
SOUTHEAST EUROPE JOURNAL OF SOFT COMPUTING 
Available online at www.scjournal.com.ba 

 

68 
 

 

 

 
 

Neural Networks to Diagnose the Parkinson’s Disease  
 
 

Mehmet Can 
mcan@ius.edu.ba 

 
International University of Sarajevo 

Faculty of Engineering and Natural Sciences 
Hrasnicka Cesta 15, 71000 Sarajevo 

Bosnia and Herzegovina 
 

 

Abstract 

To identify the presence of Parkinson’s disease, a neural network system with back propagation 
together with a majority voting scheme is presented in this paper. The data used has an imparity of 
the ratio 3:1. Previous research with regards to predict the presence of the disease has shown 
accuracy rates up to 92.9% [1] but it comes with a cost of reduced prediction accuracy of the small 
class. The designed neural network system is boosted by filtering, and this causes a significant 
increase of robustness. It is also shown that by majority voting of eleven parallel networks, 
recognition rates reached to > 90 in spite of 3:1 imbalanced class distribution of the Parkinson’s 
disease data set. 
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1. INTRODUCTION 

The cause of Parkinson’s disease is unknown, however 
research has shown that a degradation of the 
dopaminergic neurons affect the dopamine production 
to decline [2]. Dopamine is used by the body to control 
movement, hence the less dopamine that is in 
circulation the more difficult the person to control the 
movements and may experience tremors and 
numbness in extremities. As a direct cause of reduced 
control of motor-neurons in the central nervous 
system, the ability of articulating vocal phonetics is 
reduced. In this case the symptom, the inability to 
articulate words, is related to the presence of 
Parkinson’s disease and is described as Dysphonia, a 
reduced functionality of the vocal cords. One of the 

immediate effects of vocal Dysphonia is that the sound 
of the words is hardly recognizable [3]. 

      Although the field of speech processing and 
development of speech recognition systems have 
received considerable attention during the last decades, 
scientific researches on vocal recordings of patients 
that suffer from Parkinson’s disease are not abundant. 
With the availability of portable phones and analyzing 
methods involving traditional digital signal processing 
approaches such as hidden Markov models, Kalman 
filter, short-time frequency analysis and wavelet 
transforms are successfully used for both speech 
enhancement and speech recognition applications [4, 
5, 6, 7, 8, 9, 10, 11]. 

Scientific research on vocal recordings of patients that 
suffer from Parkinson’s disease are not abundant. The 
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data set used in this study was collected by M. A Little 
et. al. [12] who used support vector machine 
techniques to distinguish between the people who have 
normal vocal signals and who suffer from Parkinson’s 
disease. They achieve a classification accuracy of 
91.4% but they do not report single class true positive 
rates. This is noteworthy because of the highly 
imbalanced sick to healthy ratio (3:1) data class 
distribution of the Parkinson’s disease data set [13].  

      R. Das [1] has made a comparative study on this 
data set making the use of the neural networks, 
DMNeural analysis, regression analysis, and decision 
trees presented results of classification accuracy of 
92.9%, 84.3%, 88.6% and 84.3% respectively. The 
analysis was carried out on data exploration of SAS 
software. Another study by M. Lee et. al. [14] on the 
imbalanced data problem in biomedical data uses a 
sampling scheme in collaboration with a naive Bayes 
classifier to deal with the imbalanced data problem. 
The sampling pattern starts with a small portion of the 
data to train the classifier, and then successively to 
increase the number of training samples regardless of 
the initial class distribution. This method results in 
positive predictive rates of 66.2% for normal subjects 
and 90.0% for subjects with Parkinson’s disease. 

      Neural networks are the tools that should be 
recalled for any classification job. They are developed 
enormously since the first attempts made modeling the 
perceptron architecture six decades ago [15].  

      The massive parallel computational structure of 
neural networks is what has contributed to its success 
in predictive tasks. It has been shown that the 
approach of using parallel networks is successful with 
respect to increasing the predictive accuracy of neural 
networks in robotics [16] and in speech recognition 
[17].  

      This work presents a parallel networks system 
which is bound together with a majority voting system 
in order to further increase the predictive accuracy of a 
Parkinson’s Disease data set based on vocal 
recordings. 

     For the proposed system it is shown with a case 
study of Parkinson’s disease that some of the 
difficulties with imbalanced data sets are resolved. The 
type of network used is the standard feedforward back-
propagation neural network, since they have proven 
useful in biomedical classification tasks [18]. The 
performance of the trained neural networks is 

evaluated according to the true positive, and true 
negative rate of the prediction. 

      The paper is organized as follows; first, the data 
used in this work is introduced in section 2. The neural 
network that is boosted by filtering is illustrated in 
section 3. Results of the research are shown in section 
4 which followed by a conclusion. 

 

2.  DATA SET OF PARKINSON’S DISEASE 

The data used in this study is a voice recording 
originally done at University of Oxford by M.A. Little 
[12]. In the same study a detailed presentation is made 
on the specificities of the recording equipment as well 
as in what environment the experiment was conducted. 
The data consists of 195 recordings extracted from 31 
people whom 23 are suffering of Parkinson’s disease. 
The time since first diagnosis of Parkinson’s disease 
was done 0 to 28 years ago and the age of the subjects 
ranged from 46 to 85 years and a total of 6 vocal 
sounds were recorded from each subject. For more 
information on the data set refer to ref. [12]. 
Furthermore, the data set consists of 22 attributes. 
Little et al. apply a correlation filter and of these 22 
attributes 12 are removed after applying the filter. 
Each correlation coefficient, which is less than 0.95 is 
considered not to contribute to classification accuracy, 
thus the attribute is removed. A total of 11 attributes 
are kept after the correlation filter has been applied. 
Table 1 gives a brief explanation of meaning of the 
attributes; references [19, 12, 13] should be consulted 
for details on how the attributes are derived and what 
they indicate. 

Table 1: Table describing the attributes that are not 
removed after applying the correlation filter or by 
other reasons mentioned in Little et. al [12] where the 
exact computations of each measurement is described. 

No  Attribute name  Description 
1  MDVP:Jitter(Abs)  Variation in fundamental frequency 
2  Jitter:DDP  Variation in fundamental frequency 
3 MDVP:APQ  Measures of variation in amplitude 
4  Shimmer:DDA  Measures of variation in amplitude 
5  NHR Ratio of noise to tonal components 
6  HNR  Ratio of noise to tonal components 
7  status  (1)-Parkinson’sDisease, (0)-Healthy 
8  RPDE  Dynamic complex measurement 
9  DFA  Signal fractal scaling exponent 
10  D2 Dynamic complex measurement 

11  PPE  Non-linear measure of fundamental 
frequency 
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3. ARTIFICIAL NEURAL NETWORKS 

Nervous systems existing in biological organism for 
years have been the subject of studies for 
mathematicians who tried to develop some models 
describing such systems and all their complexities. 
Artificial neural networks emerged as generalizations 
of these concepts with mathematical model of artificial 
neuron due to McCuloch and Pitts [20] described in 
1943 definition of unsupervised learning rule by Hebb 
[21] in 1949, and the first ever implementation of 
Rosenblatt’s perceptron [22] in 1958. The efficiency 
and applicability of artificial neural networks to 
computational tasks have been questioned many times, 
especially at the very beginning of their history the 
book "Perceptrons" by Minsky and Papert [23], 
published in 1969, caused dissipation of initial interest 
and enthusiasm in applications of neural networks.  

      It was not until 1970s and 80s, when the 
backpropagation algorithm for supervised learning was 
documented that artificial neural networks    regained 
their status and proved beyond doubt to be sufficiently 
good approach to many problems. Artificial Neural 
Network can be looked upon as a parallel computing 
system comprised of some number of rather simple 
processing units (neurons) and their interconnections. 
They follow inherent organizational principles such as 
the ability to learn and adapt, generalization, 
distributed knowledge representation, and fault 
tolerance. Neural network specification comprises 
definitions of the set of neurons (not only their number 
but also their organization), activation states for all 
neurons expressed by their activation functions and 
offsets specifying when they fire, connections between 
neurons which by their weights determine the effect 
the output signal of a neuron has on other neurons it is 
connected with, and a method for gathering 
information by the network that is its learning or 
training rule.  

 

3.1. Architecture 

From architecture point of view neural networks can 
be divided into two categories: feed-forward and 
recurrent networks. In feed-forward networks the flow 
of data is strictly from input to output cells that can be 
grouped into layers but no feedback interconnections 
can exist. On the other hand, recurrent networks 
contain feedback loops and their dynamical properties 
are very important.  

      The most popularly used type of neural networks 
employed in pattern classification tasks is the 
feedforward network which is constructed from layers 
and possesses unidirectional weighted connections 
between neurons. The common examples of this 
category are Multilayer Perceptron or Radial Basis 
Function networks, and committee machines.  

      Multilayer perceptron type is more closely defined 
by establishing the number of neurons from which it is 
built, and this process can be divided into three parts, 
the two of which, finding the number of input and 
output units, are quite simple, whereas the third, 
specification of the number of hidden neurons can 
become crucial to accuracy of obtained classification 
results.  

      The number of input and output neurons can be 
actually seen as external specification of the network 
and these parameters are rather found by trial. For 
classification purposes as many distinct features are 
defined for objects which are analyzed that many input 
nodes are required. The only way to better adapt the 
network to the problem is in consideration of chosen 
data types for each of selected features. For example 
instead of using the absolute value of some feature for 
each sample it can be more advantageous to calculate 
its change as this relative value should be smaller than 
the whole range of possible values and thus variations 
could be more easily picked up by artificial neural 
network. The number of network outputs typically 
reflects the number of classification classes.  

      The third factor in specification of the multilayer 
perceptron is the number of hidden neurons and layers 
and it is essential to classification ability and accuracy. 
With no hidden layer the network is able to properly 
solve only linearly separable problems with the output 
neuron dividing the input space by a hyperplane. Since 
not many problems to be solved are within this 
category, usually some hidden layer is necessary.  

      With a single hidden layer the network can classify 
objects in the input space that are sometimes and not 
quite formally referred to as simplexes, single convex 
objects that can be created by partitioning out from the 
space by some number of hyperplanes, whereas with 
two hidden layers the network can classify any objects 
since they can always be represented as a sum or 
difference of some such simplexes classified by the 
second hidden layer.  

      Apart from the number of layers there is another 
issue of the number of neurons in these layers. When 
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the number of neurons is unnecessarily high the 
network easily learns but poorly generalizes on new 
data. This situation reminds auto-associative property: 
too many neurons keep too much information about 
training set rather "remembering" than "learning" its 
characteristics. This is not enough to ensure good 
generalization that is needed.  

      On the other hand, when there are too few hidden 
neurons the network may never learn the relationships 
amongst the input data. Since there is no precise 
indicator how many neurons should be used in the 
construction of a network, it is a common practice to 
build a network with some initial number of units and 
when it learns poorly this number is either increased or 
decreased as required. Obtained solutions are usually 
task-dependant.  

  

3.2 Activation Functions  

Activation or transfer function of a neuron is a rule 
that defines how it reacts to data received through its 
inputs that all have certain weights.  

      Among the most frequently used activation 
functions are linear or semi-linear function, a hard 
limiting threshold function or a smoothly limiting 
threshold such as a sigmoid or a hyperbolic tangent. 
Due to their inherent properties, whether they are 
linear, continuous or differentiable, different activation 
functions perform with different efficiency in task-
specific solutions.  

      For classification tasks antisymmetric sigmoid 
tangent hyperbolic function is the most popularly used 
activation function:  

 
Fig. 1. Antisymmetric sigmoid tangent hyperbolic 
activation function 

 

3.3 Learning Rules  

In order to produce the desired set of output states 
whenever a set of inputs is presented to a neural 

network it has to be configured by setting the strengths 
of the interconnections and this step corresponds to the 
network learning procedure. Learning rules are 
roughly divided into three categories of supervised, 
unsupervised and reinforcement learning methods.  

      The term supervised indicates an external teacher 
who provides information about the desired answer for 
each input sample. Thus in case of supervised learning 
the training data is specified in forms of pairs of input 
values and expected outputs. By comparing the 
expected outcomes with the ones actually obtained 
from the network the error function is calculated and 
its minimization leads to modification of connection 
weights in such a way as to obtain the output values 
closest to expected for each training sample and to the 
whole training set.  

      In unsupervised learning no answer is specified as 
expected of the neural network and it is left somewhat 
to itself to discover such self-organization which 
yields the same values at an output neuron for new 
samples as there are for the nearest sample of the 
training set.  

      Reinforcement learning relies on constant 
interaction between the network and its environment. 
The network has no indication what is expected of it 
but it can induce it by discovering which actions bring 
the highest reward even if this reward is not immediate 
but delayed. Basing on these rewards it performs such 
re-organization that is most advantageous in the long 
run [22].  

      The modification of weights associated with 
network interconnections can be performed either after 
each of the training samples or after finished iteration 
of the whole training set.  

      The important factor in this algorithm is the 
learning rate η whose value when too high can cause 
oscillations around the local minima of the error 
function and when too low results in slow 
convergence. This locality is considered the drawback 
of the backpropagation method but its universality is 
the advantage.  

 

3.4 Architecture of artificial neural networks, 
Committee Machines   

As the base topology of artificial neural network 
committee machines [25] with the feed-forward 
multilayer perceptron with sigmoid activation function 
trained by backpropagation algorithm is used.  
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In committee machines approach, a complex 
computational task is solved by dividing it into a 
number of computationally simple tasks and then 
combining the solutions to those tasks. In supervised 
learning, computational simplicity is achieved by 
distributing the learning task among a number of 
experts, which in turn divides the input space into a set 
of subspaces. The combination of experts is said to 
constitute a committee machine. Basically, it fuses 
knowledge acquired by experts to arrive at an overall 
decision that is supposedly superior to that attainable 
by anyone of them acting alone. The idea of a 
committee machine may be traced back to Nilsson 
[24] (1965); the network structure considered therein 
consisted of a layer of elementary perceptrons 
followed by a vote-taking perceptron in the second 
layer. 

Committee machines are universal approximators. 
They may be classified into two major categories: 

1. Static structures. In this class of committee 
machines, the responses of several predictors (experts) 
are combined by means of a mechanism that does not 
involve the input signal, hence the designation "static." 
This category includes the following methods: 

• Ensemble averaging, where the outputs of different 
predictors are linearly combined to produce an overall 
output. 

• Boosting, where a weak learning algorithm is 
converted into one that achieves arbitrarily high 
accuracy. 

2. Dynamic structures. In this second class of 
committee machines, the input signal is directly 
involved in actuating the mechanism that integrates the 
outputs of the individual experts into an overall output, 
hence the designation "dynamic." 

In this research ensemble averaging category of 
committee machines will be used. 

 

Ensemble averaging  

Figure 1 shows a number of differently trained neural 
networks (i.e., experts), which share a common input 
and whose individual outputs are somehow combined 
to produce an overall output y. In this research the 
outputs of the experts are scalar-valued. Such a 
technique is referred to as an ensemble averaging 
method.  The motivation for its use is two-fold: 

• lf the combination of experts in Fig. 2 were replaced 
by a single neural network, we would have a network 
with a correspondingly large number of adjustable 
parameters. The training time for such a large network 
is likely to be longer than for the case of a set of 
experts trained in parallel. 

• The risk of overfitting the data increases when the 
number of adjustable parameters is large compared to 
cardinality (i.e., size of the set) of the training data. 

In any event, in using a committee machine as 
depicted in Fig. 2, the expectation is that the 
differently trained experts converge to different local 
minima on the error surface, and overall performance 
is improved by combining the outputs in some way. 

 
Fig. 2. Block diagram of a committee machine based 
on ensemble-averaging. 

The number of input terminals equaled the number of 
attributes in the human voice data, thus it is eleven. 
There are two hidden layers with eleven neurons 
within each of eleven neural networks in the 
committee machine for preserving generalization 
properties but achieving as shown in the signal flow 
graph in Figure 3.  

 
Fig. 3. Signal flow graph of an expert neural network 
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      In this research two hidden layer, feed forward, 
back propagation artificial neural networks are used as 
the eleven committee machines. The Parkinson data 
was 11 dimensional. Therefore eleven input ports 
equaled the number of eleven attributes used, thus it is 
eleven. There are two hidden layers with eleven 
neurons within each of eleven neural networks in the 
committee machines for preserving generalization 
properties but achieving convergence during training 
with tolerance at most 0.14 for all training samples 
recognized properly.  

      For all structures of artificial neural networks, only 
one output is produced. Actually, it was possible to use 
a single output and by interpretation of its active state 
as one class and inactive output state the second class 
the task would have been solved as well. 

 

4.  RESULTS AND DISCUSSION 

To demonstrate the increased robustness of the system 
and to justify forward propagation of untrained data 
samples, experiments are conducted. Results from the 
experiments can be seen in table 1.  

 

Table 1: Performance measurements of eleven 
committee machines and majority vote. The high false 
positive is a result of imbalanced data ratio 1:3 of 
healthy subjects to the ones with  Parkinson’s disease. 
 Committee Machines  
% 1 2 3 4 5 6 7 8 9 10 11 MV 
TP  80 93 91 91 91 93 93 92 83 92 91 92 
TN  50 73 84 84 84 83 71 73 75 73 73 73 
FP  50 27 16 16 16 17 29 27 25 27 27 27 
FN 20 7 9 9 9 7 7 8 17 8 9 8 
 

It has been shown in this study that parallel neural 
networks in combination with a majority rule based 
system increase performance of true recognition rates 
in an imbalanced data set. In conducted experiments 
all measurement parameters are improved compared to 
single network predictions. From the experiments it is 
proven the parallel system with forward propagation of 
untrained data samples increases the robustness and 
decrease the variability as seen in the system which 
does not have this feature. 

      Despite the advantages of having an accurate 
system prediction, the training time and complexity of 
the parallel network algorithm do increase as the 
number of parallel networks increases [26-27].  The 
data set is very unbalanced with regard to the class 

distribution. This, in combination with the small 
sample size, makes it difficult to train any type of 
classifier to predict the presence of Parkinson’s 
disease. Out of 195 samples, 75.4% are Parkinson’s 
disease type and the remainder is of healthy character. 

      It implies that the baseline prediction is 75.4% and 
any prediction accuracy less than the baseline is not 
relevant. A common problem with imbalanced data 
sets is that they can increase to high false positive 
rates. Traditionally, the problem with false positive 
predictions is dealt with over- or  undersampling [28]. 
However techniques to adjust the sample distribution 
sometimes overweight the benefits of generalising the 
classifier. Any modification to the data set is merely 
artificial alternatives to the problem of inadequate 
training data. In this paper, it has been demonstrated 
that parallel neural networks are strong at adjusting the 
imbalanced data set problem. 

      False positive rates up to 25 - 30% of the positive 
class have been reported [29] in the literature. It has 
been demonstrated in this study that a true positive rate 
up to 90% of positive class is achieved by using eleven 
parallel networks. This is a significant improvement 
compared to previously demonstrated results. It has 
also evident that networks with forward propagation of 
untrained data do increase the robustness of the 
parallel system. For the case of forward propagation of 
untrained data, this threshold is after 7 networks.  

 

5. CONCLUSIONS 

A new system has been presented consisting of 
parallel distributed neural networks and a majority 
voting system. An empirical investigation 
demonstrates that it is possible to achieve >90% true 
positive rate for each class in a Parkinson’s Disease 
data set with class distribution of 3:1 ratio.  
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