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Abstract 
In this paper we present some specific cases of the classic Nonlinear 
Lotka-Volterra (NLV) approach to modeling predator-prey dynamic 
systems [1,5], and propose to implement them using "mathematical" 
(Matlab) approach as well as "ad-hoc" approach using Agent Based 
Modeling (implemented using NetLogo modeling environment), [6].   
Examples of various scenarios are introduced in a gradual way, from 
simpler to more complex ones. The emphasis is given to gaining insight 
into predator-prey relationship, as well as some structural results [2,3] as 
applied to classic complex systems modeling and control, as well as 
understanding stability in multispecies communities. The paper sets the 
scene for further research using NLV (mathematical) and ABM (ad-hoc) 
models. With this "parallel" approach we hope to address some classic 
problems such as Gause's Law and Paradox of the Plankton,  Paradox of 
Enrichment (system level instability), Oksanen's description and trophic 
level numbers,  and other current Complex Systems paradigms such as 
adaptivity, emergence, etc.. 
 
 

1. LINEARIZED NONLINEAR MODEL 

As it is typically done, NLV as any other well-behaved 
nonliner system can be linearized around equilibrium   
points X*, and this approach works well close to 
equilibrium points. Also,  there are well known stability 
results for linear complex systems [1,4]. Unfortunately, 
linearization may be very restrictive and limited in its 
usefulness, hence analysis of nonlinear predator-prey 
systems will produce more realistic results. We propose 
here a step-by-step build-up of nonlinear models which 
will allow us to better understand effects of nonlinearities 
and interconnections in multi species environments. 
 
 

2. HUMAN CHROMOSOME KARYOTYPING 

General nonlinear model in the context of our problem of 
interest is described by [1]: 
 
S:  dX/dt = A(t,X) X       
 
where X is vector of (for example aquatic) species. X may 
be as simple as a two dimensional vector (one pray, one 
predator).  A(t,X) is "community" matrix with its elements 
as nonlinear time-dependent functions aij=aij(t,X), where 
"ij" indicates position in the matrix, i for the rows, j for the 
columns. In the case of X of dimension 2,  matrix  A is 2 
by 2, and its elements are  a11, a12, a21, and a22, and they 
describe self and cross interactions among the two species. 
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3. NONLINEAR LOTKA-VOLTERRA MODEL  

Nonlinear Lotka-Volterra Model (NLV) is a special case 
of the above more general nonlinear model [1]. In our 
further examples  we will go  beyond simple one prey-one 
predator model,  with NLV and also use Agent Based 
Modeling (ABM) as well,  as a validation tool. The key is 
that we will be able to use existing rigorous stability 
results using NLV [1] and compare with ABM (ad-hoc) 
results, as we gradually increase the complexity of the 
models. As a starting point we can consider one prey and 
one predator model which is typically described by simple 
Lotka-Voltera equations [1]: 
 
Model  #1  
dXi/dt = Xi ( Ai + Aij Xj) 
 
where i=1,2  and  j  is different than  i,  with  j=1,2.  
 
The above equation captures two equations: 
 
dX1/dt = X1 ( A1 + A12 X2) 
dX2/dt = X2 ( A2 + A21 X1) 
 
or in terms of the general nonlinear model: 
dX/dt = A(t,X) X 
 
where there is no time dependency and the (community) 
matrix A is 
                           
A(t,X) = A =    �a11 a12

a21 a22�                   
                              
with  a11 =  A1,   a12 = A12 X1,   a21 = A21 X2,  and  
a22 = A2,  with A12 and A21 being negative coefficients 
indicating reduction in the prey as result of predator 
presence [1]. The species vector is  X = [ X1 ,  X2 ]. 
 
Model  #2  
The next example is to include an additional term in NLV 
which corresponds to  "crowding" species dynamic when 
disconnected from the other specie(s).  The extended NLV 
is as follows: 
 
dXi/dt = Xi ( Ai + ∑Aij Xj),   
 
where  i = 1,2  and sum  ∑  is over  j = 1,2.  
    
This would be equivalent to adding another "crowding" 
term (self multiplication without predator) in dXi/dt. In 
this case community matrix elements are:  
 
A =    �a11 a12

a21 a22�                   
                              
with  a11 =  A1 + A11X1,  a12 = A12 X1,  a21 = A21 X2, 
and  a22 = A2 + A22X2, and  X = [ X1 ,  X2 ].  
As before,  A12  and A21 are negative and newly 
introduced A11  and  A22  are positive coefficients.   

For example, when using ABM approach, there will be a 
(programming) facility to implement for the "crowding" 
effect in prey.  
 
Model  #3  
Next step is to make community matrix elements time 
varying as well as dependent on the species population, i.e. 
 
dXi/dt = Xi ( Ai(t,X) + ∑Aij(t,X) Xj) 
 
where  i=1,2  and sum  ∑  is over  j=1,2,  or in compact 
form 
 
dX/dt = A(t,X) X ,   with 

A = A(t,X) =    �
a11(t, X)  a12(t, X)
a21(t, X)  a22(t, X)�                   

 
with  a11(t,X) =  A1(t,X) + A11(t,X) X1,  a12(t,X) = 
A12(t,X) X1,  a21(t,X) = A21(t,X) X2, and  a22(t,X) = 
A2(t,X) + A22(t,X) X2, and  X = [ X1 ,  X2 ]. Note that 
community matrix elements are functions  of the overall 
vector X, i.e. both X1 and X2. This will give us lots of 
freedom in modeling dynamic of two interconnected 
species. The modeling should be done in individual steps 
so we can have full understanding of the consequences of 
making even the simplest change. For example, here are 
several examples for both ABM and NLV approaches to 
compare: 
 
Example 1:   Coefficients only functions of time and not of 
X 
 
 a11(t) =  A1(t) + A11(t) X1 
               a12(t) =  A12(t) X1 
 a21(t) =  A21(t) X2 
 a22(t) =  A2(t) + A22(t) X2 
 
Example 2:   Coefficients only functions of X and not of 
time 
 
 a11(X) =  A1(X) + A11(X) X1 
               a12(X) =  A12(X) X1 
 a21(X) =  A21(X) X2 
 a22(X) =  A2(X) + A22(X) X2 
 
Example 3:   Coefficients only functions of X1 and/or X2 
and not of time 
  
 a11(X1) =  A1(X1) + A11(X1) X1 
               a12(X2) =  A12(X2) X1 
 a21(X1) =  A21 (X1) X2 
 a22(X2) =  A2(X2) + A22(X2) X2 
 
where we assumed local dependencies only (for example 
a11(X1) is function of X1 and not of X2, etc. Obviously 
we can have more complicated case such as: 
 
Example 4:   Coefficients only functions of X1 and/or X2 
and not of time 
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 a11(X1) =  A1(X1, X2) + A11(X1) X1 
               a12(X2) =  A12(X2) X1 
 a21(X1) =  A21 (X1) X2 
 a22(X2) =  A2(X1,X2) + A22(X2) X2 
 
where we left "crowding" coefficients functions of only of 
their corresponding species. 
 
Finally, we introduce time and have the following time 
varying version of Example 4: 
 
Example 5:   Coefficients functions time as well as of X1 
and/or X2: 
 
 a11(t,X1) =  A1(t,X1, X2) + A11(t,X1) X1 
               a12(t,X2) =  A12(t,X2) X1 
 a21(t,X1) =  A21 (t,X1) X2 
 a22(t,X2) =  A2(t,X1,X2) + A22(t,X2) X2 
 
Comment:  As we develop more complicated NLV and 
ABM, our approach  here is to follow the above formulas 
in implementing NLV (Matlab) and ABM (NetLogo) to 
implement corresponding features into both models. This 
way we will be able to carefully and precisely interpret 
every step of the ever increasing complexity of the two 
models. For example, if we take Example 5 from the 
above, we would agree on what does "A12(t,X2)" mean in 
terms of dependency on X2, and so on, similarly for other 
coefficients. 
 
Model  #4  
Next, we extend the NLV towards general nonlinear model 
to include multiple  species,  such as: 
     
dXi/dt = Xi [ Ai(t,X) + ∑Aij(t,X) Xj ] 
 
where i = 1,2, ... ,n,  and sum  ∑  is over all  j = 1,2, ... , n. 
 
We can start our investigation by going from one prey and 
one predator (as in simpler examples earlier), to two preys 
and one predator, 4 preys and 2 predators (2 predators per 
each 2 preys), etc., hence building up the complexity of the 
models (both NLV and ABM).  Here are some specific 
examples, where we simply continued from Example 5 
above and increased the number of species. This method 
may be influenced by a specific multispecies situation, 
such as an aquatic fish environment with a variety of preys 
and predators involved. 
 
The following Example 6 models two preys and one 
predator. 
Example 6:   Two preys and one predator, coefficients 
functions time as well as of X1 and/or  X2  and/or  X3  or 
the total vector X: 
 
 a11(t,X) =  A1(t,X) + A11(t,X1) X1 
               a12(t,X2) =  A12(t,X2) X1 
 a13(t,X3) =  A13 (t,X3) X1 

 a21(t,X1) =  A21 (t,X1) X2 
 a22(t,X) =  A2(t,X) + A22(t,X2) X2 
 a23(t,X3) =  A23 (t,X3) X2 
             
 a31(t,X1) =  A31(t,X1) X3 
 a32 (t,X2) =  A32 (t,X2) X3 
 a33 (t,X) =  A3(t,X) + A33(t,X3) X3 
 
where  3rd species is predator.  In compact form,  
community matrix can now be represented as: 
 

A(t,X) = [ 
a11(t, X) a12(t, X2) a13(t, X3)

a21(t, X1) a22(t, X) a23(t, X3)
a31(t, X1) a32(t, X2) a33(t, X)

 ]  

 
 
Example 7:   Four preys (species 1, 2, 4, 5) and two 
predators (species 3,6), one predator per two preys, for 
simplicity, and  coefficients functions of time as well as of 
Xi  or the total vector X: 
 
 a11(t,X) =  A1(t,X) + A11(t,X1) X1 
               a12(t,X2) =  A12(t,X2) X1 
 a13(t,X3) =  A13 (t,X3) X1 
 a14(t,X4) =  A14 (t,X4) X1 = 0        
    a15(t,X5) =  A15 (t,X5) X1 = 0        
 a16(t,X6) =  A16 (t,X6) X1 = 0        
     
 a21(t,X1) =  A21 (t,X1) X2 
 a22(t,X) =  A2(t,X) + A22(t,X2) X2 
 a23(t,X3) =  A23 (t,X3) X2 
               a24(t,X4) =  A24 (t,X4) X2 = 0       
    a25(t,X5) =  A25 (t,X5) X2 = 0      
     a26(t,X6) =  A26 (t,X6) X2 = 0       
        
 a31(t,X1) =  A31(t,X1) X3 
 a32 (t,X2) =  A32 (t,X2) X3 
 a33 (t,X) =  A3(t,X) + A33(t,X3) X3 
 a34(t,X4) =  A34 (t,X4) X3 = 0       
    a35(t,X5) =  A35 (t,X5) X3 = 0       
     a36(t,X6) =  A36 (t,X6) X3 = 0       
       
 a41(t,X1) =  A41(t,X1) X4 = 0        
     a42(t,X2) =  A42(t,X2) X4 = 0      
    a43(t,X3) =  A43(t,X3) X4 = 0       
     a44(t,X) =  A4(t,X) + A44(t,X4) X4 
 a45(t,X5) =  A45 (t,X5) X4        
 a46(t,X6) =  A46 (t,X6) X4         
  
 a51(t,X1) =  A51(t,X1) X5 = 0        
    a52(t,X2) = A52 (t,X2) X5 = 0        
     a53(t,X3) = A53 (t,X3) X5 = 0       
     a54(t,X4) =  A54(t,X4) 
 a55(t,X5) =  A5(t,X) + A55(t,X5) X5 
 a56(t,X6) =  A56 (t,X6) X5         
 
 a61(t,X1) =  A61(t,X1) X6 = 0        
    a62 (t,X2) = A62 (t,X2) X6 = 0       
  a63 (t,X3) = A63 (t,X3) X6 = 0       
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    a64(t,X4) =  A64 (t,X4) X6        
 a65(t,X5) =  A65 (t,X5) X6        
 a66(t,X) =  A6(t,X) + A66(t,X6) X6 
 
and community matrix  A(t,X)  is now 6x6: 
 

                  
a11 a12 a13
a21 a22 a23
a31 a32 a33

    
   0      0      0
   0      0      0
   0      0      0

       

                 
    0      0      0
    0      0      0
    0      0      0

     
   a44 a45 a46
   a54 a55 a56
   a64 a65 a66

       

 
where we dropped various parameters in the coefficients 
for simplicity. Any of the zero coefficients aij  indicates 
lack of influence of j-th specie to i-th specie, or that a 
predator j does not prey on i-th specie. This example 
illustrates how we can build various species communities, 
by combining number of preys and predators.  A slight 
variation can be done in the Example 7 by assuming that 
predators can prey on all of the species, but not on each 
other, hence producing Example 8 which follows. 
 
Example 8.  Community matrix  A(t,X)  is still 6x6, with 
less 0 elements: 
 

                  
a11 a12 a13
a21 a22 a23
a31 a32 a33

    
      0      0    a16
      0      0    a26
      0      0      0

       

                 
    0      0   a43
    0      0   a53
    0      0      0

     
   a44 a45 a46
   a54 a55 a56
   a64 a65 a66

       

 
If predators can prey on each other, then we have Example 
9: 
 
Example 9.  Community matrix  A(t,X)  is still  6x6, with 
even less 0 elements: 
 

                  
a11 a12 a13
a21 a22 a23
a31 a32 a33

    
      0      0   a16
      0      0   a26
      0      0   a36

       

                 
    0      0   a43
    0      0   a53
    0      0   a63

     
   a44 a45 a46
   a54 a55 a56
   a64 a65 a66

       

 
 
Model  #5  
 
       Finally we add environmental effects [1] into NLM 
by: 
 
S:   dX/dt = A(t,X) X + B(t,X)     
where B(t,X) models external effects of the environment 
(food, space, temperature, etc.).  Following previous 
examples, we can introduce environment into each of 
them. For example, let us look at Example 6, and add 
environmental vector B(t,X). 
 
Example 10.  Based on Example 6, we obtain community 
matrix as: 

A(t,X) = [  
a11(t, X) a12(t, X2) a13(t, X3)

a21(t, X1) a22(t, X) a23(t, X3)
a31(t, X1) a32(t, X2) a33(t, X)

 ]  

with species vector 
 
X = [ X1 ,  X2 , X3 ]T 
 
and corresponding environmental vector 
B(t,X)  = [ B1 (t,X),  B2 (t,X),  B3 (t,X) ]T 
or even simpler case, where each environmental 
component depends only on individual specie, i.e.  
 
B(t,X)  = [ B1 (t,X1),  B2 (t,X2),  B3 (t,X3) ]T 
 
Comment:  As the community matrices become larger and 
more complex, we note that  there are certain structural 
properties in the way "0" elements are distributed. This is 
calling for certain approaches described in [2,3,4] which 
take advantage of these special structures to simplify 
calculations and expose key structural properties of the 
underlying models. For example, there are elements of 
"overlapping" components in community matrices, which 
can be "expanded and contracted" [3,4] in building 
effective and simpler control schemes for multispecies 
communities. Similarly, as the number of species grow and 
community matrices become very large, simple shuffling 
of the position of species in the vector X may produce 
hierarchical structure of community matrix A [2] hence 
lending itself to much simpler (computationally) control 
schemes, as well as simpler stability analysis whereas the 
overall community matrix can be split into subsystems 
(agents) interconnected in a hierarchical manner. These are 
all topics for further research. 
 

4. EXPECTED RESULTS 

Our proposed approach in this paper, a step by step 
approach, using NLV (implemented in Matlab using the 
above equations), and in parallel, using an ad-hoc ABM 
(implemented in NetLogo) can accomplish several things:  
 
(i) Two models will be built step-by-step, and that will 
make it easier to understand various species 
interconnection effects.  For example as we build ABM 
using NetLogo, we will be able to separate very specific 
effects (per above examples) to very specific agent's 
characteristics, interactions, etc., as we would do the same 
in terms of NLV. This seems to be  an exceptionally strong 
proposition and robust method to gain insight into real 
multispecies communities where a number of prey and 
predator species exist and compete for the resources, and 
try to survive and multiply. 
 
(ii) This (parallel) approach adds to the overall 
rigorousness of the obtained results and their validation 
and interpretations, by meticulously checking and 
comparing results of ABM and NLV as more and more 
complex models are built. 
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(iii) Someplace along the way, as we make the models 
more and more complex, we expect an emergence of some 
indications which would help understand such properties 
as Gause's Law and Paradox of the Plankton,  Paradox of 
Enrichment (system level instability), Oksanen's 
description and trophic level numbers, and maybe more 
than that. This "emergence" would be via our ability to 
rigorously address stability of these  multi-species models 
and their interactions in the context of our understanding 
of  concepts of "complexity" and "stability", and their 
relation in multispecies environments. 
 
5. STABILITY CONSIDERATIONS 

There are some key existing mathematical results related 
to  NLV which can be used and which can accommodate 
multi-species modeling and stability in particular [1]. They 
give regions of stability estimates and point to specific 
reasons for instability and balance between stability and 
complexity.  These regions can be tested using both NLV 
and ABM approaches which will add a measure of 
confidence and practicality to the stability results. As 
several ecology researchers (not mathematicians) pointed 
out in literature, there seems to be a balance in competing 
multi-species environments between number of inter 
connections among the species versus interconnection 
strengths. Our (obvious) mathematical conjecture is as 
follows:  
 
If we denote by N number of interconnections for a given 
species (in a multi species  environment)  and by S  their 
intensity, then:   
 

N  times  S  =  Constant 
 
where equality sign is just an approximation and measure 
of closeness of two sides of the expression. Or we could 
rephrase this intuitive notion and add stochastic measure 
by using Expected Value E( ) as: 
 

N  times E(S)  =  E(Unknown Constant) 
 
where averaging may be over time, space, or some 
combination of the two. 
 
Our expectation is that we will come to this conclusion 
mathematically and using simulations via NLV and via 
ABM in parallel (as they reinforce and validate each 
other). 

6. CONCLUSION 

In this paper we aim to set the scene for a robust and 
effective, model based (NLV plus AMB) approach to build 
simple-to-complex predator-prey examples, which will 
lead us to explain and better understand various classic 
notions in multi-species models, such as Paradox of the 
Plankton. Other classic Complex Systems notions of 
emergence,  adaptivity, and so on,  may also be tackled 
and explained using proposed methodology of step-by-step 
model build-up and reinforcement using two very different 

approaches, i.e. mathematical NLV and ad-hoc ABM. In 
the research which follows, we will explore specific 
examples from this paper using Matlab and NetLogo 
modeling and tools and report the results in subsequent 
papers. 
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