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Abstract— Unbanded human chromosome can be classified into seven Denver Groups (A-G) based their lengths and the ratio of the 
length of the shorter arm to the whole length of the chromosome, which is called the centromere index (CI). In this article, the fuzzy 
c-means method will be used to perform the Denver Group classification of a given set of human chromosomes. The objective in 
clustering is to partition a given human chromosome set into homogeneous clusters; by homogeneous we mean that all points in the 
same cluster share similar attributes and they do not share similar attributes with points in other clusters. However, the separation of 
clusters and the meaning of similarity are fuzzy notions and can be described as such. It is found that the clusters iterations converge, 
highly depend on the initial partition matrix, 𝑈�(0). 
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1. INTRODUCTION 

In 1956 Tjio and Levan using the improved cell culturing and 
staining technique discovered that the number of human 
chromosomes is 46 (Tjio,  and Levan 1956). From this time on, 
the research on chromosomal abnormalities, as a cause of 
diseases, became one of the main branches of the molecular 
biology.  
         Disorder in human chromosomes is a powerful indicator in 
diagnosis of leukemia, skin and breast cancers, and other genetic 
diseases. Clinical laboratories routinely performed researches to 
identify chromosome abnormalities, and provide medical  
 

 
 
 
 
doctors the diagnostic results and help them decide therapeutic 
treatments for patients.  
         The most prominent difficulty in chromosome analysis is 
the absence of clear microscopic chromosome images.  The 
variation of cell culturing conditions, chromosome staining, and 
microscope illumination make  finding analyzable chromosomes 
in a genetics clinical laboratories  very difficult. For human 
experts, identification and classification of chromosomes is a 
tedious and time-consuming task. The human error also 
introduces variation and affects the accuracy of the diagnostics 
made by physicians.  
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        The development of computer-assisted metaphase finding 
and karyotyping systems, slowed down by the noisy cell images. 
 
2. HUMAN CHROMOSOMES 

Since Waldeyer in 1898 (Verma, and Babu 1995) coined the 
term chromosome, it is known that chromosomes resides within 
a cell’s nucleus, and contains the person’s deoxyribonucleic acid 
(DNA). Each chromosome is made up a single extremely long 
DNA molecule. Using cells cultured from fetal lung tissue, Tjio 
and Levan, demonstrated that human cells contain 46 
chromosomes as they appear during cell division or mitosis. A 
healthy human cell nucleus includes 44 autosomes and 2 sex 
chromosomes: X and Y.  
         The test cells used for chromosome imaging and analysis 
are taken mostly from blood sample, amniotic fluid, and bone 
marrow. These test samples are cultured overnight in a mitotic 
arresting agent. Then cells are processed with hypotonic 
solutions to increase cell volume. This procedure spreads the 
chromosomes apart. The methanol-acetic acid is used to fix 
them for analyses. The fixed cells are dropped onto a standard 
glass microscope slide and allowed to dry.  
        If karyotyping and classification are going to be performed 
using banded chromosomes, the slide is then subjected to a 
staining process. Staining makes clear the distinctive 
reproducible patterns of bands along chromosomes. These bands 
permit accurate identification of chromosomes and recognition 
of abnormalities. 

2.1 Classification of Banded Chromosomes 
In order to improve the performance of automated chromosome 
classification including recognition of disordered chromosomes, 
artificial intelligence and machine learning methods have been 
widely used in the computer-assisted chromosome detection and 
classification systems (Gagula-Palalic, and Can 2012). Among 
them, ANN is the most popular tool owing to its capability of 
modeling the human brain decision making process to recognize 
objects based on incomplete or partial information, as well as its 
simple topographic structure and easier training process 
(Mitchell, 1997).  
       Early studies also indicated that ANN performance could 
achieve comparable results compared with that obtained by 
simpler statistical methods (Sweeney, 1993). A large number of 
different feature based and pixel value distribution based ANN 
have been tested and evaluated in classification of banded 
chromosomes, which include supervised multi-layer neural 
networks (Delshadpour, 2003, Wu et. Al., 1990, Can, and  
Gagula-Palalic 2012), Hopfield network (Ruan, 2000), and 
unsupervised architecture of self organizing nonlinear maps 
(Lerner et. Al., 1996), SOFM (Kyan et. Al. 1999) and mutual 
information maximization based training method (Mousavi et. 
Al., 1999).  
        However, the study found that performance of 
unsupervised nonlinear learning methods was lower than a 

supervised nonlinear paradigm (Lerner et. Al., 1996). Although 
ANN is a powerful machine learning tool in pattern recognition 
and classification, its relatively poor robustness in detection and 
classification of abnormalities depicted on the complicated 
chromosome images and its ‘black box’ type of optimization 
approach are its major disadvantages.  
        To provide researchers and clinicians with a better 
understanding of the logic or reasoning in automated 
classification of chromosomes, a variety of knowledge-based 
‘expert’ systems were developed and evaluated (Gagula-Palalic, 
and Can 2012). Since clinical technicians are trained to 
recognize the chromosomes under non-ideal conditions, many 
researchers tried to record and apply or mimic the rules of 
manual karyotyping and diagnosis of chromosome irregularity 
into a knowledge-based automated classification system in an 
attempt to minimize the classification errors. 
        Hence, researchers worked with clinicians, observed their 
diagnostic process, summarized and quantify the diagnostic 
rules, and then converted these rules into the computer 
classification systems (Wu et. Al., 1989, Lu, and Ya 1989, 
Ramstein et. Al., 1992). The systems would then be trained on a 
bank of chromosome images, refining the rules as needed until 
the recognition rate was maximized. A major problem with such 
knowledge-based approach is the difficulty of converting 
karyotyping guidelines and intuitive notions (empirically 
diagnostic rules) into concrete rules that can be effectively 
programmed and applied in a computer-assisted scheme. Owing 
to this difficulty, the most popular knowledge-based 
classification system is a fuzzy logic rule-based system, which 
offers great promise for improving the recognition rate (Keller 
et. Al., 1995). One blind test involving a dataset of 180 
chromosomes distributed in three classes demonstrated 88% 
classification accuracy using an automated system involving six 
phases of fuzzy logic rules (Sjahputera, and Keller, 1999). 
 
2.2 Classification of Unbanded Chromosomes 
When the chromosomes are not banded, they can be classified 
into seven Denver Groups (A-G) (H. C. S. Group, 1960) as seen 
in Table1.  Denver Group classification is mainly based on:  
(1) the length or size of each chromosome and  
(2) the ratio of the length of the shorter arm to the whole length 
of the chromosome, which is called the centromere index (CI). 
 
Table 1: The classification of chromosomes based on Denver 
Group classification 

Chromosome Class Denver Group 
#1-#3  Group A 
#4-#5  Group B 
#6-#12,X  Group C 
#13-#15  Group D 
#16-#18  Group E 
#19-#20  Group F 
#21-#22,Y  Group G 
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In this article, the fuzzy c-means method will be used to perform 
the Denver Group classification of a given set of human 
chromosomes. 
 

3. FUZZY c-MEANS (FCM)  
The concept of a fuzzy set first arose in the study of problems 
related to pattern classification (Bellman et al., 1966). Since the 
recognition and classification of patterns is integral to human 
perception, and since these perceptions are fuzzy, this study 
seems a likely beginning (Zadeh, 1971). This section presents a 
simple idea in the area of classification and has dealt in depth 
with a particular form of classification using a popular clustering 
method: FCM.  
        The objective in clustering is to partition a given data set 
into homogeneous clusters; by homogeneous we mean that all 
points in the same cluster share similar attributes and they do not 
share similar attributes with points in other clusters. However, 
the separation of clusters and the meaning of similarity are fuzzy 
notions and can be described as such. One of the first 
introductions to the clustering of data was in the area of fuzzy 
partitions (Ruspini, 1969, 1970, 1973a), where similarity was 
measured using membership values. In this case, the 
classification metric was a function involving a distance measure 
that was minimized.  
        Ruspini (1973b) points out that a definite benefit of fuzzy 
clustering is that stray points (outliers) or points isolated 
between clusters (Figure 1) may be classified this way; they will 
have low membership values in the clusters from which they are 
isolated. In crisp classification methods, these stray points need 
to belong to at least one of the clusters, and their membership in 
the cluster to which they are assigned is unity; their distance, or 
the extent of their isolation, cannot be measured by their 
membership. These notions of fuzzy classification described in 
this section provide for a point of departure in the recognition of 
known patterns. 
 

 

Figure 1.  In fuzzy clustering outliers or points isolated between 
clusters will have low membership values in the clusters from 
which they are isolated. 
To develop fuzzy methods in classification, we define a family 
of fuzzy sets {�̃�𝑖  =  1,2, . . . , 𝑐} as a fuzzy c-partition on a 
universe of data points, X.  Because fuzzy sets allow for degrees 
of membership, we can assign membership to the various data 
points in each fuzzy set. Hence, a single point can have partial 
membership in more than one class. It will be useful to describe 
the membership value that the kth data point has in the ith class 
with the following notation:  

𝜇𝑖𝑘  =  𝜇𝐴�𝑖 (𝑥𝑘)  ∈  [0,1], 
with the restriction that the sum of all membership values for a 
single data point in all of the classes has to be unity:  
 
∑ 𝜇𝑖𝑘 ʹ = 1,𝐶
𝑖=1  for all k = 1,2, . . . , n.    (1)  

 
        There can be no empty classes and there can be no class 
that contains all the data points. This qualification is depicted by 
the following expression:  
 
0 < ∑ 𝜇𝑖𝑘 ʹ < 𝑛.𝐶

𝑖=1       (2)  
Because each data point can have partial membership in more 
than one class, one has,  
𝜇𝑖𝑘  ∧ 𝜇𝑗𝑘  ≠ 0.      (3)  
We can now define fuzzy c-partitions 𝑈�𝑐×𝑛[𝜇𝑖𝑘].  
 
Fuzzy c-Means Algorithm 
To describe a method to determine the fuzzy c-partition matrix 
𝑈� for grouping a collection of n data sets into c classes, we 
define an objective function Jm for a fuzzy c-partition:  

𝐽𝑚(𝑈�, 𝑣) = ∑ ∑ (𝜇𝑖𝑗)𝑚′(𝑑𝑖𝑗)2 , 1 ≤ 𝑚 ≤ ∞𝐶
𝑗=1

𝑁
𝑖=1   (4) 

where 𝑈� is the partition matrix, vi are cluster centers, dij are 
Euclidean distance measures in m-dimensional feature space, 
between the jth data sample xj and the ith cluster center vi, and 𝜇𝑖𝑗 
is the membership of jth data point to the ith class.  
        Partition matrix 𝑈� is used for grouping a collection of n 
data sets into c classes, and as such each entry in the partition 
matrix is represented by the membership function 𝜇𝑖𝑗. The 
Euclidean distance and cluster centers are given by equations (5) 
and (6). 
 

𝑑𝑖𝑗 = �∑ �𝑥𝑗𝑘 − 𝑣𝑖𝑘�
2𝑚

𝑘=1 �
1/2

   (5) 
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𝑣𝑖𝑘 =
∑ 𝜇𝑖𝑗

𝛼  𝑥𝑗𝑖
𝑛
𝑗=1
∑ 𝜇𝑖𝑗

𝛼𝑛
𝑗=1

     (6) 

 
The fuzzy C means is trying to tune the partition matrix, centers 
and distances, so that the objective function Jm is minimized 
(Ross 2004). 
        A new parameter is introduced in Equation (10.28) called a 
weighting parameter, m (Bezdek, 1981). This value has a range 
α∈[1, ∞). This parameter controls the amount of fuzziness in 
the classification process.  
        As with many optimization processes, the minimized 
objective function Jm cannot be guaranteed to be a global 
optimum. What we seek is the best solution available within a 
prespecified level of accuracy. An effective algorithm for fuzzy 
classification, called iterative optimization, was proposed by 
Bezdek (1981). The steps in this algorithm are as follows:  
1. Fix c (2 ≤c<n) and select a value for parameter α. Initialize the 
partition matrix, 𝑈�(0). Each step in this algorithm will be labeled 
r, where r =0, 1, 2,...  
2. Calculate the c centers {𝑣𝑖

(𝑟)} for each step.  

3. Update the partition matrix 𝑈�(𝑟) as follows:  
 

𝜇𝑖𝑘
(𝑟+1) = �∑ �𝑑𝑖𝑘

(𝑟)/𝑑𝑗𝑘
(𝑟)�

2/(𝛼−1)
 𝑐

𝑗=1 �
−1

 (7)  

 
4.If �𝑈�(𝑟+1) − 𝑈�(𝑟)� ≤ ϵL  , stop; otherwise set 𝑟 = 𝑟 + 1 and 
return to step 2.  
        In step 4, we compare a matrix norm ‖ ‖ of two 
successive fuzzy partitions to a prescribed level of accuracy, ϵL, 
to determine whether the solution is good enough. In step 3, 

when the variable 𝑑𝑗𝑘
(𝑟) is zero, since this variable is in the 

denominator of a fraction, the operation is undefined 
mathematically, and computer calculations are abruptly halted. 

So when some of the distance measures 𝑑𝑗𝑘
(𝑟) are zero, or 

extremely small in a computational sense, it is replaced by a 
small positive real number.  

4. DATA DESCRIPTION 

The data used in this work is taken from Copenhagen data base. 
We omitted gray level features, and only keep (1) the length of 
each chromosome and (2) the ratio of the length of the shorter 
arm to the whole length of the chromosome, which is called the 
centromere index (CI). 
 

 
 
Figure 2.  The distribution of 2200 human chromosomes into 
seven Denver Group classes from A, to G. 

 
5. CLASSIFICATION USING FUZZY c-MEANS (FCM)  

Using Fuzzy c-Means Algorithm described in Section 3., it is 
found that the clusters iterations converge, highly depend on the 
initial partition matrix, 𝑈�(0). 
Denver Group classification from A, to G are distributed to 
clusters C1 to C7 as in Table 2. below. 

Table 2. Distribution of Denver Group classes A, to G into 
clusters C1 to C7 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
clusters C1 C2 C3 C4 C5 C6 C7

A 69 31 0 0 0 0 0
B 0 67 33 0 0 0 0
C 0 9 75 16 0 0 0
D 0 0 0 91 9 0 0
E 0 0 0 0 78 22 0
F 0 0 0 0 0 100 0
G 0 0 0 0 0 7 93⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Correct classification rate of the FCM clustering method is 
81.86 %. 

      7. SUMMARY 

Article presents a simple idea in the area of classification and is 
dealt in depth with a particular form of classification using a 
popular clustering method: FCM. Although the idea behind the 
method is very simple, it succeeds to classify given 700 human 
chromosomes in seven Denver Group classes A, to G with a rate 
of 81.86 %. 
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