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ABSTRACT: In this paper we investigate the dynamics of prey-predator 

model of holling type II response function. The system is described by a 

system of ordinary differential equations. The boundedness properties, 

long term behaviour of the system, equilibrium points are identified. 

Local stability analysis is discussed at each of its equilibrium points. 

Global stability is studied by constructing suitable Lyapunov’s function. 

We proved that the system is both locally and globally asymptotically 

stable. Further Numerical simulation is performed and in support of 

analytical study.  

 

1. INTRODUCTION 

Prey-predator model are building blocks of Eco 

system. It Is the significant relationship in ecology 

Many researchers’ attention has been capture in this 

interaction.  The Dynamics of prey-predator model are 

explored by Carlos [2], Freedman [4], Kot [6], 

Lakshmi Narayan [7], Lokta [8], May.R.M [11], Murry 

[12,13], lima [10], Ranjith Kumar [15] and Sita 

Rambabu [18]. The models with different holling time 

functional responses are also included in the study. 

Later harvesting of prey-predator models are also 

explored by [1,3,16]. The harvesting prey-predator 

models with holling type response of type1+kNi  is 

included in the general prey-predator model with 

harvesting of Prey with different harvesting efforts 

considered for investigation. 

The dynamics of this relationship can help us to 

protect the diversity of species in large scale. An 

important component in this relation is functional 

response of the predator. The classical type of 

functional responses has the following forms (Holling 

types I, II, III &IV). 

The basic holing types functional response are 

available in literature [14,17]. Authors [1,5,9] studied 

the dynamics of prey-predator model with the holling 

type functional responses I,II,III and IV with the 

Following basic model as  

 

  
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
) − 𝜑(𝑥)𝑦 

  
𝑑𝑦

𝑑𝑡
= 𝑦(−𝑑 + 𝜖𝜑(𝑥))    (1.1) 

Here 𝜑(𝑥) can be defined as functional responses 

mentioned as I, II,III&IV type. 

Liu,W[9] studied the Michaelis-Menten type 

harvesting in prey-predator model and bifurcation 

analysis. Xiao [19] analysed the prey-predator 

dynamics with constant harvesting rate. In spite of the 

above we proposed the with holling type 

response1+kN1 in prey-predator model and studied the 

dynamics of the model includes the boundedness 

properties, long term behaviour of the system, stability 

analysis at co-existing state. Finally, the analytical 

results are supported by numerical simulation.. 
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2. 2. FORMATION OF MODEL  

The system of equations for the proposed model when 

holling type-II response function is taken for 

investigation. 

The system of equations for the proposed model is  

𝑑𝑁1

𝑑𝑡
= 𝑎1𝑁1 − 𝛼11𝑁1

2 −
𝛼12𝑁1𝑁2

1+𝑘𝑁1

𝑑𝑁2

𝑑𝑡
= 𝑎2𝑁2 − 𝛼22𝑁2

2 +
𝛼21𝑁1𝑁2

1+𝑘𝑁1

  (2.1)                               

With initial conditions 𝑁1(0) = 𝑁10 > 0 &𝑁2(0) =
𝑁20 > 0  (2.2)     

Table 1 Nomenclature 

S.No. 
Parameter Description 

1 
1N ,

2N  Populations of the prey 

and predator 

respectively 

2 
1a ,

2a  Natural growth rates of 

preyand predator 

3 ( 1,2)ii i =  Rate of decrease of 

preyand predator 

populations due to 

insufficient food and 

internal competition 

4 K Proportion constant  

5 
12  Rate of decrease of the 

prey due to inhibition 

by the predator 

6 
21  Rate of increase of the 

predator due to 

successful attacks on 

the prey 

 

2.1.     Positivity and Bounded ness of the Solutions 

In this section we prove the positivity and bounded 

ness of the solutions of system of equations (2.1) along 

with the initial conditions (2.2). To prove the results, 

we use the following two lemmas. 

Lemma1: if  𝑎, 𝑏 > 0 and 
𝑑𝑥

𝑑𝑡
 ≤ (≥)𝑥(𝑡)(𝑎 − 𝑏𝑥(𝑡)) 

with 𝑥(0) > 0 then 

log𝑡→∞𝑠𝑢𝑝 𝑥(𝑡) ≤
𝑎

𝑏
  (log𝑡→∞𝑖𝑛𝑓 𝑥(𝑡) ≥

𝑎

𝑏
 )  

Lemma2: if  𝑎, 𝑏 > 0 and 
𝑑𝑥

𝑑𝑡
 ≤ 𝑥(𝑡)(𝑎 − 𝑏𝑥(𝑡)) with 

𝑥(0) > 0,  then for all 𝑡 ≥ 0 

 𝑥(𝑡) ≤
𝑎

𝑏−𝑐𝑒−𝑎𝑡with 𝑐 = 𝑏 −
𝑎

𝑥(0)
   in particular  

𝑥(𝑡) ≤ max {𝑥(0),
𝑎

𝑏
} for all 𝑡 ≥ 0 

Theorem 2.2.1: All the solutions 𝑁1(𝑡)&𝑁2(𝑡) of the 

system (2.1) with initial conditions (2.2) are positive 

i.e., 𝑁1(𝑡) > 0 &𝑁2(𝑡) > 0 

Proof: From the system of equations (2.1) the prey 

equation is given by 

𝑑𝑁1

𝑑𝑡
= 𝑎1𝑁1 − 𝛼11𝑁1

2 −
𝛼12𝑁1𝑁2

1+𝑘𝑁1
 it follows that 

𝑁1(𝑡) = 0 is an invariant set. This implies and 

𝑁1(𝑡) > 0  for all 𝑡 ≥ 0. We apply similar argument 

for the predator equations 
𝑑𝑁2

𝑑𝑡
= 𝑎2𝑁2 − 𝛼22𝑁2

2 +
𝛼21𝑁1𝑁2

1+𝑘𝑁1
𝑁2(𝑡) = 0 is an invariant set and hence 

𝑁2(𝑡) > 0 for all 𝑡 ≥ 0. Thus, all the trajectories 𝑅+
2  

cannot cross the co-ordinate axis. Hence all the 

solutions 𝑁1(𝑡)&𝑁2(𝑡) are positive. 

Theorem 2.2.2: All the solutions 𝑁1(𝑡)&𝑁2(𝑡) of the 

system (2.1) with initial conditions (2.2) are bounded 

for all 𝑡 ≥ 0. 

Proof: From the system of equations (2.1) the prey 

equation is given by 

𝑑𝑁1

𝑑𝑡
= 𝑎1𝑁1 − 𝛼11𝑁1

2 −
𝛼12𝑁1𝑁2

1 + 𝑘𝑁1
≤ 𝑁1(𝑎1 − 𝛼11𝑁1) 

using lemma 2 where both  𝑎1&𝛼11 > 0  

And also 𝑁1(𝑡) ≤
𝑎1

𝛼11−𝑐𝑒−𝑎1𝑡   and  𝑐 = 𝛼11 −
𝑎1

𝑁10
 

In particular  

𝑁1(𝑡) ≤ max {𝑁10,
𝑎1

𝛼11
} = 𝑀1 for all 𝑡 ≥ 0       

(2.2.2.1) 

From the predator equation from (2.1) we have 

equations 

𝑑𝑁2

𝑑𝑡
= 𝑎2𝑁2 − 𝛼22𝑁2

2 +
𝛼21𝑁1𝑁2

1+𝑘𝑁1
≤ 𝑁2 (𝑎2 +

𝛼21𝑁1

1+𝑘𝑁1
−

𝛼22𝑁2)  again, using lemma2   

Which implies 𝑁2 (𝑎2 +
𝛼21𝑁1

1+𝑘𝑁1
− 𝛼22𝑁2) ≤

 𝑁2 (𝑎2 +
𝛼21𝑀1

1+𝑘𝑀1
− 𝛼22𝑁2) 

from equation (2.2.2.1) 

In particular  

𝑁2(𝑡) ≤ max {𝑁20,
𝑎2(1+𝑘𝑀1)+𝛼21𝑀1

𝛼22(1+𝑘𝑀1)
} = 𝑀2 for all 𝑡 ≥ 0 

              (2.2.2.3) 

Hence the system (2.1) possesses bounded solutions. 
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2.3.    Permeance 

 The long-term behaviour of the dynamical system in 

particular the positive solutions of the system approach 

the boundary of the positive orthant. If the system 

includes two spices   the positive solutions approach 

the boundary of positive quadrant (two-dimensional 

space) and for three species the positive solutions 

approach the boundary of positive octant (three-

dimensional space). 

The permeance of the system exist if there exist two 

positive constants η1 &η2   such that each positive 

solutions of  N1(t)&N2(t)  with initial conditions 

N10 &N20 in R+
2 satisfies,   

 min {limt→∞inf N1(t, N10 , N20), limt→∞inf N2(t, N10 , N20)} ≥
η1   and 

 max {limt→∞sup N1(t, N10 , N20), limt→∞sup N2(t, N10 , N20)}
≤ η2  

Theorem 2.3.1. The system (2.1) with initial conditions 

(2.2) is permanent if 

a2α22(1 + kM1) > α12[a2(1 + kM1) + α12M1] 

Proof:  From the system of equations (2.1) the prey 

equation is given by 

 
dN1

dt
= a1N1 − α11N1

2 −
α12N1N2

1+kN1
≥ N1(a1 − α11N1 −

 α12N2) ≥ N1 (a1 − α11N1 −
α12{a2(1+kM1)+α21M1}

α22(1+kM1)
)    

using the bounded ness property from equation 

(2.2.2.3) 

Hence
dN1

dt
≥ N1(L1 − α11N1)where 

 L1 = a1 −
α12{a2(1 + kM1) + α21M1}

α22(1 + kM1)
 

Using lemma1limt→∞inf N1(t) ≥
L1

α11
and 

limt→∞sup N1(t) ≤
a1

α11
  from equation (2.2.2.1) 

From the system of equations (2.1) the prey equation is 

given by 

 
dN2

dt
= a2N2 − α22N2

2 +
α21N1N2

1 + kN1

≥ N2(a2 + α21N1 − α22N2)
≥ N2(a2 + α21M1 − α22N2) 

Using lemma1limt→∞inf N2(t) ≥
L2

α22
where 

 L2 =  a2 + α21M1  and 

limt→∞sup N2(t) ≤
a2(1+kM1)+α21M1

α22(1+kM1)
  from equation 

(2.2.2.3) 

Now choose η1 = min (
L1

α11
,

L2

α22
) and η2 =

 max (
a1

α11
,

a2(1+kM1)+α21M1

α22(1+kM1)
) we get the permanence of 

the system (2.1). 

2.4.     Equilibrium states: 

By equating
0idN

dt
=

, i=1, 2 we get the following 

equilibrium states  

I. The Extinct state E1: 

1 20, 0N N= =
    

 (2.4.1) 

 II.  Semi Extinct: The state in which one of two  

species Extinct and one survive 

Case A.  E2: 𝑁1 =
𝑎1

𝛼11
,  02 =N    

 (2.4.2) 

Case B:    E3: 𝑁1 = 0,  𝑁2 =
𝑎2

𝛼22
  

 (2.4.3) 

III: Two species are survived  

Solve the system of equations (2.1) we get the cubic 

equation in 𝑁1 is given by  

𝑎𝜆3 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 = 0                                       

(2.4.4) 

Where 

𝑎 = 𝛼11𝛼22𝑘2 ,𝑏 = 2𝛼11𝛼22𝑘 − 𝑘2𝑎1𝛼22, 

𝑐 = −2𝑎2𝛼22𝑘 + 𝛼11𝛼22 + 𝛼12𝛼21 + 𝑘𝑎2𝛼12, 

𝑑 = 𝑎2𝛼12 − 𝑎1𝛼22. 

On solving equation (2.4.4), three possible roots exist 

for 𝑁1. The second equilibrium point 𝑁2 is obtained 

from the following equation  

𝑁2 =
𝑎2(1+𝑘𝑁1)+𝛼21𝑁1

𝛼22((1+𝑘𝑁1)    

 (2.4.5) 

The three possible equilibria for this case are obtained 

by solving equation (2.4.4) and for each value of  
𝑁1 

and corresponding 
𝑁2 value is obtained from equation 

(2.4.5). 
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2.5.    Local stability analysis 

The Jacobean matrix for the system of equations (2.1) 

is given by  

11 12

21 22

J J
J

J J

 
=  
 

 

where 

1 1
11 12

1 2

2 2
21 22

1 2

, ,

,

f f
J J

N N

f f
J J

N N

 
= =
 

 
= =
 

   

 (2.5.1) 

Here 

 𝑓1(𝑁1, 𝑁2) = 𝑎1𝑁1 − 𝛼11𝑁1
2 −

𝛼12𝑁1𝑁2

1 + 𝑘𝑁1
 

 𝑓2(𝑁1, 𝑁2) = 𝑎2𝑁2 − 𝛼22𝑁2
2 +

𝛼21𝑁1𝑁2

1+𝑘𝑁1
 (2.5.2) 

Calculate the Jacobean matrix i.e.   

  𝐽 = [
−𝛼11𝑁1 +

𝑘𝛼12𝑁1𝑁2

(1+𝑘𝑁1)2 −
𝛼12𝑁1

1+𝑘𝑁1

𝛼21𝑁2

(1+𝑘𝑁1)2 −𝛼22𝑁2

]             (2. 

5.3) 

The characteristic equation is given by det(J-λI)=0 ,  

The system is stable if the Eigen roots of equation 

(2.5.3) are negative, in case of real roots or negative 

real parts in case complex roots, otherwise unstable. 

Case (i) E1(0,0) is unstable. 

Case (ii) :The characteristic equation for case A:E2 is  

λ2 + α11N1
̅̅̅̅ λ = 0 ,where roots are λ = 0 & λ =

−α11N̅1 hence the system neutrally stable. The 

characteristic equation for case B: E3 is λ = 0 & λ =
−α22N̅2 hence the system neutrally stable.  

Case (iii): Co-existing case E4: The characteristic 

equation is given by  

 
2 0a b c + + =     

 (2.5.4) 

where a=1, 

b = (
−kα12N1N2

(1 + kN1)2
+ α11N1 + α22N2) , 

c = (
α12α21N1N2

(1+kN1)3 −
kα12α22N1N2

2

(1+kN1)2 + α11α22N1N2)

 (2.5.5) 

The system is stable if the sums of roots are negative 

and products of roots are positive i.e 

If  

α11N1 + α22N2 >
kα12N2

(1 + kN1)2
 

 and 

 
α21N1

(1+kN1)
> kα22N2   

 (2.5.6) 

E4 is locally asymptotically stablecondition (2.5.6) is 

satisfied otherwise unstable. 

2.6.     Global stability 

Theorem2.6.1: The axial equilibrium point 

( )4 1 2,E N N
  is   globally asymptotically stable 

Proof: Let the Lyapunov function be     

  V(N1, N2) = (N1 − N1) − N1 log (
N1

N1
) +

l1 [(N2 −   N2) − N2 log (
N2

N2
)]    

 (2.6.1) 

The time derivate of V along the solutions of   

equations (2.1) is 

  
dV

dt
=

dN1

dt
[1 −

N1

N1
] + l1

dN2

dt
[1 −

N2

N2
]             (2. 

6.2)  

= [N1 − N1] [(a1 − α11N1 −
α12N2

1 + kN1
] + 

    l1[N2 − N2] [a2 − α22N2 +
α21N1

1+kN1
]             (2.6.3) 

By proper choice of  

a1 = α11N1 +
α12N2

1 + kN1

, a2 = α22N2 −
α21N1

1 + kN1

&l1

=
α12

α21
 

We get 

( ) ( )
2 2

12 22
11 1 1 2 2

21

dV
N N N N

dt

 



= − − − −

          (2. 6.4) 

( )1 0V t 
, hence the system is globally stable at 

positive equilibrium point 
( )4 1 2,E N N

. 

3. NUMERICAL SIMULATION 

Example 3.1: Let a1=1, a2=1, k =0.5 α11=0.1, α12=0.1, 

α21=0.05, α22=0.5, N1 =25, N2 =10.  

Figure A: represents time series plot B: Represents 

phase portrait  
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Figure 3.1: (A) 

 

Figure 3.1: (B) 

The converging solutions of prey and predator 

populations to fixed equilibrium point [10,2]. 

The range of ‘k’ can be varied from [0.05,500] the 

dynamic of the model still converging to the fixed 

equilibrium point[7 ≤ N1 ≤ 10,0 ≤ N2 ≤ 2] 

Example 3.2: Let a1=1.5, a2=2, k =5 α11=0.01, α12=0.2, 

α21=0.3, α22=0.1, N1 =25, N2 =10.  

  

Figure 3.2: (A) 

Figure 3.2: (B) 

The converging solutions of prey and predator 

populations to fixed equilibrium point [150,21]. 

The range of ‘k’ can be varied from [0.5,500] the 

dynamic of the model still converging to the fixed 

equilibrium point[142 ≤ N1 ≤ 150,20 ≤ N2 ≤ 25] 

4. CONCLUSION 

We consider a two species ecological model based on 

prey- predators’ interactions with prey holling type-II 

response is taken for investigation. The mathematical 

model with prey predator dynamics was studied and 

prove that the eco-system is stable. The properties of 

the model were studied like positivity, boundedness 

and permeance of the system. The stability analysis of 

the model was discussed at possible equilibrium 

points. The global stability analysis of co-existing state 

is also addressed by choosing proper Lyapunov’s 

function. Numerical simulation is performed in support 

of analytical results. The stability analysis at four 

equilibrium points and its nature with three different 

harvesting efforts are placed below 

Table 1  

 

The global stability analysis of co-existing state is also 

addressed by choosing proper Lyapunov’s function 

and prove that the system is globally asymptotically 

stable. Further Numerical simulation is performed in 

support of analytical results.   
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