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Three Threads of Research Meet

Fig. 1: Threads of Research

The Motivating Question

• We would like to extend the ability of cryptographic protocol analysis tools.

– Prove security questions about a wider set of cryptographic systems

• Many systems already work for “subterm-convergent” presentations. Many
also work for specific examples of protocols that are beyond subterm-
convergent.

• However, there is no syntactic definition of this “beyond subterm” or no clas-
sification of what systems fit into this class.

Can we define a new form of beyond subterm-convergent Term Rewrite Sys-
tem (TRS) and prove it can be used to extend the ability of existing crypto-
graphic protocol analysis methods?

Multi-Set of Keys

The theory of a multi-set of keys:

d(e(x, y), y) → x

d(e(x, f (y, z)), y) → e(x, z)

d(e(x, y), f (y, z)) → d(x, z)

d(e(x, f (y, z)), f (y, v)) → d(e(x, z), v)

Note: The theory of a multi-set of keys is not subterm-convergent, yet the proce-
dure of [1] still works. Why?

Road Map

We take the following path to a solution:

• Using notions of graph theory develop a new definition of graph-embedded relation on
terms.

• Extend the graph embedded notion on terms to term-rewrite systems.

• Prove that these new “graph-embedded TRS” encompass the required properties of
the cryptographic analysis systems.

• Prove that the protocol analysis systems work on the classes of graph-embedded TRS,
namely that they have the local stability property.

Graph Theory to Term-Rewrite Systems

Graph Theory to Term-rewrite System: Graph Minor

Definition 1. G is an MG′, denoted G = MG′, if G′ can be obtained from G by a series of
edge contractions. That is, iff there exists graphs G0, G1, . . . , Gn and edges ei ∈ Gi such
that G = G0, Gn ≃ G′, and Gi+1 = Gi/ei for all i < n.
If G = MG′ and G is a subgraph of another graph G′′, we call G′ a graph minor of G′′,

denoted as G′ ≽ G′′.

Graph Theory to Term-rewrite System: Graph Embedded Term

Definition 2. Consider the following reduction relation, →∗
Rgemb

, induced by the set of rewrite
rules create after instantiating the following rule schema with Σ:

Rgemb = {
(1)fi(x1, . . . , xn) → xi | n ≥ 1, 1 ≤ i ≤ n

(2)fi(x1, . . . , xi−1, xi, xi+1 . . . , xn) → fi(x1, . . . , xi−1, xi+1, . . . , xn)

and ∀fi, fj ∈ Σ

(3)fi(x1, . . . , xi−1, fj(z̄), xi+1, . . . , xm) → fj(x1, . . . , xi−1, z̄, xi+1, . . . , xm)

(4)fi(x1, . . . , xi−1, fj(z̄), xi+1, . . . , xm) → fi(x1, . . . , xi−1, z̄, xi+1, . . . , xm)

}

We say a term t′ is graph embedded in a term t, denoted t′ ≽gemb t, if t′ is a well formed
term and t →∗

Rgemb
s ≈ t′.

Graph Theory to Term-rewrite System: Graph Embedded TRSs

Definition 3. A TRS R is a graph embedded TRS if ∀ l → r ∈ R, r ≽gemb l.

Protocol Analysis

Resulting Theorems
Theorem: Let R be a convergent graph-embedded and cap-contracting TRS.
Then, R is locally stable.
Corollary: Let R be a convergent, graph-embedded, and cap-contracting TRS.
Then deduction and static equivalence are decidable.

Multi-Set of Keys Using TRS

The theory of a multi-set of keys:

d(e(x, y), y) → x

d(e(x, f (y, z)), y) → e(x, z)

d(e(x, y), f (y, z)) → d(x, z)

d(e(x, f (y, z)), f (y, v)) → d(e(x, z), v)

We see the multi-set of keys is not subterm-convergent, yet the procedure of [1]
still works. Why? Because the theory is a convergent, graph-embedded, and
cap-contracting TRS.

Conclusion

As a result of this research, we have developed a new form of graph-embedded
term rewrite system. Additionally, we have proven several properties such as
termination and that they differ from homeomorphic embedded systems. These
properties were then used to show how graph-embedded term rewrite systems
can be used to analyze cryptographic protocols, for example, by using local
stability. In future work, we would like to explore more applications for graph-
embedded term rewrite systems, as well as investigating if additional embedding
properties such as topological embeddings are useful.
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