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1. INTRODUCTION 

Metagenomics is a recently-born and highly popular field 

that studies the genomic contents of microbial communities 

living in certain environments and tries to understand the 

structure and function of these microbial communities by 

sequencing genomic fragments from environmental samples 

without the need of cultivating them in a laboratory 

(Huttenhower et al., 2012; Qin et al., 2010)

microbiome is considered to be the "dark matter of the
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ABSTRACT: To analyze complex biodiversity in microbial communities, 16S 

rRNA marker gene sequences are often assigned to operational taxonomic units 

(OTUs). The abundance of methods that have been used to assign 16S rRNA 

marker gene sequences into OTUs brings discussions in which one is better. 

Suggestions on having clustering methods should be stable in which generated 

OTU assignments do not change as additional sequences are added to the dataset 

is contradicting some other researches contend that the meth

present the distances of sequences is more important. We add one more de novo 

clustering algorithm, Rolling Snowball to existing ones including the single 

linkage, complete linkage, average linkage, abundance-

distance-based greedy clustering, and Swarm and the open and closed

methods. We use GreenGenes, RDP, and SILVA 16S rRNA gene databases to 

show the success of the method. The highest accuracy is obtained with SILVA 

library. 
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biological universe" as most of the microorganisms are very 

difficult to culture and are still unknown

Pathmanathan, Lannes, Lopez, & Bapteste, 2018; 

Kellenberger, 2001; Lok, 2015)

taxonomic composition of a bacterial community has a 

critical role in understanding that such a community might 

play an important role in affecting change in that 

environment and in creating different types of medicinal 

drugs (Lok, 2015) and determining different types of 

functions both in plant and animal kingdoms 
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Ursell, Parfrey, & Knight, 2012; Oakley, Fiedler, Marrazzo, 

& Fredricks, 2008; Turnbaugh et al., 2009).  

In the early metagenomic studies, the sequencing of a 

complete 16S rRNA gene was a common approach using the 

traditional Sanger sequencing methodology (Dethlefsen, 

Huse, Sogin, & Relman, 2008; Petrosino, Highlander, Luna, 

Gibbs, & Versalovic, 2009). Although this approach was 

informative, it is expensive and provides a limited depth of 

sequencing in discovering the complete bacterial diversity 

that exists in a complex environment.  

With Next-Generation Sequencing (NGS), it has become 

easy to study the microbial world in their environments 

without culturing them (Scholz, Lo, & Chain, 2012; 

Shokralla, Spall, Gibson, & Hajibabaei, 2012). In recent 

years, rapid development in NGS  has made it possible to 

directly sequence a huge amount of DNA/RNA fragments 

extracted from environmental samples such as human gut, 

marine or soil in a reasonable time (Eisen, 2011).  It has 

made sequencing faster and highly economical providing a 

unique opportunity to study the microbial diversity of many 

complex environments at a much lower cost (Desai et al., 

2013).  

The two common sequencing approaches adopted in 

metagenomic projects are whole-genome shotgun 

sequencing and target metagenomics methods which are 

also called amplicon sequencing (Fuhrman, 2012). Shotgun 

sequencing provides more information to explore the 

microbial community both functionally and taxonomically. 

However, it is very expensive and computationally 

challenging and complex (Bhat, Prabhu, & Balakrishnan, 

2019). The shotgun approach involves the sequencing of all 

genomic fragments and the targeted approach involves 

sequencing the marker gene such as 16S rRNA.  

The 16S rRNA gene is the most commonly used genetic 

marker since it is conserved in all prokaryotes and consists 

of highly conservative and highly variable regions (HVRs)  

(Case et al., 2007; Janda & Abbott, 2007). Thus, NGS has 

shifted the studies towards sequencing short hypervariable 

regions of the 16S rRNA gene instead of sequencing the 

complete gene (Mizrahi-Man, Davenport, & Gilad, 2013).  

16S rRNA gene is almost 1600 base pairs long and contains 

9 hypervariable regions V1-V9 which are both variable as 

well as conserved [17]. This approach is highly applicable 

mostly because the lengths of different HVRs of the 16S 

rRNA gene are between 100–300 bp which can be easily 

obtained using short paired-end reads produced by 

commonly used NGS technologies (Aravindraja, 

Viszwapriya, & Karutha Pandian, 2013; J. Zhang, Kobert, 

Flouri, & Stamatakis, 2014).  

 

1.1. OTUs Clustering (OTU Picking) 

To simplify the complexity of large datasets generated by 

NGS technologies, sequences are clustered into meaningful 

bins. These bins are called operational taxonomic units 

(OTUs) which are used to study the biodiversity within and 

between different samples (Schloss & Westcott, 2011). 

OTUs form the basis for further analysis and comparative 

studies (Di Bella, Bao, Gloor, Burton, & Reid, 2013). These 

studies helped researchers to profile the microbiota 

associated with the human body (Huttenhower et al., 2012), 

soil (Shade et al., 2013), oceans (Gilbert et al., 2012).  

OTUs help us to reduce and eliminate the PCR sequencing 

errors, merge paralogs and variation between strains of a 

single species (Robert C Edgar, 2017). Clustering also 

reduces the run time of subsequent analysis steps. However, 

poorly clustered OTUs can have a significant impact on 

downstream analyses. 

In general clustering methods can be classified into 

taxonomy-dependent approaches, where sequences are 

clustered against a reference database (closed reference or 

phylotyping), and taxonomy-independent approaches 

(Mande, Mohammed, & Ghosh, 2012), where sequences are 

clustered into OTUs based on pairwise similarities without 

using external reference databases (de novo clustering (Di 

Bella et al., 2013)). A third approach which is called open 

reference clustering where sequences are assigned to OTUs 

using closed-reference clustering and sequences that do not 

hit the database are then clustered with de novo clustering.  

(Rideout et al., 2014). There are popular reference 

databases: Ribosomal Database Project (RDP) (Cole et al., 

2009), Greengenes (DeSantis et al., 2006), SILVA (Pruesse 

et al., 2007), NCBI (Federhen, 2012), Open Tree of Life 

Taxonomy (OTT) (Hinchliff et al., 2014), and UNITE 

(Kõljalg et al., 2013). 

 

1.1.1. Closed Reference Approach 

This type of clustering is also referred to as phylotyping 

(Schloss & Westcott, 2011) or closed-reference clustering 

(Navas-Molina et al., 2013). This approach compares 

sequence reads to a reference database and then cluster them 

into the same OTU that is similar to the same reference read. 

These type of clustering methods can suffer when the 

reference databases do not sufficiently represent the 

biodiversity. When a large number of sequences are novel, 

then they cannot be assigned to an OTU as well.  

Furthermore, a sequence that represents a piece of the gene 

may be more than 97% similar to multiple reference 

sequences.  

Defining OTUs in this clustering approach can be 

problematic because two sequences could be similar to the 

same reference sequence at a certain level but not similar to 

each other at the same level.  Otherway around, a sequence 

may be equally similar to two or more reference sequence 

reads. In order to overcome these obstacles, a classifier 

could be used to assign taxonomy to each sequence read so 

that they can be clustered at a certain level.  

The advantages of the closed-reference clustering methods 

are that they are fast, highly parallelizable and resulting 
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OTU assignments can be comparable between different 

studies (Westcott & Schloss, 2015). 

 

1.1.2. De novo  Approach 

De novo clustering (Navas-Molina et al., 2013) which is 

also referred to as distance-based (Schloss & Westcott, 

2011) clustering, the distance between sequences is used to 

bin sequences into OTUs rather than using a reference 

database to calculate distances. The computational cost of 

this type of clustering method scales quadratically with the 

number of unique sequence reads. Sequencing errors 

increases the number of unique sequences requiring large 

amounts of memory and time for clustering. Input order of 

the sequences in De novo clustering for OTU assignments 

are highly sensitive (He et al., 2015; Mahé, Rognes, Quince, 

de Vargas, & Dunthorn, 2014). 

The power of de novo clustering is its independence of 

reference databases for clustering. Hence it has been 

preferred in most studies where novel sequence reads are 

expected.  

 

1.1.3. Open Reference Approach 

Open-reference clustering is a combination of the closed-

reference clustering and de novo clustering  (Navas-Molina 

et al., 2013; Rideout et al., 2014). This type of clustering 

performs closed-reference clustering first and then continues 

with the de novo clustering for those sequences whose 

similars are not found in the reference database. 

Theoretically, this approach has the potential power of both 

closed-reference and de novo clustering but the different 

OTU definitions used by these clustering approaches have a 

possible problem when the approaches are combined.  An 

alternative way to this method is to classify sequences to a 

bacterial family or genus level and then bin those sequences 

into OTUs within the chosen taxonomic groups using the 

average linkage method (Schloss & Westcott, 2011).  

An advantage of the open reference clustering is that it is 

highly parallelizable since each taxonomic group can be 

processed separately. However, it is still subject to the 

problems associated with reference database quality and the 

classification error. 

 

1.2. Clustering Methods  

Regardless of the reference database used, in general, there 

are two types of clustering in use: greedy heuristics-based 

clustering and hierarchical clustering. A few methods also 

use the model-based clustering. 

 

1.2.1. Greedy Heuristic Clustering 

Greedy heuristic-based methods select a sequence read as a 

seed and apply either de novo approach or closed reference 

approach using a particular threshold value which is 

generally 97%. The reads which do not match the selected 

seed are treated as a new seed. The main algorithms which 

apply greedy heuristic approach are CDHIT (Weizhong & 

Adam, 2006), USEARCH (Robert C. Edgar, 2010), 

UCLUST (Robert C. Edgar, 2010), VSEARCH (Rognes, 

Flouri, Nichols, Quince, & Mahé, 2016), SUMACLUST 

(Mercier, Boyer, Bonin, & Coissac, 2013), OTUCLUST 

(Albanese, Fontana, De Filippo, Cavalieri, & Donati, 2015),  

GramCluster (Russell, Way, Benson, & Sayood, 2010),  and 

DNACLUST (Ghodsi, Liu, & Pop, 2011).  

CDHIT sorts all the sequence reads before selecting any 

seed and picks the longest one as the initial seed and then 

clusters the sequence reads which are similar to the selected 

one at some threshold. VSEARCH applies optimal global 

aligner in parallel with multiple threading to perform 

alignments at a high speed. UCLUST works similar to 

CDHIT but it does not select the longest read as the initial 

seed. It has both de novo and closed reference clustering 

approaches. It takes experimental sequence reads as input 

for cluster centroids (de novo).  A reference database of 16S 

rRNA sequences is used to generate the cluster centroids for 

assigning experimental sequencing reads for the referenced 

centroids (closed reference). USEARCH extends aligner for 

the alignment search with a heuristic seed. It calculates kmer 

based heuristic distances for generating the cluster centroids. 

VSEARCH is an open-sourced version of the commercial 

USEARCH. It uses Needleman-Wunsch (Needleman & 

Wunsch, 1970) dynamic programming to global alignment 

distances. SUMACLUST and OTUCLUST utilize exact 

sequence alignment and clusters are formed incrementally 

by checking an abundance-ordered list of input reads against 

the already selected representative set sequences. Kmer 

based searching is used to measure an identity distance that 

is calculated by the length of the Longest Common 

Subsequence divided by the shortest alignment. 

GramCluster uses a grammar-based distance metric where 

new sequences are compared with cluster-representative 

sequences to determine membership. DNACLUST uses a 

novel k-mer filtering approach without a pairwise alignment 

process. Most of these greedy methods perform in O (n) 

time complexity but cluster quality is not always as good as 

hierarchical methods. 

1.2.2. Hierarchical Clustering 

Hierarchical methods use a genetic distance matrix which is 

calculated by pairwise comparison of all reads in an 

agglomerative way. Most of these algorithms have O (n2) 

time complexity which is a bottleneck for processing the big 

data. The main algorithms using hierarchical methods are 

MOTHUR (Schloss et al., 2009) and ESPRIT (Sun et al., 

2009). MOTHUR has the option to calculate the hierarchical 

distance with the nearest neighbor, average neighbor, and 

furthest neighbor. It uses the multiple sequence alignment 

tool MUSCLE (R. C. Edgar, 2004) to calculate the pairwise 

distances.  ESPRIT uses pairwise global alignment (Bhat et 

al., 2019).  
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1.2.3. Model-based Clustering 

Model-based clustering approaches employ probabilistic 

methods like the Gaussian mixture model and machine 

learning techniques. SWARM (Mahé et al., 2014) clusters 

identical reads iteratively and uses the abundance and 

internal structure of each cluster to optimize the results. 

CROP (Hao, Jiang, & Chen, 2011) uses the unsupervised 

Bayesian clustering method without any threshold (Bhat et 

al., 2019). 

There are also OTU quality metrics that measure the 

accuracy of clustered OTUs including richness (Sun et al., 

2009), normalized mutual information (Cai & Sun, 2011; 

Zheng, Kramer, & Schmidt, 2012) and Matthews' 

Correlation Coefficient which measures the correlation 

between predicted and known values as accuracy value 

(Schloss & Westcott, 2011). Normalized mutual information 

is an information theory measuring the mutual dependence 

of two frequency distributions (Cover & Thomas, 1991). 

Once OTUs are constructed, further analysis and taxonomic 

annotation are done. It is also possible to skip the clustering 

step and to use a reference database to identify each 

sequence, binning together those that have the same 

taxonomy (Aho et al., 2015)  based on the number of 

insufficient sample size. 

 

1.3. Denoising 

Due to its unique structure containing conserved and 

variable regions and its presence in all prokaryotes, the 16S 

rRNA gene is used as a marker gene. This approach is often 

preferred over shotgun sequencing due to the high cost. 

However, 16S rRNA gene sequencing errors also complicate 

distinguishing real nucleotide differences from the artifacts. 

To overcome this problem, sequence reads are often 

clustered into OTUs at 97% identity threshold but then again 

it has a big effect on taxonomic resolution. In order to 

increase the taxonomic resolution, some new sequence 

denoising pipelines have been introduced to correct 

sequencing errors and improve the taxonomic resolution.  

Denoising approaches can improve the taxonomic resolution 

and free us from choosing one of various OTU strategies 

which may give different results (Robert C. Edgar, 2017). 

Furthermore, amplicon sequence variants can be identified 

by their unique sequences which allows comparison of 

different studies with different datasets (Callahan, 

McMurdie, & Holmes, 2017). 

There are already several bioinformatic comparisons of 

OTU-based methods (Allali et al., 2017). A comprehensive 

comparison of the above-mentioned denoising methods 

along with an open-reference 97% OTU-based approach 

(Rognes et al., 2016) shows that even though all denoising 

methods give similar community structure, the number of 

ASVs/OTUs and resulting alpha-diversity metrics varies in 

the mock community analyses and it is recommended to be 

considered when attempting to identify rare organisms from 

possible noise  (Nearing, Douglas, Comeau, & Langille, 

2018). 

 

1.4. Taxonomy Prediction 

One of the fundamental tasks in microbiology is the 

prediction of taxonomy for marker gene sequences where a 

reference database is used with taxonomy annotations. 

Sequence reads can be studied as bins of similar sequences 

(operational taxonomic units: OTUs), or as raw reads. In any 

case, the taxonomic prediction of these sequence reads 

characterizes the microbiota composition.  

There are two approaches for carrying out a taxonomic 

prediction: homology-based (alignment) and prediction-

based (k-mer) approach (Chaudhary, Sharma, Agarwal, 

Gupta, & Sharma, 2015). The homology-based approach 

requires the alignment of a query sequence with all available 

sequences within the reference database used for prediction. 

Sequences are identified by similarities and differences 

requiring the comparison of each nucleotide residue. Hence, 

the quality of the reference database used in the taxonomy 

prediction is also important (Gupta, Kapil, Dhakan, & 

Sharma, 2014).  

Some popular tools designed for taxonomy prediction are 

given in Section 4. 

 

2. PROBLEM STATEMENT 

The main problem with existing methods in taxonomy 

prediction, OTU clustering, and denoising is the tradeoff 

between computational time and accuracy. The length of 

short reads has a huge impact on this challenge. 

Furthermore, the best performing tools often may not be 

open-sourced and free (Nearing et al., 2018).  

NGS technologies provide short reads and huge sequencing 

depth at a much lower cost. Hence, recent metagenomic 

projects shift to focus on the sequencing of only a single or 

combination of two or more hypervariable regions. 

Therefore, specialized tools are needed for highly accurate 

taxonomic classification of species using these short length 

sequences.  

The amount of genetic data produced by NGS technologies 

is growing from tens of thousands to several million reads, 

faster than the rate at which it can be analyzed (Caporaso et 

al., 2010a). The latest Illumina HiSeq 2500 platform can 

produce approximately 600 million sequences of 300bp in 

around 40 hours. The rapid accumulation of these genomic 

information provides a valuable source for biological 

knowledge. However, it introduces a serious challenge for 

data analysis (Cai et al., 2017). Computational methods for 

analyzing these large collections of sequences are limited. 

The 16S rRNA gene has limitations in specificity such that 

two different species may have identical marker genes but it 

is still highly sensitive and one single nucleotide difference 
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can detect important genomic variation (Thompson et al., 

2005; Ward, Ferris, Nold, & Bateson, 1998).   

Taxonomy prediction and OTUs clustering both have some 

challenges. Taxonomy predictions with the existing tools 

suffer from the short-read sequences (Claesson et al., 2010; 

Wang, Garrity, Tiedje, & Cole, 2007a). Furthermore, when 

novel taxa that are not present in the reference database 

used, the taxonomy prediction tool should identify it with 

the closest taxonomic lineage and should not go further 

(Bokulich et al., 2018). Analyses that use similarity 

comparison to taxonomic reference databases may also 

provide poorly resolved results especially for samples that 

have high diversity (Eren et al., 2013).   

On the other hand, one of the main problems with denoising 

ASVs methods is the discrimination between PCR 

sequencing errors and biological variation. Due to 

divergence in rRNA operons, it is possible that the same 

bacterial genome may have 16S rRNA genes that are 

different by more than 40 base pairs which could lead to 

multiple ASVs and diversity which can complicate the 

downstream analysis and to identify specific taxa (Fierer, 

Brewer, & Choudoir, 2017). 

Current popular tools for denoising are DADA2, Deblur, 

and UNOISE3. DADA2 and Deblur are open-sourced and 

free. UNOISE3 is closed-source and offers a free 32bit 

academic version which is limited by supporting only up to 

4GB of available memory. The Run time of these tools on 

the same dataset is significantly different and the fastest one 

is UNOISE3 (Nearing et al., 2018).  

 

3.BACKGROUND 

Many algorithms have been developed for taxonomy 

prediction such as RDP Naive Bayesian Classifier (NBC) 

(Wang, Garrity, Tiedje, & Cole, 2007b), GAST  (Huse et al., 

2008), 16Sclassifier (Chaudhary et al., 2015), SPINGO 

(Allard, Ryan, Jeffery, & Claesson, 2015), Metaxa2 

(Bengtsson-Palme et al., 2015), SINTAX (R. Edgar, 2016), 

PROTAX (Somervuo, Koskela, Pennanen, Henrik Nilsson, 

& Ovaskainen, 2016), microclass (Liland, Vinje, & Snipen, 

2017). There are also implemented methods in MOTHUR, 

QIIME v1 (Caporaso et al., 2010b) and QIIME v2 (Bolyen 

et al., 2019).   

RDP-Classifier which uses a Naive Bayesian Classifier 

(Claesson et al., 2010; Wang et al., 2007a) is one of the most 

commonly used tools.  It is highly accurate on complete 16S 

rRNA sequences but suffers in accuracy for targeted HVRs 

which are short in length (Vilo & Dong, 2012). 

In order to validate taxonomy prediction methods, some 

benchmark techniques are proposed. The leave-none-out 

technique uses both test set and training set from a complete 

reference database (Werner et al., 2012). The leave-one-out 

technique uses each sequence from the reference database as 

for query while the remaining sequences are used as a 

training set (Deshpande et al., 2016; R. Edgar, 2016; Wang 

et al., 2007a). Leave-clade-out is also a cross-validation 

technique (Brady & Salzberg, 2009) where test and training 

sets are selected in a way that each taxonomy at a given rank 

is included in the test or training set but not both. In the k-

fold cross-validation technique, the reference database is 

randomly split into test sets and training sets of relative 

sizes. This technique provides performance evaluation on 

novel query sequences (Lan, Wang, Cole, & Rosen, 2012). 

There are also mock communities (artificial) which contain 

known strains have also been used for validation (Allard et 

al., 2015; Bokulich, 2017; Robert C. Edgar, 2017). Cross-

validation by identity technique creates a model using the 

dissimilarity between the query and reference sequences 

(Robert C. Edgar, 2018). 

Many OTU clustering methods exist (Robert C. Edgar, 

2013; Rideout et al., 2014; Schloss & Handelsman, 2005; 

Schloss et al., 2009; Seguritan & Rohwer, 2001; Ye, 2010) 

most of which apply a threshold of 97% sequence similarity 

following the general wisdom that 97% corresponds 

approximately to species (Schloss & Handelsman, 2005; 

Seguritan & Rohwer, 2001; Westcott & Schloss, 2017). This 

threshold was proposed in 1994 (STACKEBRANDT & 

GOEBEL, 1994) when only a few 16S rRNA sequences 

were available.  

There are discussions on replacing OTUs with ASVs in the 

marker-gene analysis (Brandt et al., 2019; Callahan et al., 

2017). ASV methods have shown sensitivity and specificity 

similar or better than OTU methods and they are also better 

in distinguishing the patterns (Callahan et al., 2016; Eren et 

al., 2013, 2015; Needham, Sachdeva, & Fuhrman, 2017). 

Amplicon sequence variants (ASVs) are obtained by a de 

novo like approach where sequences are distinguished from 

errors with the assumption indicating that the sequences are 

more likely to be repeatedly observed than those with an 

error. Hence, obtaining ASV cannot be performed 

independently and the smallest unit of data in which ASVs 

can be obtained must be a sample. Unlike OTUs, ASVs are 

consistent labels and represent a biological reality that exists 

outside of the analyzed data. Therefore ASVs that are 

obtained independently from different samples or different 

studies are comparable (Callahan et al., 2017). 

One of the leading popular denoising tools DADA2 

generates an error model that is trained on the sequence 

reads and then uses that model to correct errors. Sequences 

are then collapsed into ASVs (Callahan et al., 2016). ASVs 

are also called sub-OTUs, or zero-radius OTUs.  Deblur 

uses error profiles to obtain error-free sequences and can 

perform on Illumina MiSeq and HiSeq sequencing data 

(Amir et al., 2017). Sequences are aligned together into sub-

OTUs and predicted error-derived reads are removed from 

neighboring sequences. It calculates the pairwise Hamming 

distances in each sample separately which is efficient for 

both memory and computational power. UNOISE3 (Robert 

C Edgar, 2016) uses a one-pass clustering method that does 

not require quality scores. A cluster is formed with a 

centroid sequence which has a higher abundance and similar 

member sequences with lower abundances. Two parameters 

with pre-set values are curated to generate zero-radius 
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OTUs. The one-pass clustering method has an advantage in 

computational time. 

In genomic signal processing, representation of a DNA 

sequence in a discrete numerical sequence is essential for 

digital signal processing based analysis (Anastassiou, 2001; 

Berger, Mitra, Carli, & Neri, 2002; Cheever, Searls, 

Karunaratne, & Overton, n.d.). This representation is often 

called a mapping scheme. Each mapping scheme has a 

different set of discrete numeric representation of 

nucleotides. 

Many mapping scheme have been developed such as Voss 

representation (Voss, 1992), the real number (Chakravarthy, 

Spanias, Iasemidis, & Tsakalis, 2004), the integer number 

(Paul Dan Cristea, 2002), tetrahedron (Silverman & Linsker, 

1986), the complex number (Paul D. Cristea, 2002), the 

quaternion, the paired numeric  (Akhtar, Epps, & 

Ambikairajah, 2007), the electron-ion interaction potentials 

(EIIP) (Nair & Sreenadhan, 2006), the atomic number 

(Holden et al., 2007), Z-curve (R. Zhang & Zhang, 1994), 

the DNA walk (Berger, Mitra, Carli, & Neri, 2004).  Table 

1. shows a comprehensive list of the existing mapping 

schemes (Ning Yu, Zhihua Li, 2018).  

 Table 1 Some Encoding Schemes (Ning Yu, Zhihua Li, 

2018) 

Scheme Name Discrete numeric values 

Atomic Number C=58, T=66,A=70, G=78 

EIIP C=0.1340, T=0.1335, A=0.1260,G=0.0806 

Molecular Mass C=111.1, T=112.1, A=135.13,G=151.13 or 

C=110, T=125, A=134, G=150 

Thermodynamics TC=5.6, GA=5.6, CA=5.8, TG=5.8, TA=6.0, 

AC=6.5, GT=6.5, CT=7.8,AG=7.8, AT=8.6, 

TT=9.1, AA=9.1, CC=11.0, GG=11.0, 

GC=11.1, CG=11.9 

Three-group  (1) R={A, G}, Y={C, T} , (2) M={A, C}, K={G, 

T}, (3) W={A, T}, S={G, C} 

Dinucleotide Sixteen dinucleotides are mapped to a 

unit circle. 

Ring Structure AG: (0, 1.5), CT: (0, -1.5), CA:(1, 1), TG: (-

1, -1), CG: (1, -1), TA: (-1, 1), GA: (1,0), 

GT(0.5, -1.25), GC: (-0.5, -1.25), TC:(-1, 0), 

AC: (-0.5, 1.25), AT: (0.5, 1.25),AA: (0, 1), 

TT: (0.5, 0), GG: (0, -1), CC:(-0.5, 0). 

 

 

4. MATERIALS AND METHODS 

Existing 16S rRNA Reference databases Greengenes, 

SILVA, and RDP are used. 

Sequences are converted to genomic signals with complex 

numbers encoding scheme [i,-i,1,-1]  and randomly selected 

50 taxa each having 50 sequences from the genus level are 

used to compute in-class and inter-class similarities. The 

average similarities are 69.94% and 25.37% respectively. 

The difference between in-class / inter-class similarities is 

very promising, and such a similarity measure results in 

good taxonomy prediction accuracy and specificity in OTUs 

clustering.  

Preliminary results for the SILVA database at the genus 

level, show distinguishable in-class, inter-class similarities 

4.1. Data 

Gene databases independently get updated and have a 

different approach to taxonomy construction. Taxonomy is 

ranked as kingdom/domain, phylum, class, order, family, 

genus,  and species levels. RDP has no species level and has 

additional subclass and suborder levels.  

Taxonomy predictions can be based on manual and 

computational analyses after multiple alignments 

(McDonald et al., 2012; Yilmaz et al., 2014). Greengenes 

database contains Archae and Bacteria. It uses rank mapping 

mainly from NCBI and other sources and De novo tree 

construction to make classifications (Balvočiute & Huson, 

2017). Since the last release in 2013, Greengenes is not 

updated.  

SILVA database taxonomic ranking assignments are 

manually curated [113]. SILVA and RDP reference 

databases contain Archae, Bacteria, and Eukarya (Fungi). 

RDP database contains sequences from the International 

Nucleotide Sequence Database Collaboration (Cochrane, 

Karsch-Mizrachi, & Takagi, 2016).   

SILVA, UNITE, and Greengenes have environmental 

sequences. OTT contains a synthesis of phylogenetic trees 

that are ranked and merge together. In Greengenes, RDP and 

SILVA there is no attempt to classify unnamed groups (R. 

Edgar, 2016). 

Besides the above-mentioned taxonomy reference databases, 

this research will also make use of the datasets including 

mock community datasets provided by the early leading 

studies in taxonomy prediction, OTUs clustering and 

denoising for benchmarking and comparison purposes. 

4.2. Signal Similarity  

Current reference databases and available data sets provided 

by similar studies will be converted to genomic signals 

through available encoding schemes. Conversion of DNA 

sequences into the genomic signals offers the possibility to 

apply various types of signal processing methods that can 

identify hidden features. Genomic signal processing 

methods can provide different types of similarities that can 

be used in taxonomy prediction, OTUs clustering, and 

denoising.  

Each nucleotide base is converted to a number according to 

one of the encoding schemes in Table 1.  Using for instance 

the encoding scheme [i,-i,1,-1]  the sequences 

"AATACGCG" and "CAG" are converted to two signals : 

[i,i,-i,i,-1,1,-1,1] and, [-1,i,1]. Then, a new vector is 

generated by cross-correlation. If the real part of the new 
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vector has a positive peak then it is considered as a 

similarity between these two sequences and a negative peak 

is considered as a complementary similarity between them  
(Rockwood, Crockett, Oliphant, & Elenitoba-Johnson, 

2005)(Paul Dan Cristea, 2002).  

 

Cross Correlation in Statistics 
 

In statistics, a cross-correlation function is a measure of 

association. For example, the most common correlation 

coefficient, the Pearson product-moment correlation 

coefficient (PPMC), is a normalized version of a cross-

correlation.  

 
 

The PPMC gives a measure of temporal similarity for two 

time series. 

 

Cross Correlation in Signal Processing 

 
In signal processing, cross correlation is where you take two 

signals and produce a third signal. The method, which is 

basically a generalized form of “regular” linear correlation, 

is a way to objectively compare different time series and 

allows you to see how two signals match and where the best 

match occurs. It can be used to create plots that may reveal 

hidden sequences. 

 

The basic process involves: 

1) Calculate a correlation coefficient. The coefficient is a 

measure of how well one series predicts the other. 

2) Shift the series, creating a lag. Repeat the calculations for 

the correlation coefficient. 

3) Repeat steps 1 and 2.  

How many times you repeat the process will depend on your 

data, but as the lag increases the potential matches will 

decrease. 

4) Identify the lag with the highest correlation coefficient. 

The lag with the highest correlation coefficient is where the 

two series match the best. 

 

 

4.2.1. In-Class /  Inter-Class Similarities Using Signals 

Preliminary results for the SILVA database at the genus 

level, show distinguishable in-class, inter-class similarities.  

Sequences are converted to genomic signals with complex 

numbers encoding scheme [i,-i,1,-1]  and randomly selected 

50 taxa each having 50 sequences from the genus level are 

used to compute in-class and inter-class similarities. 

The average in class similarities and interclass averages are 

computed for all taxon levels in the three databases 

Greengenes, SILVA, and RDP. The results are shown in 

Table 2. 

The difference between in-class / inter-class similarities is 

very promising, and such a similarity measure results in 

good taxonomy prediction accuracy and specificity in OTUs 

clustering. 

Table 2 In-class / Inter-class similarities for all taxon levels 

using Signals 

  Databases In-Class Inter-Class 

Phylum Greengenes 39.79% 19.45% 

SILVA 44.85% 21.68% 

RDP  55.39% 25.79% 

Mean 46.68% 22.31% 

Class Greengenes 44.09% 18.85% 

SILVA 50.01% 22.01% 

RDP  55.97% 28.17% 

Mean 50.02% 23.01% 

Order Greengenes 49.87% 20.52% 

SILVA 51.10% 21.95% 

RDP 60.97% 30.34% 

Mean 53.98% 24.27% 

Family Greengenes 55.11% 23.17% 

SILVA 58.14% 23.22% 

RDP  63.05% 38.55% 

Mean 58.77% 28.31% 

Genus Greengenes 50.16% 21.16% 

SILVA 69.94% 25.37% 

RDP  67.68% 44.98% 

Mean 62.59% 30.50% 

Species Greengenes 59.65% 22.35% 

SILVA 73.41% 28.74% 

Mean 66.53% 25.55% 

  Overall  55.83% 25.66% 
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