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Abstract 
For practitioners of equity markets, option pricing is a major challenge 
during high volatility periods and Black-Scholes formula for option 
pricing is not the proper tool for very deep out-of-the-money options. The 
Black-Scholes pricing errors are larger in the deeper out-of-the money 
options relative to the near the-money options, and it's mispricing worsens 
with increased volatility. Experts opinion is that the Black-Scholes model 
is not the proper pricing tool in high volatility situations especially for 
very deep out-of-the-money options. They also argue that prior to the 
1987 crash, volatilities were symmetric around zero moneyness, with in-
the-money and out-of-the money having higher implied volatilities than 
at-the-money options. However, after the crash, the call option implied 
volatilities were decreasing monotonically as the call went deeper into 
out-of-the-money, while the put option implied volatilities were 
decreasing monotonically as the put went deeper into in-the-money. Since 
these findings cannot be explained by the Black-Scholes model and its 
variations, researchers searched for improved option pricing models. 
Feedforward networks provide more accurate pricing estimates for the 
deeper out-of-the money options and handles pricing during high 
volatility with considerably lower errors for out-of-the-money call and put 
options. This could be invaluable information for practitioners as option 
pricing is a major challenge during high volatility periods. In this article a 
nonparametric method for estimating S&P 100 index option prices using 
artificial neural networks is presented. To show the value of artificial 
neural network pricing formulas, Black-Scholes option prices are 
compared with the network prices against market prices. To illustrate the 
practical relevance of the network pricing approach, it is applied to the 
pricing of S&P 100 index options from April 4, 2014 to April 9, 2014. On 
the five days data while Black-Scholes formula prices have a mean 
$10.17 error for puts, and $1.98 for calls, while neural network’s error is 
less than $5 for puts, and $1 for calls. 
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1. INTRODUCTION  

 
Much   of   the  success  and  growth   of   the  market   for  
options   and derivative  securities  may  be  traced   to  the  
much quoted  articles  by   (Black-Scholes 1973)  and  
(Merton, 1973),  in  which  closed-form   option  pricing 
formulas  were  obtained   through   a   dynamic  hedging   
argument  and arbitrage freeness condition.  The  well-
known Black-Scholes  and  Merton  pricing formulas  have  
now  been   generalized,  extended,  and  applied  to  such  
a array  of  securities  and  contexts  that  it  is impossible   
to  make an  exhaustive list.  Moreover, while   closed-
form   expressions   all available in many of these 
generalizations and extensions, pricing formulas may   still 
be obtained numerically. 
 
In each case, the derivation of the pricing formula via the 
hedging arbitrage approach, either analytically or 
numerically, depends intimately on the particular 
parametric form of the underlying asset's price dynamics 
S(t). A misspecification of the stochastic process for S(t) 
will lead to thematic pricing and hedging errors for 
derivative securities linked to. Therefore, the success or 
failure of the traditional approach  to  pricing and hedging 
derivative securities, which is called a parametric pricing 
method, is closely tied to the ability to capture the 
dynamics of the underlying  asset's  price  process. 
Therefore the failure of Black-Scholes pricing formulas in 
predicting correct option prices is due to the 
inappropriateness of the distributional assumptions behind 
the Black-Scholes model (Black-Scholes, 1973). These 
assumptions behind the Black-Scholes model have been 
investigated extensively. Black (Black, 1976) found out 
that in the early years of trading on the Chicago Board of 
Trade, implied volatilities tended to increase with 
increasing strike price. On the other hand Macbeth and 
Merville (Merville, 1979) revealed that the calculated with 
the implied volatility, Black-Scholes prices of at-or near-
the-money options, are on average less than market prices 
for in-the-money call options. While they are on average 
greater than market prices for out-of the-money call 
options.  
Moreover the extent to which the Black-Scholes model 
underprices an in-the-money option increases with the 
extent to which the option is in-the-money and decreases 
as time-to-maturity decreases. The extent to which it 
overprices an out-of-the-money option increases with the 
extent to which the option is out-of-the-money and 
decreases as time-to-maturity decreases. 
It means that the implied volatilities are inversely related 
to the exercise price, and this fact is contrary to Black’s 
(Black, 1976) results. According to Macbeth and Merville 
(Macbeth and Merville 1979), these results might be due to 
variable variance of the underlying distribution of asset 
returns. To Rubinstein (Rubinstein, 1985), strike price bias 
is statistically significant, but the direction of the bias 
changes from period to period. Since these findings cannot 
be explained by the Black-Scholes model and its 
variations, researchers tried to find new paradigms for 

more efficient option pricing models (Lo et al, 1993; 
Merton 1976).  
 
Black-Scholes pricing formula’s appeal to practitioners 
often originates from its analytical simplicity to determine 
the price of a European call options c, and puts p   on a 
non-dividend paying asset by  

𝑐 = 𝑆𝑁(𝑑1)  − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)    (1) 

𝑝 = −𝑆𝑁(−𝑑1) + 𝐾𝑒−𝑟𝑇𝑁(−𝑑2)  (2) 

with  
 𝑑1 = �𝐿𝑛 �𝑆

𝐾
�+ (𝑟 + 𝜎2

2
)𝑇� /𝜎√𝑇 , and   

𝑑2 = 𝑑1 − 𝜎√𝑇     (3) 
 
where N is the cumulative normal distribution, S is the 
price of the underlying security, K is the strike price, r is 
the prevailing risk-free interest rate, T is the time-to-
maturity and σ is the volatility of the underlying asset. (1) - 
(3) do not contain neither preferences of individuals nor 
the preferences of the aggregate market (Hull, 1993).  
 
 

 
    (a) 

 
    (b) 
 
Figure 1. Option prices using Black-Scholes formula 
(black/dark), and market realization (red/light); put options 
(a), call options (b).   
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Table 1 
Mean absolute differences between option prices 
computed using Black-Scholes formula and market 
realizations. Mostly puts are underpriced, and calls are 
overpriced by the Black-Scholes formula. 

 Puts Calls 
MAE $10.17 $1.98 

 
Black-Scholes derivation has been mostly criticized for its 
distributional assumptions of the underlying security. 
Empiricial studies of stock price find too many outliers for 
a simple constant variance log-normal distribution (Merton 
1976). Alternative explanations have been suggested by 
many researchers. Oldfield et al. (Oldfield et al., 1977), 
Rosenfeld (Rosenfeld, 1980), and Ball and Torous (Ball, 
and Torous 1985) have fitted mixtures of continuous and 
jump processes to the stock price data. Black (Black, 
1976), Beckers (Beckers, 1980), and Christie (Christie, 
1982) document negative correlation between stock prices 
and volatility.  
 
Schmalensee and Trippi (Schmalensee and Trippi, 1978) 
found that changes in implied volatilities are negatively 
correlated with changes in stock prices. Blattberg and 
Gonedes (Blattberg and Gonedes, 1974) conclude that 
volatility is a random process through time. Attempts to 
accommodate stochastic volatility and stochastic interest 
rates within the framework of Black-Scholes analysis have 
been complicated by the complexity of the estimation of 
the market price of risk. Bakshi, Cao and Chen (Bakshi, et. 
al, 1997) provide closed form solutions for valuing options 
under stochastic volatility and stochastic interest rates 
using Heston’s (Heston, 1993) Fourier inversion method to 
calculate volatility and interest rate market risk premiums. 
Their results document that stochastic volatility and 
stochastic interest rate models are structurally 
misspecified. However adding the stochastic volatility 
feature to the Black-Scholes model improves out-of-
sample pricing and hedging performance of the model. In a 
later paper Sarwar and Krehbiel (Sarwar and Krehbiel, 
2000) report that the Black-Scholes model calculated with 
daily revised implied volatilities performs as well as the 
stochastic volatility model for European currency call 
options. Derman and Kani (Derman and Kani, 1994a,b), 
Dupire (Dupire, 1994) and Rubinstein (Rubinstein, 1994) 
develop a deterministic volatility function (DVF) option 
valuation model in an attempt to exactly explain the 
observed cross-section of option prices. However, Dumas, 
Fleming and Whaley (Dumas et. al., 1998) report that the 
DVF option valuation model’s fit is no better than an ad 
hoc procedure that merely smoothes Black-Scholes 
implied volatilities across exercise prices and time-to-
maturity.  
 
Nonparametric valuation models are a natural extension as 
it is easier to relax the distributional assumptions. A 
natural nonparametric function for pricing a European call 
option on a non-dividend paying asset will relate the price 

of the option to the set of variables which characterize the 
option  
 
𝐶 = 𝑓(𝑆,𝐾, 𝑠, 𝑟,𝑇)    (4)  
 
where S is the price of the underlying asset, K is the strike 
price, s is the volatility of the underlying asset, r is the 
interest rate and T is the time-to-maturity. It is generally 
more difficult to estimate a function nonparametrically 
when the number of input variables is large. To reduce the 
number of inputs, Hutchinson, Lo and Poggio (Lo, and 
Poggio, 1994) divide the function and its arguments by K 
and write the pricing function as follows:  
 
𝐶
𝐾

= 𝑓 �𝑆
𝐾

, 1, 𝑠, 𝑟,𝑇�     (5) 
 
This form assumes the homogeneity of degree one in the 
asset price and the strike price of the pricing function f. 
Another technical reason for dividing by the strike price is 
that the process S is nonstationary while the variable S/K is 
stationary as strike prices bracket the underlying asset 
price process.  This paper uses (5) as the nonparametric 
model for feedforward network estimation.  

To relax the distributional assumptions of the Black-
Scholes model, nonparametric valuation models are a 
natural extension. In this paper, the feedforward network 
models will be used for option pricing. 

Indeed recently, a number of papers have used 
nonparametric methods to price options. Ghysels (Ghysels 
et al. 1997) provide a survey of this literature. Two papers 
appeal to financial theory to complement a strictly 
nonparametric approach. Gouriéroux, Monfort and 
Tenreiro (Gouriéroux et al., 1994) apply a Kernel M-
estimator methodology to the option pricing problem by 
extending the Black-Scholes formulation.  In doing so, 
they recognize that the Black-Scholes formula is not 
strictly valid, but that its shape can still be useful to 
recover a pricing formula more in line with observed data. 
Aït-Sahalia and Lo (Aït-Sahalia and Lo, 1998) use kernel 
estimation techniques for the option pricing function and 
point out that several of the partial derivatives of the 
option pricing function are of special interest such as the 
well-known delta of the option.  Hutchinson, Lo and 
Poggio (Hutchinson et al., 1994) investigate several 
techniques for pricing and hedging options non-
parametrically with radial basis functions, projection 
pursuit regression, and feedforward networks. Gençay and 
Garcia (Gençay and Garcia, 2000), Gençay and Salih 
(Gençay and Salih, 2001), (Iltüzer Samur,  and Tekin 
Temur, 2009)   demonstrate that feedforward networks 
with hints can be used successfully to estimate a pricing 
formula for options, with good out-of-sample pricing 
performance. Gençay and Qi (Gençay and Qi, 2001) utilize 
bagging and Bayesian regularization methods to improve 
the generalization performance of feedforward networks 
for option pricing models.  
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One of the most important issues in the feedforward 
network estimation is to construct an estimated network 
with desirable generalization properties. Several methods 
have been suggested to prevent overfitting and to improve 
generalization in neural networks. These include 
information-based criteria such as Schwarz Information 
Criteria, Bayesian regularization (MacKay, 1992; foresee 
et al., 1997), early stopping, and bagging  (Breiman, 1996) 
which we use here to estimate parsimonious models. Our 
results indicate that bagging is a robust network selection 
method with desirable generalization properties.  

Section 2 discusses the nonparametric approach to option 
pricing. Section 3 describes data set. Empirical findings 
are presented in Section 4. We conclude in Section 5. 

 

2. Nonparametric Option Pricing  

In this section, a nonparametric pricing model is presented.  
In this approach, the data is allowed to determine both the 
dynamics of S(t) and its relation to the prices of derivative 
securities with minimal assumptions on S(t). The primary 
economic variables  that influence  the derivative's  price 
are taken as inputs, for example, rent  fundamental  asset  
price,  strike  price,  time-to-maturity, volatility of 
underlying asset, and risk free interest rate, and the 
derivative price to be the output into which the learning 
network  maps the inputs into outputs. When properly  
trained, the network  "becomes” the derivative  pricing  
formula, which may be used  in the same way formulas 
obtained  from the parametric  pricing  method  are used: 
for pricing,  delta-hedging,  simulation  exercises, and so 
on. 
 
These network-based models have several important 
advantages the more traditional parametric models. First, 
since they do not rely on restrictive parametric 
assumptions such as lognormality or sample continuity, 
they are robust to the specification errors that troubles 
metric models. Second, they are adaptive and respond to 
structural changes in the data-generating processes in ways 
that parametric methods cannot. Finally, they are flexible 
enough to encompass a wide range of derivative securities 
and fundamental asset price dynamics, yet they are 
relatively simple to implement. 
 
Of course, all these advantages do not come without some 
cost: The nonparametric pricing method is highly data-
intensive, requiring large quantities of historical prices to 
obtain a sufficiently well-trained network. Therefore, such 
an approach would be inappropriate for thinly traded 
derivatives, or newly created derivatives that have no 
similar counterparts among existing securities. Also, if the 
fundamental asset's price dynamics are well-understood 
and an analytical expression for the derivative's price is 
available under these dynamics, the parametric formula 
will almost always dominate the network formula in 
pricing and hedging accuracy. Nevertheless, these 
conditions occur rarely enough that there may still be great 

practical value in constructing derivative pricing formulas 
by learning networks. 
 
 
2.1. Feedforward Networks  

An artificial neural network is a parallel distributed 
statistical model made up of simple data processing units, 
which process information in currently available data, and 
makes generalizations for future events. Although it is 
common to use neural network models in a time series 
context, it can also be used with problems pertaining to 
cross-section environments (Ng, and Lippman 1991).  

Amongst nonlinear methods, neural network is one of the 
most recent techniques used in nonlinear modelling. This 
is partly due to some modeling problems encountered in 
the early stage of development within the neural networks 
field. In the earlier literature, the statistical properties of 
neural networks estimators and their approximation 
capabilities were questionable (Friedman et al., 1981). For 
example, there was no guidance in terms of how to choose 
the number of neurons and their configurations in a given 
layer and how to decide the number of hidden layers in a 
given network. Recent developments in the neural network 
literature, however, have provided the theoretical 
foundations for the universality of feedforward networks 
as function approximators (Grosi et al., 1990, 1992, 1993). 
The results in Cybenko (Cybenko, 1989), Funahashi 
(Funahashi, 1989), Horniket al. (Hornik et al., 1989, 
1990), and Hornik (Hornik, 1989, 1991) indicate that 
feedforward networks with sufficiently many hidden units 
and properly adjusted parameters can approximate an 
arbitrary function arbitrarily well (Cybenko, 1981;. 
Diaconis et al., 1984). Hornik et al. (Hornik et al,.1990) 
and Hornik (Hornik,1991) further show that the 
feedforward networks can also approximate the derivatives 
of an arbitrary function. 
The universal approximation property in which both the 
unknown function and its derivatives can be uncovered 
from data is an important result theoretically and has 
immediate implications for financial and economic 
modeling (Barron, 1991, 1998). In options pricing, for 
instance, Hutchinson et al. (Hutchinson et al., 1994) and 
Garcia and Gençay (Garcia and Gençay, 2000) 
demonstrate that feedforward networks can be used 
successfully to estimate a pricing formula for options, with 
good out-of-sample pricing and delta-hedging 
performance. In the option pricing framework, it is crucial 
to approximate both the function and the derivatives of the 
function accurately as the derivatives of the option pricing 
formula are the risk management tools (e.g. delta, gamma 
of an option). A small function approximation error may 
lead to larger errors in the derivatives of the function and 
therefore poorly approximated risk management tools. 
Garcia and Gençay (Garcia and Gençay, 2000) and Gençay 
and Qi (Gençay and Qi, 2001) show that feedforward 
networks provide great enhancements over the parametric 
econometric tools in terms of providing more accurate 
pricing and hedging performances.  
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In a feedforward network model, the neurons (activation 
functions) are organized in layers. The layer which 
contains the inputs is called the input layer. Similarly, the 
layer where the output(s) of the networks are located is 
called the output layer (Parker, 1995). There can be a 
number of layers between the input and the output layers. 
These layers, because they are kept between the input and 
the output layers, are called the hidden layers. Depending 
upon the network complexity or the nature of the studied 
problem, there can be a number of hidden layers in a 
neural network model. A single layer feedforward network 
has only one hidden layer whereas a multilayer 
feedforward network would have several hidden layers 
(Haykin 1999).  
 

 
 
Figure 2: A five input and five hidden neuron in a single 
hidden layer feedforward network 
 
An example of a single hidden layer feedforward network 
is presented in Figure 2. This figure demonstrates a five 
input and five hidden neuron in a single hidden layer 
feedforward network, where 𝑥 = (𝑆/𝐾, 𝑠, 𝑟,𝑇) are the 
inputs at time t;  
 
𝑊1𝑖 = (𝑤1𝑖1,𝑤1𝑖2,𝑤1𝑖3,𝑤1𝑖4,𝑤1𝑖5), 𝑖 = 1, … ,5            (6) 
 
synaptic weights, that are the parameters of the first 
activation function and  
 
𝑊2 = (𝑤21,𝑤22,𝑤23 ,𝑤24,𝑤25)                       (7) 
 
are the synaptic weights of the second activation function. 
First weights in all sets are intercepts and the others are 
slope parameters.  
 
The numbers created at the five hidden neurons are  
 

𝒗𝒊 = 𝒈(𝒘𝟏𝒊𝟏) + 𝒈�𝒘𝟏𝒊𝟐
𝑺
𝑲
�  + 𝒈(𝒘𝟏𝒊𝟑𝒓) + 𝒈(𝒘𝟏𝒊𝟒𝒔) 

          +𝒈(𝒘𝟏𝒊𝟓𝑻),  
                                                                 𝒊 = 𝟏, … ,𝟓    (8) 
Where the activation function 𝑔(𝑧) is 
 
𝑔(𝑧) = 𝑇𝑎𝑛ℎ(𝑧).                                  (9) 

 

 
 

Figure 3: Activation function 𝑔(𝑧) = 𝑇𝑎𝑛ℎ(𝑧) (thick), and 
it’s derivative 𝑔′(𝑧) = (1 + 𝑧) (1− 𝑧) (thin). 

 
 

If the synaptic weights are tuned properly, the number 
accumulated at the output node will be the call option price 
coresponding the input set of data: 
 
𝒚 = 𝒘21𝒈(𝒗𝟏) +𝒘22𝒈(𝒗𝟐) +𝒘23𝒈(𝒗𝟑) +𝒘24𝒈(𝒗𝟒) 

 
         +𝒘25𝒈(𝒗𝟓)      (10) 
 
The underlying functional form f(x,θ) is a network output 
which depends on the inputs and the network parameters. 
The x’s  
  𝒙 = �𝟏, 𝑺

𝑲
, 𝒓, 𝒔,𝑇�              (11) 

here represents a vector of all inputs at time t and the 
symbol θ represents the vector of parameters, W1’s and 
W2’s. Often, f is termed to be the network output function. 
This example demonstrates that a simple feedforward 
network model can easily be seen as a nonlinear flexible 
regression model which can be estimated with the standard 
optimization tools used in econometrics (Niyogi, and 
Grosi,1994; Poggio, and Grosi, 1990).  
 
A further variation of this example would be to restrict the 
output to a binary response. This can be achieved by 
assigning a threshold or signum type activation function 
between the hidden and the output layers. If the output is 
needed to be restricted to a certain interval and can take 
any value within this interval, the piecewise linear, 
sigmoidal or hyperbolic tangent activation functions can 
be used in an output layer as seen in Figure 3. 
 
The architecture of a neural network model determines the 
exact nature of the function f. Different types of network 
architectures would lead to different types of functions. An 

2 1 1 2

2

1
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example of a single layer feedforward network with five 
inputs and five hidden units is presented in Figure 2.  
 
As pointed out earlier, even a single layer feedforward 
network with sufficiently many hidden units and properly 
adjusted parameters can theoretically approximate an 
arbitrary function arbitrarily well. Although these are 
important theoretical results which establish the universal 
approximation capabilities of feedforward networks, they 
may have limited practical implications. One element of 
the theoretical universal approximation results is the 
requirement of sufficiently many activation functions in a 
single hidden layer.  
 
In practice, the number of activation functions (or hidden 
units) used in a network is constrained by the available 
degrees of freedom, which is controlled by the data length 
and the total number of parameters of the network. 
Therefore, a sufficiently large number of hidden units in a 
single layer may not be feasible in certain problems such 
as macroeconomic data where there may only be two or 
three decades of annual observations available.  
 
Let x and y be the input (regressors) and the target 
(regressand) vectors with dimensions 1 × n and 1 × m.  
The observations for a sample size N are denoted by 
𝒙𝟏, 𝒙𝟐, . . . ,𝒙𝑵 and 𝒚𝟏,𝒚𝟐, . . . ,𝒚𝑵 . Given inputs 𝒙 =
(𝑥1,𝑥2, . . . ,𝑥𝑛), a single layer feedforward network 
regression model with q hidden units is written as  
 
𝒚 = 𝑭�𝒘21 +∑ 𝒘2𝑖𝒉𝑖

𝑞
𝑖=2 �  (12) 

 
𝒉𝑖 = 𝑮�𝒘1𝑖0 + ∑ 𝒘1𝑖𝑗𝒙𝑗𝑛

𝑗=1 �, 𝑖 = 1, . . , 𝑞.    (13)  
 
or  

𝒚 = 𝑭�𝒘21 +�𝒘2𝑖𝑮�𝒘1𝑖1 + �𝒘1𝑖𝑗𝒙𝑗

𝑛

𝑗=2

�
𝑞

𝑖=2

� 

 
= 𝒇(𝒙,𝜽)       (14)   
 
where sand F, G are known activation functions; and the 
parameters to be estimated are  
 
𝑊1𝑖 = (𝑤1𝑖1,𝑤1𝑖2,𝑤1𝑖3,𝑤1𝑖4, … ,𝑤1𝑖𝑛), 𝑖 = 1, … ,5        (15) 
 
and 
                    𝑊2 = �𝑤21 ,𝑤22,𝑤23 ,𝑤24 ,𝑤2𝑞�                 (16) 
 
The range of the output values of the feedforward network 
model is controlled by 𝐹 such that if the output takes 
discrete values, then F can be chosen to be a threshold 
function, piecewise linear function or a signum function. If 
the range of the output function is not restricted to a 
particular interval, then it can simply be set to an identity 
function, where 𝐹(𝑥) =  𝑥. In a typical neural network 
model, F is normally an identity function.  
 

Given the network structure in (16) and the chosen 
functional forms for F and G, a major empirical issue in 
the neural networks is to estimate the unknown parameters 
θ with a sample of data values. A recursive estimation 
methodology, which is called back propagation, is such a 
method to estimate the underlying parameter vector θ from 
data (Rumelhart et al., 1986).    
 
In back propagation, the starting point is a random weight 
θ vector that is updated according to  
 
𝜃𝑛𝑒𝑤 = 𝜃 + 𝜂∇𝑓(𝑥, 𝜃)�𝑦 − 𝑓(𝑥, 𝜃)�   (17)  
 
where ∇𝑓(𝑥,𝜃) is the column gradient vector of f with 
respect to θ, and η is the parameter which controls the 
learning rate. This estimation procedure is characterized by 
the recursive updating of estimated parameters. The 
parameter updates are carried out in response to the size of 
the error which is measured by 𝑦 − 𝑓(𝑥,𝜃).  
 
By imposing appropriate conditions on the learning rate 
and functional forms of F and G, White (White, 1989) 
derives the statistical properties for this estimator. He 
shows that the backpropagation estimator asymptotically 
converges to an estimator which locally minimizes the 
expected squared error loss. Backpropagation and 
nonlinear regression can be seen as alternative statistical 
methods to solve the least squares problem (Broomhead et 
al., 1989; Chen 1991).  
 
Compared to nonlinear least squares, back propagation 
fails to make efficient use of the information in the 
underlying data.  
 
These recursive estimation techniques are important for 
large samples and real time applications since they allow 
for adaptive estimation. However, recursive estimation 
techniques do not fully utilize the information in the data 
sample. White (White, 1989) further shows that the 
recursive estimator is not as efficient as the nonlinear least 
squares (NLS) estimator. One important aspect of the 
Backpropagation methods is the choice of the learning rate 
η. The inefficiency of the Backpropagation originates from 
keeping the learning rate constant in an environment where 
the influences of random movements in x are not 
accounted for in y. This would lead the parameter vector θ 
to fluctuate indefinitely. A minimum requirement is to 
drive the learning rate gradually to zero to achieve 
convergence (Moody, and Parker, 1989).  
 
In fact, White (White, 1989) demonstrates that η has to be 
chosen not as a vanishing scalar but as a gradually 
vanishing matrix of a very specific form. These arguments 
on learning rates are only valid if the environment is not 
changing over time (stationary environment). If the 
environment is evolving (nonstationary environment), a 
gradually vanishing learning rate may fail and a constant 
learning rate may be more suitable (White, 1989).  
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In this paper the nonlinear least square estimator (NLS) is 
used. This estimator minimizes the cost function 
 
𝑳(𝜽) = ∑ �𝒚𝑡 − 𝑓(𝒙𝑡 ,𝜃)�2𝑁

𝑡=1       (18)  
 
Here, the goal is to choose the parameter vector θ such that 
the sum of squared errors is minimized as much as 
possible. Since the function f is nonlinear (a neural 
network model) and it is a nonlinear function of θ, this 
procedure is named as nonlinear least squares or nonlinear 
regression. This is a straightforward multivariate 
minimization problem. Conjugant gradient routines studied 
in Gençay and Dechert (Gençay and Dechert, 1992) work 
very well for this problem. In Gallant and White (Gallant 
and White, 1992), it is shown that the least squares method 
can consistently estimate a function and its derivatives 
from a feed-forward network model, provided that the 
number of hidden units increases with the size of the data 
set. This would mean that a larger number of data points 
would require a larger number of hidden units to avoid 
over fitting in noisy environments.  
 
2.2. Network Selection  

To decide about the network architecture, networks with 
several hidden layers and several hidden neurons in each 
hidden layer are tried. It is seen that the 
complexity/accuracy balance is with five hidden neurons 
in one hidden layer. 
 
2.2.1. Early Stopping  

With a goal to obtain a model with desirable generalization 
properties, it is difficult to decide when it is best to stop 
training by just looking at the learning curve for training 
by itself. It is possible to overfit the training data if the 
training session is not stopped at the right point.  
 
 
 

 
Figure 4: Early stopping method. The validation error will 
normally decrease during the initial phase of training, as 
does the error on the training set. However, when the 

network begins to overfit the data, the error on the 
validation set will typically begin to rise. In the method of 
early stopping, when the validation error increases for a 
specified number of iterations, the training is stopped, and 
the weights at the minimum of the validation error are 
returned.  
 
The onset of over fitting can be detected through cross-
validation in which the available data are divided into 
training, validation, and prediction (testing) subsets. The 
training subset is used for computing the gradient and 
updating the network weights. The error on the validation 
set is monitored during the training session. The validation 
error will normally decrease during the initial phase of 
training (see Figure 4), as does the error on the training set. 
However, when the network begins to overfit the data, the 
error on the validation set will typically begin to rise. In 
the method of early stopping, when the validation error 
starts to increase after a number of iterations, the training 
is stopped, and the weights at the minimum of the 
validation error are returned for the optimum network 
complexity.  
 
2.2.2. Bootstrap Aggregating   

In bootstrap aggregating, multiple versions of a predictor 
are generated and they are used to get an aggregated 
predictor. The multiple versions are formed by making 
bootstrap replicates of the training set and using these as 
new training sets. When predicting a numerical outcome, 
the aggregation takes the average over the multiple 
versions that are generated from bootstrapping. According 
to Breiman (Breiman, 1996), both theoretical and 
empirical evidence suggests that bagging can greatly 
improve the forecasting performance of a good but 
unstable model where a small change in the training data 
can result in large changes in a model.  
 
Let train represent the training set that consists of data  
 
𝐿 =  {(𝑦𝑖 , 𝑥𝑖), 𝑖 = 1, . . . ,𝑁𝐿},    (19) 
 
where 𝑁𝑡 is the number of observations in the 
training set. Let a neural network model be fitted 
to the training set and this generates a predictor 
𝑓(𝑥𝑖 , 𝐿), e.g., if the input is (𝑦𝑖 ,𝑥𝑖) is predicted by 
𝑓(𝑥𝑖 , 𝐿),. Now, suppose we have a sequence of 
training sets {𝐿𝑗 , 𝑗 =  1, . . . , 𝐽} each consisting of 𝑁𝐿 
independent observations from the same 
underlying distribution as L. We can use the {𝐿𝑗} to 
get a better predictor than the single learning set 
predictor 𝑓(𝑥𝑖 , 𝐿) by working with the sequence of 
predictors {𝑓(𝑥𝑖 ,𝐿𝑗)}.  
 
An obvious procedure is to replace 𝑓(𝑥𝑖 ,𝐿)  by the 
average of {𝑓(𝑥𝑖 ,𝐿𝑗)}.over J, i.e.,  
by  
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𝒇(𝒙𝒊) = 𝟏
𝑱
∑ 𝑓�𝒙𝑖 , 𝐿𝑗�
𝐽
𝑗=1     (20) 

 
However, usually there is only a single training set L 
without the luxury of replicates of L. In this case, repeated 
bootstrap samples can be drawn from  
 
𝐿 =  {(𝑦𝑖 , 𝑥𝑖), 𝑖 = 1, . . . ,𝑁𝐿},   
 
Each {(𝑦, 𝑥)} is a random pick from the original training 
set L with replacement. The bootstrap samples 𝐿(𝑏) are 
used to form predictors {𝑓(𝑥𝑖 ,𝐿(𝑏))}.. The bagging 
predictor 𝑓𝐵  can thus be calculated as  
 
𝒇𝑩(𝒙𝒊) = 𝟏

𝑩
∑ 𝑓(𝒙𝑖 , 𝐿(𝑏))𝐵
𝑏=1       (21)  

 
where B represents the total number of bootstrap replicates 
of the training set.  
 
We slightly modify the bagging procedure of Breiman 
(Breiman, 1996). First, the available data are divided into 
the training, validation, and prediction subsets. Second, a 
bootstrap sample is selected from the training set. The 
bootstrap sample is then used to train the feedforward 
network with 1 to 4 hidden layers. The validation set is 
used to select the best feedforward network that has the 
optimal number of hidden layers, and the best model is 
used to generate one set of prediction on the testing set.  
 
For put options whole data set consists of 314 data. 100 of 
them reserved as the testing data. From the remaining 214, 
7 samples of size 100 is chosen randomly with 
replacement. 
 
For calls data set consists of 196 data. 70 of them reserved 
as the testing data. From the remaining 126, 7 samples of 
size 70 is chosen randomly with replacement. 
 
 
This gave seven predictions (B = 7). Third, the bagging 
prediction is the average across the seven sets of 
predictions, and the prediction error is computed as the 
absolute difference between the actual and the bagging 
prediction values.  
 
3. Data Description  

The data are daily S&P 100 index five days obtained from 
the Chicago Board of Exchange for the period April 3-8 
2014. The S&P 500 index option market is extremely 
liquid and it is one of the most active options markets in 
the United States. This market is the closest to the 
theoretical setting of the Black-Scholes model. The option 
contracts on this index trade on the Chicago Board Options 
Exchange and mature on the Saturday following the third 
Friday in the expiration month. They are actively 
European style options, and the settlements are always in 
cash. S&P 100 index options are very popular among 

institutional investors as portfolio insurance instruments. 
For each option written on the S&P 100 index, the data set 
contains the date of the transaction, expiration month, 
closing market price of the option, put-call identifier, 
exercise price, daily S&P 100 closing index, the number of 
days to maturity, daily S&P 100 returns, dividend yields 
and the interest rate at the maturity of the option.  
 
In constructing the data used in the estimation, options 
with zero volume are not used. Put-call parity checks are 
done to eliminate erroneous prices, therefore a put is only 
included if there is a call with the same exercise price 
trading at that particular date, while a call is only included 
if there is a put with the same exercise price. For Black-
Scholes price calculations, historical volatilities are 
calculated using the daily S&P 100 returns. If an option 
has less than 22 days to expiration, historical volatility is 
calculated using the last 22 days daily returns. If an option 
has more than 22 days to maturity then the historical 
volatility is calculated using the historical returns that 
match the exact number of days to maturity.  
 
For each year, the sample is split into three parts: first half 
of the year (training period), third quarter (validation 
period) and fourth quarter (prediction period). One 
possible drawback of such a setup is that we will always 
evaluate the predictive ability of our networks on the last 
quarter of the year. The advantage is that it will facilitate 
comparison between years. We estimate networks with 1 
to 10 hidden units over half of the data points for a 
particular year, the training sample. Next, we choose the 
network in each family that gives the best mean square 
prediction error over half of the remaining data points in 
the sample, called the validation sample. Finally, we assess 
the prediction performance (MSPE) of the best model 
chosen in the previous step for the models from the four 
methods over the last quarter of data, the prediction 
sample.  
 
 
4. Empirical Findings  

Variables 𝒙 = �𝑺
𝑲

, 𝒓,𝒔,𝑇�  are entered into artificial neural 
networks in two different versions of the volatility𝒔. a) 
Implied volatility computed from Black-Scholes formula, 
b) Implied volatility computed by the use of ANN’s (Can, 
and Fadda, 2014), c) Historical volatility.  

Figure 5. and Table 2. depicts the relationship between the 
prices computed by artificial neural networks trained with 
implied volatility, and market prices. The first observation 
is that the ANN prices are biased estimates of the market 
prices. ANN prices underestimate market prices. But, 
compared to the Black-Scholes prices in Figure 1., the 
mispricing is halved when ANN’s are used. 
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   (a) 
 

 
   (b) 
 
Figure 5. Option prices using ANN’s with implied 
volatility (black), and market realization (red); call options 
(a), put options (b).   
 
 
Table 2 
Mean absolute differences (MAE) between option prices 
computed using ANN with implied volatility and market 
realizations and between option prices computed using 
Black-Scholes price formula and market realizations 

 Puts Calls 
ANN     $4.90    $0.95 
B-S $10.17 $1.98 

 
When ANN implied volatilities are used, there is some 
gain, although it is not as noticeable as in case of implied 
volatilities. Figure 6. and Table 3. depicts the relationship 
between the prices computed by artificial neural networks 
trained with ANN computed volatility, and market prices. 
ANN prices underestimate market prices. But, compared 
to the Black-Scholes prices in Figure 1., the mispricing is 
dramatically reduced when ANN’s are used together with 
volatilities computed by ANN’s. 
 

 
 
    (a) 
 

 
  
         (b) 
 
Figure 6. Option prices using ANN’s with ANN volatility 
(black), and market realization (red); call options (a), put 
options (b).   
 
Table 3 
Mean absolute differences (MAE) between option prices 
computed using ANN with ANN volatility and market 
realizations and between option prices computed using 
Black-Scholes price formula and market realizations 

 Puts Calls 
AN Networks $3.70 $0.72 
Black-Scholes $10.17 $1.98 

 
When historical volatilities are used, there is some 
gain, although it is not as noticeable as in case of 
implied volatilities. Figure 7. and Table 4. depicts the 
relationship between the prices computed by artificial 
neural networks trained with historical volatility, and 
market prices. ANN prices underestimate market 
prices, but, compared to the Black-Scholes prices in 
Figure 1., in put options, the mispricing is reduced, 
although less than the case of implied volatilities. 
When ANN’s are used with historical volatilities the 
mispricing for call options worsens. 
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    (a) 
 

 
    (b) 
 
Figure 7. Option prices using ANN’s with historical 
volatility (black), and market realization (red); call options 
(a), put options (b).   
 
 
Table 4 
Mean absolute differences (MAE) between option prices 
computed using ANN with historical volatility and market 
realizations. 

 Puts Calls 
AN Networks & hist. volatility $7.60 $3.99 
Black-Scholes & hist. volatility $10.17 $1.98 

 

5. Conclusions  

To investigate the effect of volatility on the mispricing, we 
analyze the relationship between pricing errors and 
volatility. When prices are computed by artificial neural 
networks trained with implied volatility, Black-Scholes  
 
 

misprices are halved. When ANN computed volatilities are 
used, mispricing levels are dramatically reduced for both 
puts, and calls comparable with the case of implied 
volatilities. When ANN’s are used with historical 
volatilities the mispricing is reduced for puts, but it is 
worsened for call options as seen in Table 5. This fact 
shows that to get more acceptable prices for options, first 
new approaches to detect the volatility of the underlying 
assets is needed. 
 
Table 5 
Mean absolute differences (MAE) between option prices 
computed using ANN with implied volatility and market 
realizations and between option prices computed using 
Black-Scholes price formula and market realizations 

 
 

Overall findings indicate that Black-Scholes mispricing 
worsens with increasing volatility and feedforward 
networks handle pricing during high volatility with 
considerably lower errors for out-of-the-money call and 
put options. This could be invaluable information for 
practitioners as option pricing is a major challenge during 
high volatility periods. 
 
Although parametric derivative pricing formulas are 
preferred when they are available, our results show that 
nonparametric learning-network alternatives can be useful 
substitutes when parametric methods fail. While our 
findings are promising, we cannot yet claim that our 
approach will be successful in general. For simplicity, our 
simulations have focused only on the Black-Scholes 
model, and our application has focused only on a single 
instrument and time period, S&100 futures options for 
April 3-8 2014. In particular, there are a bunch of 
parametric derivative pricing models, as well as many 
practical extensions of these models that may improve 
their performance on any particular data set. We hope to 
provide a more comprehensive analysis of these 
alternatives in the near future.  
 
However, we do believe there is reason to be cautiously 
optimistic about our general approach, with a number of 
promising directions for future research. Perhaps the most 
pressing item on this agenda is the specification of 
additional inputs, inputs that are not readily captured by 
parametric models such as the return on the market, 
general market volatility, and other measures of business 
conditions. A related issue is the incorporation of the 
predictability of the underlying asset's return, and cross-
predictability among several correlated assets (Lo and 
Wang 1993). This may involve the construction of a factor 
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 Puts Calls 
AN Networks & ANN volatility $3.70 $0.72 
AN Networks & implied volatility $4.90 $0.95 
AN Networks & historical volatility $7.60 $3.99 
Black-Scholes & historical volatility $10.17 $1.98 
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model of the underlying asset's return and volatility 
processes.  
 
Other research directions are motivated by the need for 
proper statistical inference in the specification of learning 
networks. First, we require some method of matching the 
network architecture; number of nonlinear units, number 
of centers, type of basis functions, to the specific dataset at 
hand in some optimal and, preferably, automatic fashion.  
 
Second, the relation between sample size and appr-
oximation error should be explored, either analytically or 
through additional Monte Carlo simulation experiments. 
Perhaps some data-dependent metric can be constructed, 
such as the model prediction error that can provide real-
time estimates of approximation errors in much the same 
way that standard errors may be obtained for typical 
statistical estimators.  
 
And finally, the need for better performance measures is 
clear. While typical measures of goodness-of-fit such as 
𝑅2 do offer some guidance for model selection, they are 
only incomplete measures of performance. Moreover, the 
notion of degrees of freedom is no longer well-defined for 
nonlinear models, and this has implications for all 
statistical measures of fit.  
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