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1. INTRODUCTION  

Exoplanets are those celestial bodies that circle stars other 

than our Sun. They do not shine, are small comparing to 

their starry neighborhood, and far away from our 

observational point. That is why, even though theoretically 

they were a certainty, it was only recently that technology 

was developed in order to detect them. [1][2]

moment there is 3280 confirmed, and 2416 possible 

planets detected. [3] 

The new data is collected and regularly published on a 

website containing the database with as many features as 

the telescopes and observatories can collect, both, of the 

planets and their host stars. The database is easy to 

explore, it is possible to run various queries online, as well 

as select what features to observe. Each feature comes with 

an explanation and units used. [4] 

With the emergence of fast and efficient exoplanet data 

collection technologies, the number of observations has 
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Abstract 
Analysis of the exoplanet data is the top priority of astrophysicists today. 

With the increasing incoming information there is a need for an efficient 

and reliable algorithm. The data is taken from exoplanet data explorer 

which was cross checked and filtered with NASA’s known categorization. 

These were then sorted into 5 categories: Dwarfs, Terrestrial, Icy, Jovian 

and Giant planets. This paper compares expectation

clustering algorithm as an unsupervised and logistic regression as a 

supervised machine learning methodologies. Comparatively, logistic 

regression outperformed EM, indicating it cannot be used to sort through 

the incoming data. Further analysis is necessary. 
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With the emergence of fast and efficient exoplanet data 

collection technologies, the number of observations has 

been accelerating. In 2005 there were 152 detections over 

10 years period. These data were easy to manually 

examine and confirm. [5] At this moment about 1000 new 

planetary candidates are discovered each month. 

This is why there is an urgent need to find a best algorithm 

to sort through it efficiently and accurately. 

The decision boundaries and relations between parameters 

are not always clear, so manual analysis takes too much 

time, even with teams of analysts worldwide. 

problem is that there is not a set of standardized values that 

would help scientist categorize the data more efficiently. 

[4] The limits and categories, as well as the defining 

features, vary from research to research. This paper 

categorizes planets as proposed by D. G. Russell in 

and Extrasolar Planet Taxonomy into: dw

mixture or ice, jovian, and giants. [8]

In order to preprocess the data and apply algorithms, data 

mining software in Java, WEKA 3.8, was used. This is 
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University of Waikato open source product issued under 

GNU General Public License. The explorer allows for a 

fast and easy, graphical and numerical representation of 

the data. It provides an overview of the algorithms that can 

be applied to the given data, as well as outputs, testing 

information and statistical breakdown of the results. [9] 

The clear categorization is required to assess performance 

between expectation-maximization clustering as an 

unsupervised and logistic regression as a supervised, 

probabilistic machine learning methodologies discussed 

hereon.  

2. DATA 

The data was taken from exoplanets.org on 10th May 2016. 

The table, at that moment had about 50 features out of 

which 12 were generally known to the wider public and 

therefore selected for this analysis. These were then 

decreased to 7 in preprocessing. The chosen features were: 

mass, radius, density, and gravity of the planet, separation 

from the host star, star’s mass, and its radius. [10] 

Number of samples available was 2139. Out of that 581 

samples were with most data available, namely with ≤3 

zeroes per row. This is including the planets in our solar 

system. [10] 

The next step was to find output information. The 

individual planet classification table reliably sourced is not 

available. Therefore, it was necessary to sort through 

known and available data to construct this feature. 

2.1 Dwarfs 

Dwarfs are small celestial objects that have enough mass 

to have circular shape and orbit the sun. They are defined 

as bodies whose mass is below 0.0002 in respect to the 

mass of Jupiter, as defined by Russell’s taxonomy. [8] 

Dwarf planets are common but difficult to discover due to 

their small size. Only 10 of them were within the given 

data, out of which 5 are in our own solar system. They are 

categorized as 0. 

2.2 Terrestrial 

Regardless of the actual chemical composition of the 

ground and atmosphere, terrestrial planets are all whose 

ground is rocky. In our solar system first four planets: 

Mercury, Venus, Earth and Mars are of this category. 

Furthermore, the terrestrial planets are studied in details as 

they are considered potentially habitable, based on our 

planet. This list excludes some of the rocky planets; 

nevertheless, it can serve the purpose for this analysis. The 

list provides 42 objects. [11] However, it doesn’t include 

all objects with clear characteristics of rocky worlds, so the 

extended list includes potential candidates, adding up to 79 

samples. The limiting parameter is the mass of the planet 

which should be between .0002 and 0.02 of Jupiter’s mass 

[8]. They are categorized as 1. 

2.3 Icy or uncategorized 

The third category or #2 in the table are dense gaseous, 

liquid, ice, and/or large rock planets. There were 42 such 

samples. Uranus and Neptune in our solar system fall 

within this category. This is the most complex group. Our 

solar system doesn’t have many examples or possibilities 

of planets within this category. However, it has been 

discovered that some of the planets within the scope are 

not even theoretically predicted. [2] The taxonomy defines 

them as the class between jovian and terrestrial bodies, 

mass between 0.02 and 0.08 of the Jupiter’s. [8] This in no 

way defines their structure, composition, position or 

characteristics, unlike other categories. This group can, 

therefore, be considered as uncategorized celestial bodies. 

2.4 Jovian 

Jovian or gaseous planets, class 3 in this categorization, are 

in well-defined parameters in “Solar and Extrasolar Planet 

Taxonomy” so 230 of them were categorized. [8] Jupiter 

and Saturn are the examples of this category within our 

own solar system. In fact, it is the Jupiter that gave this 

group its name. This group is characterized by its own 

thermal radiation, which can be further used to confirm 

detections. [1] 

2.3 Giants 

Giant is a descriptive term. It describes all the planets 

whose mass surpasses 6 relative to the Jupiter. However, 

this group takes only giant gaseous planets in 

consideration. There are Giant rocky, icy or even liquid 

worlds. They are not accounted here as their characteristics 

largely differ from one another. The gaseous planets of this 

mass usually have some percentage of H/He conversion. 

However if that conversion is significant those bodies are 

categorized as brown dwarfs, or the smallest class of stars. 

Therefore this category takes into consideration only those 

bodies whose mass doesn’t surpass 42 masses of Jupiter. 

[8] At the time of this analysis, in the fourth category 11 of 

them were classified as such, notably with majority data 

known. [10] 

In conclusion, the final version of data table had 372 

samples with known outputs. The mass-radius distribution 

of the data is shown below, and it has Gaussian-like shape. 
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Figure 1: Radii of planets are on horizontal axes and 

masses of planets are on vertical axes 

 

3. CLUSTERRING USING EXPECTATION-

MAXIMIZATION ALGORITHM  

The main focus of this ongoing research is to find best 

unsupervised learning algorithm in order to sort through 

new incoming data quickly and efficiently. EM algorithm 

or expectation-maximization, as an iterative method, is 

good for latent or hidden variable problems – unknown 

connections as well as missing data problems. It is usually 

used for exponential families. However, it has proven to be 

the best clustering model, for organizing planets scattered 

with Gaussian distribution. E-M maximizes probability of 

known data by iteratively improving coefficients of the 

expected values –both known and unknown. [12] 

Namely, an estimation problem with {x
(1)

, … , x
(m)

} 

training set comprised of m examples is used to fit the 

parameters of a model p(x, z) to the data. The z here is all 

the unknown dimensions of the data. The likelihood of the 

output is: 

 ���� = ∑ log 
��; ��
���  

 ���� = � log ∑ �� �, �; ��

���

 

The next step is maximizing l(θ). This is difficult to do, 

especially in many feature sets. The applied strategy is to 

iteratively construct a lower-bound on l (E-step), followed 

by optimization of that lower-bound (M-step).  This 

process is repeated until convergence. [12] 

Therefore, the EM algorithm is as follows: 

Repeat until convergence: { 

E step: ����
���� ≔ 
�����|����; 	�� 

M step: � ≔ ���max! ∑ ∑ ����
�����"� #�$�%�,��%�;!�

&%��
�%����%��  

}, where Q is some distribution over z’s.[12] 

The EM algorithm was applied using WEKA software for 

data mining tasks. 

4. CLASSIFICATION USING LOGISTIC REGRESSION 

The supervised machine learning algorithm chosen as a 

reference is multiclass logistic regression. This is, also, a 

probabilistic approach for the data analysis. It is 

considered to be a faster way of data mining to the 

Gaussian models. [13] 

Logistic regression of a two class case is defined as the 

posteriori probability of a class C as a sigmoid acting on a 

linear function of the feature column ϕ: 

 
�'|ϕ� = )�ϕ� = *�+,ϕ� 

This means that the probability of a sample to be 

characterized within C category is a sigmoid of transposed 

weights of the given feature matrix. [13] 

The multiclass logistic regression model, however, is more 

complex: 

 
�'-|ϕ� = )-�ϕ� =
./0	�12�

∑ ./0	�13�3
 

Where activations are:  

 �- = +-
,ϕ 

The maximum likelihood to determine separable 

characteristics of the classes and their densities is 

implicitly determined here. [13] Since this is not an 

iterative method, at least without back propagation to 

decrease the error, this is sufficient to sort the samples into 

distinct categories. The logistic regression was also applied 

using WEKA software for data mining tasks.  

5. COMPARISON AND CONCLUSION  

The table below shows the output feature, numerically and 

percentage-wise. Comparatively, it outlines the 

categorization of 15% of the same data tested with both, 

clustering and classification.  

 

Type Known 
Expectation-

Maximization 

Logistic 

Regression 

Dwarf 1 2% 1 2% 1 2% 

Terrestrial 13 23% 8 14% 12 21% 

Icy 6 11% 11 20% 7 13% 

Jovian 33 59% 30 54% 33 59% 

Giants 3 5% 6 11% 3 5% 

Total 56 100% 56 101% 56 100% 

Table 1: Tested planets’ categories, comparatively in 

numbers and percentages for known planets, and 

Expectation-Maximization and Logistic Regression results 

As it is evident, there is a large difference between 

clustering that was unsupervised and the regression which 
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used outputs to learn how to separate terrestrial and icy 

planets. Furthermore it appears that some of the Jovian 

planets were categorized as giants using EM algorithm.  

Consequently, the overall overview comparison is as 

follows: 

 
Expectation-

Maximization 

Logistic 

Regression 

Preprocessing Yes Yes 

Execution time 2.86 s 0.52 s 

Iterations 4 NA 

Accuracy 71% 93% 

Classification error 29% 7% 

Table 2: Comparing the results of Expectation-

Maximization and Logistic Regression results 

Considering that the taxonomy is not a natural and self-

evident occurrence, but manmade limitations to assist in 

distinguishing between different objects, it is hardly a 

surprise that the algorithm which performed better is the 

one that had the information of the named distinctions. At 

nearly 93% accuracy and a half a second to perform, 

logistic regression is the best algorithm for these data. 

Expectation-Maximization, even though theoretically is a 

good fit, has not shown to be adequate mistakenly 

categorizing a third of the data into wrong clusters.  

Subsequently, either a variation of the algorithm or an 

entirely new methodology should be used to analyze the 

exoplanet data. 

However, further studies must be conducted before any 

strong conclusion can be made. More features or even 

more samples should be taken into advisement for 

conclusive assessment of EM algorithm. 
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