
Southeast Europe Journal of Soft Computing Volume 1. Number 1 March 2012  
 

37 
 

 
 
 
 

Inventory Control Using Fuzzy Dynamic Programming 
 

Sadina Gagula-Palalic 
and 

Mehmet Can 
 
  

Abstract 
There are a variety of efficient approaches to solve crisp inventory models in 
operations research. In this article a model that uses Bellman and Zadeh’s 
approach to fuzzy dynamic programming is used. The problem considered is 
the following: the management of a company wants to close down a certain 
plant within a definite time interval. Therefore production levels should 
decrease to zero as smoothly as possible and the stock level at the end of the 
planning period should be as low as possible. The demand is assumed to be 
deterministic.  
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1. Introduction  
The earliest inventory control models 
were developed in the stochastic 
environment, such as economic order 
quantity model, which is applicable 
when the demand of an item has a 
constant or nearly constant rate. 
Japanese have built the method called 
just-in-time representing a philosophy 
whose objective is the elimination of all 
sources of waste including unnecessary 
inventory. The aim in any inventory 
model is to find the amount that should 
be ordered each period so that it would 
minimize the total cost, consisting of 
ordering and holding costs. However, 
like many other systems, inventory 
control includes the amount of 
uncertainty and as such can be modeled 
more efficiently by using Fuzzy logic 
modeling techniques. The first approach 
to fuzzy inventory control was  
 

 
 
 
introduced by Zadeh in 1965. In 
literature, various types of fuzzy 
inventory models were introduced and 
discussed by many researchers. For 
example, EOQ models with fuzzified 
parameters, such as demand, lead time 
and inventory level were presented by 
(Petrovic and Sweeney, 1994:147-152). 
Chen et al. (Chen-Wang, 1996:71-79) 
fuzzified the demand, ordering cost, 
inventory cost, and backorder cost into 
trapezoidal fuzzy numbers in EOQ 
model with backorder. Fuzzy multi-stage 
inventory problems were also considered 
by some researchers (e.g., Kacprzyk-
Staniewski, 1982:117-32). This paper 
will present fuzzy dynamic 
programming techniques for modeling 
inventory, as a new and challenging 
approach. The drawbacks of fuzzy 
dynamic programming are that this is a 
method of solving problems exhibiting 
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the properties of overlapping sub-
problems that takes much less time than 
some naive methods. 
 
2. Traditional Dynamic 

Programming 
Traditional dynamic programming is a 
technique introduced first by Bellman in 
1957. This technique is very known 
technique for solving large optimization 
problem that can be break up into small 
problems; once all the sub-problems 
have been solved, we are left with an 
optimal solution to the large problem. 
Each of the smaller problems is 
identified with a stage of the dynamic 
programming solution procedure. 
Basically the problem is formulated in 
terms of state variables , representing 
the amount of inventory on hand at the 
beginning of stage n (n=1.2…N); 
decision variables , representing the 
production quantity for stage n 
(n=1.2…N); stage rewards, ; a reward 
function , … , , ; and a 
transformation function , . The 
problem is solved by solving recursively 
the following: 
 

max ,
 max , °   (1) 
 
Such that  

,  (2) 
1, 2, … , 1 

 
 
3. Fuzzy Dynamic Programming 
Fuzzy dynamic programming was 
suggested first by Bellman and Zadeh in 
1970. They based their considerations on 
the symmetrical model of a decision 
(Zimmermann, 2001:348):  
Let  

, 0, … ,  - be defined as 
state variable where , … ,  is 

the set of values permitted for the state 
variables; 

 , 0, … ,  - be defined as 
decision variable where 

, … ,  is the set of possible 
decisions; 
 ,  - be the 
transformation function. 
 
For stage , 1, … ,  , we define: 
1. A fuzzy constraint  limiting the 

decision space and characterized by 
its membership function  

2. A fuzzy goal  characterized by the 
membership function  

The problem is to determine the 
maximizing decision ,
0, … ,  , for a given . 
 
A fuzzy set decision is the confluence of 
the constraints and goals and its 
membership function is defined by min-
operator: 

 (3) 
 

,
min , … , ,  

         (4) 
 
The membership function of the 
maximizing decision is then 
 

, … ,

max ,…, max
min , … ,

, ,
 (5) 

 
where  represents the optimal decision 
on stage .  
 
 
4. Mathematical model for Fuzzy 

Dynamic Programming applied in 
Inventory Control 
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Let us assume that we have the 
following problem. A company needs to 
close down a certain plant within a 
definite time interval. The constraint is 
that the production level should be 
decreased as steadily as possible over 
this period. The goal is to provide that 
the stock levels are as low as possible at 
the end of the period. Therefore, the goal 
and constraints can be expressed as a 
fuzzy numbers, characterized by its 
membership function. In this case the 
demand is assumed to be crisp. The 
problem is set as follows: 
 
Let 

 , 0, … ,    
                    be the decision variable representing  
                    the production level in period n 

, … ,    
                    is the set of the decisions allowed, a 
                    fuzzy set 

 
                   , 0, … ,    
                   be the state variable representing the 
                   stock level at the beginning of period  

 
                             , … ,   
                              is the set of state possible value, a fuzzy 

set 
 

1, … ,      
is the crisp demand in period  
 

    
is the crisp transformation function 
 

,        
are the fuzzy constraints representing  
“production should decrease as smoothly  
as possible” 
 

,   is the  
fuzzy goal representing “to have as low  
inventory level as possible” 
 

In this case the demand is assumed to be 
crisp. However, objective functions as 
well as constraints can be non-crisp and 
therefore, they are defined by their 
membership functions. The aim is to 
maximize the goal within the ranges 
specified for the constraints according to 
mathematical expression (5).  
 
 
5. Application 
 
Let the constraint be represented by the 
following membership function 
[Zimmerman(2001:428)]: 
 

0 0 60 10

3 0.5
20

60 10 80 10

5 0.5
20

80 10 100 10

0   100 10

 

 
For n=1,…,4, the membership functions 
are represented in the Figure 1.  
 
 
Figure 1- the membership functions of the 
constraints 

 
 
Let the goal be represented by the 
following membership function: 

1 /20 0 20
0  
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Figure 2 – the membership function of the 
goal 
 

 
 

Let the number of stages be 4 and 
the non-crisp demands for each stage be  

45, 50, 45, 60 
The sets of the values permitted for the 
decisions and state values are 
respectively: 

0, 5, 10, … ,   0, 5, 10, …  
Assume that the stock level at the 
beginning is 0 and 0 20 
Solution: 
Since we are interested in the values of 

 for which 0, the lower ( ) 
and upper ( ) bounds for the decision 
variables at different stages are found 
from the constraints membership 
functions as shown in the table 1. 
Table1 – Lower and upper bounds for the 
decision variables 

   
1 55 85 
2 45 75 
3 35 65 
5 25 55 

In order to find lower and upper bounds 
for the state variables, first forward 
calculation is performed and 
corresponding ,  and ,  are 
respectively found using the equations 
below and the results are shown in table 
2. 

, max 0, ,

;        , ,

;  1, … ,5 
 

Table 2 – Lower and upper bounds for the 
state variables by forward calculation 

 ,  ,  

1 0 0 
2 10 40 
3 5 65 
4 0 85 

 
Second step is to perform backward 
calculation recursively and the following 
results are obtained: 
 
Table 3 – Lower and upper bounds for the 
state variables by forward calculation 

 ,  ,  

1 0 0 
2 0 65 
3 0 60 
4 5 50 
5 0 0 

 
The final bounds for the state variables 
are obtained by the following equations 
and shown in the table 4: 

, , ,  

, , ,  
 
Table 4 – Final lower and upper bounds for 
the state variables  

   
1 0 0 
2 10 40 
3 5 60 
4 5 50 
5 0 0 

 
At this point, it is possible to apply 
dynamic programming with fuzzy 
decision and state variables. The aim is 
to find the maximum value of the goal 
membership function for each state 
variable (whose range is given above in 
Table 4), and this is performed by 
applying equation (5).  
 
Stage 1 is obtained as follows: is 
obtained from the following equation, 
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results are shown in Table 5 and plotted 
in the Figure 3: 
 

max min ,

 
 
Table 5 – Stage 1 

  
 2

5 
3
0 

3
5 

4
0 

4
5 

5
0 

5
5 

5 0 0 0 0 0 0 ¼ ¼ 
10 0 0 0 0 0 ½ ¼ ½ 
15 0 0 0 0 ¾ ½ ¼ ¾ 
20 0 0 0 1 ¾ ½ ¼ 1 
25 0 0 ¾ ¾ ½ ¼ 0 ¾ 
30 0 ½ ¾ ½ ¼ 0 0 ¾ 
35 ¼ ½ ½ ¼ 0 0 0 ½ 
40 ¼ ½ ¼ 0 0 0 0 ½ 
45 ¼ ¼ 0 0 0 0 0 ¼ 
50 ¼ 0 0 0 0 0 0 ¼ 

 
Figure 3 – Membership function  

 
 
Stage 2: The corresponding equation for 
the second stage is: 
 

max min ,

 
 
Function  is obtained first by 
calculating the value of the 
transformation function 

 , then taking the corresponding value 
from the abscissa vector of the function 

. The results are shown in the 
Table 6, and function  is shown 
in Figure 4. 
 
Table 6 – Stage 2 

  
3
5 

4
0 

4
5 

5
0 

5
5 

6
0 

6
5 

5 0 0 ¼ ½ ¾ ½ ¼ ¾ 
10 0 ¼ ½ ¾ ¾ ½ ¼ ¾ 
15 ¼ ½ ¾ 1 ¾ ½ ¼ 1 
20 ¼ ½ ¾ ¾ ¾ ½ ¼ ¾ 
25 ¼ ½ ¾ ¾ ½ ½ ¼ ¾ 
30 ¼ ½ ¾ ½ ½ ¼ ¼ ¾ 
35 ¼ ½ ½ ½ ¼ ¼ 0 ½ 
40 ¼ ½ ½ ¼ ¼ 0 0 ½ 
45 ¼ ½ ¼ ¼ 0 0 0 ½ 
50 ¼ ¼ ¼ 0 0 0 0 ¼ 
55 ¼ ¼ 0 0 0 0 0 ¼ 
60 ¼ 0 0 0 0 0 0 ¼ 

 
Figure 4 – Membership function  

 
 
Stage 3: Corresponding equation for 
decision membership function will be: 

max min ,

 
 
By using same procedure described in 
stage 2, the results for stage 3 are shown 
in the Table 7 and Figure 5.  
 
Table 7 – Stage 3 

  
4
5 

5
0 

5
5 

6
0 

6
5 

7
0 

7
5 

10 ¼ ½ ¾  1 ¾ ½ ¼ 1 
15 ¼ ½   ¾ ¾ ¾ ½ ¼ ¾ 
20 ¼ ½ ¾  ¾ ½ ½ ¼ ¾ 
25 ¼ ½   ¾ ½ ½ ½ ¼ ¾ 
30 ¼ ½ ½ ½ ½ ½ ¼ ½ 
35 ¼ ½ ½ ½ ½ ¼ ¼ ½ 
40 ¼ ½   ½   ½ ¼  ¼ 0 ½  
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Figure 5 – membership function  

 
 
 
Stage 4: Corresponding equation for 
decision membership function will be: 

max min ,

 
 
Table 8 – Stage 4 
  

 5
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7
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8
0 

8
5 

0 ¼  ½  ¾  ¾ ½  ½  ¼  ¾  
 
Figure 6 – Membership function  

 
 
 
6. Conclusion 
In this work, a new approach to 
inventory control is shown. The method 
described uses fuzzy dynamic 
programming, which has been proved as 
a powerful tool for optimization when 
non deterministic information exists. 
The complex problem can be subdivided 
into smaller problems and the state 
spaces were reduced by the introduction 
of a bound on the basis of heuristic 
considerations. Using a transformation 

function, upper and lower bounds for the 
state variables are found on the several 
intermediate stages and final solutions 
are found by fuzzy inference. Further 
work can be performed by introducing 
new fuzzy variables such as non crisp 
demand.  
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