
University of Lynchburg University of Lynchburg

Digital Showcase @ University of Lynchburg Digital Showcase @ University of Lynchburg

Undergraduate Theses and Capstone Projects Student Publications

Spring 4-27-2023

Analyzing and Computing Complete Solution for Dots and Boxes Analyzing and Computing Complete Solution for Dots and Boxes

Game Game

Carl McAninch
University of Lynchburg, mcaninc542@lynchburg.edu

Follow this and additional works at: https://digitalshowcase.lynchburg.edu/utcp

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
McAninch, Carl, "Analyzing and Computing Complete Solution for Dots and Boxes Game" (2023).
Undergraduate Theses and Capstone Projects. 278.
https://digitalshowcase.lynchburg.edu/utcp/278

This Thesis is brought to you for free and open access by the Student Publications at Digital Showcase @
University of Lynchburg. It has been accepted for inclusion in Undergraduate Theses and Capstone Projects by an
authorized administrator of Digital Showcase @ University of Lynchburg. For more information, please contact
digitalshowcase@lynchburg.edu.

https://digitalshowcase.lynchburg.edu/
https://digitalshowcase.lynchburg.edu/utcp
https://digitalshowcase.lynchburg.edu/student_publications
https://digitalshowcase.lynchburg.edu/utcp?utm_source=digitalshowcase.lynchburg.edu%2Futcp%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalshowcase.lynchburg.edu%2Futcp%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalshowcase.lynchburg.edu/utcp/278?utm_source=digitalshowcase.lynchburg.edu%2Futcp%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalshowcase@lynchburg.edu

Analyzing and Computing Complete Solution for Dots and Boxes Game

Carl McAninch

Senior Honors Project

Submitted in partial fulfillment of the graduation requirements
of the Westover Honors College

Westover Honors College

May, 2023

 Randy Ribler, PhD

____________ ____________

 M. Zakaria Kurdi, PhD

Edward G DeClair, PhD

Abstract - This thesis improves a process that analyzes all the states of a game of Dots and

Boxes. We use retrograde analysis and simulations to create a solution that provides

significant performance improvements over our previous best solution. Expanding upon a

previous 4x4 solution using rotations, reflections, better optimization, and cloud

computing to limit the processing time and gather more data efficiently. We compute a file

and the number of states associated with each file and process every state starting with a

completely filled board. We optimized the data for cloud computing by running

simulations to find the most efficient number of processors and assess potential

bottlenecks. The data produced from the results will be able to provide solutions and

optimal play for dots and boxes games of different dimensions.

Keywords: Dots and Boxes, Retrograde Analysis, Simulation, Cloud Computing

1

I. Introduction

Dots and Boxes is a classic pencil and paper game played between two players.

Historically it has been used as a game with a specialization in mathematics. The game begins

with an empty grid of dots. Two players take turns drawing lines between the dots [7]. A box can

be claimed when all 4 sides are completed and the player that completed the square wins the

square. If a player wins a square then they must make another consecutive move. Dots and Boxes

is considered a combinatorial game, where players move alternatively and when one player can no

longer move the winner is the one with the most boxes [10]. Each move is related to the previous

state of the board, so every position is a sub-position of another [10]. General strategy can be

applied to a game of dots and boxes such as creating chains that switch the flow of the game in

favor of a certain player. If a player is forced into giving away a long chain of boxes they will be

at a disadvantage and eventually lose the game [3]. It has been found that the beginning and

middle of the game is the most important time to take advantage of this strategy because there are

less possible variations at the end of a game [7]. The goal of the game is to be in control of the

endgame [2].

But knowing and using this general strategy is no match for a computer program with a

complete solution to the game. A program is able to see all possible states of a 4x4 dots and boxes

game and make decisions that will result in the most optimal play. Given a certain position, it will

choose to make a line that will eventually lead to the maximum number of boxes won. Two

perfect machines playing against each other will result in a tie; although, the player that goes first

is found to be at a great advantage. The goal of this thesis is to compute a complete solution in the

2

most optimal way possible. A complete solution, or solved game, provides the best possible move

for any position. The best possible move at any given point is also called perfect play, which gives

the best move no matter what future or past moves will be.

 The issue with a problem such as this is the sheer number of states that could possibly

occur during a game and the bottlenecks that happen when files are waiting on the files they are

dependent on. Most programs that aim to solve a problem such as this use a search algorithm such

as alpha-beta pruning, minimax, and Monte Carlo tree searches to limit the number of states [1,6].

This method does not find a complete solution; however, processing every state and gathering data

from this problem can be very costly in terms of processing. Adding to the dimensions of the

board for the game increases the processing time exponentially. A previous solution to the 4x4

grid was obtained through the use of 50 different processors running over several hours or even

days [9]. This solution suffered from bottlenecks, and boards with different dimensions than the

4x4 game would be too costly to compute. A solution that optimizes the process can reduce these

bottlenecks and be more efficient during processing. This allows us to produce results for different

dimensions than a 4x4 grid in an efficient manner. Data provided from this process provides

indications to what makes a certain move the most optimal and can lead to stronger programs of

several different dimensions. The goal of this research is to find the most efficient process to

compute a complete solution and collect data from a 4x4 dots and boxes game that may lead to

better solutions for games of other dimensions. While the topic for this project is dots and boxes,

the techniques that we use to optimize the distributed processing can be applied in any application

domain in which the computation time for individual partitions of the problem can be reliably

estimated.

3

II. Preliminary Data

Fig. 1. 4x4 dots and boxes game shows the result of the possible moves.

The original solution to the 4x4 dots and boxes game used 50 processors to obtain a

complete solution after about 5 days of processing. The program can find the line that will result

in the boxes won or lost at any given point in the game. Figure 1 shows the value each possible

move has during the given game. The worst move is a loss of three boxes and the best move is a

gain of five boxes. This will be the result of the game, following the most optimal game play, if

it were to make that particular move. [9]

Previous data mining determined interesting data about a 4x4 dimension dots and boxes

game. For example, the player who moves first in a game cannot make a losing move until the

fifth move of the game, and the player who moves second can lose on their very first move. In

4

fact, for some first moves there are only two drawing moves out of the 39 available moves. It

was also found that the lines towards the center of the board are usually completed first in perfect

gameplay. The solution was saved and results of certain moves can be instantly viewed as in

Figure 1.

 To find these results the program breaks the board into 4 quadrants with 10 lines in each

quadrant, as shown in Figure 2. The game is partitioned into files, named by the number of lines

in each of the 4 quadrants, represented from 0_0_0_0 to 10_10_10_10. 0 represents a quadrant

that is completely empty, while 10 is a quadrant that is completely filled. Each partition has a

certain number of game states. The partition 10_10_10_10 and 0_0_0_0 only have one possible

state, while the partition 5_5_5_5 has 4 billion possible states. Each game state is dependent on

the previous state for retrograde analysis. A previous state is the result of removing one line from

one of the quadrants. For example game state 10_10_10_10 is dependent on states 9_10_10_10,

10_9_10_10, 10_10_9_10, and 10_10_10_9.

It was found that this program was not very optimal in terms of the time it took to process

each of the files. 50 processors were used on the University of Lynchburg campus over the

course of 5 days to complete the solution [9]. The program did not take advantage of possible

redundancies present such as reflections and rotations. It was also found that a relative few of the

files make up a majority of the processing time. These features created bottlenecks that made the

processing time inefficient. Implementing the changes we describe should result in a speedup in

the processing time.

5

Fig. 2. Line quadrants

At most, each partition depends only on the partitions that are identical in all but one

number, where that number is exactly one larger. The number of dependencies is often reduced

when reflections and rotations are considered. Consider each partition represented as letters a, b,

c, and d, where each letter represents the number of lines in each quadrant. Specifically, partition

a_b_c_d is a rotation of partition b_c_d_a, c_d_a_b, and d_a_b_c. Partition a_c_b_d is a

reflection of a_b_c_d, which itself has 4 rotations. As a result of these redundancies, we can find

the complete solution computing only approximately 1/8th of the states that were needed to

compute the original 50 processor solution.

 In order to create a simulation for this program we generated a series of dependency

graphs to keep a record of which partitions were required to complete processing before the next

partition is able to be computed. The first dependency graph took into account all reflection and

rotations by getting the normalized value for each partition. The second dependency graph added

6

variations of optimizations we created as shown in Figure 3. For example, we created a new

dependency graph that broke larger partitions into smaller ones based on the number of states

that those partitions had within them as shown in Figure 4.

Fig. 3. A section of the dependency graph using reflections and Rotations

Fig. 4. The same section of the dependency graph using subpartitions

 We created a discrete event simulation to analyze the process of creating a complete

solution. The simulation uses a priority queue to track the completion of each partition and the

flow of data between distributed processors. The priority queue represents the current files that

7

are being processed. No file can enter the priority queue until each of its dependent states have

exited. The simulation time is represented by the number of states that are processed. The first

simulation was run on an updated dependency graph that accounts for reflections and rotations.

A reflection or rotation eliminates the need to process the same state multiple times. This

addition brings the total number of states from 240 to 237 resulting in a substantial speedup. This

first simulation showed that the maximum number of processors in use at one time is 25, and the

average number of processors in use is between 6 and 7 as shown in Figure 5.

Fig. 5. Number of processors in use by Processing time

8

 Further simulations tested the speedup between the number of available processors and

total processing time. We added parameters to the simulation that limits the number of

processors available. As the simulation ran, dependent partitions had to wait for an available

processor in order to enter the priority queue. Waiting for an available processor adds extra time

to the simulation and shows a realistic representation of what can happen based on the number of

processors we are able to allocate. It was found that limiting the number of processors did not

drastically change the simulation time after a certain point. Figure 6 shows the simulation run

with 25 available processors compared to 1 and Figure 7 shows 10 available processors

compared to 25. There is a drastic speedup if there is an unlimited amount of processors

available. With only one processor there is no opportunity for parallel processing. An unlimited

number of processors allows processing to begin as soon as dependent files are available. As the

number of processors increases the wait time continues to decrease. Even with more than half of

the available processors taken away there is not a drastic change in the simulation time. These

results show the bottlenecks from certain dependencies and that the larger files that are taking up

the bulk of processing time. Even though there are a large amount of processors free to take on a

job there is no job to provide to them because the next jobs up are waiting for their dependent

partitions to complete.

9

Fig. 6. 25 processors compared to 1

Fig. 7. 25 Processors compared to 10 (without subpartitions)

III. Methodology

10

Optimizations

In order to find the most optimal process for computing all possible states of a dots and

boxes game we applied certain optimizations. The first of which was including rotations and

reflections in the dependency graph. Most game states are the exact same as others if the board

were to be rotated or reflected. This eliminates the need to process those states multiple times.

The number of states that need to be processed is reduced by approximately 1/8th, from 240 to

237. This is applied by designating one of the 8 representations as the “normalized”

representation, and only normalized files are included in the dependency graph.

Even with rotations and reflections the simulations showed bottlenecks due to the

dependencies. Large files, like 5_5_5_5 with over 4 billion states, take a long time to process.

The dependent partitions are forced to wait for the completion of such files. In order to combat

this, partitions with over 200 millions states are broken up into smaller subpartitions. Each

partition is split up between 1 and 20 new partitions. We regenerated the dependency graph

allowing for a large increase in parallelism between the partitions.

Simulations

Given the time and cost required to calculate a complete solution it is not practical to run

this computation multiple times as we are making changes. Our simulation runs in a few seconds

and is able to estimate the results of running and making changes to the program [5]. It provides

an estimate of what we can expect when the program is actually running [5]. After a simulation

is created we are able to run it many times over in a matter of milliseconds, instead of a period

such as 5 days like the previous solution took. This allows us to make small changes to the

11

program and analyze the data in an efficient manner. The simulation created for this thesis

simulates the process that will happen through HTCondor and cloud computing. The simulation

time we use to estimate the time it will take to compute the solution is represented by the number

of states in each file.

The simulation allowed us to constantly add stipulations and new methods to improve the

processing time. The simulation receives a dependency graph containing each partition’s

dependent partitions. The dependency graph was used to create several different data structures

including the number of states for each partition, all dependent partitions of a given partition, and

the number of dependencies each partition had. The first simulation ran with no stipulations on

the number of processors available. Beginning with the last possible state of 10_10_10_10, each

partition was added to a queue as soon as every dependent partition exited the queue. The next

simulation limited the number of processors that would be available. Assume the number of

processors available was set to 10, if all 10 processors were occupied, represented by the number

of items in the queue, then the partition to be added will be put in a separate queue to wait for

cpu availability, consequently affecting the simulation time. Further simulations continued to add

optimizations that would decrease the simulation time.

Retrograde Analysis

The program used in this thesis uses retrograde analysis to calculate the value of all the

possible states that can occur in a given game. Retrograde analysis starts at the end of a game

where the value of the game is known to be 0 and moves backwards through the previous states. In

dots and boxes, the value of every state with k completed lines can be computed if we know the

value of every state with k+1 complete lines. We know the value of the game with all the lines

12

filled in is 0, because there are no more boxes to win at that point. So in the case of the 4x4 dots

and boxes game, we know the value of all states, the only state with k=40 lines is zero. To

compute the value of a state with 39 lines we use the following logic:

if (the k+1 line completes any boxes)

 Value = nBoxesCompleted + value of the resulting state with k+1 lines.

else

 Value = the value of the resulting state * (-1)

Because of the requirements of having all possible resulting states available, each partition

of the form a_b_c_d might be dependent on the partitions (a+1)_b_c_d, a_(b+1)_c_d,

a_b_(c+1)_d, and a_b_c_(d+1). So each partition is dependent on a maximum of four other

partitions. Because no partitions have numbers larger than 10, and because of redundancies caused

by reflections and rotations, the average number of dependencies is less.

 Each file and the states associated with that file is dependent on the previous file(s). The

results of retrograde analysis tells the computer which line will give the greatest advantage.

Retrograde analysis is a common method in games with many possible different states like chess

and Go. Ken Thompson’s “Retrograde Analysis of Certain Chess Endgames” provides a similar

approach that analyzes files of chess states to find the best moves in endgames of chess[8].

Thompson’s research analyzes certain positions at the end of a chess game, working backwards to

find the most optimal play through those situations[8]. Chess games have many more possible

states than a game of Dots and Boxes because of the number of pieces and board dimensions. The

program in this thesis is able to use retrograde analysis to analyze every possible state from a

completely filled board to an empty one.

13

HTCondor

In order to run this program concurrently on many different machines we use HTCondor.

HTCondor controls the scheduling and execution of the individual partitions. It schedules and

runs jobs as they are available to run, and transfers files as they are ready to be computed or

when they complete. This method allows us to take advantage of the available processors on the

cloud, creating an economical environment for the large number of states we have to

compute.We wrote a program to provide condor with the dependency graph. This program must

run from the last state all the way to the first and each dependent partition is required to be

completed first, HTCondor is able to handle these dependencies very well. [4]

Microsoft Azure Cloud

This prepares us to run on Microsoft Azure Cloud, providing us with network speeds

much higher than that of the University of Lynchburg’s campus. This change in the process will

create a substantial speedup even without the current optimizations. Computing the solution on

the cloud also has several other advantages.

IV. Results

 We learned in our initial simulations that bottlenecks were created by several very large

files. We broke those files down into smaller subpartitions and generated a new dependency

graph. The new dependency graph including subpartitions showed a drastic decrease in the

simulation time from the graph without these subpartitions. The new graph takes advantage of

14

the available processors to process states from the larger files. Figure 8 shows the average

number of processors in use increases to 22 from the simulation without subpartitions. It also

shows approximately a 24 times speedup from the original program and a 3 times speed up from

the initial simulation as shown in Figure 9.

 Fig. 8. 25 available processors with subpartitions

15

Fig. 9. 25 Processors with Subpartitions Compared to Without Subpartitions

The new dependency graph also shows that we can use even more than the original 25

maximum processors. There is a substantial speedup when the total number of available

processors is increased from 25 to 50. As the number of available processors increases the rate of

speedup begins to decrease. (Fig. 10)

16

Fig. 10. 25, 50, 75, and 100 available processors

Results show that the optimum number of processors to use is approximately 60

processors. Even though the number of possible processors that can be in use at one time is over

130, the partitions are small enough during those spikes that it takes very little time to compute.

The simulation was run from 1 to the max number of processors that could be used, 137, and

Figure 11 shows the speedup leveling off near 60 processors. The maximum speedup we would

achieve is approximately a 5x speedup to the initial simulation and over 30x the original program

before adding more processors has no benefit.

17

Fig. 11. Speedup from original simulation by number of processors

 Another factor that changes the processing time in this project is the transferring of files

to and from the different processors as jobs complete. Some files will have to be transferred

several times to route them to all processors that need them. When a job is ready to run it needs

all of the files it is dependent on. When a job is complete it must transfer the output file back to

the controller node. Even though transferring files is fast compared to the computation times, the

number of times files must be transferred, and the fact that processing is dependent on the

completion of these transfers, can cause a slowdown in the process.

18

V. Conclusion

This project used simulations to find the most efficient method to compute a complete

solution for the 4x4 Dots and Boxes game. The original solution took 5 days and 50 processors

to compute, and our goal was to significantly reduce that execution time. The refined simulation

provided a method for computing the solution on Microsoft Azure Cloud that can be completed

much faster than the previous solution that was computed on the University of Lynchburg

campus. The program is able to run every possible state in a 4x4 Dots and Boxes game, and can

be applied to games of larger dimensions. The results from the simulations show that the

optimizations provide a substantial amount of speedup, even with fewer processors available.

The best possible speedup is well over 10x faster than the original solution, and can be even

greater depending on the results from the cloud computing.

Further work will include running the program created from the simulations on Microsoft

Azure Cloud. The cloud services will provide us with crucial data that can advance this project

much further. Continued research on this project will include computing solutions of Dots and

Boxes on boards of different dimensions, and gathering data and trends on these games. The

optimizations from this thesis will be able to create these solutions in a much more realistic

timeframe than the original program created. Increased parallelism of dependencies enables the

problem to decrease the amount of bottlenecks due to dependencies.

The techniques used in this thesis can also be applied outside of creating solutions for

board games. In fact the simulator used can be applied to any problem for which it is possible to

determine the computation time for each job. Each method used is important in the field of

Computer Science and can be applied to many different kinds of problems. Simulations are an

19

extremely useful tool to analyze problems in an efficient, cost effective manner. As research

continues more techniques will be applied to create solutions for Dots and Boxes, and many

other similar problems.

VI. Acknowledgements

I would like to thank the entire computer science department of the University of

Lynchburg for their support throughout this project and over the course of the past four years. A

special thanks to Dr. Ribler for his help and mentorship on this project as well as the students

that have worked to develop this project in previous years.

20

VII. References and Work Cited

[1] A. Cotarelo, “Improving Monte Carlo Tree Search with Artificial Neural Networks

without Heuristics,” Applied Sciences, vol. 11, no. 5, 2021.

[2] D. Allcock, “Best Play in Dots and Boxes Endgames,” International Journal of Game

Theory, vol. 50, no. 3, pp. 671-693, sep 2021.

[3] E. Berlekamp, “The Dots and Boxes Game: Sophisticated Child’s Play,” Mathematics

Magazine, vol. 73, no. 4, pp. 331, Oct. 2000.

 [4] HTCondor, “HTCondor Manuals,”, http://research.cs.wisc.edu/htcondor/

manual/index.html

[5] J. Banks, J. Carson, “Discrete-Event System Simulation,” Englewood Cliffs, NJ:

Prentice-Hall, 1984.

 [6] J. K. Barker and Richard E. Korf, “Solving dots-and-boxes”, Proceedings of the Twenty-

Sixth AAAI Conference on Artificial Intelligence, Toronto, Canada, 2012

[7] K. Buzzard, M Ciere, “Playing simple loony Dots and Boxes endgames optimally”, May,

2014, arxiv:1305.2156.

21

[8] K. Thompson “Retrograde Analysis of Certain Endgames,” ICCA Journal vol. 9, pp 131-

139, 1986.

[9] R. L. Ribler, T. Percario, and C. Ware, “Computing, Publishing, and Analyzing a

complete Solution to the 4x4 Dots and Boxes Game,” Dept. Computer Science, University of

Lynchburg, Lynchburg, Virginia, USA.

[10] U. Larson, “Games with guaranteed scores and waiting moves,” International Journal of

Game Theory, vol. 47, pp. 653-671, 2018.

	Analyzing and Computing Complete Solution for Dots and Boxes Game
	Recommended Citation

	tmp.1698690662.pdf.YMy6_

