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ABSTRACT: The flow of a Casson nanofluid across a nonlinear 

stretching surface with a velocity slip and a convective boundary 

condition is investigated in this work in the magnetohydrodynamic 

(MHD) domain. This technique emphasizes a variety of effects, including 

chemical reaction, viscosity dissipation, and velocity ratio. 

In this study, Brownian motion and thermophoresis are also illustrated. It 

is assumed that suction exists while a magnetic field is uniform. The 

governing nonlinear partial differential equations are converted into a set 

of nonlinear ordinary differential equations using the required similarity 

transformations, and the Runge-Kutta-Fehlberg fourth-fifth method is 

then used to solve the system. The updated results are fairly similar to the 

earlier ones. The graphs and tables examine how various variables affect 

the speeds, temperatures, concentrations of substances, skin friction 

values, Sherwood numbers and Nusselt numbers. 

1. INTRODUCTION 

Since non-Newtonian fluids in nature act like elastic 

solids, flow is prevented by modest shear forces. 

Casson fluid is one kind of non-Newtonian fluid. The 

idea was initially developed by Casson in 1959. The 

hypothesis is based on the interaction of the solid and 

liquid phases of a two-phase suspension. As 

prospective Casson fluid possibilities, jam, honey, 

tomato paste, and extremely concentrated fruit liquids 

all meet the criteria. Blood from humans is classified 

as a Casson fluid because it contains numerous Casson 

fluid-qualifying substances, such as globulin in 

aqueous base plasma, red blood cells, protein, and 

fibrinogen. Choi [1] introduced the idea of nanofluid 

through his investigation of numerous cooling 

technologies and procedures. These fluids are drawing 

attention because they offer such an outstanding 

opportunity for better heat transmission. The blend of 

Brownian motion and thermophoresis in a nanofluid 

was initially studied by Buongiorno [2]. Using this 

framework, Khan and Pop [3] looked at how a 

nanofluid moves across a stretching sheet in its 
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boundary layer. Numerous researchers have 

investigated the stagnation point flow of nanofluids, 

notably Bachok et al. [6], Ibrahim et al. [5], Mustafa et 

al. [4], and others. Yacob et al. [7] and Makinde and 

Aziz [8] also noted challenges with nanofluid flow 

across a stretching sheet employing a convective 

boundary condition at the surface. Magnetic nanofluid 

is a colloidal solution of magnetic nanoparticles and 

carrier liquid. At the beginning, MHD was tried out on 

astrophysical and geophysical issues. MHD has 

received a lot of attention recently due to its 

applicability in a variety of industries, including 

engineering and the petroleum industry. Magnetic 

nanofluids is one of them, and its main goal is to 

control fluid flow and heat transfer using an external 

magnetic field. It has been investigated how different 

geometries of nanofluids react to magnetic fields. 

Sathies Kumar and Gangadhar [9] hypothesized the 

effect of a chemical reaction on the slip flow of an 

MHD Casson fluid over a stretching sheet under the 

influence of heat and mass transfer. Bhattacharyya [10] 

examined the effects of thermal radiation on the MHD 

stagnation point flow using a Casson fluid and a 

stretching sheet. The unsteady magnetohydrodynamic 

Casson fluid flow over a vertical cone and flat plate in 

the presence of a non-uniform heat source was 

explained by Benazir et al. [11]. 

Nadeem et al. [12] proposed the MHD 3D Casson fluid 

flow to pass through a linearly stretched porous sheet. 

Rizwan et al. [13] investigated the impact of MHD and 

convective heat transport on a Casson nanofluid 

passing through a shrinking sheet. Ibrahim and 

Makinde [14] established a framework for the flow and 

heat transfer of a Casson nanofluid via a stretching 

sheet within a magnetohydrodynamic (MHD) 

stagnation point employing velocity slip and 

convective boundary conditions. The effects of heat 

and mass transfer on the MHD flow of Casson fluid 

that experiences a chemical reaction with suction were 

examined by Shehzadl et al. [15]. Mukhopadhyay [16] 

identified the importance of thermal radiation on the 

flow of a Casson fluid involving heat transfer along a 

stretching surface in the presence of suction and 

injection. The Casson nanofluid was proven by 

Oyelakin et al. [17] on a stretching surface with 

boundary conditions for radiation of heat, 

convection, and velocity slip. Although this is not a 

requirement, all of the aforementioned research are 

restricted to flows across linearly stretched sheets. For 

Casson fluid flow and heat transport across a 

nonlinearly stretched surface, Mukhopadhyay [18] 

devised a formula.  Vajravelu [19] investigated the 

movement of a viscous fluid over a nonlinearly 

stretched sheet. We didn't discover how a viscous fluid 

transmits heat over a nonlinearly stretched sheet until 

Cortell [20]. The effect of thermal radiation on the 

flow of an MHD Casson nanofluid on a vertical non-

linear stretching surface when Joule heating is present 

was briefly discussed by Pal et al. [21] using the 

scaling group approach. Ullah et al.'s study [22] 

examined how chemical reaction, thermal radiation, 

heat generation, and convective boundary conditions 

affected the MHD mixed convection slip flow of 

Casson fluid through a nonlinearly expanding sheet 

that surrounded a porous medium. Hayat et al. [23] 

identified the influence of heat sources and chemical 

processes on the mixed convection flow of Casson 

nanofluid over a stretching sheet in the presence of 

convective boundary conditions. The movement and 

dispersion of chemically reactive species over a 

nonlinearly extending sheet in a porous media were 

studied by Ziabakhsh et al. [24]. Numerous 

investigations on the boundary layer flow over a non-

linear stretched sheet under various heat and mass 

transfer, slip, and convective boundary conditions, etc. 

are presented in the literature [25]-[31]. In this study, 

we investigate the Casson nanofluid's MHD stagnation 

point flow under the effects of velocity ratio, suction, 

thermal radiation, viscous dissipation, chemical 

reaction, Brownian motion, thermophoresis, slip, and 

convective boundary conditions through a nonlinear 

stretching sheet.  The equations for flow, heat, and 

mass transfer are solved using the Runge-Kutta-

Fehlberg fourth-fifth approach. 

2. MATHEMATICAL FORMULATION 

Consider a nonlinear stretching sheet that coincides 

with the plane y=0 and is subject to a steady two-

dimensional dissipative MHD stagnation point flow of 

an incompressible Casson nanofluid. flow being 

contained in the y≥0 region. Given that a>0, b>0,   are 

constants and n≥0 is the nonlinear stretching 

parameter, it is assumed that u=Uw=axn is the sheet's 

stretching velocity and Uꝏ=bxn is the free stream 

velocity.  

Uslip = (μB +
py

√2πc
)

∂u

∂y
 is used to represent the slip 

velocity at the surface. A convective heating 

mechanism, represented by a temperature Tf and a heat 

transfer coefficient hf, controls the temperature of the 

sheet. With y→ꝏ, it is believed that Cw is the 

nanoparticle concentration and that Tꝏ and Cꝏ are the 

ambient temperature and nanoparticle concentration, 
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respectively.  The sheet with constant B0 is subjected 

to a perpendicular magnetic field B(x) = B0x
n−1

2 .   

For an isotropic and incompressible flow of Casson 

fluid, the rheological equation of state is 
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where µB is the plastic dynamic  

viscosity of the non-Newtonian fluid, py is the yield 

stress of the fluid, π is the product of the component of 

deformation rate with itself, π=eijeij, eij is the (i,j)th 

component of the deformation rate πc and is the critical 

value of this product based on the non-Newtonian 

model.  

The equations governing the flow can be expressed as 

follows 

     (1) 
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1
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(4) 

boundary conditions are 

u = Uw + Uslip = axn + (μB +
py

√2πc
)

∂u

∂y
, v =

vw, −k
∂T

∂y
= hf(Tf − T), C = Cw at y = 0 u →

U∞ = bxn, v → 0, T → T∞, C → C∞  

 (5) 

In order to turn the partial differential equations into 

ordinary differential equations, we now introduce the 

following similarity transformations: 
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1
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(𝑓′² − 𝐴2) + 𝑀(𝐴 −
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The boundary conditions are 

f(0) = S, f′(0) = 1 + δ (1 +
1

𝛽
) 𝑓′′(0), 𝜃′(0) =

−𝐵𝑖(1 − 𝜃(0)), 𝜙(0) = 1, 𝑓′(∞ → 𝐴,    𝜃(∞) →
0,   𝜙(∞) → 0,         (10) 

where prime denotes differentiation with respect to ζ..   

Non-dimensional skin friction coefficient Cʄ, local 

Nusselt number Nux  and local Sherwood number Shx 
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the wall shear stress, qw and qm are the heat and mass 

fluxes at the surface which are defined as: 
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where  is the local Reynolds number. 

3. METHOD OF SOLUTION 

The Runge-Kutta-Fehlberg fourth- to fifth-order 

method along shooting technique is used to solve the 

nonlinear ordinary differential equations (7) through 

(9) with boundary conditions (10). First, a system of 

concurrent ordinary equations is created from a set of 

non-linear ordinary differential equations of third order 

in f, second order in g, θ and φ. Runge-Kutta-

Fehlberg's fourth-and-fifth technique needs three 

additional missed initial conditions in order to solve 

this system. However, when η to infinity, the values of  

f ′ (η), θ (η),φ (η) are known. Using the shooting 

technique, these end conditions are utilized to 

determine the unknown initial conditions at  η = 0. By 

assuming initial conditions, the boundary value 

problem in the shooting technique is transformed into 

an initial value problem. The estimated boundary 

values must match the actual boundary values. One 

makes an effort to come as close to the boundary value 

as possible by trial and error or some other scientific 

method. The selection of the right finite value for the 

far field boundary condition is the most crucial stage in 

this procedure. We used the infinity condition at a high 

but finite value of η, when there are no significant 

fluctuations in speed, temperature, or other factors. For 

all possible values of the parameters taken into 

consideration, we do our bulk computations with the 

value at ɳmax = 0.6, which is enough to achieve the far 

field boundary conditions asymptotically.    

4. RESULTS AND DISCUSSION  

This section focuses on the impact of emerging 

parameters on velocity, temperature, and 

concentration, including magnetic (M), nonlinear (n), 

velocity ratio (A), Casson fluid (β), slip (δ), and 

suction (S) parameters, as well as Prandtl number (Pr), 

thermal radiation (R), viscous dissipation (Ec), 

Brownian motion (Nb), thermophoresis (Nt), Biot 

number (Bi), Lewis number (Le), and chemical 

reaction parameters (γ). The fourth-and-fifth approach 

of Runge-Kutta-Fehlberg is used to solve numerical 

problems. For numerical findings, we took into 

account β=0.5, M=0.5, n=1.5, =0.5, A=0.2, δ= 0.1, 

Pr=0.71, R=0. Nb = 0.1, Nt = 0.1, Ec = 0.1, Bi1 = 0.5, 

Le = 2.0 and γ=0.5. Unless otherwise noted in the 

relevant graphs and tables, these values are conserved 

as common. The distribution of velocity, temperature, 

and concentration are shown in Figures. 1(a) through 

1(c) for different values of the Casson fluid parameter 

β. It is observed that as β increases, the temperature 

and concentration distribution increase while the 

velocity and boundary layer thickness decrease. 

However, with the growth of the Casson fluid 

parameter β, the fluid concentration in this case is not  

much significant. 

Figures 2(a) through 2(c) describe the impact of the 

nonlinear parameter n on velocity, temperature, and 

concentration curves. It is discovered that as nonlinear 

parameter values grow, the velocity profile declines 

while the temperature and concentration profile rise. A 

magnetic parameter's M influence on velocity 

distribution is seen in Figure 3. With the magnetic 

parameter M, the velocity distribution falls. This is 

because of the Lorentz force that the magnetic field 

produces. 

Figure 4 shows how the suction parameter S affects 

velocity profiles. With an increase in S, the 

distributions of velocity slow down. Figure 5 shows 

how the velocity ratio parameter A affects the velocity 

field. The velocity is observed to rise with A. Slowing 

down in the nanofluid's velocity is brought on by an 

increase in the velocity slip parameter δ. This outcome 

is shown in Figure 6.  Temperature decreases as fluid 

viscosity increases due to an increase in Prandtl 

number Pr. In Figure 7, this is depicted. 

Figure 8 shows how the radiation parameter R affects 

temperature. It has been observed that when R 

increases, so does the temperature. Figure 11 illustrates 

how Eckert number Ec affects temperature.  Because 

heat is added to the wall through frictional heating, as 

Ec rises, so does the wall temperature. The presence of 

the Brownian motion parameter Nb on temperature 

and concentration profiles is seen in Figures 10(a) and 

10(b). With the Brownian motion parameter Nb, 

temperature rises, but concentration experiences the 

reverse phenomenon. 

Movement of the nanoparticles from the higher 

temperature region to the lower temperature region in 

the boundary layer region is caused by an increase in 

the thermophoresis parameter Nt. Thus, as illustrated 

in Figures 11(a) and 11(b), increases in Nt imply rises 

in both the temperature and concentration curves. 

Figure 12 shows how temperature increases with the 

Biot number Bi. This is because convective heating 

and temperature gradient both rise with Bi.  
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Figures 13 and 14 show, respectively, the effects of the 

Lewis number Le and the chemical reaction parameter 

γ on the concentration profiles. It is evident that a rise 

in Le causes the concentration boundary layer to 

decrease. Similar results are seen when γ values are 

raised. 

Under restricting circumstances, Tables 1, 2 and 3 

show a strong correlation between the current and prior 

findings.  

Table 4 illustrates how different parameters, including 

γ, R, Nb, Nt, Ec, Bi and γ, affect skin friction 

coefficient, Nusselt number, and Sherwood number. 

The table shows that as δ increases, the skin friction 

coefficient increases.  

Sherwood and Nusselt numbers increase with R, and 

the opposite tendency is seen with δ and Nt. With Nb, 

Ec and γ Nusselt number decreases but Sherwood 

number increases. 
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Figure 2(c): Concentration profiles for various values of n 
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Figure 9. Temperature profiles for different values of Ec 
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Figure 10(a). Temperature profiles for various values of Nb 
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Figure 11(b). Concentration profiles for various values of Nt
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Figure 12: Temp. profiles for various values of Bi1 
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Figure 14: Concentration profiles for various values of γ 

Table 1 Comparison of the skin friction coefficient at M=0, 

δ=0.0, S=0.0 and n=0.1 for β various values of  and A 


 

A  Mondal et al. 

[36] 

Present 

1 0.0 -1.41421 -1.41422 

5 0.0 -1.09544 -1.09543 

1000 0.01 -0.99782 -0.99804 

1000 0.1 -0.96937 -0.96936 

1000 0.2 -0.91811 -0.91815 

 

Table 2 Comparison of -f``(0) at M-0, A=0.0, β=1000, 

S=0.0 and n=1.0 for various values of δ 
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  
Ibrahim and 

Makinde 

[14] 

Oyelakin et al. 

[32] 

Present 

0.0 1.0000 1.000000 1.00000 

0.1 0.8721 0.872083 0.87202 

0.2 0.7764 0.776377 0.77633 

0.5 0.5912 0.591195 0.59122 

1.0 -- 0.430160 0.43013 

2.0 0.2840 0.283979 0.28395 

3.0 -- 0.214054 0.21402 

5.0 0.1448 0.144714 0.14481 

10.0 0.0812 0.080932 0.08128 

Table 3. Comparison of -θ`(0) and -ϕ`(0)  when 

M=β=A=S=R=Ec=Q=γ=0.0, Bi=1000, and β→ꝏ 

n Nt Rana and 

Bhargava [33] 

Mabood and 

Khan [34] 

Present 

-θ´(0) -ϕ´(0) -θ´(0) -ϕ´(0) -θ´(0) -ϕ´(0) 

0.2 0.3 0.4533 0.8395 0.4520 0.8402 0.4519

1 

0.8401

5 

 0.5 0.3999 0.8048 0.3987 0.8059 0.3990

2 

0.8057

6 

3.0 0.3 0.4282 0.7785 0.4271 0.7791 0.4272

4 

0.7791

3 

 0.5 0.3786 0.8323 0.3775 0.7390 0.3777

1 

0.7387 

10 0.3 0.4277 0.7654 0.4216 0.7660 0.4218

3 

0.7659

4 

 0.5 0.3739 0.7238 0.3728 0.7248 0.3730

4 

0.7243

2 

 

Table 4. Numerical values of skin friction coefficient 

( )0
1

1 ''f







+−
 , Nusselt number 

( )0
3

4
1 'R 








+−

 and Sherwood 

number ( )0'−  for different values of 

 ,,,,,,, BiQEcNtNbR  

δ R N

b 

Nt E

c 

Q Bi γ ( )0
1

1 ''f







+−


 

( )0
3

4
1 'R 








+−

 

( )0'−
 

0.

2 

0

.
2 

0.

3 

0.

3 

0.

2 

0.

2 

0.

6 

0.3 -

1.6974
1 

0.33293 0.7727

6 

0.
7 

       -
0.9533

6 

0.3319 0.7217

7 

1.

5 

       -

0.6122

2 

0.32882 0.6975

3 

 0

.

7 

      -- 0.42881 0.8131

4 

 1

.

0 

      -- 0.46961 0.8283

3 

  0.

7 

     -- 0.31792 0.9049

3 

  1.

0 

     -- 0.29133 0.9492

5 

   0.

5 

    -- 0.33176 0.6700

7 

   0.

7 

    -- 0.32924 0.4686

5 

    0.

7 

   -- 0.27544 0.8387

5 

    1.

5 

   -- 0.20313 0.9216

5 

     -

0.

3 

  -- 0.35713 0.7464

5 

     0.
3 

  -- 0.34223 0.7627

4 

      0.

5 

 -- 0.09662 0.9260

4 

      1.

0 

 -- 0.60922 0.5941

3 

       0.0 -- 0.33343 0.6563

3 

       0.3 -- 0.33234 0.9196

4 
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