
 

 

 

 
Southeast Europe Journal of Soft Computing 

 

Available online: http://scjournal.ius.edu.ba/ 

 

 
 

 

VOL.4 NO.2   September 2015 - ISSN 2233 – 1859 

 

 

LU Factorization Algorithm with Minimum Degree Ordering in 
Power Distribution Network Problems 
 

Alma Husagic-Selman 
aselman@ius.edu.ba, International University of Sarajevo, Faculty of Engineering and Natural Sciences 

 

Article Info 
Article history: 
Received 17 July2015 

Received in revised form 17Aug. 2015 

 

Keywords: 
Power Distribution Management 
System, sparse matrices, Real-time, 
processing, closed loop, smart grid

Abstract 
Power systems computations for nowadays common large distributed 
systems typically involve the usage of very large sparse matrices, whose 
analysis and verification is very time and memory consuming. When 
blocked, sparse matrices can be processed much more efficiently, and 
this made blocked sparse matrices widely used in acquiring solutions for 
power system problems. The established sparse matrix storage and 
reordering techniques however do not fully utilize the existing computer 
architecture, thus search for efficient sparse system solution is ongoing. 
This paper presents adjustments of well-known LU factorization 
algorithm suitable for use in power distribution network applications. 
LU factorization algorithm processes data in blocks and uses minimum 
degree ordering to accelerate the computations. 

 

 

 

1. INTRODUCTION  

With the emergence of multi-core processors and general 
purpose GPUs, processing power of computing devices is 
increasing rapidly. Processing capabilities of devices and 
their performance when it comes to data computation is 
often very hard to match. The main reasons behind this 
performance mismatch are inability to adapt existing 
algorithms to parallel computing features of devices, and 
memory bottleneck.  

In multi-core processors, all algorithms need to be parallel 
in order to fully utilize their computational power [2]. 
This, often referred as “the end of the free lunch” shows 
that improvement rate of algorithms performance in 
relation to transistor densities of computer processors is 
not constant. In other words, as transistor density in 
computer processors increase, the performance of 
numerical algorithms does not increase in constant rate [2]. 
To accommodate the technological change of 

multiprocessor and GPU systems, the change in underlying 
architecture was necessary. Single-Instruction Multiple-
Data architecture (SIMD) is ideal to use for applications 
that require intensive computations of sparse matrices. 

In addition to the above, memory limitations, as predicted 
by Wulf in 1995, have been reached [6]. This means that, 
regardless of the increase in processing power or increase 
in memory size, the computational performance with the 
existing architecture is about to reach its peak. Memory 
optimizations on algorithms that involve processing of 
large data sets are inevitable. This is especially true for 
applications that use large sparse matrices. These matrices 
are characterized by low degree of data locality, which 
result in many cache misses that severely detriment 
computational performance of devices. 

Power distribution networks (PDN)use very large and very 
sparse matrices, which require sophisticated algorithms to 
deliver reliable and efficient functionality of their systems. 
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Modern tools for PDN analysis, among other parts include 
state estimation[15]-[31] ,power flow [32]-[44], VVC 
(Voltage VAr Control) [45]-[62], Fault and Short Circuit 
Calculation (SCC)  [63]-[72] and OFR (Optimal Feeder 
Network Reconfiguration) [73]-[77], all of great 
importance for PDN reliable performance.  

State estimationapproximates power flow using real-time 
PDN measurements. It maintains the information about the 
status of every flow and every voltage in the system at all 
times. Based on this information, state estimator predicts 
the PDN behavior. It determines the optimal system state, 
and provides the best estimates for complete PDN (all line 
flows, loads, generator outputs, etc.)  [14]. State estimator 
is using power flow calculations repeatedly, which 
determine exact power flow of profiled network 
information.  

VVC manages controllable network equipment in order to 
provide optimal network state, based on the information 
gathered from the state estimator.  OFR optimizes the 
network topology by adding/removing network feeders 
to/from the network. This is very useful, especially in 
situations when sections of the network fail or get 
overloaded.  

All these tasks need to deal with calculations of sparse 
matrices, and inevitably factorization of sparse matrices. 
But general purpose sparse matrix solutions cannot be 
applied for PDN application, as this is real-time 
application with complex structure and data.  Designing 
dedicated power system solution that will contribute fast, 
reliable and robust analysis of the PDN is big challenge, 
especially considering the fact that these networks are 
constantly growing.   

This paper describes matrices used in PDN and presents 
the LU factorization algorithm with Minimum Degree 
ordering, which processes PDN matrices in blocks.  

 

2. POWER DISTRIBUTION NETWORKS MATRICES 

Power distribution networks are hierarchical networks, 
with high voltage lines transferring the electricity to local 
networks, which further distribute the power to the end 
users. As any other network, PDN can be represented as 
graph and expressed as matrix.  

 

2.1. Power Distribution Network Graphs and Matrices 

In power distribution networks graphs, nodes represent 
electrical busses or the diagonal elements of incidence 
matrices, and edges represent transmission lines or off-
diagonal nonzero matrix elements [1]. Figure 1 shows 
IEEE 13-bust test feeder network [14], and its equivalent 
graph. 
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Figure 1: IEEE 13-bus test feeder network and its graph 

Depending on the problem being analyzed, different 
incidence matrices exist in power system network analysis, 
such as nodal admittance incidence matrix, branch path 
incidence matrix, basic cut set incidence matrix, etc. [6]. In 
this report we are analyzing nodal admittance matrix, and, 
given the 3-phase network, graph presented in Figure 1 
would produce 39x39 nodal admittance matrix (13x13 
block matrix with 3x3 sized blocks).  

Nodal admittance matrix represents coefficient matrix in 
Kirchhoff’s linear system of equations, where, given the 
nodal impedance values and current flowing between the 
nodes, corresponding voltage needs to be obtained. Eq. 1 
shows the Kirchhoff’s linear system of equations for 
network presented in Figure 1, and each impedance 
element Yi,j in the nodal admittance matrix is a 3x3 matrix 
block. (Kirchhoff was actually the first one to develop 
theory of graph-trees for applications in electrical 
networks [6]).  
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𝐼13
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𝑌1,1 𝑌1,2
𝑌2,1 𝑌2,2
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… 𝑌2,13

⋮ ⋮
𝑌13,1 𝑌13,2

⋱ ⋮
… 𝑌13,13

� �

𝑉1
𝑉2
⋮
𝑉13

� (Eq. 1) 

Solving this problem requires elimination of nodes within 
the graph, or factorization of coefficient (nodal 
admittance) matrix in the process of gaining the solution. 
Node elimination (matrix factorization) can be done using 
different algorithms, and in this work we opted for LU 
factorization algorithm, with minimum degree ordering, 
which will be explained in following text.  

 

2.2. Characteristics of Power Distribution Network 
Matrices 

PDNmatrices are irregular, indefinite and very sparse. 
These matrices are the sparsest matrices encountered in 
real life applications [1]. Implementing solutions for 
regular sparse linear systems is somehow straightforward 
[3], but in irregular matrices, this task becomes very 
difficult [1, 3, 8, 13]. This is the reason why solutions 
provided by current power system solvers have not been as 
efficient as those designed for other types of sparse 
matrices [8, 9].  
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Most of the nonzero elements in PDN matrices are 
concentrated along the diagonal, however nonzero 
elements exist off-diagonal as well. Number of nonzero 
elements per row is indefinite, and matrices reflect 
symmetry. Operations on sparse matrices should take time 
proportional to the size of data and the of nonzero 
arithmetic operations on it[4].  

A

DC

B

 
Figure 2: Simple 4-bus power distribution network 

Figure 1show the simple 4 bus power distribution network, 
with slack bus A having 3-phase current, bus B which 
branches out the network to two loads: 1-phase C load and 
2-phase D load. Nodal admittance matrix Y of this simple 
network can be derived as shown below. Buses are noted 
by indices 1 to 4, with 1 presenting bus A, and 4 bus D 
respectively, nonzero elements of the matrix are marked 
by x and they present the impedance between indicated 
buses.  

 
Figure 3: Nodal admittance matrix for Figure 1 network 

From figures 1and 2 it can be seen that PDN matrix is 
block matrix (a matrix whose elements are other smaller 
matrices). Nodal admittance matrix used in the analysis of 
PDN maycontain blocks sized 1x1, 2x2 or 3x3, depending 
on the electric power phase. Figure 2 shows that each 
element in nodal admittance matrix Y is a block of size 
3x3, indicating that this network is a 3 phase network.  

Some blocks can be reduced to 2x2 or 1x1 sized matrices. 
For example, branch BC, indicated by Y2,3is a 1-phase 
branch, and it contain only 1 nonzero element, and branch 
BD, indicated by Y2,4is a 2-phase branch, and it contains4 
nonzero elements (matrix 2x2).  

3. METHODOLOGY: LU FACTORIZATION BASED 
ON MINIMUM DEGREE ORDERING 

The main focus of this ongoing research is to implement 
direct method for solution of system of linear equations in 

the area of power distribution networks efficiently. Linear 
system of equations can be presented as Ax = b, where A is 
sparse matrix, representing coefficients in the linear 
system of equations, b is vector of right hand-side values, 
and x is a vector of unknowns. Sparse matrix A can be 
factored into two separate triangular sparse matrices L, 
lower triangular sparse matrix with 1’s on the diagonal, 
and U, upper triangular sparse matrix. LU and Cholesky 
factorizations are most commonly used direct methods in 
power distribution system network analysis. In this work, 
we will focus on LU factorization algorithm.  

In power systems applications, LU factorization is used to 
solve the system of Kirchhoff’s equations: Yv =i, where Y 
is nodal admittance matrix, i is vector of currents flowing 
between corresponding nodes, and v is a vector 
representing branch voltages between corresponding 
nodes.  

Classical LU factorization algorithm can be done in three 
distinct steps:  

1. Matrix factorization or forward elimination stage: in this 
step, triangular matrices L and U are produced from the 
original matrix A, such that A = L*U. Calculation of 
elements of triangular matrices L and U can be done using 
the following equations:  

𝑙𝑖𝑗 =
𝑎𝑖𝑗−∑ 𝑙𝑖𝑝𝑢𝑝𝑗

𝑗−1
𝑝=1
𝑢𝑗𝑗

,𝑤ℎ𝑒𝑟𝑒 𝑖 > 𝑗  (Eq. 2) 

𝑢𝑖𝑗 = 𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑝𝑢𝑝𝑗,𝑤ℎ𝑒𝑟𝑒 𝑗 > 1𝑖−1
𝑝=1  (Eq. 3) 

Substituting L and U for A, and Ux for vector v, we can 
perform further LU factorization algorithm steps, as 
presented below.  

2. Forward substitution (solving Lv = b): Substitutes 
values of vector b to obtain vector v using the following 
equation: 

𝑣𝑖 = 1
𝑙𝑖𝑖
�𝑏𝑖 − ∑ 𝑙𝑖𝑘𝑣𝑘𝑖−1

𝑝=1 �   (Eq. 4) 

3. Back substitution (Ux = v): Back substitutes the values 
of vector v to solve vector x: 

𝑥𝑖 = 1
𝑢𝑖𝑖
�𝑣𝑖 − ∑ 𝑢𝑖𝑘𝑥𝑘𝑖−1

𝑝=1 �   (Eq. 5) 

The classical LU factorization algorithm for dense systems 
is presented in equations Eq. 2-5. For sparse matrix LU 
factorization algorithm, number of computations is 
reduced due to the large number of zero elements in the 
matrix, and the sparse matrix LU factorization algorithm 
can be viewed as having one explicit for loop, with 
additional calculations for only those indices that represent 
nonzero element in original matrix, or fill-in nonzero 
element that results from factorization process [1]. During 
the process of factorization, elements of the original sparse 
matrix below the diagonal must be eliminated using row 
operations, and in this process, some elements with value 
zero may become non zero elements, called fill-in 
elements. 
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The amount of fill-ins may be controlled by ordering the 
matrix before its factorization [10]. Different ordering 
algorithms exist, and in this research we are using 
minimum degree ordering algorithm or Markowitz 
ordering algorithm. 

Minimum Degree ordering is greedy algorithm that 
reorders the rows/columns of symmetric sparse matrix so 
that the row/column with fewest non-zero elements at a 
given factorization stage is the next one to be eliminated 
[7]. Physical reordering of the matrix wastes time, so 
Markowitz ordering strategy is actually to choose pivots 
with the added constraint of minimum fill-in. From graph 
point of view, a node with minimum degree, or the least 
number of edges is to be eliminated first. This way, the 
amount of work and storage needed during the elimination 
of nodes in a graph is reduced [5, 10], and less fill-ins are 
generated (fill-ins would represent the creation of new 
edges that did not exist in the original matrix). This is 
demonstrated in Figure 3, where elimination of node B 
results in creation of two new edges, AC and AD. When 
node with higher degree is eliminated first, the amount of 
computations is increased. This is obvious from matrix 
shown in Figure 4, where all fill-ins are shaded.  

 
Figure 4: Node elimination effect when node B with higher degree is 

eliminated first 

 

 
Figure 5: The effect of elimination of second row first 

The pseudo-code of the three steps of the LU factorization 
algorithm with minimum degree ordering is presented in 
Figures5-7. Figure 5 shows the matrix elimination process 
based on minimum degree ordering. The pivots for the 
elimination process are chosen based on minimum degree 
ordering and are done in place. Once eliminated, the node 
is removed from the graph, and its matrix’s row and 
column are marked as done. The elimination order is being 
recorded in order vector, and this order will be used in 
forward and backward elimination process. 

for i = pivot with the smallest degree ϵ [1, N] 

for eachj ϵ [1, N] such thatai,j !=0, j != done and j!= pivot 

 l = aj,i/ai,i 

 for eachk ϵ [1, N] such thatk != done and j!= pivot 

 aj,k = aj,k - l* ai,k 

 endfor 

 aji = l 

endfor 

mark i as done 

record the elimination order 

recalculate minimum degree 

endfor 
Figure 6: Sparse LU factorization step with Minimum Degree 

Ordering 

 

Note: order is a vector that holds elimination order based 
on minimum degree 

M = first index in order vector 

VM = bM 

for i = 1 to Nsuch thati ϵ elimination order vector 

 for eachj=2 toi 

  vi = bi - ai,j*vj 

 endfor 

endfor 
Figure 7: Forward substitution with Minimum Degree ordering, 

solving Lv = b 

 

Note: order is a vector that holds elimination order based 
on minimum degree 

N = last index in order vector 

bN = vN/aN,N 

for i = N-1 to1,such that iϵ elimination order vector 

 for j = i+1 to N 

  xi = (vi - xj * ai,j)/ai,i; 

 endfor 

endfor 
Figure 8: Back Substitution with Minimum Degree ordering, solving 

Ux = v 

3.1 Minimum Degree Ordered LU Factorization Based on 
Blocks 

Blocking of sparse matrices improves their processing 
performance for three reasons: only one index per block is 
needed, and number of indices used in coding is reduced 
from one per non zero entry to one per block; multiplier 
vector blocks are loaded once, and used m number of 
times for matrix of m by n blocks; and in processors with 
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load floating point quad instructions, less load instructions 
is needed to load nonzero entries into two registers [12]. 
LU factorization with blocks is shown in equations 6 and 
7, where each factor used in calculation (Lij, Aij, Uij) is 
block matrix.φ represents electric power phase, so matrix 
blocks A, U and L of size φ𝑥φ. Equations 4 and 5 can be 
restructured in similar way. 

𝐿𝑖𝑗�
φ𝑥φ

=
𝐴𝑖𝑗�
φ𝑥φ

−∑ 𝐿𝑖𝑝�
φ𝑥φ

𝑈𝑝𝑗�
φ𝑥φ

𝑗−1
𝑝=1

𝑈𝑗𝑗�
φ𝑥φ

,𝑤ℎ𝑒𝑟𝑒 𝑖 > 𝑗  (Eq. 6) 

𝑈𝑖𝑗�
φ𝑥φ

= 𝐴𝑖𝑗�
φ𝑥φ

−∑ 𝐿𝑖𝑝�
φ𝑥φ

𝑈𝑝𝑗�
φ𝑥φ

,𝑤ℎ𝑒𝑟𝑒 𝑗 > 1𝑖−1
𝑝=1  (Eq. 7) 

Implementing LU factorization presented in Figures 5-
7would be more efficient if blocks are used. The process 
of factorization will then contain matrix-matrix and 
matrix-vector operations, which are computationally very 
demanding. These computations can be accelerated 
through SIMD-ization or parallelization.  

 

3.2 Example: π equivalent using LU factorization with 
Minimum Degree Ordering 

Generalized nodal current injection equation for thek-
phase branch connected between the m-phase node i and 
then-phase node j is calledπ equivalent, and is shown in 
Figure 8. This is the most common way in which PDN 
branch is modeled. 

 

 
Kirchhoff’s set of equationsfor Figure 8 is shown in Eq. 8. 
Sub-matrix elements (I and V sub-matrices) for nodesi and 
j are defined based on the number ofnode phases, and 
impedance sub-matrices of branch k are defined based on 
the number of phases of branch k. 

�

𝐼𝑖⏟
𝑚𝑥1
𝐼𝑗⏟
𝑛𝑥1

� = �

𝑌𝑖𝑖�
𝑚𝑥𝑚

𝑌𝑖𝑗�
𝑚𝑥𝑛

𝑌𝑗𝑖⏟
𝑛𝑥𝑚

𝑌𝑗𝑗�
𝑛𝑥𝑛

� �

𝑉𝑖⏟
𝑚𝑥1
𝑉𝑗⏟
𝑛𝑥1

� (Eq. 8) 

Nodal admittance matrix requires less storage compared to 
phase admittance matrix [40], and its LU factorization is 
therefore faster. 

This example shows the simplest possible matrix used in 
PDN, because it represents a single network branch, or 
physically a single wire. PDN consists of hundreds of such 
wires/branches, and for this reason its computation is very 
complex and time consuming. Using Blocked LU 

factorization with minimum degree ordering as an 
algorithm in PDN system solution should accelerate 
computations. With code optimization using SIMD 
instruction, we believe that this acceleration will be even 
more.  

 

5. CONCLUSION AND FUTURE WORK 

The analysis of minimum degree ordered LU factorization 
algorithm on very sparse matrices specific for PDN has 
been presented. Sparse matrices are first blocked based on 
the number of phases used in network sections, and the 
algorithm is modified to run on these fixed-size blocked 
matrices.  

Our future work would consider processing of matrices 
with blocks of different size as shown in Figure 9, where 
the original Y matrix is of size 12x12. Since originally 3-
phase power comes from the slack, 3x3 blocks are applied 
and original Y matrix can be seen as 4x4 blocked matrix. 
The number of power phases changes as the network 
branches out, so rows and columns (rows 8-10) in the Y 
matrix have all zero elements, as that particular phase is 
not used in that branch. Removing 0’s from the matrix 
would result changing the block size for different 
impedance matrix elements.  

 

 
Figure 9: Nodal admittance matrix with blocks of various size (based 

on graph in Figure 2) 

After the LU factorization with minimum degree ordering 
is done on blocks with various size, the SIMD-ization of 
the code will be implemented.  
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