forward simple perceptron with
logistic activation function trained by back propagation
algorithm is used.

 In this research a perceptron with one input layer with
20×13 ports and one output layer with three output neurons
is used. Feed forward technique is employed, and artificial
neural network is trained by back propagation. The three
output neurons communicate and the winner neuron
defines the conformation of the amino acid in the center of
13 neighboring amino acids.

Feeding Forward
Given 𝑊𝑖𝑗

𝑘, 𝑖 = 1, … ,20; 𝑗 = 1, … ,13, ; 𝑘 = 1,2,3 and
𝑊𝑘

0, 𝑘 = 1,2,3, Out(1), Out(2), and Out(3) are computed
according to the formulas in (2). After the application of
the activation function ∅, the position of the largest, gives
the type of the conformation of the central amino acid.

Figure 3 Preceptor with one input layer with 20X13 ports,
and one output layer with three output neurons

Out(1) = �𝑊𝑖𝑗

1 𝑥𝑖𝑗 + 𝑊1
0

Out(3) = �𝑊𝑖𝑗
2 𝑥𝑖𝑗 + 𝑊3

0

Out(3) = �𝑊𝑖𝑗
2 𝑥𝑖𝑗 + 𝑊3

0

 (2)

 Out = Max �∅�Out(1), Out(2), Out(3)�� (3)

 Conformation = Position(Out) (4)

Back Propagation
When all of n data points are exposed to the perceptron
and output vector out is obtained as a 3×n matrix of which
a part is of the form;

H C H H H E E C E C E C E
1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 1 0 1
0 1 0 0 0 0 0 1 0 1 0 1 0

Assume that for the training data the known conformation
is

H H H H H E E E E C C C E
1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 0

Subtracting these three rows from the previous three rows,
in absolute value, we get a part of the error matrix:

0 1 0 0 0 0 0 0 0 0 0 0 0

67 B. Akcesme, and F. B. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2 September 2014 (62-68)

0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0

The sum of the elements of this matrix after division to the
twice the number of residues in this part of the protein can
be taken as a measure for the error caused by the synaptic
weights 𝑊𝑖𝑗

𝑘, 𝑖 = 1, … ,20; 𝑗 = 1, … ,13, ; 𝑘 = 1,2,3 and
𝑊𝑘

0, 𝑘 = 1,2,3.

𝑒𝑟𝑟𝑜𝑟 = 6/26 ≈ 0.230769

which is the ratio of the misclassifications. Then this error
is back propagated to adjust the synaptic weights.

𝐷𝑜[{𝑣1[[𝑗𝑗]]
= 𝑇𝑎𝑏𝑙𝑒[𝑆𝑢𝑚[𝑡𝑟𝑎𝑖𝑛[[𝑗𝑗, 𝑘]]. 𝑤1[[𝑖, 𝑘]], {𝑘, 1, 𝑛𝑎}]
+ 𝑤0[[𝑖]], {𝑖, 1, 𝑠𝑡𝑟}],

𝑦1�[𝑗𝑗]� = 𝑝ℎ𝑖 �𝑣1�[𝑗𝑗]�� ,𝑀𝑡 = 𝑀𝑎𝑥 �𝑦1�[𝑗𝑗]��,
𝑠𝑠 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛�𝑦1�[𝑗𝑗]�,𝑀𝑡��[1,1]�,
𝑦2 = 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑃𝑎𝑟𝑡[𝑖𝑑0, 𝑠𝑠 → 1],
𝑒[[𝑗𝑗]] = 𝑡𝑖𝑑[[𝑗𝑗]] − 𝑦2}, {𝑗𝑗, 1, 𝑛1}],
𝑡𝑒 = 𝑇𝑜𝑡𝑎𝑙 �𝐴𝑏𝑠�𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝑒]��,
𝑒𝑟𝑟𝑜𝑟 = 1 − 𝑅𝑜𝑢𝑛𝑑[𝐶𝑜𝑢𝑛𝑡[𝑡𝑒, 0] 𝑛1⁄ ,.00001]
𝑑𝑒𝑙1 = 𝑒𝑑𝑝ℎ𝑖[𝑦1],
𝑤1𝑛𝑒𝑤 = 𝑤1 + 𝑒𝑡𝑎 ∗ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒[𝑑𝑒𝑙1]. 𝑡𝑟𝑎𝑖𝑛,
𝑤0𝑛𝑒𝑤 = 𝑤0 + 𝑒𝑡𝑎 ∗ 𝑇𝑜𝑡𝑎𝑙[𝑑𝑒𝑙1]𝑤0

Iteration goes on till error becomes smaller than a given
threshold.

4. RESULTS AND DISCUSSION

To demonstrate the robustness of the system and to justify
forward propagation of untrained data samples, three
experiments are conducted using secondary structure
estimations of the tools given in Chou-Fasman website.
The first experiment is made using Chou-Fasman
estimates (C-F), the second by the use of Garnier-
Osguthorpe-Robson (GOR) estimates, and finally the third
by Neural Network estimate (ANN). Results from these
experiments can be seen in Table 6.

 Training Testing
CF 0.87260 0.85233
GOR 0.89800 0.89767
ANN 0.94860 0.92400
Average 90.64% 89.13%

Table 7 Performance measurements of three experiments
using Chou-Fasman, GOR, and Neural Network correct
estimates for the secondary structure.

If we analyze these results on the conformation type bases
we observe highest correct estimate in α-helix, H; β-sheet
E, and coil C.

Table 8 Correct estimates in α-helix, H; β-sheet E, and coil
C.

5. CONCLUSIONS

Seven proteins are concatenated to create a sequence of
15536 residues. Then secondary structure of this sequence
is obtained from Chou-Fasman web site. 10000 of these
residues are used to train a simple perceptron with an
input, and an output layer. Then the secondary structure of
untouched 5536 residues with a success shown in Table 7
Mean rate of correct classification is around 90%, and
quite satisfactory. We hope that the same success can be
repeated using X-ray estimates of the second structures in
training. It will be the topic of the next article.

REFERENCES

Chou, P. Y. $ Fasman, G. D. (1978). Advan. Enzymol.
47, 45-148.

Garnier, J., Osguthorpe, D. J. and Robson, B. (1978).
J. Mol. Biol. 120, 97-120.

Hebb, B. O. (1949) The Organization of Behavior. New
York: John Wiley & Sons. Introduction and Chapter 4
reprinted in Anderson & Rosenfeld, 1988, pp. 45-56.

Kabsch, W. T, and Sander, C. How good are
predictions of protein secondary structure? (1983a).
FEBS Letters, 155, 179-182.

Lim, V. I. (1974). J. Mol. Biol. 88, 873-894.

McCulloch, W. S. and Pill's, W. (1943). "A Logical
Calculus of the Ideas Immanent in Nervous Activity."
Bulletin of Mathematical Biophysics, 5:115-133.
Reprinted in Anderson& Rosenfeld [1988], pp. 18-28.

Minsky, M. L. and Papert, S. A. (1988) Perceptrons,
Expanded Edition. Cambridge, MA: MIT Press. Original
edition, 1969.

Robson, B. and Pain, R. H. (1971). J. Mol. Biol. 58,
237-259.

Robson, B. and Suzuki, E. (1976). J. Mol. Biol. 107,
327-356.

Rosenblatt, E, (1958) The Perceptron: A probabilistic
model for information storage and organization in the
brain, Psychological Review, vol. 65, pp. 386-408.

Taylor, W. R. (1986). J. Mol. Biol. 188, 233-258.

 Correct Estimates %
Estimator C-F GOR ANN Average
α-helix 90.73 93.20 92.48 92.14
β-sheet 88.40 83.79 75.77 81.92
Coil 66.67 85.07 94.01 82.65
Turn 81.03 81.03
Average 81.93 85.77 87.42

68 B. Akcesme, and F. B. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2 September 2014 (62-68)

Vasquez M. , and Scheraga H.A. , 1985 Use of buildup
and energy-minimization procedure to compute low-
energy structures of the backbone of enkaphalin,
Biopolymers 24:1437-1447.

Levitt, M., 1978. Conformational preferences of amino
acids in globular proteins. Biochemistry 17, 4278–4285.

Webster, D., Gundersen, G. G.,Bulinski, J. C. and Borisy,
G. G. . (1987a).Differential turnover of tyrosinated and
detyrosinated microtubules. Proc. Natl. Acad. Sci. USA
84, 9040-9044.

H. Tang, K. C. Tan, and Z. Yi, Neural Networks:
Computational Models and Applications, Springer-Verlag
Berlin Heidelberg 2007.

Karplus, M., J.A. McCammon. Dynamics of Proteins:
Elements and Function. In "Protein and Nucleic Acid
Structure and Dynamics," J. King, Ed., Benjamin
Cummings, Inc., pp. 169-206 (1985). (1985).

