
72

SOUTHEAST EUROPE JOURNAL OF SOFT COMPUTING
Available online at www.scjournal.com.ba

UML modeling for traveling salesman problem based on genetic
algorithms

Muzafer Saračević a , Sead Mašović b, Šemsudin Plojović c

a Faculty of Science and Mathematics,University of Niš, Serbia, muzafers@gmail.com

b Faculty of Science and Mathematics,University of Niš, Serbia, sekinp@gmail.com

c Department for Computer Sciences, University of Novi Pazar, Serbia, s.plojovic@uninp.edu.rs

Abstract — The major purpose of this paper is to present a way of solving problems through so-called visual
planning and programming using object-oriented concepts. This paper describes the process of UML modeling
for solving the traveling salesman problem using one of the metaheuristic-genetic algorithms. The analysis and
problem solving in this way has many advantages just because it provides a clear definition of requirements
and specific plan that we will later use to create specific applications. This is a good way to resolve because the
UML describes the source code, models help to visualize the system as it is or what it should be and allow you
to determine the structure and behavior of the system. Static and dynamic diagrams implemented in
developing tools for modeling, as well as a description of specific applications and testing are mentioned. With
this approach we describe modeling tool that can be used in the development of specific solutions and a way of
establishing explicit links between concepts and execution code.

Keywords — Genetic algorithms, Optimization, TSP, NP-complete problems

mailto:muzafers@gmail.com
mailto:sekinp@gmail.com
mailto:s.plojovic@uninp.edu.rs

73

INTRODUCTION

In this paper, we described the traveling salesman problem
(TSP), which belongs to the NP class - difficult problems
(Garey, 1979) which does not recognize a polynomial
algorithm (Cormen, 2001 and Eberle 2008). We talked about
modeling in the UML (Unified Modeling Language).
Heuristics used to solve this problem are genetic algorithms
which belong to the modern meta-heuristics. In the end we
specified a particular application that illustrates how these
algorithms work. The application is capable of setting the
necessary parameters and visual display of the optimal

solution with the diagram for the calculation of solutions
improvement.

Models document the decisions that we were making and
provide samples to guide us during the construction of the
system. Traveling salesman problem is a known problem in
the theory and practice. We can find attempts for solving this
problem in the distribution, collection or other ground
handling of the transport network (Applegate, 1998). While
trying to solve the problem we are striving to find the shortest
route that starts at a certain point, goes through all the other
points and ends at the initial one. The things that we optimize
may not only be the distance. Those can be travel expenses,
travel duration or some other variable. In the traveling
salesman problem there might be a stricter requirement to pass
through each point exactly once. It is then we are talking about
the classic traveling salesman problem.

In a genetic algorithm, a population of strings which
encode candidate solutions to an optimization problem,
evolves toward better solutions. Traditionally, solutions are
represented in binary as strings of 0s and 1s, but other
encodings are also possible. The evolution usually starts from
a population of randomly generated individuals and happens
in generations. In each generation, the fitness of every
individual in the population is evaluated, multiple individuals
are stochastically selected from the current population (based
on their fitness), and modified (recombined and possibly
randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory
fitness level has been reached for the population. If the
algorithm has terminated due to a maximum number of
generations, a satisfactory solution may or may not have been
reached.

In order to solve the above problem, there are other
methods that give good results. In works (Pilat 2002, Ngassa
2007, Baran 2005) a method of ant colony optimization
(ACO) is described. ACO is an algorithm which, by its mode,
falls into the category of evolutionary algorithms. Mode of ant
finding food, as a part of a large colony, is trying to be
imitated in the appropriate algorithm. In paper (Salajic 2001),
heuristics such as genetic algorithms and simulated tempering
are listed. Simulated tempering uses stochastic approach of
leading the search. This method allows the search to continue

in the direction of neighboring solutions, although the
objective function in this way gives worse results. The paper
(Thamilselvan 2009) refers to the so-called tabu search. Tabu
Search (TS-Tabu Search) is a method of local search in
combinatorial optimization, which shows very good results in
solving vehicle routing problem (VRP). The paper (Kratica
2000) gives parallel genetic algorithms for solving some NP-
complete problems, while the paper (Saiko 2005) gives a
concrete implementation in the Java language for the TSP that
is to be solved using genetic algorithms.

GENETIC ALGORITHMS AND TRAVELING
SALESMAN PROBLEM

First, we will mention some of the main features of graphs.

Graph G=(T,L) is an arranged pair (T,L) where T is the
set of vertices (nodes) and L system of arcs (links) of the
graph. Route is a series of vertices connected by arches. If the
route has all the arcs different it is called a chain, and if all the
vertices are different then it is a simple chain. Simple closed
chain is called a cycle. We will look at the traveling salesman
problem, by solving a concrete example, through a fully non-
oriented graph. This means that we chose the stricter
requirement, to pass through each node exactly once. Graph in
which it is possible to construct a cycle that goes through each
node is called a Hamiltonian graph.

Figure 1: Finding the shortest path

So, for the given set of cities and the travel cost between
each pair of the cities, the solution of traveling salesman
problem has to find the cheapest route to visit all cities exactly
once and in the end return to the starting city. The problem
can be extended by adding different limitations. This is how
time-dependent traveling salesman problem was created,
which with a minimum length of route, takes into account the
time needed to perform the travel and any periods of time
during which one part of the job has to be done (Held 1970).
Along to this definition, there is also an asymmetric traveling
salesman problem in which the time between city A and city B
is not the same as the time between city B and city A (Gutin
2002).

For solving the traveling salesman problem in recent times a
number of heuristic algorithms has been developed (Nilsson
2003). The first group consists of algorithms for the

74

construction route. Using this algorithm and based on the
known distances between each node, a route of a salesman is
constructed. The second group of heuristic algorithms is made
of those that serve to improve the existing route. With their
application we are improving the initial route (Lin 1973).
Heuristic algorithms for the construction of the route of a
salesman which are most commonly used are algorithms of
the nearest neighbor, nearest insertion, random insertion, and
Christofides's heuristic algorithm and so on (Litlle 1963). The
most important methods that we can specify to improve the
solutions are the genetic algorithms, tabu search, simulated
tempering, k-optimal heuristics (2-OPT, 3-OPT, k-OPT). The
first three methods are listed in contemporary metaheuristics.
A typical genetic algorithm requires:

• a genetic representation of the solution domain,
• a fitness function to evaluate the solution domain.

A standard representation of the solution is as an array of
bits. Arrays of other types and structures can be used in
essentially the same way. The main property that makes these
genetic representations convenient is that their parts are easily
aligned due to their fixed size, which facilitates simple
crossover operations. Variable length representations may also
be used, but crossover implementation is more complex in this
case. Tree-like representations are explored in genetic
programming and graph-form representations are explored in
evolutionary programming.

Practical application of genetic algorithms get another plus,
because in practice it is not necessary to find an optimal path,
but it's good enough to find a decent route and one that is
around optimum (Bonovska 2006). With all this it is possible
to combine genetic algorithms with methods of local optimum
search in order to convert a particular individual to its
optimum which is potentially global as well (Johnson 1995).
Such algorithms are called hybrid. An example of hybridity
achieved here is use of 2opt method for an operator of
mutation (White 2004) .

There are many possible ways to show this, for example,
(0,1,3,5,4,6,2,7). In this case, there are 8 cities to
visit and the sequence of visit is given in the order of numbers.
Another way to show this is a matrix display. The matrix is a
type of n n× and it is actually the adjacency matrix in the
graph that is obtained by connecting all cities. If there is a way
out of town A to town B then there is 1 in the place of
M[A,B], instead of number 0. In the present modeling and the
application we have provided the following combination of
operators:

• the natural selection (elimination),
• 2opt methods (mutation) and
• Greedy Subtour crossover (crossing).

Operators of selection

In this particular application we used the so-called natural

selection. From the initial population we eliminate
/100eR M P= × individuals. Individuals are eliminated so as

to preserve the diversity of the population or eliminate similar
individuals. At the beginning, the entire population is sorted
out according to the fitness function.

SOURCE CODE FOR SELECTION METHOD:

public static void selection() {
 int Vr_popul[] = new int[nM];
 double d[][] = new double[nM][nB];
 double e[] = new double[nM];
 for (int i=0; i<nM; ++i){
 for (int l=0; l<nB; ++l)

d[i][l] = c[i][l];
 e[i] = f[i]; Vr_popul[i] = i;
 }
 shuffle(Vr_popul); int k = 0;
 for (int i=0; i<nA; ++i) {
 if (e[Vr_popul[k]] < e[Vr_popul[k+1]]){

for (int l=0; l<nB; ++l)
c[i][l]=d[Vr_popul[k]][l];

 f[i] = e[Vr_popul[k]];
 }
 else {

for (int l=0; l<nB; ++l)
c[i][l]=d[Vr_popul[k+1]][l];

 f[i] = e[Vr_popul[k+1]];
 }
 k += 2; }
}

After that we compare the similarity of fitness values of
neighboring individuals and if their difference is less than
predefined small positive real number ε, we eliminate one of
the n - th. This is repeated until the number of eliminated
individuals is less than R. If after this procedure the number of
individuals that we eliminated is still less than R, then we
eliminate individuals with worse fitness value function. The
way selection operator works is realized through the UML
activity diagrams [Appendix].

Operators of mutation

We used the so-called 2opt method for the operator of
mutation. This method is one of the most popular methods of
local search in algorithms which solve the traveling salesman
problem. The algorithm is described as follows: "Imagine the
way from city A to city B and from city C to city D. Then we
check whether AB + CD> AC + BD. If it is, then it comes to the
replacement as shown in Figure 1. This is repeated as long as
it possible to shorten the tour.“ The way this operator works
is realized through the UML activity diagram [Appendix].

SOURCE CODE FOR MUTATION METHOD:

public static void mutation() {
 Random rVrednost = new Random();
 double r[] = new double[nB];
 for (int i=0; i<ne; ++i) {
 for (int l=0; l<nB; ++l) r[l] = c[i][l];
 int mb = (int)(nB*pMutate+1);

75

 for (int j=0; j<mb; ++j){
int ib =
(int)(nB*rVrednost.nextDouble());

 r[ib] = rVrednost.nextDouble(); }
 double e = cena(r);
 if (e<f[i]){
 for (int l=0; l<nB; ++l)

c[i][l] = r[l]; f[i] = e; }
}
 int mmax = (int)((nM-ne)*nB*pMutate+1);
 for (int i=0; i<mmax; ++i) {

int ig = (int)((nM-ne)*rVrednost.
nextDouble()+ne);
int ib =
(int)(nB*rVrednost.nextDouble());

 c[ig][ib] = rVrednost.nextDouble(); }
}

 Operators of crossing

We used the GSX (greedy subtour crossover) for the
intersection operator which tries to take the longest subset of
the cities from both parents. In this way the genetic material of
the parents is best preserved. It actually means the following,
if there are two chromosomes so that both contain the subsets
the optimal tour, with this crossing we can very quickly get to
the junction of those parts which of course leads to faster
convergence of the problem.

SOURCE CODE FOR CROSSING METHOD:

public static void crossing() {
 Random rVrednost = new Random();
 int k = 0;
 for (int i=nA; i<nA+nA/2; ++i) {

int nx = 1 + (int)(nB*rVrednost.
nextDouble());

 for (int l=0; l<nx; ++l){
 c[i][l] = c[k][l];

c[i+nA/2][l] = c[k+1][l]; }
 for (int l=nx; l<nB; ++l){
 c[i][l] = c[k+1][l];

c[i+nA/2][l] = c[k][l]; }
 k += 2; }
}

In particular, this method is to take two randomly selected
points, and replace their places, but provided only if the
mutation route is less longer than the one before the mutation.
The way this operator works is realized through the UML
activity diagrams and sequence [Appendix].

The process of finding solutions and improving the initial
solution using the GA

If, for example, we form 26 points (mark them with

A,B,C,...,Z), also mention x and y coordinates. First,we
determine the starting point (point A, for example), which is
the focus of points. Then we calculate all the distances from

the starting point to other points. In this way, we’re forming
the so-called distance matrix. Then there is a minimum for
each line separately, or at least we’re looking for the least
remote point from point A, then the least remote point from
point B and so on. The exception is if the point C is at least
distant point from point A and again the least distant point
from the point F. In this case we’re seeking for the second
minimum, therefore, we omit the used point (specifically in
this example we omit the point C, because there is already a
relation A to C, and in order to respect the condition that each
city is visited only once, except of course the starting point
from which all starts and ends). Then we form the route. The
length of route at the departure point is 0, and then we add to
it to the distance from point A and the point at least distant
from it. Then, from that point (which is closest to the first), we
look for at least distant point to the second point, and we of
course leave out the used point A. And so on. So we look for
the points that are free and never return to the previous one.
And so on until the end which means to the last point that is of
course connected to the first one. Sum all these distances is the
initial solution.

For improving the initial solution, we used genetic
algorithms. The steps for the application of genetic algorithms
are as follows. At each step (iteration - t) we create a
population of individuals that represent potential solutions
P(t). Each individual represents a potential solution to the
problem and for each one we calculate the benefit (fitness
function that determines whether one solution is better than
others, it is calculated for each individual and depends on the
problem that is solved) and select the best individuals for the
next generation and the bad ones disappear. Crossing
combines the genetic material of two parents in order to obtain
superior successor (we also choose a random number r and if
it is smaller than the crossing probability (Pc) than the
crossing is performed. Mutation is done on a small fraction of
the population to avoid instability of the procedure (we choose
a random number r and if it is smaller than the probability of
mutation (mP) we change the genes.

THE PROCESS MODELING IN UML

UML standard that is applied to the object-oriented

approach provides appropriate views of the system, so that are
in all terms system can be described from a static (structural)
and dynamic aspect. It is used to design software which needs
a plan, offers the possibility of visualization in multiple
dimensions and levels of detail and is suitable for upgrading
old systems. It is quite certain, that such action will simplify
the process of obtaining a solution.

This paper presents modeling first through the static and
then dynamic diagrams. This is a good way to resolve because
the UML describes the source code, models help to visualize
the system as it is or what it should be and allow you to
determine the structure and behavior of the system. Models
document the decisions that we were making and provide
solutions to guide us during the construction of the system and
specific applications.

76

The already mentioned diagram 1 of cases of usage is to
represent the functional requirements that the system needs to
fulfill. It is composed of a single actor and the cases of usage
arising from the description of genetic algorithms
(initialization, evaluation, selection, crossing and mutation).
All cases of use in the appropriate context, and there is
interaction between them.

Activity diagram 2 is actions that are performed, namely,
this diagram gives a general view of the activities that are
further decomposed. Then the following diagrams represent
the decomposition of the activities mentioned to sub-activities
containing concrete actions (Diagram 3 and 4). Diagram 3
gives a visual representation of how the process of selection is
calculated, so-called, fitness function and probability for each
member individually, while in the diagram 4 we stated how
the use of the obtained values from previous activity and
selection procedure of members is based on their probability.

The sequence diagram 5 presents the so-called GSX
intersection operator and the way it works. This diagram
presents mutual interaction among objects (parent, child,
methods GSX) and which generally represents a series of
exchanges of messages between classes, with the sequence
and time course of sending and receiving messages clearly
marked. Diagrams 6 and 7 represent the actions that are
carried out within the activity of "crossing" and describe GSX
operator from another aspect. In the previous sequence
diagram, the order and the interaction between objects that
participate in these activities are clearly indicated, and these
diagrams show that the emphasis is on the actions and their
implementation and the conditions that exist. Diagram 8 is
decomposition of "mutations" activities and represents the
actions performed within this operator.

DESCRIPTION OF THE APPLICATION, TESTING AND
RESULTS

The application we have provided is designed in the DELPHI
software package, and is based on previously described UML
diagrams. The design of this application is mentioned in
appendix [Figure 2] for the traveling salesman problem, which
contains the relevant sections (panels).

Figure 2: Application TSP

The largest part of the application contains a panel where
the nodes are displayed. In the upper part of the application,
there is a part of the required parameters input [Figure 3]
where there following options are given:

• input of number of points,
• number of population,
• the percentage of selection, mutation, crossing,
• number of generations during the execution,
• individual performance review and
• button for the total number of generations.

Figure 3: Panels

We have also mentioned a diagram of a graphical

representation of relations between the initial lengths of the
route and obtained optimum length of the route since the last
generation. At the bottom of the application there is a status
bar displaying the current number of generation executed. In
the left part of the application [Figure 4] there is a panel that
displays the times for each route (path length).

Figure 4: Scroll population

The picture [Figure 5], shows how the application works,

i.e. while being tested in a few generations, we can see how
we get the optimal solution. We input the following
parameters:

• number of points = 40,
• number of population = 50,
• number of generations = 50,
• parameters that are specified for GA operators 50,

50, 20

77

and we can see in the picture shown below the initial solution,
solution during the performance and in the end the optimal
solution.

Figure 5: The process of finding the optimal solution of
TSP application

Here are the results table for additional testing:

TEST RESULTS - THE FIRST PART OF THE TABLE

number
of points

number
of

generati
ons

S M C
random

path
(A)

optimal
path
(B)

50 1000 50 50 20 299.92 64.47
50 1000 80 80 50 276.24 60.33

100 1500 50 50 20 583.41 108.25
500 2000 50 50 20 2620.13 894.01
500 2000 80 80 20 2798.21 990.87
750 2500 50 50 20 4078.13 1396.1
900 3000 30 30 20 4917.41 2369.3

1000 3000 50 50 20 5319.07 2097.1

TEST RESULTS - THE SECOND PART OF THE TABLE

number
of points

shortened for
(A-B) % the length

performance of TSP
50 235.45 78.50 0:21
50 215.91 78.16 0:22

100 475.16 81.44 0:41
500 1726.12 65.88 6:48
500 1807.34 64.59 6:56
750 2682.09 65.77 8:51
900 2548.05 51.82 11:35

1000 3221.93 60.57 15:02

In the second picture [Figure 6], we specified the comparison
between the initial and optimal solution and we can see that

the length of time decreased to 73.04% (from 234.69 to
53.05).

Figure 6: The results of this testing (ratio A,B)

CONCLUSION

 The application of genetic algorithms is very wide, they are
actually only a principle, idea or policy to solve a problem in a
different way than traditional methods, because it's all up to
the user to decide on whether to develop his own algorithm, or
will he try to adapt his problem to some existing algorithm
that solves a similar class of problems. Also, we see that
genetic algorithms are useful for those classes of problems
that cannot be solved in classical ways. Although the speed is
not at the top, by the size of the area they search through they
are far better than any other method. It is very well seen in the
example of the traveling salesman problem.
 We have listed UML modeling as specific for these
problems, and the main aim is to present detailed procedure
and the functioning of genetic algorithms and a way of solving
problems by applying them. Finally, practical work of this
application has shown that one of the most important things
for successful work of this algorithm is choosing the correct
genetic operators and parameters that will determine the
behavior of these operators. If they are correctly set, the
algorithm gives fantastic results, but if the choice of these
operators is not advised, algorithm will end up working in a
local optimum, closer or further from the true optimum,
depending on the parameters.

REFERENCES

M. Garey, D. Johnson (1979), “Computers and Intractability: A
Guide to the Theory of NP-Completeness”. W.H. Freeman.

T. Cormen, C. Leiserson, R. Rivest, C. Stein (2001), Introduction to
Algorithms, MIT Press and McGraw-Hill, second edition.

M. Pilat, T. White (2002), Using genetic algorithms to optimize
ACS-TSP, Lecture Notes in Computer Science, v. 2463, pp. 282-287.

J. Ngassa, J. Kierkegaard (2007), ACO and TSP, Roskilde University,
Bachelor of Computer Sciences, 2nd module.

78

I.Salajic, J.Nikolic, M. Žoljom (2001), TSP – Problem trgovackog
punika na potpunom grafu, primjenom genetskog algoritma (GA) i
algoritma simuliranog kaljenja (SA).

R.Thamilselvan, P. Balasubramanie (2009), A Genetic Algorithm
with a Tabu Search for Travelling Salesman Problem. Int. Journal of
R.T. in Engineering, Vol. 1, pp. 607-610.

J. Kratica (2000), Paralelizacija genetskih algoritama za rešavanje
nekih np - kompletnih problema, Doktorska disertacija, Beograd.

D. Saiko (2005), Traveling Salesman Problem , Java Genetic
Algorithm Solution.

B. Barán, O. Gomez (2005), Omicron ACO. A New Ant Colony
Optimization Algorithm, CLEI Electron. J. 8 (1).

G. Gutin, A.Punnen (2002), The traveling salesman problem and its
variations, Kluwer, Dordrecht.

S. Eberle (2008), A Polynomial Algorithm for a NP-hard to Solve
Optimization Problem, Dissertation der Fakultät für Physik der
Ludwig-Maximilians-Universität München.

C. Nilsson (2003), Heuristics for the traveling salesman problem.
Tech. Report, Linköping University, Sweden.

M. Held, R. Karp (1970), The Traveling Salesman Problem and
Minimum Spanning Trees, Operations Research 18.

J. Little, K. Murty, D. Sweeney, C. Karel (1963). An algorithm for
the traveling salesman problem. Operations research, 11 (6), pp.
972-989.

C. White, G. Yen (2004), A Hybrid Evolutionary Algorithm for
Traveling Salesman Problem, Evolutionary Computation, 2004.
CEC2004. Congress on, Vol.2, pp. 1473 – 1478.

P. Borovska (2006)., Solving the Travelling Salesman Problem in
Parallel by Genetic Algorithm on Multicomputer Cluster,
International Conference on Computer Systems.

Applegate, D., Bixby, R., Chvátal, V., Cook, W (1998), On the
solution of traveling salesman problems. Documenta Mathematica
Extra Volume (Proceedings of the International Congress of
Mathematicians), pp. 645-656.

D. Johnson, L. McGeoch (1995), The traveling salesman problem: a
case study in local optimization.

S. Lin, B. Kernighan (1973), An effective heuristic algorithm for the
traveling-salesman problem. Operations research, 21(2), pp. 498-
516.

Graph Theory, http://en.wikipedia.org/wiki/Graph_theory

Traveling salesman problem: http://www.tsp.gatech.edu/

APPENDIX – UML DIAGRAMS

Diagram 1: Use case diagram

Diagram 2: Activity diagram

Diagram 3: Activity diagram - Generic selection

procedure (fitness, probability)

http://en.wikipedia.org/wiki/Graph_theory
http://www.tsp.gatech.edu/

79

Diagram 4: Activity diagram - Generic selection procedure

Diagram 5: Sequence diagram - Greedy Subtour
Crossover (GSX)

Diagram 6: Activity diagram - Greedy Subtour Crossover

(GSX)

Diagram 7: Activity diagram – Greedy Subtour Crossover

(GSX)

Diagram 8: Mutation by 2-opt

	Introduction
	GENETIC ALGORITHMS AND TRAVELING SALESMAN PROBLEM
	Operators of selection
	Operators of mutation
	Operators of crossing
	The process of finding solutions and improving the initial solution using the GA

	THE PROCESS MODELING IN UML
	DESCRIPTION OF THE APPLICATION, TESTING AND RESULTS
	CONCLUSION
	References
	appendix – uml diagrams

