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Abstract  —  The major purpose of this paper is to present a way of solving problems through so-called visual 
planning and programming using object-oriented concepts. This paper describes the process of UML modeling 
for solving the traveling salesman problem using one of the metaheuristic-genetic algorithms. The analysis and 
problem solving in this way has many advantages just because it provides a clear definition of requirements 
and specific plan that we will later use to create specific applications. This is a good way to resolve because the 
UML describes the source code, models help to visualize the system as it is or what it should be and allow you 
to determine the structure and behavior of the system. Static and dynamic diagrams implemented in 
developing tools for modeling, as well as a description of specific applications and testing are mentioned. With 
this approach we describe modeling tool that can be used in the development of specific solutions and a way of 
establishing explicit links between concepts and execution code.  
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INTRODUCTION  
 

In this paper, we described the traveling salesman problem 
(TSP), which belongs to the NP class - difficult problems 
(Garey, 1979) which does not recognize a polynomial 
algorithm (Cormen, 2001 and Eberle 2008). We talked about 
modeling in the UML (Unified Modeling Language). 
Heuristics used to solve this problem are genetic algorithms 
which belong to the modern meta-heuristics. In the end we 
specified a particular application that illustrates how these 
algorithms work. The application is capable of setting the 
necessary parameters and visual display of the optimal  

solution with the diagram for the calculation of solutions 
improvement.  

Models document the decisions that we were making and 
provide samples to guide us during the construction of the 
system. Traveling salesman problem is a known problem in 
the theory and practice. We can find attempts for solving this 
problem in the distribution, collection or other ground 
handling of the transport network (Applegate, 1998). While 
trying to solve the problem we are striving to find the shortest 
route that starts at a certain point, goes through all the other 
points and ends at the initial one. The things that we optimize 
may not only be the distance. Those can be travel expenses, 
travel duration or some other variable. In the traveling 
salesman problem there might be a stricter requirement to pass 
through each point exactly once. It is then we are talking about 
the classic traveling salesman problem. 

In a genetic algorithm, a population of strings which 
encode candidate solutions  to an optimization problem, 
evolves toward better solutions. Traditionally, solutions are 
represented in binary as strings of 0s and 1s, but other 
encodings are also possible. The evolution usually starts from 
a population of randomly generated individuals and happens 
in generations. In each generation, the fitness of every 
individual in the population is evaluated, multiple individuals 
are stochastically selected from the current population (based 
on their fitness), and modified (recombined and possibly 
randomly mutated) to form a new population. The new 
population is then used in the next iteration of the algorithm. 
Commonly, the algorithm terminates when either a maximum 
number of generations has been produced, or a satisfactory 
fitness level has been reached for the population. If the 
algorithm has terminated due to a maximum number of 
generations, a satisfactory solution may or may not have been 
reached. 

In order to solve the above problem, there are other 
methods that give good results. In works (Pilat 2002, Ngassa 
2007, Baran 2005)  a method of ant colony optimization 
(ACO) is described. ACO is an algorithm which, by its mode, 
falls into the category of evolutionary algorithms. Mode of ant 
finding food, as a part of a large colony, is trying to be 
imitated in the appropriate algorithm. In paper (Salajic 2001), 
heuristics such as genetic algorithms and simulated tempering 
are listed. Simulated tempering uses stochastic approach of 
leading the search. This method allows the search to continue 

in the direction of neighboring solutions, although the 
objective function in this way gives worse results. The paper 
(Thamilselvan 2009) refers to the so-called tabu search. Tabu 
Search (TS-Tabu Search) is a method of local search in 
combinatorial optimization, which shows very good results in 
solving vehicle routing problem (VRP). The paper (Kratica 
2000) gives parallel genetic algorithms for solving some NP-
complete problems, while the paper (Saiko 2005) gives a 
concrete implementation in the Java language for the TSP that 
is to be solved using genetic algorithms. 

 

GENETIC ALGORITHMS AND TRAVELING 
SALESMAN PROBLEM 

 
First, we will mention some of the main features of graphs. 

Graph G=(T,L) is an arranged pair (T,L) where T is the 
set of vertices (nodes) and L system of arcs (links) of the 
graph. Route is a series of vertices connected by arches. If the 
route has all the arcs different it is called a chain, and if all the 
vertices are different then it is a simple chain. Simple closed 
chain is called a cycle. We will look at the traveling salesman 
problem, by solving a concrete example, through a fully non-
oriented graph. This means that we chose the stricter 
requirement, to pass through each node exactly once. Graph in 
which it is possible to construct a cycle that goes through each 
node is called a Hamiltonian graph. 
 

 
 

Figure 1: Finding the shortest path 
 

So, for the given set of cities and the travel cost between 
each pair of the cities, the solution of traveling salesman 
problem has to find the cheapest route to visit all cities exactly 
once and in the end return to the starting city. The problem 
can be extended by adding different limitations. This is how 
time-dependent traveling salesman problem was created, 
which with a minimum length of route, takes into account the 
time needed to perform the travel and any periods of time 
during which one part of the job has to be done (Held 1970). 
Along to this definition, there is also an asymmetric traveling 
salesman problem in which the time between city A and city B 
is not the same as the time between city B and city A (Gutin 
2002). 

For solving the traveling salesman problem in recent times a 
number of heuristic algorithms has been developed (Nilsson 
2003). The first group consists of algorithms for the 
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construction route. Using this algorithm and based on the 
known distances between each node, a route of a salesman is 
constructed. The second group of heuristic algorithms is made 
of those that serve to improve the existing route. With their 
application we are improving the initial route (Lin 1973). 
Heuristic algorithms for the construction of the route of a 
salesman which are most commonly used are algorithms of 
the nearest neighbor, nearest insertion, random insertion, and 
Christofides's heuristic algorithm and so on (Litlle 1963). The 
most important methods that we can specify to improve the 
solutions are the genetic algorithms, tabu search, simulated 
tempering, k-optimal heuristics (2-OPT, 3-OPT, k-OPT). The 
first three methods are listed in contemporary metaheuristics. 
A typical genetic algorithm requires: 

• a genetic representation of the solution domain, 
• a fitness function to evaluate the solution domain. 

A standard representation of the solution is as an array of 
bits. Arrays of other types and structures can be used in 
essentially the same way. The main property that makes these 
genetic representations convenient is that their parts are easily 
aligned due to their fixed size, which facilitates simple 
crossover operations. Variable length representations may also 
be used, but crossover implementation is more complex in this 
case. Tree-like representations are explored in genetic 
programming and graph-form representations are explored in 
evolutionary programming. 

Practical application of genetic algorithms get another plus, 
because in practice it is not necessary to find an optimal path, 
but it's good enough to find a decent route and one that is 
around optimum (Bonovska 2006). With all this it is possible 
to combine genetic algorithms with methods of local optimum 
search in order to convert a particular individual to its 
optimum which is potentially global as well (Johnson 1995). 
Such algorithms are called hybrid. An example of hybridity 
achieved here is use of 2opt method for an operator of 
mutation (White 2004) .   

There are many possible ways to show this, for example, 
(0,1,3,5,4,6,2,7). In this case, there are 8 cities to 
visit and the sequence of visit is given in the order of numbers. 
Another way to show this is a matrix display. The matrix is a 
type of  n n× and it is actually the adjacency matrix in the 
graph that is obtained by connecting all cities. If there is a way 
out of town A to town B then there is 1 in the place of  
M[A,B], instead of number 0. In the present modeling and the 
application we have provided the following combination of 
operators:  

• the natural selection (elimination),  
• 2opt methods (mutation) and  
• Greedy Subtour crossover (crossing). 

 

Operators of selection  
 
In this particular application we used the so-called natural 

selection. From the initial population we eliminate  
/100eR M P= × individuals. Individuals are eliminated so as 

to preserve the diversity of the population or eliminate similar 
individuals. At the beginning, the entire population is sorted 
out according to the fitness function.  

 
SOURCE CODE FOR SELECTION METHOD: 
 
public static void selection() { 
    int Vr_popul[] = new int[nM]; 
    double d[][] = new double[nM][nB]; 
    double e[] = new double[nM]; 
    for (int i=0; i<nM; ++i){ 
      for (int l=0; l<nB; ++l)  

d[i][l] = c[i][l]; 
      e[i] = f[i]; Vr_popul[i] = i; 
    } 
    shuffle(Vr_popul); int k = 0; 
    for (int i=0; i<nA; ++i) { 
      if (e[Vr_popul[k]] < e[Vr_popul[k+1]]){ 

for (int l=0; l<nB; ++l)  
c[i][l]=d[Vr_popul[k]][l]; 

        f[i] = e[Vr_popul[k]]; 
      } 
      else { 

for (int l=0; l<nB; ++l)  
c[i][l]=d[Vr_popul[k+1]][l]; 

        f[i] = e[Vr_popul[k+1]]; 
      } 
      k += 2; }     
} 
 
After that we compare the similarity of fitness values of 
neighboring individuals and if their difference is less than 
predefined small positive real number ε, we eliminate one of 
the n - th. This is repeated until the number of eliminated 
individuals is less than R. If after this procedure the number of 
individuals that we eliminated is still less than R, then we 
eliminate individuals with worse fitness value function. The 
way selection operator works is realized through the UML 
activity diagrams [Appendix]. 
 

Operators of mutation  
 
We used the so-called 2opt method for the operator of 
mutation. This method is one of the most popular methods of 
local search in algorithms which solve the traveling salesman 
problem. The algorithm is described as follows: "Imagine the 
way from city A to city B and from city C to city D. Then we 
check whether AB + CD> AC + BD. If it is, then it comes to the 
replacement as shown in Figure 1. This is repeated as long as 
it possible to shorten the tour.“  The way this operator works 
is realized through the UML activity diagram [Appendix]. 
 
SOURCE CODE FOR MUTATION METHOD: 
 
public static void mutation() { 
    Random rVrednost = new Random(); 
    double r[] = new double[nB]; 
    for (int i=0; i<ne; ++i) { 
      for (int l=0; l<nB; ++l) r[l] = c[i][l]; 
      int mb = (int)(nB*pMutate+1); 
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      for (int j=0; j<mb; ++j){ 
int ib =  
(int)(nB*rVrednost.nextDouble()); 

        r[ib] = rVrednost.nextDouble(); } 
      double e = cena(r); 
      if (e<f[i]){ 
        for (int l=0; l<nB; ++l)  

c[i][l] = r[l]; f[i] = e; }  
} 
    int mmax = (int)((nM-ne)*nB*pMutate+1); 
    for (int i=0; i<mmax; ++i) { 

int ig = (int)((nM-ne)*rVrednost. 
nextDouble()+ne); 
int ib = 
(int)(nB*rVrednost.nextDouble()); 

      c[ig][ib] = rVrednost.nextDouble(); } 
} 
 

 Operators of crossing  
 
We used the GSX (greedy subtour crossover) for the 
intersection operator which tries to take the longest subset of 
the cities from both parents. In this way the genetic material of 
the parents is best preserved. It actually means the following, 
if there are two chromosomes so that both contain the subsets 
the optimal tour, with this crossing we can very quickly get to 
the junction of those parts which of course leads to faster 
convergence of the problem.  
 
SOURCE CODE FOR CROSSING METHOD: 

 
public static void crossing() { 
    Random rVrednost = new Random(); 
    int k = 0; 
    for (int i=nA; i<nA+nA/2; ++i) { 

int nx = 1 + (int)(nB*rVrednost. 
nextDouble()); 

      for (int l=0; l<nx; ++l){ 
         c[i][l] = c[k][l];  

c[i+nA/2][l] = c[k+1][l]; } 
      for (int l=nx; l<nB; ++l){ 
         c[i][l] = c[k+1][l];  

c[i+nA/2][l] = c[k][l]; } 
      k += 2; }      
} 
 
In particular, this method is to take two randomly selected 
points, and replace their places, but provided only if the 
mutation route is less longer than the one before the mutation. 
The way this operator works is realized through the UML 
activity diagrams and sequence [Appendix]. 
 

The process of finding solutions and improving the initial 
solution using the GA 
 
If, for example, we form 26 points (mark them with 

A,B,C,...,Z), also mention x and y coordinates. First,we 
determine the starting point (point A, for example), which is 
the focus of points. Then we calculate all the distances from 

the starting point to other points. In this way, we’re forming 
the so-called distance matrix. Then there is a minimum for 
each line separately, or at least we’re looking for the least 
remote point from point A, then the least remote point from 
point B and so on. The exception is if the point C is at least 
distant point from point A and again the least distant point 
from the point F. In this case we’re seeking for the second 
minimum, therefore, we omit the used point (specifically in 
this example we omit the point C, because there is already a 
relation A to C, and in order to respect the condition that each 
city is visited only once, except of course the starting point 
from which all starts and ends). Then we form the route.  The 
length of route at the departure point is 0, and then we add to 
it to the distance from point A and the point at least distant 
from it. Then, from that point (which is closest to the first), we 
look for at least distant point to the second point, and we of 
course leave out the used point A. And so on. So we look for 
the points that are free and never return to the previous one. 
And so on until the end which means to the last point that is of 
course connected to the first one. Sum all these distances is the 
initial solution. 

For improving the initial solution, we used genetic 
algorithms. The steps for the application of genetic algorithms 
are as follows. At each step (iteration - t) we create a 
population of individuals that represent potential solutions 
P(t). Each individual represents a potential solution to the 
problem and for each one we calculate the benefit (fitness 
function that determines whether one solution is better than 
others, it is calculated for each individual and depends on the 
problem that is solved) and select the best individuals for the 
next generation and the bad ones disappear. Crossing 
combines the genetic material of two parents in order to obtain 
superior successor (we also choose a random number r and if 
it is smaller than the crossing probability (Pc) than the 
crossing is performed. Mutation is done on a small fraction of 
the population to avoid instability of the procedure (we choose 
a random number r and if it is smaller than the probability of 
mutation ( mP ) we change the genes. 

 
THE PROCESS MODELING IN UML  

 
UML standard that is applied to the object-oriented 

approach provides appropriate views of the system, so that are 
in all terms system can be described from a static (structural) 
and dynamic aspect. It is used to design software which needs 
a plan, offers the possibility of visualization in multiple 
dimensions and levels of detail and is suitable for upgrading 
old systems. It is quite certain, that such action will simplify 
the process of obtaining a solution.  

This paper presents modeling first through the static and 
then dynamic diagrams. This is a good way to resolve because 
the UML describes the source code, models help to visualize 
the system as it is or what it should be and allow you to 
determine the structure and behavior of the system. Models 
document the decisions that we were making and provide 
solutions to guide us during the construction of the system and 
specific applications. 
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The already mentioned diagram 1 of cases of usage is to 
represent the functional requirements that the system needs to 
fulfill. It is composed of a single actor and the cases of usage 
arising from the description of genetic algorithms 
(initialization, evaluation, selection, crossing and mutation). 
All cases of use in the appropriate context, and there is 
interaction between them.  

Activity diagram 2 is actions that are performed, namely, 
this diagram gives a general view of the activities that are 
further decomposed. Then the following diagrams represent 
the decomposition of the activities mentioned to sub-activities 
containing concrete actions (Diagram 3 and 4). Diagram 3 
gives a visual representation of how the process of selection is 
calculated, so-called, fitness function and probability for each 
member individually, while in the diagram 4 we stated how 
the use of the obtained values from previous activity and 
selection procedure of members is based on their probability.  

The sequence diagram 5 presents the so-called GSX 
intersection operator and the way it works. This diagram 
presents mutual interaction among objects (parent, child, 
methods GSX) and which generally represents a series of 
exchanges of messages between classes, with the sequence 
and time course of sending and receiving messages clearly 
marked. Diagrams 6 and 7 represent the actions that are 
carried out within the activity of "crossing" and describe GSX 
operator from another aspect. In the previous sequence 
diagram, the order and the interaction between objects that 
participate in these activities are clearly indicated, and these 
diagrams show that the emphasis is on the actions and their 
implementation and the conditions that exist. Diagram 8 is 
decomposition of "mutations" activities and represents the 
actions performed within this operator.  
 

DESCRIPTION OF THE APPLICATION, TESTING AND 
RESULTS 

 
The application we have provided is designed in the DELPHI 
software package, and is based on previously described UML 
diagrams. The design of this application is mentioned in 
appendix [Figure 2] for the traveling salesman problem, which 
contains the relevant sections (panels).  

 
Figure 2: Application TSP 

The largest part of the application contains a panel where 
the nodes are displayed. In the upper part of the application, 
there is a part of the required parameters input [Figure 3] 
where there following options are given:  

• input of number of points,  
• number of population,  
• the percentage of selection, mutation, crossing,  
• number of generations during the execution,   
• individual performance review and  
• button for the total number of generations.  

 

 

 
Figure 3: Panels 

 
We have also mentioned a diagram of a graphical 

representation of relations between the initial lengths of the 
route and obtained optimum length of the route since the last 
generation. At the bottom of the application there is a status 
bar displaying the current number of generation executed. In 
the left part of the application [Figure 4] there is a panel that 
displays the times for each route (path length).  
 

 
Figure 4: Scroll population 

 
The picture [Figure 5], shows how the application works, 

i.e. while being tested in a few generations, we can see how 
we get the optimal solution.  We input the following 
parameters:  

• number of points = 40,  
• number of population = 50,  
• number of generations = 50,  
• parameters that are specified for GA operators 50, 

50, 20  
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and we can see in the picture shown below the initial solution, 
solution during the performance and in the end the optimal 
solution.  

 

 
 

Figure 5: The process of  finding the optimal solution of 
TSP application 

 
 
Here are the results table for additional testing: 
 

TEST RESULTS - THE FIRST PART OF THE TABLE 
 

number 
of points 

number 
of 

generati
ons 

S M C 
random 

path 
(A) 

optimal 
path 
(B) 

50 1000 50 50 20 299.92 64.47 
50 1000 80 80 50 276.24 60.33 

100 1500 50 50 20 583.41 108.25 
500 2000 50 50 20 2620.13 894.01 
500 2000 80 80 20 2798.21 990.87 
750 2500 50 50 20 4078.13 1396.1 
900 3000 30 30 20 4917.41 2369.3 

1000 3000 50 50 20 5319.07 2097.1 
 

TEST RESULTS - THE SECOND PART OF THE TABLE 
 

number 
of points 

shortened for 
(A-B)  % the length 

performance of TSP 
50 235.45 78.50 0:21 
50 215.91 78.16 0:22 

100 475.16 81.44 0:41 
500 1726.12 65.88 6:48 
500 1807.34 64.59 6:56 
750 2682.09 65.77 8:51 
900 2548.05 51.82 11:35 

1000 3221.93 60.57 15:02 
 
In the second picture [Figure 6], we specified the comparison 
between the initial and optimal solution and we can see that 

the length of time decreased to 73.04% (from 234.69 to 
53.05). 
 

 
 

Figure 6: The results of this testing (ratio A,B) 
 

 

CONCLUSION 
 
   The application of genetic algorithms is very wide, they are 
actually only a principle, idea or policy to solve a problem in a 
different way than traditional methods, because it's all up to 
the user to decide on whether to develop his own algorithm, or 
will he try to adapt his problem to some existing algorithm 
that solves a similar class of problems. Also, we see that 
genetic algorithms are useful for those classes of problems 
that cannot be solved in classical ways. Although the speed is 
not at the top, by the size of the area they search through they 
are far better than any other method. It is very well seen in the 
example of the traveling salesman problem.  
   We have listed UML modeling as specific for these 
problems, and the main aim is to present detailed procedure 
and the functioning of genetic algorithms and a way of solving 
problems by applying them. Finally, practical work of this 
application has shown that one of the most important things 
for successful work of this algorithm is choosing the correct 
genetic operators and parameters that will determine the 
behavior of these operators. If they are correctly set, the 
algorithm gives fantastic results, but if the choice of these 
operators is not advised, algorithm will end up working in a 
local optimum, closer or further from the true optimum, 
depending on the parameters. 
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APPENDIX – UML DIAGRAMS 
 

 
Diagram 1: Use case diagram 

 

 
Diagram 2: Activity diagram 

 

 

 
Diagram 3: Activity diagram - Generic selection 

procedure (fitness, probability) 

http://en.wikipedia.org/wiki/Graph_theory
http://www.tsp.gatech.edu/
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Diagram 4: Activity diagram - Generic selection procedure 
 

 
Diagram 5: Sequence diagram - Greedy Subtour 
Crossover (GSX) 
 

 
Diagram 6: Activity diagram - Greedy Subtour Crossover 

(GSX) 

 

 
Diagram 7: Activity diagram – Greedy Subtour Crossover 

(GSX) 

 
Diagram 8: Mutation by 2-opt

 


	Introduction
	GENETIC ALGORITHMS AND TRAVELING SALESMAN PROBLEM
	Operators of selection
	Operators of mutation
	Operators of crossing
	The process of finding solutions and improving the initial solution using the GA

	THE PROCESS MODELING IN UML
	DESCRIPTION OF THE APPLICATION, TESTING AND RESULTS
	CONCLUSION
	References
	appendix – uml diagrams

