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Abstract 
Based on the Computerized Parkinson’s Law “work expands so as to fill 
the time available for its completion” (Thimbleby, 1993) it can be 
deduced that regardless of the size of the memory, there will always be 
programs to completely fill, or even overload that memory. Thus 
intelligent/sensible memory allocation process is crucial to system’s 
performance. However, due to the constant increase of processing power 
and the growth and spread of distributed systems, such as grid and cloud 
computing, memory allocation becomes a great challenge in the area of 
memory management today. Making allocation intelligent, so that the 
memory fragmentation and response time are reduced would be great, and 
in this research, this was attempted. The research presents Fuzzy 
Allocator, memory allocator based on fuzzy inference system. The 
allocator manages to sort the incoming memory requests according to 
their size and the size of free memory slot (hole). The output of the fuzzy 
allocator is the order in which the allocation of memory will be performed 
on the incoming memory requests. It reorders the incoming memory 
request queue so that the response time is reduced, and fragmentation is 
minimized. 
 
 

1. INTRODUCTION  

CPU requests memory to store the running processes 
and memory allocator needs to respond to those requests 
immediately. The memory allocation is therefore real-time 
problem, and as usual, real-time problems are much more 
difficult to solve than the offline ones. Memory allocator 
must keep track of all parts of memory, those that are free 
and those that are in use. It must not reshuffle running 
processes, and it must be able to find a slot for newcoming 
processes as soon as that is requested. As processes come 
to and go from the memory, the memory gets fragmented 
and free space within the memory resembles scattered 
holes. It would be great if allocator might fill the coming 
processes into fitting holes, so as to reduce the memory 
fragmentation, but using existing techniques it is still not 
possible. Due to this, idea of making allocator intelligent is 

inevitable. This research is actually trying exactly that, to 
make memory allocator intelligent by using fuzzy logic, or 
more precisely Fuzzy Inference System (FIS).  

The paper is organized as follows: the second part 
presents theoretical background on memory hardware and 
memory allocation algorithms and related work in the area 
of memory allocation, the third part elaborates on 
materials and methods used in this research, the forth part 
presents the fuzzy allocator simulation results, the fifth 
part discusses the results and the last part gives 
recommendations over the improvements of this work.  
 
2. THEORETICAL BACKGROUND 

Before going into explanation of allocation process, it 
is important to understand the generic memory hardware, 
memory architecture, and allocation techniques.   
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2.1 Memory Hardware 

3D semiconductor memory consists of multiple banks, 
each representing single memory array (Rixner et al, 
2000). Each array is connected via a set of lines, namely 
address, data and control lines, which are generally used to 
carry address and data, to indicate which function is to be 
performed and to report the memory status. Memory array 
is actually where the data is stored, and it represents a set 
of cells, each accessed via respective wordline and bitline, 
and each carrying one or more bits of information or data. 
The address lines are connected to address decoder, which 
would help select the appropriate cell in the memory and 
data line would then carry the data to and from the 
memory, based on the function issued by the control line 
(Gulak, 1998).  

 

 
Figure 1: Generic Memory Architecture (Gulak, 1998) 

 
Figure 1 presents generic memory architecture in 2D. 

Modern DRAM memory organization contains multiple 
memory arrays connected in parallel, with each array 
having its sense amplifiers and decoders. This one set of 
memory array and its decoders is called a bank, and it 
represents the 3rd dimension in memory architecture.  The 
memory access then consists of three non-uniform access 
latencies, namely, bank precharge, row access and column 
access (Liu et al, 2010). 
 

2.2 Memory Allocation Algorithms 

The driving force behind every memory allocation 
algorithm is minimization of memory allocation time and 
reduction of memory fragmentation. Attempting that, 
numerous memory allocation algorithms emerged, and 
according to Wilson et al (1995), they can be sorted in 
following basic groups, sequential fit, segregated storage 
and fits, buddy systems, indexed fit and bitmaps. Each 
group is briefly presented below, and for detailed 
description of these algorithms please refer to 
(Johnstone&Wilson, 1997). 
• Sequential fit, based on sequential search of doubly 

linked lists of all free blocks of memory. Due to that, 
they are not good for real-time systems (Masmano et 

al, 2004). These algorithms include First fit, Best fit, 
Next fit and Worst fit.  

• Segregated storage and fits, where the lists of free 
slots are segregatedinto classes of different size, or 
different size range. Newly deallocated blocks are 
entered the class according to their size. Due to this 
segregation, this group of algorithms is good for real-
time systems. Fast fit, Good fit and Best fit aresome of 
the algorithms used in this group.   

• Buddy systems, uses splitting and coalescing the 
portions of memory. Memory is hierarchically split 
into portions called buddies. Some of the algorithms 
are Binary buddy, Fibonacci buddy and Double 
buddy.  

• Indexed Fit, uses advanced tree-like structures to 
index the free memory blocks, Algorithms include 
Best-Fit, ”Fast-Fit”, etc. In real-time systems, indexed 
fir algorithms may outperform Segregated free lists 
(Masmano et al, 2004).  

• Bitmap Fit is the extension of Indexed Fit, with the 
difference that it uses a bitmap to find out the state of 
the memory slots. The bitmap is stored in small 
portion of memory, and is easily accessible by the 
allocator. Example is Half fit algorithm.  

 
For detailed description of these algorithms please refer to 
(Johnstone&Wilson, 1997). 
 
2.3 Related Work 

Most of the work regarding improvement and optimization 
of memory allocation was done using conventional, non-
intelligent techniques, such as forcing the architectural, 
mathematical or hardware methods to improve memory 
allocation (list of references.) on different systems, such as 
embedded system, heterogeneous CPU-GPU or distributed 
systems.  
On embedded and hierarchical systems, Sima&Bertels 
(2009) presented runtime memory allocation algorithm, 
based on the assumption that the memory is a form of 
reconfigurable logic array. The algorithm approached 
memory by computing the stores for each memory object 
mathematically. The implementation was done by directly 
allocating memory in the local scratch-pad memories.  
Some other works also approach the problems from 
mathematical matrix-based point of view, and can be 
found in (Schenk et al, 2000; Christen et al, 2007; 
Volkov&Demmel, 2008). The above mentioned works 
approach memory allocation from hardware architecture 
point of view.  
Masmano et al (2004) developed a new dynamic storage 
allocation algorithm called Two Level Segregated Fit 
memory allocator for Real-Time Operating Systems 
(RTOS). It provided explicit allocation and deallocation of 
memory blocks. The algorithm assumed immediate 
coalescing, or merging of free blocks as soon as they were 
released. It implemented Good-fit strategy and allowed no 
reallocation or memory clean-up. To avoid non-uniform 
behavior it used the same strategy for all block sizes. Each 
free block in the memory belong to certain segregated list, 
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which holds the blocks of similar size, and the list is 
ordered by physical address. Each block within the list 
contains a header, which links it to the previous and next 
free block. The problem with this method is relatively high 
fragmentation which results from the bitmap-based 
mapping of segregated lists. 
Xao et al (2004) proposed adaptive memory allocation 
method in their IEEE Transaction paper. Their method of 
memory reservation adaptively reserves a small set of 
workstations to provide special services to the jobs 
demanding large memory allocations. In other words, it 
will dynamically allocate additional distributed, shared 
memory resources for large tasks, and immediately after 
these task finish with the memory usage, the systems will 
adaptively switch back to the normal load sharing state. 
This method of memory allocation is specific for 
distributed or cluster systems.  
Kim &Peng (2004) described the problem of memory as 
having conflict graph behavior. Based on that, they 
presented a memory allocation and assignment method, 
where memory partitioning was done to customize the 
memory architecture and optimize memory area and power 
consumption. The method extracted the useful exploration 
region to trade off area with energy consumption, and then 
performed an iterative multi-way partitioning is to 
optimize area and power. the method showed the reduction 
of cost in both, memory array space and power 
consumption.  
In the field of artificial intelligence, and specifically fuzzy 
logic, nothing much was done to solve the problem of 
memory allocation, but the single paper by Zalevsky et al 
in 2002. In their paper “CPU and Memory Allocation 
Optimization using Fuzzy Logic”, Zalevsky et al claim 
fuzzy logic to be a powerful tool for dealing with 
unpredictable problems that are generally hard to define 
mathematically, such as allocation of memory or CPU. As 
part of the research presented in the above mentioned 
work, Zalevsky et al used previously designed optical 
fuzzy logic controller to optimize the CPU and memory 
distribution between multiple users on shared server 
machine. The algorithm was based on the observation of 
patterns of memory and CPU usage between heavy and 
light users. This pattern was then used as a base for 
derivation of the set of rules by the fuzzy logic inference 
engine that would result in optimization of system’s 
computing ability (Zalevsky et al, 2002). The rules were 
taking into consideration the user’s CPU time, the 
percentage of time using the server and the size of memory 
used. They found that the optimal rule dimension is 5 by 5 
rule set, and their results showed the improvement in the 
utilization of CPU and memory by reducing the time each 
user used the shared system.  
The work presented in this report goes further than what 
was proposed by Zalevsky et al, in the sence that the fuzzy 
algorithm is based not on the number of users, but rather 
on the process size. The overall concept of these two 
works is completely different, as our fuzzy allocator can be 
applied or extended to multiple systems, and can be 
modified to include even process priority in the input 

dimension. The following pages of this report will 
elaborate on the methods used for fuzzy allocator and will 
present and discuss the simulation results. 
 
3. MATERIAL AND METHODS 
 
Fuzzy Inference System (FIS) is one of the most popular 
methods of fuzzy logic (S. Guillaume, 2001). Its beauty 
lies in its simplicity, and its direct relation to human logic. 
Fuzzy Inference Systems (FIS) can be used to perform 
various tasks, such as classification, process simulation 
and diagnostics, process control and online decision 
support (S. Guillaume, 2001). This is the reason why this 
method was chosen for memory allocation problem. 
Following part briefly explains the concept of FIS and 
presents FIS-based memory allocator, called Fuzzy 
Allocator.  
 

3.1 Basics of FIS 

 
FIS consists of inputs, set of rules and outputs. The rules 
are used to map the inputs to the outputs. The input data 
are generally fuzzy, although fuzzy inputs may be 
combined with crisp inputs in order to produce fuzzy 
output (Ross, 2004). Figure 2 shows the block diagram of 
simple FIS with three inputs and one output. 
 

 
Figure 2: Block diagram of 3 input – 1output FIS. 

 
In FIS, inputs must be fuzzified using the input 
membership functions. Numerous membership functions 
exist (e.g. triangular, Gaussian, sigmoid), and they are 
generally used to map the input value into fuzzified value 
between 0 and 1 (Ross, 2004). 
After fuzzification, the rules for FIS must be set. The 
number of rules depends on the number of inputs and 
number of membership functions of each input. For 
multiple inputs, taking all possible rules would slow down 
the performance of the system. As such, it is preferred to 
choose the most influential rules, which are in turn 
represented by the mostinfluential variables. Variable 
selection and rule reduction are usually called structure 
optimization, and represent the most important step in the 
process of rule generation (S. Guillaume, 2001). There are 
multiple ways in which rule reduction can be performed, 
by grid partitioning and by clustering. Guillaume (2001) 
discusses methods in which grid partitioning may be 
performed. One method is implements all possible 
combinations of the given fuzzy sets as rules. This method 
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would generate 36 rules for our given inputs. The 
drawback here is the fact that large number of inputs 
would generate huge number of rules, which would make 
the system slow and impractical. Some of these rules may 
never even be used. Another method would be to choose 
the number of fuzzy sets dynamically, i.e. as the system 
runs, the rule sets get additional relevant rules. In another 
method, Wang and Mendel proposed that, when the 
number of rule combinations increases, only one rule 
should be used per data pair. They proposed a procedure to 
be followed when implementing this method and it can be 
found in (Wang & Mendel, 1992). The last method is 
using decision trees, which are a subspace of all possible 
rules. This generates incomplete rules but require a 
predetermined fuzzy partitioning. For clustering, Fuzzy C-
means is the most popular method, and details may be 
found in (Guillame, 2001; Ross, 2004).  
When making fuzzy rules, logical operators, such as AND, 
OR and NOT are used. Assuming A and B are fuzzy inputs 
and C is a fuzzy output, the logical operators will be 
represented as shown in Eq. 1-3.   

 
C= A ∪ B  (Eq. 1) 
C=A ∩B  (Eq. 2) 
C=A ~ B  (Eq. 3) 

 
Mathematically, these logical operators may be expressed 
via combination of min-max and complement operations 
(Zadeh, 1994). This is shown in following equations, (Eq. 
4 and 5). 
 

μ_(A ∪ B) (x)=max〖{μ_(A ) (x),μ_( B) (x) }∀x∈X〗
   (Eq. 4) 

μ_(A ∩ B) (x)=min〖{μ_(A ) (x),μ_( B) (x) }∀x∈X〗 
   (Eq. 5) 

 
where X represents a set of data or objects, x an individual 
value of the data set X; A and B represent other sets 
containing data and μ (x) generally represents membership 
function over the set X, so μA(x) represents membership 
function that connects the set X and A, and μB(x) 
represents membership function that connects the set X 
and B.  
The rules result in fuzzy output, which actually is the 
result of combination of all inputs using min-max 
methods. This is done as follows: first the input values are 
changed using membership function into a membership 
values. This membership values will then represent cuts to 
the related output triangles. For example, if 280 MB of 
process size touches two triangles, Normal with 
membership of 0.3 and Low with membership of 0.143, 
these cuts will be drawn and the output functions will be 
reshaped to produce area which will represent fuzzy output 
and will need defuzzification.  
To get a crisp number out of the fuzzy output, 
defuzzification is needed. There are multiple methods used 
in defuzzification, such as centroid method, weighted 
average, max membership and mean max membership 
method. In this work, we will use centroid defuzzification 

method, which returns the center of area under the fuzzy 
output curve. For detailed explanations of defuzzification 
methods please refer to (Ross, 2004). 
 
3.1.1 Inputs and Output 
 
Process size is based on common process sizes and is 
expressed in Megabytes. The membership functions are 
defined for very small, small, medium and large processes 
and their respective size ranges are given in Table 2. The 
size ranges are taken based on the observation of running 
processes via Task Manager. Various applications, such as 
web browser, text editor, mathematical software, 
programming language tools, simulation packages, etc, 
were initiated and run in order to see their respective 
process size in memory. The process size input is given in 
Figure 3.   
 

 
Figure 3: ProcesSize membership functions 

 
Hole size reflects the empty or free spaceslots within the 
memory. The list of empty slots, technically called holes, 
is maintained by operating system in form of linked lists. 
The fuzzy allocator obtains this list and assigns the holes 
according to their sizes, which are reflected by 
membership functions listed in Table 1. Their ranges 
match the process membership sizes shown in Table 2.  
Bankis the third input and representslogical memory bank, 
or the 3rd dimension of memory discussed above. Bank 
input holds two crisp values – prev, which represents 
previously used bank, or the bank which controller 
hardwarehad activatedbefore the new process allocation 
request came to the fuzzy allocator, and new, which 
represents any other bank, or any bank which the 
controller hardware will have to switch to (Figure 4). The 
reason for using bank input is because this information 
may help in optimizing allocation time by reducing the 
number of switches between the banks. The controller will 
not need to switch to another bank as long as the current 
bank contains sufficient holes to accommodate incoming 
processes.  
Output is the order in which the processes will be allocated 
space in memory. The order ranges from high to low, 
where high would represent the processes to be allocated 
first, and low the processes to be allocated last. The 
membership functions are as follows: High (H), Above 
Normal (AN), Normal (N), Below Normal (BN) and Low 
(L). These membership functions overlap, and according 
to the rules set, it may be deduced that some process might 
be given 0.2 membership value of H, and 0.6 membership 
value of AN membership function, thus the output will be 
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defuzzified and based on that the process will be given an 
order.  
 

 
Figure 4: Two crisp values representin previous and new 

memory bank 
 

 
Table 1: Fuzzy Inference System inputs and outputs 

Inputs Output 
Process size Hole size Bank Order 
Very small-VS Very small-VS Previous-prev High-H 
Small-S Small-S New-new Above normal-AN 
Medium-M Medium-M  Normal-N 
Large-L Large-L  Below normal-BN 
   Low-L 
 

Table 2: Membership function range (in MB) 
Membership functions Sizes (MB) 
VS [0-10] 
S [6-60] 
M [40-300] 
L [>200] 

 
 
3.1.2 Rules 
 
Rules to the FIS are made based on the process and hole 
sizes and bank, so that the allocation time is reduced to 
minimum. This was done by checking the empty holes in 
the previously accesses bank first. in other words, if the 
bank controller is currently accessing the bank 1, then the 
fuzzy allocator will first check that bank for a hole to 
accommodate some of the queued processes, and only if 
the bank does not contain the hole of desired size, the 
controller will switch to some other bank. Rules are 
formulated using Mamdanimodel.  
If ProcessSize is X and holeSize is Y and bank is Z, then 
order is T. 
X, Y and Z represent membership functions of each input 
and T is relative membership function of the output.  
 
Following are several created rules:  
• If ProcesSize is VS and hole size is VS and bank is 

prev, then order is H. 
• If ProcesSize is S and hole size is M and bank is prev, 

then order is AN. 
• If ProcesSize is S and hole size is L and bank is new, 

then order is L. 
 

The number of all possible rules is the combinations of 
permutations of all membership functions for all inputs 
and output. Let NX be the number of membership 
functions for input X, then the total number of possible 
rules NTis:  

NT=NprocessSizexNholeSizexNbank = 36 
However not all rules are significant, and by reducing the 
number of rules, we get total of 16 
 
Figure 2.The distribution of 2200 human chromosomes 
into seven Denver Group classes from A, to G. 

 

4.RESULTS 

The FIS-based fuzzy allocator was simulated using Matlab 
v. 2012b and Wolfram Matematica v. 8. Matlab contains 
toolboxes for fuzzy systems, and allow fast simulation of 
FIS, with graphical representations of membership 
functions, rules and the result. The simulation was later 
translated into Matematica code, where the rules were 
additionally optimized and fuzzy allocator performance 
was tested on the arbitrary memory request queue.  
The simulation setup was tested as follows: first, the FIS 
was setup as described in previous sections.  Three arrays 
memory_bank, process and hole were set. 
memory_bankrepresented the logical memory banks with 
busy and free slots, process represented incoming queue of 
memory requests, and hole represented list of free slots in 
the memory. Based on the rules, the simulation ordered the 
incoming request so that the overall performance is 
improved.  
For example, if the size of the incoming process is 280 
MB, and if the free slot of size 300 MB is situated on the 
previously accessed bank, the output value is 1.36 (1 
represents H and 5 represents L order). The output is 
shown in Figure 5, where thefirst image in the figure 
represents AN (Table 1) output, and the height of the 
shaded region is the membership number of the output for 
this rule, and it amounts to 0.15. The second image shows 
the membership representing the order H, with 
membership value of 0.3. The third image in Figure 5, 
shows the result of defuzzification process, and red 
pointreflects the defuzzified value of the output, i.e. 1.21. 
From the output it may be deduced by almost certainty (i.e. 
by value 1.21) that this process has high priority in 
memory allocation. Figure 6 shows the related surface area 
of given input.  
Just for comparison, another input of same memory and 
hole size is given, with hole situated on different memory 
bank - [280, 300, 2], and respective output and surface 
area are shown in Figures 7 and 8. The defuzzified value in 
this case is 3.32, and it can be said that this process’ 
priority is between N with membership of 0.3 and BN with 
membership of 0.14. Thus defuzzification using centroid 
method gives us the order of 3.32, in the space of 
importance from 1 to 5, where 1 represents the highest 
priority and 5 the lowest. 
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Figure 5: Output membership functions affected by the 
input (in order: AN order, H order, and fuzzy result – 
1.21). 
 
 

 
Figure 6: Surface area for first input [280, 300, 1] 
 

 

 

 
Figure 7: Output membership functions affected by the 
input (in order: N order, BN order, and fuzzy result3.32). 
 
 
 

 
Figure 8: Surface area for second input [280, 300, 2] 
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5. DISCUSSION 

Allocation of any process is done based on the size of the 
process, size of the memory hole, and location of that 
memory hole on the memory bank. Based on these three 
inputs, the Fuzzy Allocator gives the order in which the 
processes should be allocated the memory space, or 
memory holes. In other words, the fuzzy allocator directly 
gives the best possible order in which memory should be 
allocated for arriving processes. The order of allocation is 
represented by thedefuzzified numbers in ascending order.  

The algorithm gives the ordering of memory allocation 
such as to minimize the memory latency, by allocating the 
memory holes on the current memory bank before moving 
to another memory bank.   

6. CONCLUSSION 

Memory allocation is widely known as one of the main 
problems and research interests in the area of memory 
management. Due to the constant increase of processing 
power and the growth and spread of distributed systems, 
the problem of memory allocation becomes even more 
complex. Creating a memory allocation system which 
closely resembles human intelligence would be great, and 
this research is trying to do exactly that.  

The problem of memory allocation is attempted using 
Fuzzy Inference System, with three inputs and one output. 
The system is called Fuzzy Allocator.  

The fuzzy allocator takes process size, hole size and 
memory bank as the input, and with the set of important 
rules, gives the order in which memory should be allocated 
to the coming processes. This system first tries to fill the 
currently active memory bank, and then moves to the next 
memory bank. In such a way latency which results from 
shifting between the banks is minimized. This system also 
minimizes the fragmentation within each memory bank, by 
trying to fit the process in memory hole as close to the 
processes size. 

This work shows that fuzzy logic should be used to 
optimize the process of memory allocation in fast and 
efficient way. The authors recommend further research in 
this field with possible inclusion of some other methods of 
fuzzy logic, namely Fuzzy Pattern Recognition, in the 
problem of optimization of memory allocation. 
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