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ABSTRACT:We study priority queueing system consisting of working
breakdown, repair, single vacation and vacation interruption. At a
breakdown instant during the busy period, without stop the servie, the
server provides service at slower rate for the current customer. After
completion of priority service, depending on the environment, the server
can choose type | or type Il vacation. Both types of vacation are
considered as a single vacation. On completion of type | vacation if the
server finds thepriority queue is empty, he has the option to take type Il
vacation. During the type Il vacation, when priority customers arrive the
server has the option to interrupt the vacation. We use the established
norm which is the corresponding steady state results for time dependent
probability generating functions are obtained. Along with that, the
expected waiting time for theexpected number of customers for both high
and low priority queues are computed. Numerical results along with the

graphical representations are shown elaborately.

1. INTRODUCTION

The queueing system has a lot of applications in
communication networks, transportation networks,
data communication systems etc.

An extensive study of the vacation models is done in
Tagaki [15], who initially outlined about variant
vacation for M/G/1 queueing system. Choudhury [2]
has discussed an MX/G/1 queueing system with a
single vacation. Li and Liu [8] have studied Geo/G/1
gueue with vacations in random environment and
Krishnamoorthy et.al [7] have studied an M/G/1 queue
with vacation in random environment. A paper by Ke
et. al.[6] provided a new outlook in vacation queueing
models.

The study of queues with interruption was initiated by
White and Christie [16] for a two priority system with
preemption. Shan and Liu [12] presented an M/G/1
qgueue with single working vacation and vacation
interruption under Bernoulli schedule, with the help of
the supplementary variable technique and the matrix
analytic method. Ayyappan and Thamizhselvi [1]
obtained the transient analysis of M*1,M*2/G,,G,/
1retrial queueing system with working vacations and
vacation interruption under non-preemptive priority
services, the steady state solution, moments under
steady state, reliability indices, mean queue lengths
and mean waiting time were calculated. Madhu and
Anamika [9] considered a batch arrival priority
gueueing model with second optional service and
server breakdown in which the inter arrival and service
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time are followed exponential and general distribution
respectively.

The idea of working breakdown is different from
working vacations. This concept was introduced by
Kalidass and Kasturi [3]. Kim and Lee[5] presented
M/G/1 queue with disaster and working breakdown
and Rajadurai [11] studied M/G/1 retrial gueueing
system with disaster under working vacations and
working breakdowns.

We consider a single server batch arrival priority based
gueuing system with working breakdown, repair,
single vacations and vacation interruption. There are
two Kkinds of queues in which customers arrive in
batches according to two independent compound
Poisson processes. At the end of priority service,
depending on the environment, the server goes either
for type | vacation with probability pl or for type Il
vacation with probability p2 such that pl+p2=1. Both
type | and type Il vacation are considered as a single
vacation. Further, at the end of a type | vacation server
has an option to go for type Il vacation, if there are no
customers in the priority queue. During the type I
vacation, priority customers arrival interrupt the server
vacation. On completion of the type Il vacation, the
server provides the service for customers, if any. On
account of that, the system may be subject to
breakdowns; the breakdowns occur according to
Poisson process. Once the system breaks down, the
server will not stop the service immediately, he
completes the current customer by giving the service at
a slower rate which is known as working breakdown
service which follows general distribution.

2. MATHEMATICAL DESCRIPTION

Priority and ordinary customers are arrive at the
system in batches of variable size in a compound
Poisson process. Let Alcidt (i=1,2,3,...) and A2¢jdt
(1=1,2,3,...) be the first order probability that a batch of
i and j customers arrive at the system during a short
interval of time (tt+dt), where 0<c i<1,);C; =1,
0<c _jSl,Zj Cj = 1, and A1>0,12>0 are the mean arrival
rate for priority and ordinary customers entering into
the system. Note that, the ordinary customers will be
served only when there are no priority customers in
the gueue. Consequently,priority customers have non-
preemptive priority over ordinary customers.

At the end of high priority service, depending on the
environment, the server goes either type | or type Il
vacation.
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On returning from type | vacation, there are no
customers in priority queue then the server has an
option to go for type II vacation with probability 6 or
provide the service to the odinary customers with
probability (1-6), if any.

Further, during type Il vacation, the server can
interrupt the vacation and transit to regular service
without completing type Il vacation because of the
arrival of priority customers.

The system may breakdown during busy period and
breakdowns are assumed to occur according to a
Poisson stream with rate o>0. But server work at a
slower rate compared to a regular service rate for the
current customer, after that it will go for repair.

The stochastic processes involved in the system are
assumed to be independent of each other.

In the steady state, we assume that
Bi(0)=0,Bi(c0)=1,VI(0)=0,
VI(e0)=1,VII(0)=0,VII(c0)=1,R(0)=0,R(c0)=1 are

continues at x=0 (i=1,2,3,4).

3. DEFINITIONS AND NOTATIONS
Let

N1(t) and Nz(t) be the priority and ordinary queue size
at time t.

Bi’(t),i=1,2,3,4 be the elapsed service time of the
priority and ordinary service and also working
breakdown(WB)priority  and  ordinary  service
respectively.

V°(t) be the elapsed type I vacation time.

Vii° (t) be the elapsed type Il vacation time.

RO(t) be the elapsed repair time.

Y (t) denote the server state at time t is given by

Y(t)

if the
if the

0, server is idle

1, server is busy with priority service

2, if the server is busy with ordinary service

3, if the server is busy with priority service

during working breakdown period

= 4, if the server is busy with ordinary service
during working breakdown period

5, if the server ison type I vacation ;

6, if the serveris on type II vacation;

7, if the serveris under repair;

The priority and ordinary service time, working
breakdown service time, vacation time and repair time
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follows general (arbitrary) distribution and the notions
used for their cumulative distribution function (CDF),
the probability density function (pdf) and the Laplace
Transform (LT) are given in the table 1

Table 1Notations

Server state CDF pdf LT Hazard
rate
Highpriority — Bi(®  bi(®  By(s) M0
service for
regular period
Low priority  By(t)  by(t)  B,(s) Hz ()
service for
regular period
High priority B3 (1) b3 (t) B;(s) H3 (k)
service for WB
period
Lowpriority — By(t)  ba(®)  By(s) ()
service for WB
period
Typel Vi(© vi(t) Vi(s) Y1 (1)
vacation
Type Il V() i) Vy(s) Y2(1)
vacation
Repair RO r® R n®
Next, we define the probability

lo(t)=Prob{N1(t)=0,N>(t)=0,Y(t)=0}, and probability
densities are
P (x, )dx = Prob{N; (t) = m,Ny(t) = n,Y(t) = 1;
x < BY(t) < x +dx},
P (x, t)dx = Prob{N; (t) = m,Ny(t) = n, Y (t) = 2;
x < BY(t) < x + dx},
Q) (%, )dx = Prob{N,(t) = m,N,(t) = n,Y(t) = 3;
X < B(t) < x + dx},
@ (x,t)dx = Prob{N, (t) = m, Ny(t) = n, Y (t) = 4;
X S BY(t) < x + dx},

Vimn(x, t)dx = Prob{N;(t) = m,N,(t) =n,Y(t) = 5;

x < V2(t) <x +dx},

Viimn(x, t)dx = Prob{N;(t) = m,N,(t) =n,Y(t) = 6;

x < VI(t) < x +dx}

Ry n(x, t)dx = Prob{N;(t) = m,N,(t) =n,Y(t) =7;
x < R%(t) < x + dx},

forx>0,t=0,m=>=0andn = 0.
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4. EQUATION GOVERNING THE SYSTEM

Here, we construct a set of Kolmogorov forward
equations using supplementary variable technique as
follows:

)
P(” ) (x,1)
= —(/11 + A+ « + 1y (10)BS (%, £)

+(1- 5m0),112

)
atp,;l,{(x 0 +o

P, ()

=1
n
_ (1)
+ (1= 80)2 Z P (x,0)
j=1
(1)
e @
aPmn(x t) + P 2(x,t)
= —(/11 + 1 +a
+ 12 ()P (x, 1)
+ (1
m
~ Smda ) 6B, (1)
i=1
n
+(1=68,0)7 p® t
( TLO) 2 C] mmn— ](x )
j=1
2
d d
a Vl,m,n (x' t) + a VI,m,n (x, t)
= _(Al + AZ
+ V1 (x))VI,m,n (x,t)
+(1
m
- mO)Al z CiVI,m—i,n (x, t)
i=1
n
F (=802 ) GVima (50
j=1
(3)

0
—~Viimn(x, t) + Vnmn(x t)
= —(/11 + 4, + v, (x))VII,m,n (x,t)
m
+ (1 = 6pmo)y Z ¢iVirm-in (%, t)
i=1
n

+ (1= 80022 ) GVimn—s (60

j=1

ot
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(4)
Q4 (%, ) + Qi (x, )
— _(,11 + 2, + u3(x))Q(1) (x,t)

e mmlz 0D, (x,6)

i=1
n

FA=800% ) 00, (0

j=1

5)
Q(Z) X t) + (2) ) (x, )
- —(al + 25 + 1 (1)) QS (%, )

F A=A ) 60,000

i;l
+(1=6,0)2 Q¥ (x,t)
nO) 2 C] mn—j X,
=1

(6)

d
Rm,n (x, t) + aRm,n (x: t)
= _(Al +4; + U(x))Rm,n(x; t)

+(- momz CiRmin (5,

i=1
n

+ (=802 ) R (1)

j=1

0
ot

(M
d
alo(t) = =4 + ) ()
+.[ P(Z)(x u, (x)dx
0
+.[0 Roo(x, )n(x)dx
+_[0 Vir,0,0(% t)y2 (x)dx
+@=0) [ Violr @)
0

(8)

To solve the equations (1)-(7), the boundary conditions

atx=0

P(l) 7(0,8) = 8pod1Cm411o(t)
+f Prgllfln(x, t)pq (x)dx
0
" p® d
+ m+1n(X't)”2(x) X
0
+ f Vi msan(E Oy1 (¥)dx
0
+ ] RmeanCoOn(ds
0
+ Ahcm+1§'f Vipon(x t)dx
0
9)
PD(0,) = dycnsalo(t) + f P2,41 (6 Ditp (x)dx
0
+(1-0) f Vionss (6 Oy1 (X)dx
0
+_f VII,O,n+1(x; t)y2(x)dx
0
+ [ Ronea G OM@dx
0

(10)

0D (0,6) =« f PO (x,t)dxi = 1,2 (11)
0

Ryn (0, 1) = f 0, (x, Dtz () dx
f 02, (x, Oy (X)dx

(12)
Vion(0,8) = py [ P (e, )ity (1) dic (13)
Vinon(0,8) = pa [ PS) (2, )py (x)dx +

0 [, Vion(x, )1 (x)dx (14)

Initial conditions are

P (0) = Pah(0) = Q5 (0) = Q52 (0) = Vi (0)
= VII,m,n(O) = Rm,n(o) =0

and I,(0) =1;m,n > 0. (15)

The Probability Generating Function(PGF) of this

model:

[ee]

A(x, t,zy) = Z z" A (x, t);

m=0
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A(x,t,2,) = Z 2P A, (% );
L

A(x,t,24,25) = Z Z Zz mn(x t)

where A =PM, P2 QM Q@ v, V;,R. Which are
convergent inside the circle given by |z,| < 1,|z,| <
1, and define the Laplace transform of a function f(t)
as

F(s) = fo f(e st

Now taking Laplace transforms from equation (1)-(14)
and solving those equations, we get,
=D —=(1)
P " (x,5,21,z,) =P (0,s,21,2)[1
— B1(¢a(s, 21, 22))]e

—pa(s.21,22)x

A7)

(2 —
P( )(x,s,zl,zz) = P( )(O,S,Zl,ZZ)[l
_§2(¢a(5:21»22))] e~ Pals7172)x
(18)

—(1) —(1)
Q (x,s,zl,zz) = 9 (0'5'21'22)[1
— B3(¢p(s,21,22))]e

—¢b(5,Zl,Zz)X
(19)

6 2 (X, S,Zy, ZZ) = g(Z) (0' S, 2y, ZZ)[l
— B4(¢p(s,21,22))]e

—¢p(5.21,22)x

(20)

V,(x, S,71,7y) = V,(O, S, 71, 7Z3)[1
—Vi(¢p (5,21, 2))]e~ P72
(21)
V][(x, S, 2y, ZZ) = VE(OI S, 23, ZZ) [1
- VII (¢C(SJ Z1, ZZ))]e_de(S'Zl’ZZ)x
(22)
R(x,s,24,2,) = R(0,s, 24, z5)[1
— R(¢p(s,21,23))]e”

bp(s,21,22)x

(23)
a(i)(OJSJZLZZ)
G 1 - Bi(¢als,21,2))]
=aP (0,s,2,2,) o (5, 20.2,) =12
(24)
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R(0,s,24,25)
- B1(¢a(5 71,23)) =
ba(s,21,22)
- Bz(¢a(5 Z4,23)) =

ba(s,21,22)

—(1)
=aP (0,s,z4, ZZ)[

]Bs (dp(s,21,22))

+aPP 0,5, 7)1 1Ba(dp (5,71, 22))

(25)
5((10(0, S,23) = aﬁg)(O, S,2;) [—1 ?}(lfsaz)z 2))] =12
(26)
_ —1) _
V10(0,5,22) = p1Po "(0,5,23)B1(Ya(s, 7)) (27)
711,0(0: S,Z3) = Ep)z +
_ (1 _
P1ViWp(22))1Po (0,s,22)B1(Ya(s, z3) (28)
EO(O' S, ZZ) =
—(1) 1-B,(Ya(5.2))] =
@B (0,5,7) [FELeCZ B (3, 5, 2)) +
5@ 1-B2(¥a(5.22))
aPo (0,5, ZZ)[W]BAL(IIJD(S 7)) (29)
where,
ba(5,21,22) = s+ 4 [1 = C(z1)] + A2[1 = C(2;)]
+a

Op(s5,21,22) = s+ A4[1 = C(z1)] + 22[1 = C(22)]

¢c(s,21,22) = s + 4[1 = (1 = ¢)C(z1)] + A2[1
— C(z2)]

Ya(s,22) =s + 41 + 42[1 - C(z2)] + a

Yp(s,zz) =s + A1 + 23[1 = C(22)]

using equations (17)-(29) into (9) and (10), we get

P (0,5,21,2,) (21 — By ($a(s, 21,25)) —

1-B1(¢pa
|2 33(¢b<s 20,2))R($, (5,21, 22))} =

MC(z1)]o(s) +P0 (O,S'Zz){Bz(%(S,Zl,Zz)) -

By(,(s,22)) +
[1 B3 (¢,(5,21,22))

b Gr12) 1B4(¢, (5,21, 22))R (¢, (5,21, 22)) =
[1 By(¥,(5,22))

.622) 1B4 (1, (5, 22))R(, (5, 22))} —

Py (0,5, 22)(Br by (5, 221+, [V (b, (5,22)) -
Vi(bp(s, 21,22))] — 16C(21)[p2 +
091V (g (722))] [l 4

Yp(5,22)
[1 B, (5225

0,(72) 1B5 (¥, (5, 22))R(, (5, 22))} (30)
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ﬁ(()Z) (0,s,2;) {Zz - Ez (l[)a(s, Zz))

1—B,(P,(s, _ B
e [ lllza((lf, Z(ZS) ZZ)) B4(‘/’b (s, Zz))R(l/Jb (s, ZZ))}

=1—(s+ A +,[1 = C(z)DIo(s) +
Po (0,5, 2,){B: (¥a (s, 7)) [pr (1 -
9)71(1,017(5 Zz)) + szll (I/Jb(s Zz))]
o[ LWL (5,2, R, (5, 22))}

Y, (5.22)
We have to solve equations (30), (31). Letting z; =
g(zz) in (30) we get,

(31)

Jo(s.22)
PO (O 5,2y) = 7.G22) (32)
where,
fo(s,z1)

= 1 Clg@)VTo(s) + Py (0,5, 2,)(B5 (045, 22))

— By (Ya (s, 22))

1- Bz(Ua(S 7)) =
0a(5.2,)

1- Bz(lpa(s 7)) =

—af D (5, 2) 1B4(5(5, 22))R (1 (5, 22))}

9091 Z3) _

= E1(¢a(5; z))[1 + p1[Vi(Wp (s, 22))
= Vi(op(s,22))] — AlCC[g_(Zz)][Pz

+ 0p T, (Y5, 2| 5 72))

Yy (s, 22)
1- Bl(lpa(s 7)) —

+af Da(5.25) 1B3 (5 (5, 22))R (W (5, 22))

—=(2) f2(s,
P 000 =2

+af 1B4(05 (5, 2))R (05 (5, 25))

1]

(33)
where,

f2(s,22)
={{1—-(s+4,+4,]1

- C(ZE)DTO(S)} {B, (W (s, 22))[1
+ 01 Vi (s, 22)) = Vi(0p(s,22))] — 216C(21)[p2

_ 1-V ,
+ 09,71 (a2 W5 22,

— Yy (S, 25)
1-B1(%a(s,22)), =
Ya (s, 22) 1{B1(¥a (s, 22))[p1 (1

— OV, (¥p(5,22)) + P2V (Wi (5, 22))]

1— B, (,(s, —
a4 (5, 2R (5. 220)

+ af

62

92(5,22) .
={{z; — B2(¥a(s,22))

1-B,(,
~af lpz((f - N5, (5,22 R 52200

{§1(¢a(5: z;))[1 + p1[vl(¢b(5' 7)) — VI(O-b(S' 73))]
— 216C(21) [P

= 1=Vyp(s,22))

+ 0P,V (s 220 F— e 5= )
1—-B,(Y,

e I 5 )RG5 )
—=(1) _ f1(s,21,2,)
R

@ 305,21, 22
+Fo (0.5.2,) 91(8,21,23)
(34)
where,

fl(_s' 21,23) _ _

= Lo ($){A1C(2){B1(Ya (s, 22))[1 + p1[V (1 (s, 22))

= Vi(0p(s,22))] = A16C[9(22)][p>
— 1-V )

+ Op T (oo 2] P2y

1- B, (i,
I 5, R 520

- &1(3[9(22)]{51 Wa (s, 221 + 21 [V Wb (5, 22))
= Vi(@p(s,21,22))] = A16C(z1)[p2

+0p1V1(als Zz))][l — Vi@ (s, 7))

Yy (s, 22)
1- B, (i,
+ e I 5 R )

f3(s,21,2;)
= {El (wa (s, ZZ)) [1

1]

+ D1 [Vl(wb (s, Zz)) - VI(Ub (s, Zz))]
— :16C[g(2z;)] [pz

-V
+ 9P1V1(1/Ja(s Zz))] [ 11((1sz(_9) Zz))]

1- El(lpa(s' Zz))

T l/’a(s'zz)

§3 (l/Jb (s, ZZ))ﬁ(l/)b (s, Zz))}
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{Ez (ba(s, 21,22)) — Ez (Wa(s, z2))

1 _§2(¢a(srz1,22)) — _
$a(s,21,25) 1B4(ép (s, 21, 22))R (@1 (5, 21, 22))

1— By(¥4(s, _ _
2N, (5, 2R (5, 22)

(35)

+af

91 (ﬂ Z4,22) _

= {B1(Wa (s, 22))[1 + p1[Vi(¥5 (5, 22))
= Vi(op(s,22))] — A1CCL9(ZZ)][P2
1=V(Wp(s, 22))

+ 919171(_1/%1(22))][ V(5. 2) 1]

1— By (Wa(s,22)).— _
e e S ERB s R 52
- B1(¢a(~9: 21'22))

1—§ a\2, <1 n R
¢:((qS>,Z(1S,ZZ:)ZZ))]B3(¢b(5JZl'Zz))R((Pb(S:ZleZ))}

Corollary3.1.The probability generating function of the
Laplace transforms of the number of customers in the
priority and ordinary queue while the system was in
regular service, working breakdown service, repair and
vacation are given by

—=(1) —(1) 1-B1(Pa(5,21,22))
P =p —_21\Wal>21,22))

(S' Zl’ZZ) (0’ S' Zl’Zz)[ (l)a(S:ZLZz) ]
(36)

+(2) 5@ 1-B5($a(5,21,22))
p =P ——2 a2
(5,21, 2,) o (0,5,2)[ ba(5,7072) ]

37)
—(1)
Q (()S'ZIIZZ) = B ~
—_(1 _ ~
aP (0, s, Zl,Zz) [1 B1(¢a(521,22)) [1 B3 (¢p(5,21,22))

ba(s,21,22) b1 (s,21,22)

(38)

—(2)
Q (S, Z1, ZZ) =
—(2 3B _5
CZP(() )(0, s, Zz) [1 Bz(‘l’a(s'zpzz))] [1 By (pp(s5,21,22))

bals,21,22) bp(5,21,22)

(39)
VI (5,21,27) =

=D o 1-V($p(5,21.22))
P1Po "(0,5,22)B1(¥4(s, ZZ))[—¢1,(S,21,22) {
(40)

— —(1)
Vii(s,21,22) = Po (0,5, 2)[p2 +
— — 1-Vi(¢, (5,21,
D1V (11 (5, 2))]Br (e (5, 2)) [olBe2122D1 (47

¢C(S'Zl'22)

63

5. STEADY STATE ANALYSIS LIMITING

BEHAVIOUR

Now, we study the steady state probability distribution
for our queueing model. By applying the well-known
Tauberian property,

limsf(s) = limf(t),
s—-0 t—oo
The normalizing condition is
PO (L,1) +PA(L,1) + QM) + QP (L)
+RALD+ VD) + V(L) + 1 =1
We get the probability generating function of the
gueue size irrespective of the state of the system.

NR (erZZ)
DT(Zl,Zz)

Wq(21,22) = (42)

where,
NR(zy,2,) = IgN1y(24, 23)
2
+ P20, 2,)Nry (21, 25)

N11(z4,27)
= MPa(22) Y (22)53(21, 23){C(21) Pa(21, 22) H1 (22)
— Clg(z2)]0a(22)H3(21,22)}
+ 41C[9(22)104(22) Wa(22))?S1(21, 22)K (21, 22)
N1y(24,22)
= S3(21, 22){H1(22) F2 (21, 22) — F1(22)H3(21, 22)}}
+ Va (22)V5 (22)K (21, 22){H,(21)S2 (21, Z2)
+ F1(21)51(21,22)}
Dr(z4,2,)

= Va2V (22)Pa(21, 22) P (21, Z2) Pc (21, 22) H1 (22) K (24, 22)

Fy(z,) _

= Ya(22)¥p(22)0a(22)[B2(04(22))
—= B2($a(22))] + apa(22)¥p (22)[1
— B2(04(22))]B4(0,(22))R (05 (22))
- apy(z)0a(@)1

— Ba($a(22))1B4 (b (22))R (Y5 (22))

Fy(z1,23) _

= Ya(22)¥p(22) Pa (21, 22) [B2 (¢a (21, 22))

— Ba(Ya(21,22))] + arpqa (22)95 (22)[1

— B3 (9a(21,22))1B4(dp (21, 22) )R (5 (21, 22))
- glpb(zz)(ﬁa(z_pzz)[l .

— B2($a(22))1B4(¥p(22))R(Yp(22))
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Hi(z,)

= O-a(ZZ)El(lpa(Zz)){l

+ 01 [Vi(Wp(22)) = Vi(op(22))]}

— 416CL9(22)1a(22)04(22)By (¢a (Zz))

— 46C[g(22)]¥a(22)0, (Zz)§1 (l/)a(Zz))[Pz
+0p: V1 (W5 (22)|[1 = Vi (¥p(22))]
tapy(z)oa@)1

= B1($a(22))1B3 (5 (22))R(¥5(22))

H3(zy,2;) .

= 'Pa(_Zz)le (Zz)d)a(_leZZ)Bl(lpa(ZZ)){l

+ p1Vi(Wp(22)) — V(¢ (Zl;zz))]}

— 216C(2)Ya(22) Pa (21, 22) B1 (Ya(22)) [D2

+ 0p, V(W (2))]1[1 — Vi (¥ (22))]
+ ay, (22)Pa(21,25)[1

- §1 (Eba(zz))]§3 ¥p (Zz))ﬁ(lpb (z2))

$1(24,212) = ()ba(ZEZZ)Bl(lpa(zz)){p1¢c(zl'ZZ)[l
= V1(@p (21, 22))] + (21, 22) [P2
+ 6.V ($5 (21, 2))][1
— V(P (z1,22))13

S2(21,27) = ¢c(Z1'_Zz)[1
—B; (¢a(Z1'ZZ))E¢b (z1,22) + a[1
— B4(¢p (21, 22))R(Pp (21, 22)) ]}
S3(z1,22) = ¢c(Z1'_Zz)[1
— B (¢a(zl'zz))]_{¢b (z1,22) + a[1
— B3(¢p (21, 22))R($p (21, 22)) ]}
K(Z1'ZZ) _
= ¢a(z1,22){z1 — B1(Pa(21,22))} — a[1
— B1(¢a(21,22))1B3(Pp (21, 22))R (P (21, 22))

To find the unknown probability I,, by using the
normalizing condition W, (1,1) + I, = 1, we get,

Iy
d,(1)Dr" (1,1)

~ d,(ODr"(L,1) + da (DN (L1) + ny(DNry' (1,1)
(43)

6. THE EXPECTED QUEUE LENGTH

The expected number of customers in the high
priority queue is

da

L, =

0 = 2 Wa, (71, Dl (44)
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and the expected number of customers in the low
priority queue is

Lg, = 7 Wa,(L2) =1
Then
| _DR'(NR™(1) — DR"()NR"(1)
& 3(DR"(1))2
_dr"(nr"'(1) — dr'""(Dnr'' (1)
= 3(dr"(1))?

7. THE EXPECTED WAITING TIME IN THE
QUEUE

Expected waiting time of a customer in the high
priority queue is
_Lq
Wy, = (46)
Expected waiting time of a customer in the low
priority queue is

W:Lﬂ

9z Az (47)

1.1. Particular Cases

Case 1. If there is no high priority queue, no
breakdown, no immediate feedback. i.e A; =0, a = 0.
Then, our model can be reduced to MX/G/1 queueing
system with balking.

_ IpA2(C(22)—-1) 1-B(12(1-C(22)))
W(Zl)_[ZZ—EZ(Azb(l—C(ZZ)))][ Ab(1-C(2))) 1 (48)

The above result coincides with the result of Charan et.
al. [13] eq.(13).

Case 2: If there is no low priority queue, no
breakdown, no immediate feedback, no vacation, no
interruption. i.e Ay =0, a =0, 6=0, ¢=0, p; +
p, = 0 Then, our model can be reduced to MX/G/1
queue.

—Ip[1 - El(ﬂl(l — C(z1)))]
Z1 — §1(/11(1 — C(z1)))

The above result coincides with the result of Medhi
[10].

W(z) =

8. NUMERICAL RESULT

The above queueing model is analysed numerically
with the following assumption. We consider that the
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service time in regular busy period, service time in
working breakdown period, vacation time and repair
time are to be exponentially distributed.

Table 2 shows that an increase in the high priority
arrival rate, decreases the idle time and increases the
expected queue length and waiting time of high
priority and low priority queues for the arbitrary
values, we chooseA, = 4,u=10,u, =8,a =2, =
0.3,y; = 0.7,y, =0.1,0 = 0.1,¢ = 0.2,p; = 0.7,

p, = 0.3, E(X) = 1,EX(X— 1)) = 0.While A, varies
from 1.6 to 1.9 such that the stability condition is
satisfied.

Table 2 Impact of A, on various queue characteristics

Ay Iy Lq, W, Lq, W,
1.6 0.0225 | 2.2456 | 1.4035 | 5.0587 | 1.2647
1.7 0.0221 | 29971 | 1.7630 | 6.4185 | 1.6046
1.8 0.0218 | 3.4232 | 1.9029 | 7.3162 | 1.8290
1.9 0.0216 | 3.7410 | 1.9689 | 7.7311 | 1.9328

Table 3 shows that an increase in the breakdown rate,
decreases the idle time and increases the expected
gueue length and waiting time of high priority and low
priority queues for the arbitrary values, we choose
AM=042,=25u=15pu, =14n=1y; =
5v,=0506=0.5 ¢=02,p; =03,p; =

0.7,EX) = 1,EX(X—1)) = 0. While « varies from
11 to 14 such that the stability condition is satisfied.

Table 3 Impact of a on various queue characteristics

o Ip Lg, Wy, Lg, Wy,
11 0.0115 | 0.3242 | 0.8109 | 1.1721 | 0.4689
12 0.0114 | 0.3537 | 0.8842 | 1.8054 | 0.7222
13 0.0112 | 0.3730 | 0.9326 | 2.1025 | 0.8410
14 0.0110 | 0.3810 | 0.9524 | 2.1489 | 0.8596

Table 4 shows that an increase the working breakdown
service rate, increases the idle time and decreases the
expected queue length and waiting time of high
priority and low priority queues for the arbitrary
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values, we choosed; =5, 1, =02, u=12,a =
78,1 =0.8, y; =15, Y, =16=06,¢=01p, =
0.7,p, = 0.3, E(X) = 1LE(X(X — 1)) = 0.While g,
varies from 6 to 12 such that the stability condition is
satisfied.

Table 4 Impact of p, on various queue characteristics

K2 Io Lq, Wa Lq, We,
06 0.0642 | 3.0721 | 0.6144 | 18.2972 | 91.4860
08 0.0645 | 3.0220 | 0.6044 | 16.1125 | 80.5624
10 0.0646 | 2.9961 | 0.5992 | 14.5728 | 72.8639
12 0.0647 | 2.9808 | 0.5962 | 13.4203 | 67.1013
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