

Southeast Europe Journal of Soft Computing

Available online: www.scjournal.com.ba

VOL.3 NO.1 March 2014 - ISSN 2233 – 1859

Intelligent Memory Allocation based on Fuzzy Logic

Alma Husagic-Selman, Ali Aburas, Suvad Selman

International University of Sarajevo, Faculty of Engineering and Natural Sciences, Hrasnicka Cesta 15, Ilidža
71210 Sarajevo, Bosnia and Herzegovina

Article Info
Article history:
Article received on February 2014

Keywords:
Memory Allocation, Fuzzy Logic,
Fuzzy Inference System.

Abstract
Based on the Computerized Parkinson’s Law “work expands so as to fill
the time available for its completion” (Thimbleby, 1993) it can be
deduced that regardless of the size of the memory, there will always be
programs to completely fill, or even overload that memory. Thus
intelligent/sensible memory allocation process is crucial to system’s
performance. However, due to the constant increase of processing power
and the growth and spread of distributed systems, such as grid and cloud
computing, memory allocation becomes a great challenge in the area of
memory management today. Making allocation intelligent, so that the
memory fragmentation and response time are reduced would be great, and
in this research, this was attempted. The research presents Fuzzy
Allocator, memory allocator based on fuzzy inference system. The
allocator manages to sort the incoming memory requests according to
their size and the size of free memory slot (hole). The output of the fuzzy
allocator is the order in which the allocation of memory will be performed
on the incoming memory requests. It reorders the incoming memory
request queue so that the response time is reduced, and fragmentation is
minimized.

1. INTRODUCTION

CPU requests memory to store the running processes
and memory allocator needs to respond to those requests
immediately. The memory allocation is therefore real-time
problem, and as usual, real-time problems are much more
difficult to solve than the offline ones. Memory allocator
must keep track of all parts of memory, those that are free
and those that are in use. It must not reshuffle running
processes, and it must be able to find a slot for newcoming
processes as soon as that is requested. As processes come
to and go from the memory, the memory gets fragmented
and free space within the memory resembles scattered
holes. It would be great if allocator might fill the coming
processes into fitting holes, so as to reduce the memory
fragmentation, but using existing techniques it is still not
possible. Due to this, idea of making allocator intelligent is

inevitable. This research is actually trying exactly that, to
make memory allocator intelligent by using fuzzy logic, or
more precisely Fuzzy Inference System (FIS).

The paper is organized as follows: the second part
presents theoretical background on memory hardware and
memory allocation algorithms and related work in the area
of memory allocation, the third part elaborates on
materials and methods used in this research, the forth part
presents the fuzzy allocator simulation results, the fifth
part discusses the results and the last part gives
recommendations over the improvements of this work.

2. THEORETICAL BACKGROUND

Before going into explanation of allocation process, it
is important to understand the generic memory hardware,
memory architecture, and allocation techniques.

19 A. H. S., A. A., S. S. / Southeast Europe Journal of Soft Computing Vol.3 No.1 March. 2014 (18-25)

2.1 Memory Hardware

3D semiconductor memory consists of multiple banks,
each representing single memory array (Rixner et al,
2000). Each array is connected via a set of lines, namely
address, data and control lines, which are generally used to
carry address and data, to indicate which function is to be
performed and to report the memory status. Memory array
is actually where the data is stored, and it represents a set
of cells, each accessed via respective wordline and bitline,
and each carrying one or more bits of information or data.
The address lines are connected to address decoder, which
would help select the appropriate cell in the memory and
data line would then carry the data to and from the
memory, based on the function issued by the control line
(Gulak, 1998).

Figure 1: Generic Memory Architecture (Gulak, 1998)

Figure 1 presents generic memory architecture in 2D.

Modern DRAM memory organization contains multiple
memory arrays connected in parallel, with each array
having its sense amplifiers and decoders. This one set of
memory array and its decoders is called a bank, and it
represents the 3rd dimension in memory architecture. The
memory access then consists of three non-uniform access
latencies, namely, bank precharge, row access and column
access (Liu et al, 2010).

2.2 Memory Allocation Algorithms

The driving force behind every memory allocation
algorithm is minimization of memory allocation time and
reduction of memory fragmentation. Attempting that,
numerous memory allocation algorithms emerged, and
according to Wilson et al (1995), they can be sorted in
following basic groups, sequential fit, segregated storage
and fits, buddy systems, indexed fit and bitmaps. Each
group is briefly presented below, and for detailed
description of these algorithms please refer to
(Johnstone&Wilson, 1997).
• Sequential fit, based on sequential search of doubly

linked lists of all free blocks of memory. Due to that,
they are not good for real-time systems (Masmano et

al, 2004). These algorithms include First fit, Best fit,
Next fit and Worst fit.

• Segregated storage and fits, where the lists of free
slots are segregatedinto classes of different size, or
different size range. Newly deallocated blocks are
entered the class according to their size. Due to this
segregation, this group of algorithms is good for real-
time systems. Fast fit, Good fit and Best fit aresome of
the algorithms used in this group.

• Buddy systems, uses splitting and coalescing the
portions of memory. Memory is hierarchically split
into portions called buddies. Some of the algorithms
are Binary buddy, Fibonacci buddy and Double
buddy.

• Indexed Fit, uses advanced tree-like structures to
index the free memory blocks, Algorithms include
Best-Fit, ”Fast-Fit”, etc. In real-time systems, indexed
fir algorithms may outperform Segregated free lists
(Masmano et al, 2004).

• Bitmap Fit is the extension of Indexed Fit, with the
difference that it uses a bitmap to find out the state of
the memory slots. The bitmap is stored in small
portion of memory, and is easily accessible by the
allocator. Example is Half fit algorithm.

For detailed description of these algorithms please refer to
(Johnstone&Wilson, 1997).

2.3 Related Work

Most of the work regarding improvement and optimization
of memory allocation was done using conventional, non-
intelligent techniques, such as forcing the architectural,
mathematical or hardware methods to improve memory
allocation (list of references.) on different systems, such as
embedded system, heterogeneous CPU-GPU or distributed
systems.
On embedded and hierarchical systems, Sima&Bertels
(2009) presented runtime memory allocation algorithm,
based on the assumption that the memory is a form of
reconfigurable logic array. The algorithm approached
memory by computing the stores for each memory object
mathematically. The implementation was done by directly
allocating memory in the local scratch-pad memories.
Some other works also approach the problems from
mathematical matrix-based point of view, and can be
found in (Schenk et al, 2000; Christen et al, 2007;
Volkov&Demmel, 2008). The above mentioned works
approach memory allocation from hardware architecture
point of view.
Masmano et al (2004) developed a new dynamic storage
allocation algorithm called Two Level Segregated Fit
memory allocator for Real-Time Operating Systems
(RTOS). It provided explicit allocation and deallocation of
memory blocks. The algorithm assumed immediate
coalescing, or merging of free blocks as soon as they were
released. It implemented Good-fit strategy and allowed no
reallocation or memory clean-up. To avoid non-uniform
behavior it used the same strategy for all block sizes. Each
free block in the memory belong to certain segregated list,

20 A. H. S., A. A., S. S. / Southeast Europe Journal of Soft Computing Vol.3 No.1 March. 2014 (18-25)

which holds the blocks of similar size, and the list is
ordered by physical address. Each block within the list
contains a header, which links it to the previous and next
free block. The problem with this method is relatively high
fragmentation which results from the bitmap-based
mapping of segregated lists.
Xao et al (2004) proposed adaptive memory allocation
method in their IEEE Transaction paper. Their method of
memory reservation adaptively reserves a small set of
workstations to provide special services to the jobs
demanding large memory allocations. In other words, it
will dynamically allocate additional distributed, shared
memory resources for large tasks, and immediately after
these task finish with the memory usage, the systems will
adaptively switch back to the normal load sharing state.
This method of memory allocation is specific for
distributed or cluster systems.
Kim &Peng (2004) described the problem of memory as
having conflict graph behavior. Based on that, they
presented a memory allocation and assignment method,
where memory partitioning was done to customize the
memory architecture and optimize memory area and power
consumption. The method extracted the useful exploration
region to trade off area with energy consumption, and then
performed an iterative multi-way partitioning is to
optimize area and power. the method showed the reduction
of cost in both, memory array space and power
consumption.
In the field of artificial intelligence, and specifically fuzzy
logic, nothing much was done to solve the problem of
memory allocation, but the single paper by Zalevsky et al
in 2002. In their paper “CPU and Memory Allocation
Optimization using Fuzzy Logic”, Zalevsky et al claim
fuzzy logic to be a powerful tool for dealing with
unpredictable problems that are generally hard to define
mathematically, such as allocation of memory or CPU. As
part of the research presented in the above mentioned
work, Zalevsky et al used previously designed optical
fuzzy logic controller to optimize the CPU and memory
distribution between multiple users on shared server
machine. The algorithm was based on the observation of
patterns of memory and CPU usage between heavy and
light users. This pattern was then used as a base for
derivation of the set of rules by the fuzzy logic inference
engine that would result in optimization of system’s
computing ability (Zalevsky et al, 2002). The rules were
taking into consideration the user’s CPU time, the
percentage of time using the server and the size of memory
used. They found that the optimal rule dimension is 5 by 5
rule set, and their results showed the improvement in the
utilization of CPU and memory by reducing the time each
user used the shared system.
The work presented in this report goes further than what
was proposed by Zalevsky et al, in the sence that the fuzzy
algorithm is based not on the number of users, but rather
on the process size. The overall concept of these two
works is completely different, as our fuzzy allocator can be
applied or extended to multiple systems, and can be
modified to include even process priority in the input

dimension. The following pages of this report will
elaborate on the methods used for fuzzy allocator and will
present and discuss the simulation results.

3. MATERIAL AND METHODS

Fuzzy Inference System (FIS) is one of the most popular
methods of fuzzy logic (S. Guillaume, 2001). Its beauty
lies in its simplicity, and its direct relation to human logic.
Fuzzy Inference Systems (FIS) can be used to perform
various tasks, such as classification, process simulation
and diagnostics, process control and online decision
support (S. Guillaume, 2001). This is the reason why this
method was chosen for memory allocation problem.
Following part briefly explains the concept of FIS and
presents FIS-based memory allocator, called Fuzzy
Allocator.

3.1 Basics of FIS

FIS consists of inputs, set of rules and outputs. The rules
are used to map the inputs to the outputs. The input data
are generally fuzzy, although fuzzy inputs may be
combined with crisp inputs in order to produce fuzzy
output (Ross, 2004). Figure 2 shows the block diagram of
simple FIS with three inputs and one output.

Figure 2: Block diagram of 3 input – 1output FIS.

In FIS, inputs must be fuzzified using the input
membership functions. Numerous membership functions
exist (e.g. triangular, Gaussian, sigmoid), and they are
generally used to map the input value into fuzzified value
between 0 and 1 (Ross, 2004).
After fuzzification, the rules for FIS must be set. The
number of rules depends on the number of inputs and
number of membership functions of each input. For
multiple inputs, taking all possible rules would slow down
the performance of the system. As such, it is preferred to
choose the most influential rules, which are in turn
represented by the mostinfluential variables. Variable
selection and rule reduction are usually called structure
optimization, and represent the most important step in the
process of rule generation (S. Guillaume, 2001). There are
multiple ways in which rule reduction can be performed,
by grid partitioning and by clustering. Guillaume (2001)
discusses methods in which grid partitioning may be
performed. One method is implements all possible
combinations of the given fuzzy sets as rules. This method

21 A. H. S., A. A., S. S. / Southeast Europe Journal of Soft Computing Vol.3 No.1 March. 2014 (18-25)

would generate 36 rules for our given inputs. The
drawback here is the fact that large number of inputs
would generate huge number of rules, which would make
the system slow and impractical. Some of these rules may
never even be used. Another method would be to choose
the number of fuzzy sets dynamically, i.e. as the system
runs, the rule sets get additional relevant rules. In another
method, Wang and Mendel proposed that, when the
number of rule combinations increases, only one rule
should be used per data pair. They proposed a procedure to
be followed when implementing this method and it can be
found in (Wang & Mendel, 1992). The last method is
using decision trees, which are a subspace of all possible
rules. This generates incomplete rules but require a
predetermined fuzzy partitioning. For clustering, Fuzzy C-
means is the most popular method, and details may be
found in (Guillame, 2001; Ross, 2004).
When making fuzzy rules, logical operators, such as AND,
OR and NOT are used. Assuming A and B are fuzzy inputs
and C is a fuzzy output, the logical operators will be
represented as shown in Eq. 1-3.

C= A ∪ B (Eq. 1)
C=A ∩B (Eq. 2)
C=A ~ B (Eq. 3)

Mathematically, these logical operators may be expressed
via combination of min-max and complement operations
(Zadeh, 1994). This is shown in following equations, (Eq.
4 and 5).

μ_(A ∪ B) (x)=max〖{μ_(A) (x),μ_(B) (x) }∀x∈X〗
 (Eq. 4)

μ_(A ∩ B) (x)=min〖{μ_(A) (x),μ_(B) (x) }∀x∈X〗
 (Eq. 5)

where X represents a set of data or objects, x an individual
value of the data set X; A and B represent other sets
containing data and μ (x) generally represents membership
function over the set X, so μA(x) represents membership
function that connects the set X and A, and μB(x)
represents membership function that connects the set X
and B.
The rules result in fuzzy output, which actually is the
result of combination of all inputs using min-max
methods. This is done as follows: first the input values are
changed using membership function into a membership
values. This membership values will then represent cuts to
the related output triangles. For example, if 280 MB of
process size touches two triangles, Normal with
membership of 0.3 and Low with membership of 0.143,
these cuts will be drawn and the output functions will be
reshaped to produce area which will represent fuzzy output
and will need defuzzification.
To get a crisp number out of the fuzzy output,
defuzzification is needed. There are multiple methods used
in defuzzification, such as centroid method, weighted
average, max membership and mean max membership
method. In this work, we will use centroid defuzzification

method, which returns the center of area under the fuzzy
output curve. For detailed explanations of defuzzification
methods please refer to (Ross, 2004).

3.1.1 Inputs and Output

Process size is based on common process sizes and is
expressed in Megabytes. The membership functions are
defined for very small, small, medium and large processes
and their respective size ranges are given in Table 2. The
size ranges are taken based on the observation of running
processes via Task Manager. Various applications, such as
web browser, text editor, mathematical software,
programming language tools, simulation packages, etc,
were initiated and run in order to see their respective
process size in memory. The process size input is given in
Figure 3.

Figure 3: ProcesSize membership functions

Hole size reflects the empty or free spaceslots within the
memory. The list of empty slots, technically called holes,
is maintained by operating system in form of linked lists.
The fuzzy allocator obtains this list and assigns the holes
according to their sizes, which are reflected by
membership functions listed in Table 1. Their ranges
match the process membership sizes shown in Table 2.
Bankis the third input and representslogical memory bank,
or the 3rd dimension of memory discussed above. Bank
input holds two crisp values – prev, which represents
previously used bank, or the bank which controller
hardwarehad activatedbefore the new process allocation
request came to the fuzzy allocator, and new, which
represents any other bank, or any bank which the
controller hardware will have to switch to (Figure 4). The
reason for using bank input is because this information
may help in optimizing allocation time by reducing the
number of switches between the banks. The controller will
not need to switch to another bank as long as the current
bank contains sufficient holes to accommodate incoming
processes.
Output is the order in which the processes will be allocated
space in memory. The order ranges from high to low,
where high would represent the processes to be allocated
first, and low the processes to be allocated last. The
membership functions are as follows: High (H), Above
Normal (AN), Normal (N), Below Normal (BN) and Low
(L). These membership functions overlap, and according
to the rules set, it may be deduced that some process might
be given 0.2 membership value of H, and 0.6 membership
value of AN membership function, thus the output will be

22 A. H. S., A. A., S. S. / Southeast Europe Journal of Soft Computing Vol.3 No.1 March. 2014 (18-25)

defuzzified and based on that the process will be given an
order.

Figure 4: Two crisp values representin previous and new

memory bank

Table 1: Fuzzy Inference System inputs and outputs

Inputs Output
Process size Hole size Bank Order
Very small-VS Very small-VS Previous-prev High-H
Small-S Small-S New-new Above normal-AN
Medium-M Medium-M Normal-N
Large-L Large-L Below normal-BN
 Low-L

Table 2: Membership function range (in MB)
Membership functions Sizes (MB)
VS [0-10]
S [6-60]
M [40-300]
L [>200]

3.1.2 Rules

Rules to the FIS are made based on the process and hole
sizes and bank, so that the allocation time is reduced to
minimum. This was done by checking the empty holes in
the previously accesses bank first. in other words, if the
bank controller is currently accessing the bank 1, then the
fuzzy allocator will first check that bank for a hole to
accommodate some of the queued processes, and only if
the bank does not contain the hole of desired size, the
controller will switch to some other bank. Rules are
formulated using Mamdanimodel.
If ProcessSize is X and holeSize is Y and bank is Z, then
order is T.
X, Y and Z represent membership functions of each input
and T is relative membership function of the output.

Following are several created rules:
• If ProcesSize is VS and hole size is VS and bank is

prev, then order is H.
• If ProcesSize is S and hole size is M and bank is prev,

then order is AN.
• If ProcesSize is S and hole size is L and bank is new,

then order is L.

The number of all possible rules is the combinations of
permutations of all membership functions for all inputs
and output. Let NX be the number of membership
functions for input X, then the total number of possible
rules NTis:

NT=NprocessSizexNholeSizexNbank = 36
However not all rules are significant, and by reducing the
number of rules, we get total of 16

Figure 2.The distribution of 2200 human chromosomes
into seven Denver Group classes from A, to G.

4.RESULTS

The FIS-based fuzzy allocator was simulated using Matlab
v. 2012b and Wolfram Matematica v. 8. Matlab contains
toolboxes for fuzzy systems, and allow fast simulation of
FIS, with graphical representations of membership
functions, rules and the result. The simulation was later
translated into Matematica code, where the rules were
additionally optimized and fuzzy allocator performance
was tested on the arbitrary memory request queue.
The simulation setup was tested as follows: first, the FIS
was setup as described in previous sections. Three arrays
memory_bank, process and hole were set.
memory_bankrepresented the logical memory banks with
busy and free slots, process represented incoming queue of
memory requests, and hole represented list of free slots in
the memory. Based on the rules, the simulation ordered the
incoming request so that the overall performance is
improved.
For example, if the size of the incoming process is 280
MB, and if the free slot of size 300 MB is situated on the
previously accessed bank, the output value is 1.36 (1
represents H and 5 represents L order). The output is
shown in Figure 5, where thefirst image in the figure
represents AN (Table 1) output, and the height of the
shaded region is the membership number of the output for
this rule, and it amounts to 0.15. The second image shows
the membership representing the order H, with
membership value of 0.3. The third image in Figure 5,
shows the result of defuzzification process, and red
pointreflects the defuzzified value of the output, i.e. 1.21.
From the output it may be deduced by almost certainty (i.e.
by value 1.21) that this process has high priority in
memory allocation. Figure 6 shows the related surface area
of given input.
Just for comparison, another input of same memory and
hole size is given, with hole situated on different memory
bank - [280, 300, 2], and respective output and surface
area are shown in Figures 7 and 8. The defuzzified value in
this case is 3.32, and it can be said that this process’
priority is between N with membership of 0.3 and BN with
membership of 0.14. Thus defuzzification using centroid
method gives us the order of 3.32, in the space of
importance from 1 to 5, where 1 represents the highest
priority and 5 the lowest.

23 A. H. S., A. A., S. S. / Southeast Europe Journal of Soft Computing Vol.3 No.1 March. 2014 (18-25)

Figure 5: Output membership functions affected by the
input (in order: AN order, H order, and fuzzy result –
1.21).

Figure 6: Surface area for first input [280, 300, 1]

Figure 7: Output membership functions affected by the
input (in order: N order, BN order, and fuzzy result3.32).

Figure 8: Surface area for second input [280, 300, 2]

24 A. H. S., A. A., S. S. / Southeast Europe Journal of Soft Computing Vol.3 No.1 March. 2014 (18-25)

5. DISCUSSION

Allocation of any process is done based on the size of the
process, size of the memory hole, and location of that
memory hole on the memory bank. Based on these three
inputs, the Fuzzy Allocator gives the order in which the
processes should be allocated the memory space, or
memory holes. In other words, the fuzzy allocator directly
gives the best possible order in which memory should be
allocated for arriving processes. The order of allocation is
represented by thedefuzzified numbers in ascending order.

The algorithm gives the ordering of memory allocation
such as to minimize the memory latency, by allocating the
memory holes on the current memory bank before moving
to another memory bank.

6. CONCLUSSION

Memory allocation is widely known as one of the main
problems and research interests in the area of memory
management. Due to the constant increase of processing
power and the growth and spread of distributed systems,
the problem of memory allocation becomes even more
complex. Creating a memory allocation system which
closely resembles human intelligence would be great, and
this research is trying to do exactly that.

The problem of memory allocation is attempted using
Fuzzy Inference System, with three inputs and one output.
The system is called Fuzzy Allocator.

The fuzzy allocator takes process size, hole size and
memory bank as the input, and with the set of important
rules, gives the order in which memory should be allocated
to the coming processes. This system first tries to fill the
currently active memory bank, and then moves to the next
memory bank. In such a way latency which results from
shifting between the banks is minimized. This system also
minimizes the fragmentation within each memory bank, by
trying to fit the process in memory hole as close to the
processes size.

This work shows that fuzzy logic should be used to
optimize the process of memory allocation in fast and
efficient way. The authors recommend further research in
this field with possible inclusion of some other methods of
fuzzy logic, namely Fuzzy Pattern Recognition, in the
problem of optimization of memory allocation.

REFERENCES

M. Christen, O. Schenk, and H. Burkhart, General-Purpose
Sparse Matrix Building Blocks using the NVIDIA CUDA
Technology Platform, Book of Abstracts, First Workshop
on General Purpose Processing on Graphics Processing
Units, Boston, Oct 04, 2007.

D. Diwase, S. Shah, T. Diwase and P. Rathod. “Survey
Report on Memory Allocation Strategies for Real Time
Operating System in Context with Embedded Devices”
International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622, Vol. 2, Issue 3,
May-Jun 2012, pp.1151-1156.

S. Guillaume (2001). “Designing Fuzzy Inference Systems
from Data: An Interpretability-Oriented Review”. IEEE
Transactions on Fuzzy Systems, Vol. 9, No. 3, June 2001.

M. S. Johnstone& P. R. Wilson (1997). “The Memory
Fragmentation Problem: Solved?”. Proceedings of the 1st
International Symposium on Memory Management
(ISMM '98), pp. 26 – 36. DOI: 10.1145/286860.286864

G. Karady, “Introduction to Fuzzy Logic Systems”.
Retreived from WWW
http://enpub.fulton.asu.edu/powerzone/loadforecast/fuzzy.
htm on 23.01.2013.

N. Kim & R. Peng. “A Memory Allocation and
Assignment Method Using Multi-Way
Partitioning”.Proceedings 2004 IEEE International SOC
Conference, September 12-15, 2004, Hilton Santa Clara,
CA, USA. ISBN: 0-7803-8445-8.

M. Masmano, I. Ripoll, A. Crespo, and J. Real (2004).
“TLSF: a New Dynamic Memory Allocator for Real-Time
Systems”. Proceedings of the 16th Euromicro Conference
on Real-Time Systems (ECRTS’04). pp. 79-86. DOI:
10.1109/ECRTS.2004.35

S. A. McKee (2004). “Reflections on the memory
wall”.Proceedings of the 1st conference on
Computingfrontiers (CF '04).ACM, New York, NY, USA,
2004.DOI=10.1145/977091.977115.

A. Moallem& S. A. Ludwig (2009). “Using Artificial Life
for Distributed Scheduling”.Proceedings of the 2009 ACM
symposium on Applied Computing (SAC ‘09), March 08-
12, 2009, Honolulu, Hawaii, USA. pp. 1091-1097. ISBN:
978-1-60558-166-8

T. Ross, “Fuzzy Logic with Engineering Applications”.
John Wiley & Sons, Aug 16, 2004.

V. Saxena, Y. Sabharwal& P. Bhatotia, (2010).
"Performance evaluation and optimization of random
memory access on multicores with high productivity",2010
International Conference onHigh Performance Computing
(HiPC), 19-22 Dec. 2010. DOI:
10.1109/HIPC.2010.5713168.

O. Schenk, W.Fichtner& K. G¨artner “Scalable Parallel
Sparse LU Factorization with a Dynamical Supernode
Pivoting Approach in Semiconductor Device Simulation”.
Proceedings of the 16th IMACS World Congress 2000 on
Scientific Computation, Applied Mathematics and
Simulation.August 21-25, 2000, Lausanne, Switzerland.
(2000).

25 A. H. S., A. A., S. S. / Southeast Europe Journal of Soft Computing Vol.3 No.1 March. 2014 (18-25)

H. Thimbleby (1993), “Computerized Parkinson’s Law”,
Computing & Control Engineering Journal, October 1993.

V. Volkov& J. W. Demmel. “LU, QR and Cholesky
Factorizations using Vector Capabilities of
GPUs”.LAPACK Working Note 202. EECS Technocal
Report, 2008.

L.-X.Wang and J. M. Mendel, “Generating fuzzy rules by
learning from examples,” IEEE Trans. Syst., Man,
Cybern., vol. 22, pp. 1414–1427, Nov./Dec. 1992.

P. R. Wilson, M. S. Johnstone, M. Neely & D. Boles,
(1995). “Dynamic Storage Allocation: A survey and
critical review”. In 1995 International Workshop on
Memory Management.Springer Verlag LNCS.Kinross,
Scotland, UK, 1995.

L. Xiao, S. Chen & X. Zhang. “Adaptive Memory
Allocations in Clusters to Handle Unexpectedly Large
Data-Intensive Jobs”. IEEE Transactions on Parallel and
Distributed Systems, Vol. 15, No. 7, July 2004

L. A. Zadeh, “Fuzzy Logic, Neural Networks, and Soft
Computing”. Communications of the ACM, Vol. 37, No.
3,March 1994.

Z. Zalevsky', E. Gur& D. Mendlovic. “CPU and Memory
Allocation Optimization using Fuzzy Logic”.Applications
and Science of Neural Networks, Fuzzy Systems, and
Evolutionary Computation V, Proceedings of SPIE Vol.
4787 (2002).

