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ABSTRACT: To analyze an 𝑀[𝑋]/𝐺(𝑎, 𝑏)/1 queue with starting failure, 

repair and single vacation. This type of queueing model has a wide range 

of applications in production/manufacturing systems. Important 

performance measures and stability conditions are obtained. Further, we 

discuss some particular cases. Finally, numerical results of the proposed 

model have been derived. 

 

 

 

1. INTRODUCTION 

Manufacturing industries such as electronic industry 

and  automobile, produce various types of goods to 

supply to customers. During the manufacturing process, 

it is impossible to guarantee that the production machine 

will not failure. Suppose the machine failed means the 

production will not complete on time. In such case the 

fast repair is required to complete the production on 

time.  

Jinting Wang and Peng-Feng Zhou [2] analysed a 

feedback 𝑀[𝑋]/𝐺/1  retrial queueing system with 

starting failures and admission control. Varalakshmi et 

al. [6] analysed a two phase service of M/G/1 retrial 

queueing system with immediate feedbacks, single 

vacation and starting failures. Rajadurai et. al [4] 

examined an M/G/1 retrial queue included orbit search, 

starting failures and single vacation.  Thangaraj and 

Rajendran [5] examined single service and single 

vacation in bulk queueing system. Kempa [3] discussed 

the M/G/1/N-type finite capacity queueing system 

operating under single vacation policy. The model 

solved by embedded Markov chain and the total 

probability law a system of integral equations for the 

probability distribution of the length of the first loss 

series is built.    

 

Vijayashree and Janani [7] considered an multi server 

Markovian queueing system subject to single 

exponential vacation. The stationary and transient 

probabilities for the number of customers during 

different server state are obtained explicitly for the 

system. Ayyappan and Karpagam [1] discussed non-

Markovian bulk service queueing system with stand-by 

server and single vacation. 

2. MATHEMATICAL DESCRIPTION  

A bulk service queue with starting failure, repair, single 

is discussed. Server serves the clients under FCFS 

queue discipline and General Bulk Service Rule 

(GBSR).  At that instant of service completion if the 

queue size is below ‘a’ then the server avails a single 

vacation otherwise, he starts regular service to the next 

batch of clients as per the GBSR.  

On completion of the vacation period, if the queue size 

is minimum ‘a’ with no starting failure with probability 

‘(1-p)’ the server starts a regular service otherwise, he 
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immediately sent for repair. After repair completion the 

server starts the regular service. If the queue size ‘≤a ’ 

on vacation completion, then the server remains idle and 

waiting for the next batch of arriving clients. Service, 

repair and vacation are assume to follow 

general(arbitrary) distribution. 

3. PROBABILITIES AND NOTATIONS  

λ - Arrival rate. 

X- Group size random variable. 

Pr(X=k)=g_k. 

X(z) - the Probability Generating Function (PGF)  

of X. 

S(.), R(.) and W(.) represent the Cumulative 

Distribution Function (CDF) of service time, repair and 

vacation time their corresponding probability density 

functions are s(w), r(w) and v(w) respectively. 

S0(t), R0(t) and W0(t)  represent the remaining time 

for service, remaining repair and vacation at time ‘t’ 

respectively. 

S̃(ψ), W̃(ψ) and R̃(ψ) denotes the Laplace Stieltjes 

Transform (LST) of S, W and R respectively. 

In(t) △ t = Prob{N1(t) = n, ϕ(t) = 1}, n ≥ 0, 

Mr,j(u, t) △ t = Prob{N1(t) = r, N2(t) = j, u ≤ S0(t)

≤ u +△ t, ϕ(t) = 2}, 

Wn(u, t) △ t = Prob{N2(t) = n, u ≤ W0(t)
≤ u +△ t, ϕ(t) = 3}, n ≥ 1, 

Rn(u, t) △ t = Prob{N2(t) = n, u ≤ R0(t)
≤ u +△ tϕ(t) = 4}, n ≥ a. 

where ϕ(t)  = 1, 2, 3 and 4  represents server is in idle, 

busy, on vacation and repair respectively. 

N1(t), N2(t) be no. of clients in service and queue at 

time ‘t’ respectively.  

4. DISTRIBUTION OF QUEUE SIZE 

The Kolmogorov backward equation governing the 

system for the proposed model is:  

𝜆𝐼0 = 𝑊0(0)  (1) 

𝜆𝐼𝑛 = 𝑊𝑛(0) + ∑𝑛
𝑘=1 𝐼𝑛−𝑘𝜆𝑔𝑘, 1 ≤ 𝑛 ≤ 𝑎 − 1 (2) 

−𝑀𝑑,0
′ (𝑢) = −𝜆𝑀𝑑,0(𝑢) + 𝑅𝑑(0)𝑠(𝑢) 

      + (1 − 𝑝)𝑊𝑑(0)𝑠(𝑢)  

  +(1 − 𝑝) ∑𝑎−1
𝑘=0 𝐼𝑘𝜆𝑔𝑑−𝑘𝑠(𝑢) 

+ ∑𝑏
𝑖=𝑎 𝑀𝑖,𝑑(0)𝑠(𝑢), 𝑎 ≤ 𝑑 ≤ 𝑏                        (3) 

−𝑀𝑑,𝑗
′ (𝑢) = −𝜆𝑀𝑑,𝑗(𝑢) +

∑𝑗
𝑘=1 𝑀𝑑,𝑗−𝑘(𝑢)𝜆𝑔𝑘, 𝑗 ≥ 1, 𝑎 ≤ 𝑑 ≤ 𝑏 − 1 (4) 

−𝑀𝑏,𝑗
′ (𝑢) = −𝜆𝑀𝑏,𝑗(𝑢) + 𝑅𝑏+𝑗(0)𝑠(𝑢) + 

(1 − 𝑝) ∑

𝑎−1

𝑘=0

𝐼𝑘𝜆𝑔𝑏+𝑗−𝑘𝑠(𝑢) 

      +(1 − 𝑝)𝑊𝑏+𝑗(0)𝑠(𝑢) 

+ ∑

𝑏

𝑖=𝑎

𝑀𝑖,𝑏+𝑗(0)𝑠(𝑢) 

+ ∑𝑗
𝑘=1 𝑀𝑏,𝑗−𝑘(𝑢)𝜆𝑔𝑘,   𝑗 ≥ 𝑏 (5) 

−𝑊0
′(𝑢) = −𝜆𝑊0(𝑢) + ∑𝑏

𝑖=𝑎 𝑀𝑖,0(0)𝑣(𝑢), (6) 

−𝑊𝑑
′(𝑢) = −𝜆𝑊𝑑(𝑢) + ∑𝑏

𝑖=𝑎 𝑀𝑖,𝑑(0)𝑣(𝑢) +

∑𝑑
𝑘=1 𝑊𝑑−𝑘(𝑢)𝜆𝑔𝑘, 1 ≤ 𝑑 ≤ 𝑎 − 1 (7) 

−𝑊𝑑
′(𝑢) = −𝜆𝑊𝑑(𝑢) + ∑

𝑑

𝑘=1

𝑊𝑑−𝑘(𝑢)𝜆𝑔𝑘, 

𝑑 ≥ 𝑎        (8) 

−𝑅𝑎
′ (𝑢) = −𝜆𝑅𝑎(𝑢) + 𝑝𝑊𝑎(0)𝑟(𝑢) +

𝑝 ∑𝑎−1
𝑘=0 𝜆𝐼𝑘𝑔𝑎−𝑘𝑟(𝑢), (9) 

−𝑅𝑑
′ (𝑢) = −𝜆𝑅𝑑(𝑢) + 𝑝𝑊𝑑(0)𝑟(𝑢)

+ 𝑝 ∑

𝑎−1

𝑘=0

𝜆𝐼𝑘𝑔𝑑−𝑘𝑟(𝑢)

+ ∑

𝑑−𝑎

𝑘=1

𝑅𝑑−𝑘(𝑢)𝜆𝑔𝑘, 

 𝑑 > 𝑎.    (10) 

While applying LST to the above equations (3) to (10), 

we get,  

𝜓�̃�𝑑,0(𝜓) − 𝑀𝑑,0(0)

= 𝜆�̃�𝑑,0(𝜓) − (1 − 𝑝)𝑊𝑑(0)�̃�(𝜓) 

     −(1 − 𝑝) ∑𝑎−1
𝑘=0 𝐼𝑘𝜆𝑔𝑑−𝑘�̃�(𝜓) 

− ∑

𝑏

𝑖=𝑎

𝑀𝑖,𝑑(0)�̃�(𝜓) 



/ Southeast Europe Journal of Soft Computing Vol. 12  No. 2  September  2023 (25-29) 

 

27 

 

     −𝑅𝑑(0)�̃�(𝜓), 𝑎 ≤ 𝑑 ≤ 𝑏     (13) 

𝜓�̃�𝑑,𝑗(𝜓) − 𝑀𝑑,𝑗(0)

= 𝜆�̃�𝑑,𝑗(𝜓)

− ∑

𝑗

𝑘=1

𝑀𝑑,𝑗−𝑘(𝜓)𝜆𝑔𝑘, 𝑗 ≥ 1, 

     𝑎 ≤ 𝑑 ≤ 𝑏 − 1 (14) 

 𝜓�̃�𝑏,𝑗(𝜓) − 𝑀𝑏,𝑗(0) =

𝜆�̃�𝑏,𝑗(𝜓) − (1 − 𝑝) ∑𝑎−1
𝑘=0 𝐼𝑘𝜆𝑔𝑏+𝑗−𝑘�̃�(𝜓) 

     −(1 − 𝑝)𝑊𝑏+𝑗(0)�̃�(𝜓) 

− ∑

𝑏

𝑖=𝑎

𝑀𝑖,𝑏+𝑗(0)�̃�(𝜓) 

     −𝑅𝑏+𝑗(0)�̃�(𝜓) 

− ∑𝑗
𝑘=1 𝑀𝑏,𝑗−𝑘(𝜓)𝜆𝑔𝑘, 𝑗 ≥ 1 (15) 

 𝜓�̃�0(𝜓) − 𝑊0(0) = 𝜆�̃�0(𝜓) −
∑𝑏

𝑖=𝑎 𝑀𝑖,0(0)�̃�(𝜓) (16) 

 𝜓�̃�𝑑(𝜓) − 𝑊𝑑(0) = 𝜆�̃�𝑑(𝜓) −
∑𝑏

𝑖=𝑎 𝑀𝑖,𝑑(0)�̃�(𝜓) − ∑𝑑
𝑘=1 �̃�𝑑−𝑘(𝜓)𝜆𝑔𝑘,     

 1 ≤ 𝑑 ≤ 𝑎 − 1 (17) 

 𝜓�̃�𝑑(𝜓) − 𝑊𝑑(0) = 𝜆�̃�𝑑(𝜓) −
∑𝑑

𝑘=1 �̃�𝑑−𝑘(𝜓)𝜆𝑔𝑘, 𝑑 ≥ 𝑎 (18) 

 𝜓�̃�𝑎(𝜓) − 𝑅𝑎(0) = 𝜆�̃�𝑎(𝜓) −
𝑝𝑊𝑎(0)�̃�(𝜓) − 𝑝 ∑𝑎−1

𝑘=0 𝜆𝐼𝑘𝑔𝑎−𝑘�̃�(𝜓) (19) 

 𝜓�̃�𝑑(𝜓) − 𝑅𝑑(0) = 𝜆�̃�𝑑(𝜓) −
𝑝𝑊𝑑(0)�̃�(𝜓) − 𝑝 ∑𝑎−1

𝑘=0 𝜆𝐼𝑘𝑔𝑑−𝑘�̃�(𝜓) −
∑𝑑−𝑎

𝑘=1 �̃�𝑑−𝑘(𝜓)𝜆𝑔𝑘,     𝑑 > 𝑎 (20) 

Let us define the following PGF’s:  

�̃�𝑑(𝑧, 𝜓) = ∑

∞

𝑗=0

�̃�𝑑,𝑗(𝜓)z𝑗 , 𝑀𝑑(z, 0)

= ∑

∞

𝑗=0

𝑀𝑑,𝑗(0)z𝑑, 𝑎 ≤ 𝑑 ≤ 𝑏 

�̃�(z, 𝜓) = ∑

∞

𝑑=0

�̃�𝑑(𝜓)z𝑑, 𝑊(z, 0)

= ∑

∞

𝑑=0

𝑊𝑑(0)z𝑑 

�̃�(z, 𝜓) = ∑

∞

𝑑=𝑎

�̃�𝑑(𝜓)z𝑑, 𝑅(z, 0) = ∑

∞

𝑑=𝑎

𝑅𝑑(0)z𝑑 

5.  PGF OF QUEUE SIZE 

Theorem 1: If Ik, ck and mk are the steady state 

probabilities of ‘k’ clients in the queue, then the 

probability generating function of the queue length at an 

arbitrary epoch P(z) is 

𝑃(z) =

(1−�̃�(𝑦(z))) ∑𝑏−1
𝑛=𝑎 (z𝑏−z𝑛)(𝑐𝑛+(1−𝑝) ∑𝑎−1

𝑘=0 𝐼𝑘𝜆𝑔𝑛−𝑘)

+(z𝑏−1)[𝑦(z)[(1−𝑝)+𝑝�̃�(𝑦(z))] ∑𝑎−1
𝑘=0 𝐼𝑘z𝑘

+((1−�̃�(𝑦(z)))+𝑝�̃�(𝑦(z))(1−�̃�(𝑦(z)))) ∑𝑎−1
𝑘=0 𝑚𝑘z𝑘]

𝑦(z)[z𝑏−�̃�(𝑦(z))]

  

(21) 

PGF of queue size at various completion epoch is 

 

𝑃𝑠(z) =

(1−�̃�(𝑦(z)))[∑𝑏−1
𝑟=𝑎 (z𝑏−z𝑟)(𝑐𝑟+(1−𝑝) ∑𝑎−1

𝑘=0 𝐼𝑘𝜆𝑔𝑟−𝑘)

+[((1−𝑝)�̃�(𝑦(z))−1)+𝑝�̃�(𝑦(z))�̃�(𝑦(z))] ∑𝑎−1
𝑟=0 𝑚𝑟z𝑟

−𝑦(z)𝐼(z)[𝑝(�̃�(𝑦(z))−1)+1]]

𝑦(z)[z𝑏−�̃�(𝑦(z))])

(22) 

The PGF of vacation completion epoch Pv(z) is  

 𝑃𝑣(z) =
(1−�̃�(𝑦(z))) ∑𝑎−1

𝑟=0 𝑚𝑟z𝑟

𝑦(z)
      (23) 

The PGF of repair completion epoch Pr(z) is  

𝑃𝑟(z) =
𝑝(1−�̃�(𝑦(z)))[�̃�(𝑦(z)) ∑𝑎−1

𝑟=0 𝑚𝑟z𝑟−𝑦(z)𝐼(z)]

𝑦(z)
 (24) 

6. IMPORTANT PERFORMANCE MEASURES 

Probability of various state of the server. 

Server is busy  

 𝑃(𝐵) =
𝑁𝑠′′′𝐷𝑠′′−𝑁𝑠′′𝐷𝑠′′′

3𝐷𝑟′′2
 (25) 

 where  

𝑁𝑠′′ = −2(𝑆1)[∑

𝑏−1

𝑖=𝑎

(𝑏 − 𝑖)(𝑐𝑖 + (1

− 𝑝) ∑

𝑎−1

𝑘=0

𝐼𝑘𝜆𝑔𝑖−𝑘) + 𝜆𝑋1𝐼(1) 

     + ∑𝑎−1
𝑛=0 𝑚𝑛[(1 − 𝑝)𝑊1 +

𝑝(𝑅1 + 𝑊1)]] 
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 𝑁𝑠′′′ = −3(𝑆2)[∑𝑏−1
𝑖=𝑎 (𝑏 − 𝑖)(𝑐𝑖 +

(1 − 𝑝) ∑𝑎−1
𝑘=0 𝐼𝑘𝜆𝑔𝑖−𝑘) + 𝜆𝑋1𝐼(1) 

     +(∑𝑎−1
𝑛=0 𝑚𝑛[(1 − 𝑝)𝑊1 +

𝑝(𝑅1 + 𝑊1)])] 

     +𝑆1[∑𝑏−1
𝑖=𝑎 (𝑏(𝑏 − 1) − 𝑖(𝑖 −

1))(𝑐𝑖 + (1 − 𝑝) ∑𝑎−1
𝑘=0 𝐼𝑘𝜆𝑔𝑖−𝑘) 

     +[𝜆𝑋2𝐼(1) + 2𝜆𝑋1𝐼′(1)] +
2𝑝𝑅1𝜆𝑋1𝐼(1) 

     +(∑𝑎−1
𝑛=0 𝑚𝑛[(1 − 𝑝)𝑊2 +

𝑝(𝑅2 + 2𝑅1𝑊1 + 𝑊2)] 

     +2 ∑𝑎−1
𝑛=0 𝑛𝑚𝑛[(1 − 𝑝)𝑊1 +

𝑝(𝑅1 + 𝑊1)])]] 

 𝐷𝑠′′ = −2𝜆𝑋1[(𝑏 − 𝑆1)] 

 𝐷𝑠′′′ = −3𝜆𝑋2[(𝑏 − 𝑆1)] −
𝜆𝑋1[(𝑏(𝑏 − 1) − 𝑆2)] 

 Server is on vacation  

𝑃(𝑊) =
[𝜆𝑋1[𝑊2 ∑𝑎−1

𝑛=0 𝑚𝑛+2𝑊1 ∑𝑎−1
𝑛=0 𝑛𝑚𝑛]−𝜆𝑋2𝑊1 ∑𝑎−1

𝑛=0 𝑚𝑛]

2(𝜆𝑋1)2         

(33) 

 Server is on repair  

 

𝑃(𝑅) =

𝑝𝜆[𝑋1[𝑅2 ∑𝑎−1
𝑛=0 𝑚𝑛 +𝑅1((𝑊1 ∑𝑎−1

𝑛=0 𝑚𝑛+∑𝑎−1
𝑛=0 𝑛𝑚𝑛)

+𝜆𝑋1𝐼′(1))]−𝑋2𝑅1 ∑𝑎−1
𝑛=0 𝑚𝑛]

2(𝜆𝑋1)2

(34) 

  

5.2.   Expected Queue Length 

 The mean queue length E(Q) at an arbitrary time epoch 

is given by  

𝐸(𝑄) =
𝑁𝑟′′′𝐷𝑟′′−𝑁𝑟′′𝐷𝑟′′′

3𝐷𝑟′′𝐷𝑟′′
 (35) 

 where  

 𝑁𝑟′′ = 2𝑇11 ∑𝑏−1
𝑖=𝑎 (𝑏 − 𝑖)𝑑𝑖 +

𝑇22 ∑𝑎−1
𝑘=0 𝐼𝑘 + ∑𝑎−1

𝑘=0 𝑚𝑘 

 𝑁𝑟′′′ = 3(𝑇12 ∑𝑏−1
𝑖=𝑎 (𝑏 − 𝑖)𝑑𝑖 +

𝑇11 ∑𝑏−1
𝑖=𝑎 (𝑏(𝑏 − 1) − 𝑖(𝑖 − 1))𝑑𝑖) 

     +𝑇23 ∑𝑎−1
𝑘=0 𝐼𝑘 +

3𝑇22 ∑𝑎−1
𝑘=0 𝑘𝐼𝑘 + 𝑇33 ∑𝑎−1

𝑘=0 𝑚𝑘 + 3𝑇32 ∑𝑎−1
𝑘=0 𝑘𝑚𝑘 

 𝐷𝑟′′ = 2𝜆𝑋1𝑌1 

 𝐷𝑟′′′ = 3(𝜆𝑋2𝑌1 + 𝜆𝑋1𝑌2) 

 𝑇11 = −𝑆1 

 𝑇12 = −𝑆2 

 𝑇22 = −2𝑏𝜆𝑋1  

 𝑇23 = −3(𝑏(𝑏 − 1)𝜆𝑋1 +
𝑏𝜆𝑋2) + 2𝑏𝜆𝑋1𝑝𝑅1

  𝑇32 = −2𝑏(𝑊1 + 𝑝𝑅1) 

 𝑇33 = 3(𝑏(𝑏 − 1) − 𝑏(𝑊2 +
𝑝(𝑊1𝑅1 + 𝑅2))) 

 𝑌1 = −(𝑏 − 𝑆1) 

 𝑌2 = (𝑏(𝑏 − 1) − 𝑆2) 

 5.3  Expected Waiting Time 

 The expected waiting time is obtained by using the 

Little’s formula as;  

𝐸(𝑊) =
𝐸(𝑄)

𝜆𝐸(𝑋)
 

7. NUMERICAL EXAMPLES 

This section offers with the numerical illustration of the 

proposed queueing model through variations within the 

parameters by using MATLAB software. We consider 

the following assumptions: 

Batch size distribution of the arrival is geometric with 

mean 2. Let a=3 andn b=8. 

Service time distribution is 2-Erlang. 

Vacation and repair time is exponential with parameters 

Ω = 2 and ψ = 8 respectively. 

For various arrival rate and service rate the preformance 

measures E(Q) and E(W) are calculated.  

Table 1 

𝛌 EQ EW 

9 5.15 0.2861 

10 6.122 0.3061 

11 7.107 0.3231 

12 8.105 0.3377 

13 9.115 0.3506 

14 10.14 0.3621 

15 11.18 0.3727 

Table 2 

𝛍𝟏 rho EQ EW 

10.00 0.1000 1.5110 0.1511 
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10.25 0.0976 1.5078 0.1508 

10.50 0.0952 1.5048 0.1505 

10.75 0.0930 1.5021 0.1502 

11.00 0.0909 1.4997 0.1500 

11.25 0.0889 1.4974 0.1497 

11.50 0.0870 1.4954 0.1495 

11.75 0.0851 1.4936 0.1494 

12.00 0.0833 1.4919 0.1492 

12.25 0.0816 1.4903 0.1490 

12.50 0.0800 1.4890 0.1489 

12.75 0.0784 1.4877 0.1488 

13.00 0.0769 1.4866 0.1487 

13.25 0.0755 1.4855 0.1486 

13.50 0.0741 1.4845 0.1485 

13.75 0.0727 1.4836 0.1484 

14.00 0.0714 1.4827 0.1483 

14.25 0.0702 1.4820 0.1482 

14.50 0.0690 1.4814 0.1481 

14.75 0.0678 1.4807 0.1481 

15.00 0.0667 1.4802 0.1480 

 

8. CONCLUSION 

In this article, we analysed a bulk service queue with 

starting failure, repair and  single vacation.  From the 

numerical results, it is observed that the performance 

measures E(Q) and E(W) are decreases as service rate 

and repair rate increase.  
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